COMPSCI 311: Introduction to Algorithms
Lecture 10: Divide and Conquer

Marius Minea

University of Massachusetts Amherst

slides credit: Dan Sheldon

Review: Solving Recurrences

Useful general recurrence and its solutions:

‘ T(n)<gq-T(n/2)+cn ‘

1. ¢=1:T(n) =0(n) more work at top level of tree
2. ¢=2: T(n) =O(nlogn) equal contributions

3. ¢ >2: T(n) = O(n'°8219) more work towards base

Clicker Question 1

Which of the following is not true ?
A) nlogn = O(n?)
B) nlogn = O(n'!)
C) There exists a large enough k with nlogn = O(n¥)
D) nlogn = Q(nloglogn)

More general: Master Theorem

Let T(n) =aT(n/b) + f(n), with a > 1, b > 1. Then:

T(n) = ©(n'°& %) when f(n) = O(n'°8 =) for some € > 0

(n) grows polynomially slower than n!°%® pause

(n) = ©(n'°8+%logn) when f(n) = ©(n'°8*) (border case)

(n) = ©(n'°% *1og" ! n) when f(n) = O(n'°% @ logh n)
)

3. T(n) = O(f(n)) when f(n) = Q(n'°%+¢) for some € > 0 and
af(n/b) < cf(n) for some ¢ < 1 when n sufficiently large
f(n) grows polynomially faster than n!og @

~

2.

’ﬂﬂ

\
||

Does not cover everything: gaps between 1 and 2, and 2 and 3

Guess and prove by induction for other cases

Clicker Question 2

Recall the Master theorem for T'(n) = aT'(n/b) + f(n):
1 T(n) = ©(n'°& %) when f(n) = O(n'°8 =) for some € > 0

T(n) = O(nl°&:%logn) when f(n) = O(n'°&:2)
3 T(n) = O(f(n)) when f(n) = Q(n'°8 %+ for some e > 0 and
af(n/b) < cf(n) for some ¢ < 1 when n sufficiently large

)
If T(n) = 9T (n/3) + f(n) solves to T'(n) = O(n?),
what can f(n) be? Choose the best answer.

A) f(n) = O(n)
B) f(n) = O(nlogn)
C) f(n) = O(nlog?n)
D) f(n) = O(n?)

Integer Multiplication

Motivation: multiply two 30-digit integers?

153819617987625488624070712657
x 925421863832406144537293648227

» Multiply two 300-digit integers?

» Cannot do this in Java with built-in data types

» 64-bit unsigned integer can only represent integers up to ~20
digits (264 ~ 10%0)

Input: two n-digit base-10 integers x and y
Goal: compute zy

Algorithm?

Warm-Up: Addition

Input: two n-digit binary integers x and y
Goal: compute = + y
We'll do it in base-10 instead of binary (perhaps more familiar).

Grade-school algorithm:

1854
+ 3242

Running time? O(n)

Grade-School Algorithm (Long Multiplication)

Example: n =3

287 x 132 = (2 x 287) + 10 (3 x 287) + 100 - (1 x 287)

Running time? ©(n?)
But zy has at most 2n digits. Can we do better?

Divide and Conquer — First Try: An Example

Idea: split z and y in half (assume n is a power of 2)

= 33802367

8

Then use distributive law

Ty = (10"/2301 +) X (10"/23;1 + v0)
= 10"z1y1 4+ 10™2 (2190 + 2oy1) + Tovo

Have reduced the problem to multiplications of n/2-digit integers
and additions of n-digit numbers

Divide and Conquer — First Try: Analysis

Recursive algorithm:

ay = 10"z, + 10™2 (2190 + 011) + Zoyo

Running time?

Four multiplications of n/2 digit numbers plus three additions of at
most n-digit numbers

T(n) < 4T(g) +en

Does this fit in our general formulas?

(nlog2 4)

=0
=0(n?)

We did not beat the grade-school algorithm. :(

Better Divide and Conquer

Same starting point:

ay = 10"21y1 + 10" (210 + zoy1) + zoyo

Trick: use three multiplications to compute the following:

A= (21 +20) (41 +Y0) = T1Y1 + T1Yo + Toy1 + ToYo
B =z
C = zoyo
Then
2y =10"B +10"?(A-B-C)+C

Total: three multiplications of n/2-digit integers, six additions

Better Divide and Conquer

Total: three multiplications of n/2-digit integers, six additions of at
most n-digit integers

T(n)

IN

3T(g) +cn
(nlog2 3)
(n

=0
~0 1.59)

We beat long multiplication!

Can be done even faster (split = and y into k parts instead of two)

Finding Minimum Distance between Points

» Problem 1: Given n points on a line py,po,...,p, € R, find
the closest pair: min;; [p; — pj]-
» Compare all pairs O(n?)
> Sort the points and compare adjacent pairs O(nlogn)
> Can you directly do divide-and-conquer? Need median

» Problem 2: Now what if the points are in R??
» Compare all pairs O(n?)
> Sort? Points can be close in one coordinate and far in the other
» We'll do it in O(nlogn) steps using divide-and-conquer.

> Input: set of points P = {p1,...,pn} where p; = (z;,y;)

Minimum Distance: Recursive Algorithm

» Assumption: we can iterate over points in order of z- or y-
coordinate in O(n) time.
Pre-sort in O(nlogn) time along each axis (two arrays).

1. Find vertical line L to split points into sets Pr,, Pr of size n/2.
O(n)
2. Recursively find minimum distance in P;, and Pg.
» §;, = minimum distance between p,q € Pp,,p # q. T(n/2)
» 0r = same for Pr. T(n/2)
3. dp7 = minimum distance between p € P, q € Pg. 7?7
4. Return min(dz,0r, dar)-

Naive Step 3 takes Q(n?) time. But if we do it in O(n) time we get

T(n) <2T(n/2) 4+ O(n) = T(n) = O(nlogn)

Making Step 3 Efficient

» Goal: given dy, o, compute min(dz,dr, dnr)

> Let 6 = min(dr,dR). If p € Pr,q € Pg are at least § apart,
they cannot be a closer pair, so we can ignore pair (p, q).

> Let S be the set of points within distance ¢ from L
(vertical strip centered on line L).
We only need to consider pairs that are both in S.

» For a given point p € S, how many points ¢ are within § units
of p in the y coordinate?

How to find closest pair with one point in each side?

Def. Lets; be the point in the 28-strip, with the i smallest y-coordinate.

Claim. If|j—i| > 7, then the distance between
s;and s; is at least d.

Pf.
* Consider the 26-by-8 rectangle R in strip
whose min y-coordinate is y-coordinate of s,.
+ Distance between s; and any point s; i i
above R is = d. | | |
diameter is O ittt S
 Subdivide R into 8 squares. 5/V2 <3 J | ' ' 1
+ At most 1 point per square. . ‘
* At most 7 other points can be inR. =

\

constant can be improved with more
refined geometric packing argument

—_—2

slide credit: Kevin Wayne / Pearson

Clicker Question 3

Based on the split into squares in the figure, it suffices to compare
each point in the vertical strip to

A) 7 points
B) 14 points
C) 4 points

Concluding the Merge Step

v

Compute sorted lists Sz, and S of close points left and right
of the line L select in O(n)

v

Advance in both lists by increasing y coordinate (merge-like)
O(n) iterations

» Compare to at most 4 following points in other list
O(1) work in loop

» Minimum distance across halves in O(n)

v

Overall recursion gives O(nlogn)

