COMPSCI 311: Introduction to Algorithms

COMPSCI 311: Introduction to Algorithms

Instructor: Marius Minea

Where: Hasbrouck Lab Addition 124

When: Tue/Thu 11:30-12:45

Discussion Sections: Fri 10:10 - 11:00, Hasbrouck Add 124
Fri 11:15-12:05 Ag. Engr. 119. (please observe your section)
TA: Jesse Lingeman, Rik Sengupta, Amir Ghafari

Office hours:

» Marius: Wed 5-6pm, LGRC A261

» Jesse: Thu 10-11, CS207

» Rik: Tue 1-2pm, CS207

slides credit: Akshay Krishnamurthy, Andrew McGregor, Dan Sheldon » Amir: Wed 1-2pm, CS5207

Marius Minea
marius@cs.umass.edu

vyvyvyy

v

University of Massachusetts Amherst

v

September 4, 2018

What is Algorithm Design? DNA sequence similarity

» Input: two strings s; and sg of length n

How do you write a computer program to solve a complex problem?
Y puter prog plexp > s, = AGGCTACC

» Computing similarity between DNA sequences » sy = CAGGCTAC
» Routing packets on the Internet
> Scheduling final exams at a college » Output: minimum number of insertions/deletions to transform
» Assign medical residents to hospitals s1 into s
» Find all occurrences of a phrase in a large collection of
documents > Algorithm: 7777
» Finding the smallest number of gas stations that can be built in
the US such that everyone is within 20 minutes of a gas station. » Even if the objective is precisely defined, we are often not ready

to start coding right away!

What is Algorithm Design? Course Goals

» Step 1: Formulate the problem precisely

> . . .

> gtep § F[,)eSIgn sn allgor.lt:m . Learn how to apply the algorithm design process. .. by practice!
tep 3: Prove t (:3 a gorlt. m I_S correct Learn specific algorithm design techniques

» Step 4: Analyze its running time > Greedy

| e . . » Divide-and-conquer
mportant: this is an iterative process . .
» Dynamic Programming

Somet!mes we'don t get the algorlt.hm right on the first try . > Network Flows

Sometimes we'll redesign the algorithm to prove correctness easier > Learn to communicate precisely about algorithms

or to make it more efficient » Proofs, reading, writing, discussion

» Prove when no exact efficient algorithm is possible
> Intractability and NP-completeness

vy

Usually, two steps:

> getting to a (mathematical) clean core of the problem
» identify the appropriate algorithm design techniques

Prerequisites: CS 187 and 250

» Algorithms use data structures
» Familiarity
> at programming level (lists, stacks, queues, ...)
> with mathematical objects (sets, lists, relations, partial orders)
precise statement of algorithm is in terms of such objects
» Two key notions to revisit:
» Recursion: many algorithm classes are recursive
so are most relations for computing algorithmic complexity
» Proofs: to establish correctness and complexity often by
induction

Proofs Are Important!

» Need to make sure algorithm is correct
» Think of special / corner cases
» Case in point: Timsort sorting algorithm was broken!

» developed in 2002 (Python), adopted as standard sort in Java
tries to find and extend segments that are already sorted
uses stack to track segments and their lengths
loop invariant was not correctly reestablished
thus computed worst case stack size was wrong!
crash for array > 67M elements
bug found and fixed in 2015 by theorem proving

VVYVVYYVYY

Grading Breakdown

v

Participation (10%): Discussion section, in-class quizzes
(iClicker)

Homework (25%): Homework (every two weeks, usually due
Thursday) and online quiz (every weekend due Monday).
Midterm 1 (20%): Focus on first third of lectures.

7pm Wed Oct 3

> Midterm 2 (20%): Focus on second third of lectures.

7pm Wed Nov 14

Final (25%): Covers all lectures. 1pm, Wed Dec 19

v

v

v

Course Information

Course websites:

people.cs.umass.edu/~marius/ Course information, slides,
class/cs311/ homework, pointers to all

other pages
moodle.umass.edu Quizzes, solutions, grades

Discussion forum, contacting
instructors and TA's

piazza.com

Submitting and returning
homework

gradescope.com

Announcements: Check your UMass email daily.
Log into Piazza regularly for course announcements.

Homeworks and Quizzes

» Online Quizzes: Quizzes must be submitted before 8pm Monday.
No late quizzes allowed but we'll ignore your lowest scoring quiz.

» Homework: Submit via Gradescope, by 11:59 pm of due date.
50% penalty for homework that is late up to 24 hours.

Homework that is late by more than 24 hours receives no credit.

One homework may be up to 24 hours late without penalty.

Collaboration and Academic Honesty

» Homework: Collaboration OK (and encouraged) on homework.
But: you should read and attempt on your own first.
The writeup and code must be your own.
Looking at written solutions that are not your own is considered
cheating. There will be formal action if cheating is suspected.
You must list your collaborators and any sources (printed or
online) at the top of each assignment.

» Online Quizzes: Should be done entirely on your own.
You may consult the book and slides as you do the quiz.
Again, there will be formal action if cheating is suspected.

» Discussions: Groups for the discussion section exercises will be
assigned at the start of each session.
You must complete the exercises with your assigned group.

» Exams: Closed book and no electronics.
Cheating will result in an F in the course.

Stable Matching

» Real-life scenario
» matching student interns to companies
» or medical residents to hospitals
» Both students and companies have preferences / ranking lists
» If not properly managed, can become chaotic
(assume participants are selfish, act in their own self-interest)
» student may get better offer and reject current one
» student may actively call company, see if they are preferred
over the current status

Stable Matching and College Admissions

» Suppose there are n colleges ¢y, ¢, ..., ¢, and n students
81,82, -+ Sn.

» Each college has a ranking of all the students that they could
admit and each student has a ranking of all the colleges.
To simplify, suppose each college can only admit one student.
» What other simplification(s) have we made?

» n students, n colleges — could potentially match one-to-one

» Matching: a set of pairs (¢, s) such that every college and every
student appears in at most one pair

» Perfect matching: every student and college is matched

Defining Stability
» Can we match students to colleges such that everyone is happy?

» Not necessarily, e.g., if UMass was everyone's top choice.

» Can we match students to colleges such that matching is stable?

» Need to precisely define stability

» (In)stability: Don't want to match (¢, s) and (¢/,s') if ¢ and &’
would prefer to switch and be matched with each other.

» Unstable pair: A pair (c,s) is unstable if ¢ prefers s to matched
student and s prefers ¢ to matched college

» Are the two wordings equivalent?

> We'll see that a stable matching always exists
and there's an efficient algorithm to find that matching.

Stable matching: quiz 1 >

Which pair is unstable in the matching { A-X, B-Z, C-Y } ?

A, A-Y.
B. B-X.
C. B-Z

D. None of the above.

Xavier Yolanda Zeus Xavier Boston Atlanta = Chicago

Yolanda Xavier Zeus Atlanta Boston = Chicago
Xavier | Yolanda Zeus m Atlanta Boston = Chicago

slide credit: Kevin Wayne / Pearson

Propose-and-Reject (Gale-Shapley) Algorithm

Initially all colleges and students are free
while some college is free and hasn't proposed to every student
do
Choose such a college ¢
Let s be the highest ranked student to whom ¢ has not
proposed
if s is free then
c and s become matched
else if s is matched to ¢’ but prefers ¢ to ¢’ then
¢ becomes unmatched
¢ and s become matched

else > s prefers ¢/

s rejects ¢ and ¢ remains free
end if
end while

Analyzing the Algorithm

» Some natural questions:
» Can we guarantee the algorithm terminates?
» Can we guarantee the every college and student gets a match?
» Can we guarantee the resulting allocation is stable?

Need Precise Problem Definition

» These questions are non-obvious
» Answer may differ if we slightly change problem

» Does the following setup differ, and if so, how?

Stable roommate problem

Q. Do stable matchings always exist?
A. Not obvious a priori.

Stable roommate problem.
« 2n people; each person ranks others from 1 to 2n— 1.
« Assign roommate pairs so that no unstable pairs.

“ B c D no perfect matching is stable
A-B,C-D = B-C unstable
. R
A-C,B-D = A-Bunstable
A-D, B-C = A-C unstable
. [

Observation. Stable matchings need not exist.

slide credit: Kevin Wayne / Pearson

Analyzing the Algorithm

» Some initial observations:
» (F1) Once matched, students stay matched and only
“upgrade" during the algorithm.
> (F2) College propose to students in order of college’s
preferences.

Stable matching: quiz 2 9

Do all executions of Gale-Shapley lead to the same stable matching?
A. No, because the algorithm is nondeterministic.
B. No, because an instance can have several stable matchings.
C. Yes, because each instance has a unique stable matching.

D. Yes, even though an instance can have several stable matchings
and the algorithm is nondeterministic.

s
sli i rson

lide credit: Kevin Wayne / Pea

Can we guarantee the algorithm terminates?

» Yes! Proof...

» In every round, some college proposes to some student that
they haven't already proposed to.

» n colleges and n students = at most n? proposals

» — at most n? rounds of the algorithm

Can we guarantee all colleges and students get a match?

» Yes! Proof by contradiction. ..

» Suppose not all colleges and students have matches. Then
there exists unmatched college ¢ and unmatched student s.

> s was never matched during the algorithm (by F1)
> But ¢ proposed to every student (by termination condition)

» When ¢ proposed to s, she was unmatched and yet rejected c.
Contradiction!

Can we guarantee the resulting allocation is stable?
» Yes! Proof by contradiction with a case analysis. ..
» Suppose there is an instability (c, s)
» ¢ is matched to some s’ but prefers s to s
> s is matched to some ¢’ but prefers ¢ to ¢
» Case 1: ¢ has already offered to s

» Since s isn't matched to ¢ at the end of the algorithm, she
must have rejected ¢'s offer at some point and therefore be
matched to a college she prefers to ¢ (by F1).
Contradiction.

» Case 2: ¢ did not offer to s

» We know c proposed to and was matched to s’. Since s is
less preferred, ¢ must have also proposed to s (by F2).
Contradiction. (This case cannot happen.)

2012 Nobel Prize in Economics

Lloyd Shapley. Stable matching theory and Gale-Shapley algorithm.

COLLEGE ADMISSIONS AND THE STABILITY OF MARRIAGE
D. GALE® awb L. 5. SHAPLEY, Brown Universty and the RAND Corporation
1. Introduction. The problem with which we shall be concerned relates to original applications:

the following typical situation: A college is considering a set of applicants of ¢ college admissions and
which it can admit a quota of only g. Having evaluated their qualifications, the
admissions office must decide which ones to admit. The procedure of offering opposite-sex marriage
admission only to the g best-qualified applicants will not generally be satisfac-

tory, for it cannot be assumed that all who are offered admission will accept.

Alvin Roth. Applied Gale-Shapley to matching med-school students with
hospitals, students with schools, and organ donors with patients.

4

]

Alvin Roth

slide credit: Kevin Wayne / Pearson

A modern application

Content delivery networks. Distribute much of world’s content on web.

@
User. Preferences based on latency and packet loss. (
Web server. Preferences based on costs of bandwidth and co-location.
Goal. Assign billions of users to servers, every 10 seconds.

Algorithmic Nuggets in Content Delivery

Bruce M. Maggs
Duke and Akamai

Ramesh K. Sitaraman
UMass, Amherstand Akamai
h@ d

COR Online

slide credit: Kevin Wayne / Pearson

For Thursday

» Think about:

» Would it be better or worse for the students if we ran the
algorithm with the students proposing?

» Can a student get an advantage by lying about their
preferences?

» Read: Chapter 1, course policies

» Enroll in Piazza, log into Moodle, and visit the course webpage.

