COMPSCI 311: Introduction to Algorithms Lecture 10: Divide and Conquer Marius Minea University of Massachusetts Amherst slides credit: Dan Sheldon	Review: Solving Recurrences Useful general recurrence and its solutions: $T(n) \leq q \cdot T(n / 2)+c n$ 1. $q=1: T(n)=O(n)$ more work at top level of tree 2. $q=2: T(n)=O(n \log n)$ equal contributions 3. $q>2: T(n)=O\left(n^{\log _{2} q}\right)$ more work towards base
Clicker Question 1 Which of the following is not true ? A) $n \log n=O\left(n^{2}\right)$ B) $n \log n=O\left(n^{1.1}\right)$ C) There exists a large enough k with $n \log n=\Theta\left(n^{k}\right)$ D) $n \log n=\Omega(n \log \log n)$	More general: Master Theorem Let $T(n)=a T(n / b)+f(n)$, with $a \geq 1, b>1$. Then: 1. $T(n)=\Theta\left(n^{\log _{b} a}\right)$ when $f(n)=O\left(n^{\log _{b} a-\epsilon}\right)$ for some $\epsilon>0$ $f(n)$ grows polynomially slower than $n^{\log _{b} a}$ pause 2. $T(n)=\Theta\left(n^{\log _{b} a} \log n\right)$ when $f(n)=\Theta\left(n^{\log _{b} a}\right)$ (border case) $T(n)=\Theta\left(n^{\log _{b} a} \log ^{k+1} n\right)$ when $f(n)=\Theta\left(n^{\log _{b} a} \log ^{k} n\right)$ 3. $T(n)=\Theta(f(n))$ when $f(n)=\Omega\left(n^{\log _{b} a+\epsilon}\right)$ for some $\epsilon>0$ and $a f(n / b)<c f(n)$ for some $c<1$ when n sufficiently large $f(n)$ grows polynomially faster than $n^{\log _{b} a}$ Does not cover everything: gaps between 1 and 2, and 2 and 3 Guess and prove by induction for other cases
Clicker Question 2 Recall the Master theorem for $T(n)=a T(n / b)+f(n)$: 1. $T(n)=\Theta\left(n^{\log _{b} a}\right)$ when $f(n)=O\left(n^{\log _{b} a-\epsilon}\right)$ for some $\epsilon>0$ 2. $T(n)=\Theta\left(n^{\log _{b} a} \log n\right)$ when $f(n)=\Theta\left(n^{\log _{b} a}\right)$ 3. $T(n)=\Theta(f(n))$ when $f(n)=\Omega\left(n^{\log _{b} a+\epsilon}\right)$ for some $\epsilon>0$ and $a f(n / b)<c f(n)$ for some $c<1$ when n sufficiently large If $T(n)=9 T(n / 3)+f(n)$ solves to $T(n)=\Theta\left(n^{2}\right)$, what can $f(n)$ be? Choose the best answer. A) $f(n)=O(n)$ B) $f(n)=O(n \log n)$ C) $f(n)=O\left(n \log ^{2} n\right)$ D) $f(n)=O\left(n^{2}\right)$	Integer Multiplication Motivation: multiply two 30-digit integers? $\begin{array}{r} 153819617987625488624070712657 \\ \times 925421863832406144537293648227 \end{array}$ - Multiply two 300-digit integers? - Cannot do this in Java with built-in data types - 64-bit unsigned integer can only represent integers up to ~ 20 digits $\left(2^{64} \approx 10^{20}\right)$ Input: two n-digit base-10 integers x and y Goal: compute $x y$ Algorithm?

Warm-Up: Addition

Input: two n-digit binary integers x and y
Goal: compute $x+y$
We'll do it in base-10 instead of binary (perhaps more familiar)
Grade-school algorithm:
1854

+ 3242
5006

Running time? $\Theta(n)$

Grade-School Algorithm (Long Multiplication)

Example: $n=3$

$$
287
$$

x 132

574
861
287 37884

$$
287 \times 132=(2 \times 287)+10 \cdot(3 \times 287)+100 \cdot(1 \times 287)
$$

Running time? $\Theta\left(n^{2}\right)$
But $x y$ has at most $2 n$ digits. Can we do better?

Divide and Conquer - First Try: Analysis

Recursive algorithm:

$$
x y=10^{n} x_{1} y_{1}+10^{n / 2}\left(x_{1} y_{0}+x_{0} y_{1}\right)+x_{0} y_{0}
$$

Running time?
Four multiplications of $n / 2$ digit numbers plus three additions of at most n-digit numbers

$$
T(n) \leq 4 T\left(\frac{n}{2}\right)+c n
$$

Does this fit in our general formulas?

$$
\begin{aligned}
& =O\left(n^{\log _{2} 4}\right) \\
& =O\left(n^{2}\right)
\end{aligned}
$$

We did not beat the grade-school algorithm. :(

Better Divide and Conquer

Total: three multiplications of $n / 2$-digit integers, six additions of at most n-digit integers

$$
\begin{aligned}
T(n) & \leq 3 T\left(\frac{n}{2}\right)+c n \\
& =O\left(n^{\log _{2} 3}\right) \\
& \approx O\left(n^{1.59}\right)
\end{aligned}
$$

We beat long multiplication!

Can be done even faster (split x and y into k parts instead of two)

Finding Minimum Distance between Points

- Problem 1: Given n points on a line $p_{1}, p_{2}, \ldots, p_{n} \in \mathbb{R}$, find the closest pair: $\min _{i \neq j}\left|p_{i}-p_{j}\right|$.
- Compare all pairs $O\left(n^{2}\right)$
- Sort the points and compare adjacent pairs $O(n \log n)$
- Can you directly do divide-and-conquer? Need median
- Problem 2: Now what if the points are in \mathbb{R}^{2} ?
- Compare all pairs $O\left(n^{2}\right)$
- Sort? Points can be close in one coordinate and far in the other
- We'll do it in $O(n \log n)$ steps using divide-and-conquer.
- Input: set of points $P=\left\{p_{1}, \ldots, p_{n}\right\}$ where $p_{i}=\left(x_{i}, y_{i}\right)$

Minimum Distance: Recursive Algorithm

- Assumption: we can iterate over points in order of x - or y coordinate in $O(n)$ time.
Pre-sort in $O(n \log n)$ time along each axis (two arrays).

1. Find vertical line L to split points into sets P_{L}, P_{R} of size $n / 2$. $O(n)$
2. Recursively find minimum distance in P_{L} and P_{R}.

- $\delta_{L}=$ minimum distance between $p, q \in P_{L}, p \neq q . T(n / 2)$
- $\delta_{R}=$ same for $P_{R} . T(n / 2)$

3. $\delta_{M}=$ minimum distance between $p \in P_{L}, q \in P_{R}$. ??
4. Return $\min \left(\delta_{L}, \delta_{R}, \delta_{M}\right)$.

Naive Step 3 takes $\Omega\left(n^{2}\right)$ time. But if we do it in $O(n)$ time we get

$$
T(n) \leq 2 T(n / 2)+O(n) \Longrightarrow T(n)=O(n \log n)
$$

How to find closest pair with one point in each side?

Def. Let s_{i} be the point in the 2δ-strip, with the i^{h} smallest y-coordinate.

Claim. If $|j-i|>7$, then the distance between s_{i} and s_{j} is at least δ.

Pf.

- Consider the 2δ-by- δ rectangle R in strip
whose min y-coordinate is y-coordinate of s_{i}.
- Distance between s_{i} and any point s_{j} above R is $\geq \delta$.
- Subdivide R into 8 squares. diameter is
- At most 1 point per square.
- At most 7 other points can be in R. -
constant can be improved with more refined geometric packing argument

slide credit: Kevin Wayne / Pearson

Concluding the Merge Step

- Compute sorted lists S_{L} and S_{R} of close points left and right of the line $L \quad$ select in $O(n)$
- Advance in both lists by increasing y coordinate (merge-like) $O(n)$ iterations
- Compare to at most 4 following points in other list $O(1)$ work in loop
- Minimum distance across halves in $O(n)$
- Overall recursion gives $O(n \log n)$

