COMPSCI 311: Introduction to Algorithms

Lecture 11: Divide and Conquer

Marius Minea

University of Massachusetts Amherst

Review: Master Theorem for Recurrences

Let T'(n) = aT(n/b) + f(n). Then:

1. T(n) = O(n'°8r%) when f(n) = O(n'%8*=¢) for some ¢ > 0
f(n) grows polynomially slower than n!o%: ¢
most work: at bottom of recursion tree

2. T(n) = ©(n'°%*logn) when f(n) = O(n'°% %)
comparable work at each level

3. T(n) = O(f(n)) when f(n) = Q(n'°%+¢) for some € > 0 and
af(n/b) < cf(n) for some ¢ < 1 when n sufficiently large

f(n) grows polynomially faster than n'o8»@
more work at top level

Clicker Question 1

Consider the recurrence T'(n) = T(|n/2]) + T([n/2]) + n.

Consider three variants of the base case:
)n=1, 2)n=2; 3)n=1orn=2.

The asymptotic complexity of T(n) is:
A) The same in all cases
B) highest for case 1, lowest for case 2, case 3 is intermediate

C) highest for case 1; case 2 and 3 are the same

Counting Inversions: Motivation

n objects, ranked in linear order by different sources

A B C D E
RankListl 3 4 2 1 5
RankList2 4 2 1 3 5

How similar are these rankings?
Applications:

» Recommendation systems (collaborative filtering)

» Stability / sensitivity of web ranking functions

» Meta-search tools: compare & aggregate search engines
» Measure “sortedness” of an array

Similarity Metric: Number of Inversions
A B C D E
RankListl 3 4 2 1 5
RankList2 4 2 1 3 5

A pair {X,Y} C{A,B,C,D, E} has an inversion between the
two rankings if ranky (X) < rank;(Y) but ranks(X) > ranks(Y)
or vice-versa.

Alternate view: Take Rankl as reference point and renumber
objects based on that rank: D=1, C=2, A=3,B=4,E=5.

Rewrite Rank2 as R/, ranking each of the new IDs

1 2 3 45
R 3 1 4 2 5

Say i and j are inverted if ¢ < j but R'(i) > R'(j)

Is this the same definition? (Has the number of inversions changed?)

Clicker Question 2

A B C D E
RankListl 3 4 2 1 5
RankList2 4 2 1 3 5
Rename D =1, C =2, A =3, B =4, E =5, rewrite:
1 2 3 4 5
R 3 1 4 2 5

Does the number of inversions change?
A) Yes, it has changed
B) No, it never changes

C) It has not changed here, but changes in other cases

Counting inversions: divide-and-conquer

« Divide: separate list into two halves A and B.

« Conquer: recursively count inversions in each list.

+ Combine: count inversions (a,b) with a €A and b € B.
« Return sum of three counts.

input

1 5 4 8 10 2 6 9 3 7

count inversions in left half A count inversions in right half B
1 5 4 8 10 2 6 9 3 7
5-4 6-3 9-3 9-7
count inversions (a, b) withac Aand b e B
1 5 4 8 10 2 6 9 3 7
4-2 4-3 5-2 5-3 8-2 8-3 8-6 8-7 10-2 10-3 10-6 10-7 10-9
output1 +3 + 13 = 17 2

slide credit: Kevin Wayne / Pearson

Clicker Question 3

What do we need to combine the subproblems?

To count inversions between the array halves, we'd need to:

A) Know min and max values in both halves
B) Know min and max values in both halves and their positions

C) Neither of the above is enough

Counting inversions: how to combine two subproblems?

Q. How to count inversions (a,b) with a€ A and b € B?
A. Easy if A and B are sorted!

Warmup algorithm.
 Sort A and B.
* For each element b€ B,
- binary search in A to find how elements in A are greater than b.

list A list B

7 10 18 3 14 20 23 2 11 16
sort A sort B

3 7 10 14 18 2 11 16 20 23

3 7 10 14 18 2 11 16 20 23

slide credit: Kevin Wayne / Pearson

Counting inversions: how to combine two subproblems?

Count inversions (a, b) with a € A and b € B, assuming A and B are sorted.
* Scan A and B from left to right.
« Compare a; and b;.
* If ai < bj, then a; is not inverted with any element left in B.
* If ai > bj, then b; is inverted with every element left in A.
« Append smaller element to sorted list C.

count inversions (a, b) withac Aand b e B
a 18 by 20 23

t B

merge to form sorted list C

2 3 7| 0@ | 1

slide credit: Kevin Wayne / Pearson

Counting inversions: divide-and-conquer algorithm implementation

Input. List L.
Output. Number of inversions in Land L in sorted order.

SORT-AND-COUNT(L)

IF (list L has one element)

RETURN (0, L).

Divide the list into two halves A and B.
(ra, A) < SORT-AND-COUNT(A). «— T(n/2)
(ra, B) < SORT-AND-COUNT(B). «— T(n/2)

(raB, L) < MERGE-AND-COUNT(A, B). <—— O(n)

RETURN (ra + rg + ras, L).

slide credit: Kevin Wayne / Pearson

Fourier analysis

Fourier theorem. [Fourier, Dirichlet, Riemann] Any (sufficiently smooth)
periodic function can be expressed as the sum of a series of sinusoids.

2 O~ sinkt
y(t) = =

k
k=1

slide credit: Kevin Wayne / Pearson

Time domain vs. frequency domain

Signal. [recording, 8192 samples per second]

1 T T T T T

I N | o
TR RN
MIinnm
ML

A
LN i

. 1l
Y A [
(TN
IV T

N
\

[\“‘F“\“ \“j“‘
P AN

T Y \

| U

|| If

‘
s 0|

| |
AR
| ¥

AL [N

‘.“\Mw“j‘mwmw\“\‘kww
|l VA
i IR A

L L L L L
0.38 0.385 0.39 0.395 04 0.408 041 0415 0.42

Magnitude of discrete Fourier transform.

100 |

‘
1
A o ‘
600 800 1000 1200 1400 1600

Reference: Cleve Moler, Numerical Computing with MATLAB

slide credit: Kevin Wayne / Pearson

Fast Fourier transform: applications

Applications.

Optics, acoustics, quantum physics, telecommunications, radar,
control systems, signal processing, speech recognition, data
compression, image processing, seismology, mass spectrometry, ...
Digital media. [DVD, JPEG, MP3, H.264]

Medical diagnostics. [MRI, CT, PET scans, ultrasound]

Numerical solutions to Poisson’s equation.
Integer and polynomial multiplication.

Shor’s quantum factoring algorithm.

“The FFT is one of the truly great computational developments
of [the 20th] century. It has changed the face of science and
engineering so much that it is not an exaggeration to say that
life as we know it would be very different without the FFT. ”

— Charles van Loan

slide credit: Kevin Wayne / Pearson

Fast Fourier transform

FFT. Fast way to convert between time domain and frequency domain.

Alternate viewpoint. Fast way to multiply and evaluate polynomials.

N

we take this approach

NUVIERICAL
RECIPES

“If you speed up any nontrivial algorithm by a factor of a
million or so the world will beat a path towards finding

useful applications for it. ” — Numerical Recipes

slide credit: Kevin Wayne / Pearson

Representation Tradeoffs

Various data structures implement some operations faster than
others

» Arrays vs. Lists

» Union-Find with lists vs. trees

Overall Efficiency: 2 Approaches

» Smart (hybrid) datastructures (best of both worlds)

» Fast conversion between one and the other

Polynomials: coefficient representation

Univariate polynomial. [coefficient representation]

A(z) = ap+ a1z + agx? + .. 4 Ay

B(x) = by + b1z +boa® +... +by_qz" !

Addition. O(n) arithmetic operations.

A(z) + B(x) = (ag+bo) + (a1 + b))z + ...+ (ap—1 + by_1)z" !
Evaluation. O(n) using Horner’s method.

A(z) = ao+ (z(ar + z(az + ... + 2(an—2 + x(an-1))...)

double val = 0.0;
for (int j = n-1; j >= 0; j--)
val = a[j] + (x * val);

Multiplication (linear convolution). O(?) using brute force.
A(z) x B(z) = Z c;z' where ¢; = Zajbi,j
=0

slide credit: Kevin Wayne / Pearson

Polynomials: point-value representation

Fundamental theorem of algebra. A degree n univariate polynomial with
complex coefficients has exactly n complex roots.

Corollary. A degree n—1 univariate polynomial A(x) is uniquely specified by
its evaluation at n distinct values of x.

y,=AR)

slide credit: Kevin Wayne / Pearson

Polynomials: point-value representation

Univariate polynomial. [point-value representation]

AX): (X0, Y0)s ++vs (nmty Y1)
B(x): (X0, 20), -+ (K1, Zn-1)

Addition. O(n) arithmetic operations.
A) + B(): (X0, Yo + 205 - s (-1 Y1 + Z1)
Multiplication. O(n), but represent A(x) and B(x) using 2n points.
A@) X B(x): (X0, Y0 X 20)s ++-» (X2u-1> Y2n-1 X Z20-1)

Evaluation. O(n?) using Lagrange’s formula.

A = Y e 7%;&;%

k=0

<«— not used

slide credit: Kevin Wayne / Pearson

Converting between two representations

Tradeoff. Either fast evaluation or fast multiplication. We want both!

representation multiply evaluate

coefficient on?) O(n)

point-value O(n) O(n?)

Goal. Efficient conversion between two representations = all ops fast.

point-value representation

[(0, 40)s -+ (Tn—1,Yn—1)]

coefficient representation

slide credit: Kevin Wayne / Pearson

Converting between two representations: brute force

Coefficient = point-value. Given a polynomial A(x)=a, + a,x + ... + a,_ x"",

evaluate it at n distinct points x, ..., x,;.

2 -1
Yo I xo x - X o
2 n-1
Y1 1 x x - x a
- 2 n-1
=l »n x5 o ox @
2 n-1
Y L X, x4 X1 ayy

Running time. O(r?) via matrix-vector multiply (or n Horner’s).

slide credit: Kevin Wayne / Pearson

Converting between two representations: brute force

Point-value = coefficient. Given n distinct points x,, ..., x,.; and values
Yo - » Yu1» find unique polynomial A(x) = ay + a; x + ... + a,_ x™, that has
given values at given points.

2 n-1
Yo 1 x x5 X a,
2 n-1
N 1 x x - x a
- 2 -1
Vs =11 x, X5 Xy a,
2 n-1
Y1 U ox, X 0 x5 ayy

Vandermonde matrix is invertible iff x; distinct

Running time. O(r®) via Gaussian elimination.

\

or O(n23¥) via fast matrix multiplication

slide credit: Kevin Wayne / Pearson

Divide-and-conquer

Decimation in time. Divide into even- and odd- degree terms.
C AR = agt a X+ a X+ az X + ayxt +asx’ + agx® + apx’.
¢ Ape®) = ag+ ayx + agx? + agx’.
* A = a) +azx + asx® + a; x°.

. = 2 2
AX) = Apyen(0) + X A). Cooley-Tukey radix 2 FFT

Decimation in frequency. Divide into low- and high-degree terms.
C A = apt a x + ap X + a3+ agxt + asx + agx® + a;x’.
¢ ApX) = agta x + a X’ +ayx’.
* Apgn (X)) = ag + asx + agx? + a; x°.

© AW = A () + 3 Ay (). Sande-Tukey radix 2 FFT

slide credit: Kevin Wayne / Pearson

Coefficient to point-value representation: intuition

Coefficient = point-value. Given a polynomial A(x) =a, + a,x + ... + a,_; "',

evaluate it at n distinct points x;, ..., X, ;. <«— we get to choose which ones!

Divide. Break up polynomial into even- and odd-degree terms.

. A(x) = ap+ a;x + a3 X2 + a3 X3 + aygx* + asxS + agx® + a;x7.
© Ape(X) = ag+ ayx + agx? + agxd.

© Aya(X) = ap +azx +asx? + a; x5,

. Ax) =Aa(2) + XA, (2.

C AR = Au() = X A(3).

Intuition. Choose two points to be +1.
c A=A + TAD.
s AGCD =AL,() = TAD.

Can evaluate polynomial of degree n-1
<«——— at 2 points by evaluating two polynomials
of degree 2n - 1 at only 1 point.

slide credit: Kevin Wayne / Pearson

Coefficient to point-value representation: intuition

Coefficient = point-value. Given a polynomial A(x) =a, + a,x + ... + a,_, x",
evaluate it at n distinct points x;, ..., X, ;. <— we get to choose which ones!

Divide. Break up polynomial into even- and odd-degree terms.

CAR) = dgt @ X+ a2+ a3+ axt + asxS + agxs + a;x7.
o Apn®) = G+ ayx + a2 + agx3.

A = ap+azx +asx? +a;x.

AW =AuL() + XA).

A = A - XA).

Intuition. Choose four complex points to be +1, +i.

cAD = Al + 1A,
« A(-1) = A(,m,(l) -1 And{l(l)‘ Can e\@luate polynom_lal of degree n—l_

. . <«<——— at 4 points by evaluating two polynomials
 AlD) = Anen(=D + 1 Apg(=1). of degree %n - 1 at only 2 points.

A=) = A=) = E A=),

slide credit: Kevin Wayne / Pearson

Roots of unity

Def. An n# root of unity is a complex number x such that x* = 1.

Fact. The n* roots of unity are: 0’, ', ..., "' where @ =i/,
Pf. (@h)" = (e ik/mn = (eni)2* = (1) = 1.

Fact. The %n# roots of unity are: v, v!, ..., v"*! where v = 0?= e**i/",

slide credit: Kevin Wayne / Pearson

Fast Fourier transform

Goal. Evaluate a degree n—1 polynomial A(x) =agy+ ... +a,_, x"" at its
nth roots of unity: 0%, o', ..., @™

Divide. Break up polynomial into even- and odd-degree terms.
* ApnX) = Ao ¥ @x + agXE F L+ a,x"

Ay = ay + azx + asx® + ...+ a, X"

CAX) = AL 00 + X A0,

© AX) = Ay (02) — X A fx2).

Conquer. Evaluate A,,,,(x) and A,,(x) at the %n roots of unity: vo,v!, ..., v,

vk = (05)?

Combine.

Wk Alwh) =A,.,(v0) + wkA,, (v, 0sk<n/2.
* Ykrun = A(@k+Un) = A, (V) — 0k A, (Vh), 0sk<n/2.

\

A(-0)

slide credit: Kevin Wayne / Pearson

FFT: implementation

Goal. Evaluate a degree n—1 polynomial A(x) =ay+ ... +a,_, x"" at its
nth roots of unity: o, o', ..., 0™

c oy = AWY) =AL, (0 + 0FA L (vE), 0sk<n/2.

© Ykevn = A@ke%my= A, (VR — ©FA 4, (vF), 0<k<n/2.

even

FFT(n, ao, ai, az, ..., an1)
IF (n=1) RETURN ao.
(eo, €1, ..., enn-1) < FFT(n /2, ao, az, as, ..., an2).

(do,d, ...,dw21) <~ FFT(n/2,a1,as,as, ..., an1).
For k=0 1O n/2-1.

<« 2T(n/2)

Wk « 2ikin_

«— O
Yk < ex + wkd.

Ye+n2 < e — 0kdy.

RETURN (yo, Y1, ¥2, .., Yn1).

slide credit: Kevin Wayne / Pearson

FFT: summary

Theorem. The FFT algorithm evaluates a degree n— 1 polynomial at each of
the n roots of unity in O(n log n) arithmetic operations and O(n) extra space.

P assumes n is a power of 2

o(1) ifn=1

2T (n/2) + O(n) ifn>1

point-value representation

[(-T/o,yo)q cees (-T/n—l,,un—l)]

coefficient representation O(nlog n)

FFT
Qo, a1
m

slide credit: Kevin Wayne / Pearson

Inverse FFT: summary

Theorem. The inverse FFT algorithm interpolates a degree n—1 polynomial
at each of the n roots of unity in O(n log n) arithmetic operations.

\

assumes n is a power of 2

Corollary. Can convert between coefficient and point-value representations
in O(n log n) arithmetic operations.

coefficient representation O(n log n) point-value representation
FFT
(amy o rand)
inverse FFT
O(n log n)

slide credit: Kevin Wayne / Pearson

Polynomial multiplication

Theorem. Given two polynomials A(x) =ao+ a1 x + ... + ap-1 X"~

and B(x) =bo+bix + ... + by b of degree n—1, can multiply ™ .4 with 0s to make
n a power of 2

them in O(n log n) arithmetic operations.

B
coefficient representation point-value representation
two FFTs
O(n log n)
point-value
multiplication
O(n)
inverse FFT 21
Cp, C i
0, C1 O log) O Cw
coefficient representation point-value representation 76

slide credit: Kevin Wayne / Pearson

