
CS250 Fall 2020 Midterm 2 Solutions, Evening Exam

2. Use the Principle of Mathematical Induction to prove that for every natural n, 2n·3n divides (3n)!.

Base case: P (0) is true, since 20 · 30 = 1 divides (3 · 0)! = 1.
Inductive step. Assume P (n) true for some n ≥ 0, that is, (3n)! = k · 2n · 3n for some k ∈ N. Then
(3(n + 1))! = (3n)! · (3n + 1)(3n + 2)(3n + 3) = k · 2n · 3n · (3n + 1)(3n + 2) · 3(n + 1), and we have
the needed extra factor of 3. Also, 3n + 1 and 3n + 2 are consecutive numbers, so one of them is
even and gives us another factor of 2, which shows P (n + 1).

3. Let P (n) be the statement that Amy can pay a present of n cents by using just 3-cent and 7-cent
coins. a) Prove P (n) for all n ≥ 12 by mathematical induction.

P (12) is true since 12 = 3 · 4: four 3-cent coins and zero 7-cent coins make a 12-cent present.

Now we show that P (k) → P (k + 1). Suppose P (k) is true, i.e., a k-cent present can be formed.
There are two cases to consider: (1) at least two 3-cent coins were used in k-cent present, or (2) at
most one 3-cent coin was used in k-cent present. We consider each of these in turn.

Case 1 If two 3-cent coins were used in a k-cent present, replace two 3-cent coins with one 7-cent
coin to form a k − 3 · 2 + 7 · 1 = k + 1 cent present.

Case 2 If at most one 3-cent coin was used, since k > 3 + 7, at least two 7-cent coins were used.
Replace two 7-cent coins with five 3-cent coins to form k − 7 · 2 + 3 · 5 = k + 1 cents.

b) Prove P (n) for all n ≥ 12 by strong induction.

We prove P (12), P (13) and P (14) for the base case.

P (12) holds because 12 = 3 ·4+7 ·0. P (13) holds because 13 = 3 ·2+7 ·1; and P (14) holds because
14 = 3 · 0 + 7 · 2. We state and prove the inductive step to complete the strong induction proof.

Let k ≥ 14. Assume P (j) for all j such that 12 ≤ j ≤ k. We prove that P (k + 1). Since k ≥ 14,
it follows that k − 2 ≥ 12, and we know that P (k − 2) is true. So a k − 2 cent present can be
formed using 3-cent and 7-cent coins. Add a 3-cent coin to form a (k− 2) + 3 = k + 1 cent present.
Therefore, P (k + 1).

4. Draw the expression tree (parse tree) from the postfix string ”p r ∨ p q ∨ ∧ s r ∨ q p ∧ → ∨”.
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We identify four groups of the form proposition proposition operator,
which form expression subtrees. We continue finding groups of the form
expression expression operator, building larger subtrees.

5. Given the recurrence a0 = 0, a1 = 1, an+1 = 3an − 2an−1 for n > 0, find and prove a statement
about when an is divisible by 7.

We unroll an = 3an−1−2an−2 = 3(3an−2−2an−3)−2an−2 = 7an−2−6an−3, which holds for n ≥ 3.
We get an ≡ −6an−3 ≡ (7− 6)an−3 ≡ an−3 (mod 7). We claim an ≡ 0 (mod 7)↔ n ≡ 0 (mod 3).

This is true for the base cases n = 0, 1, 2: a0 = 0, a1 = 1, a2 = 3. We prove the statement by
strong induction for n ≥ 3, assuming it true for all n′ < n.
We have an ≡ 0 (mod 7) ↔ an−3 ≡ 0 (mod 7) ↔ n− 3 ≡ 0 (mod 3) ↔ n ≡ 0 (mod 3),
with the middle equivalence by inductive hypothesis.
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6. Fibonacci words are strings of 0 and 1 defined as follows: S0 = 0, S1 = 01, Sn+1 = Sn · Sn−1,
where · means concatenation.

Find a recurrence for the number Zn of occurrences of the string 10 in Sn. First, find an even/odd
recurrence and argue why it holds. Then find and prove a closed formula for Zn in terms of the
Fibonacci numbers.

The number of 10 strings in SnSn−1 is the sum of the number of 10 strings in each of Sn and Sn−1,
with possibly one more string formed when joining. All strings start with 0, by induction, since the
first digit of Sn+1 is the first digit of Sn. By construction, the last digit of Sn+1 is the last digit of
Sn−1, for n > 0. By odd-even induction, with the base cases of S0 = 0 and S1 = 01, the last digit
of Sn is n mod 2. Thus, a 10 string is formed in Sn+1 exactly when n is odd.

We get the recurrences Zn+1 = Zn + Zn−1 for n > 0 even, and Zn+1 = Zn + Zn−1 + 1 for n odd,
with Z0 = Z1 = 0. Substituting each recurrence in the other, we get Zn+1 = 2Zn−1 + Zn−2 + 1
for n > 1 (the problem asked for a recurrence by getting an odd/even recurrence fist, but very few
wrote this; it was not penalized). We could also write Zn+1 = Zn + Zn−1 + n mod 2, for n > 0.

We observe that Zn = Fn − n mod 2, or alternatively, Zn = Fn + ((−1)n − 1)/2. This can also be
obtained by solving the above characteristic equation x3 − 2x− 1 = (x+ 1)(x2 − x− 1) = 0, which
has the golden ratio (Fibonacci) roots, and −1, which gives us the alternating term.

We prove this by induction, verifying the base case, Z0 = F0, Z1 = F1 − 1, and adding: Zn+1 =
(Fn−n mod 2)+(Fn−1−(n−1) mod 2)+n mod 2 = Fn+1−(n−1) mod 2 = Fn+1−(n+1) mod 2.

CS250 Fall 2020 Midterm 2 Solutions, Morning Exam

2. Use the Principle of Mathematical Induction to prove that n2n+1 ≥ n!2 for every integer n ≥ 1.

The base case holds, 13 ≥ 1!2, both are 1. Assume the inequality holds for n ≥ 1 and prove it for
n + 1. We have: (n + 1)2n+3 = (n + 1)2n+1(n + 1)2 > n2n+1(n + 1)2 ≥ n!2(n + 1)2 = (n + 1)!, with
the last inequality from the induction hypothesis. This completes the inductive step.

3. Let P (n) be the statement that a postage of n cents can be formed using just 5-cent and 8-cent
stamps.
a) Prove P (n) for all n ≥ 28 by mathematical induction.

P (28) is true: 28 = 8 · 1 + 5 · 4, so one eight-cent stamp and four five-cent stamps make 28 cents
postage.

Now we show that P (k) → P (k + 1). Suppose P (k) is true, i.e., k-cent postage can be formed.
There are two cases to consider: (1) at least three 8-cent stamps were used in k-cent postage, or
(2) at most two 8-cent stamps were used in k-cent postage. We consider each of these in turn.

Case 1 If three 8-cent stamps were used in k-cent postage, replace three 8-cent stamps with five
5-cent stamps to form k − 8 · 3 + 5 · 5 = k + 1 cents postage.

Case 2 If at most two 8-cent stamps were used, since k > 26 = 2·8+2·5, at least three 5-cent stamps
were used. Replace three 5-cent stamps with two 8-cent stamps to form k−5 ·3+8 ·2 = k+1
cents postage.

b) Prove P (n) for all n ≥ 28 by strong induction.

We prove P (28), P (29), P (30), P (31) and P (32) for the base case. . We have 28 = 8 · 1 + 5 · 4,
29 = 8 · 3 + 5 · 1, 30 = 5 · 6, 31 = 8 · 2 + 5 · 3, and 32 = 8 · 4, so all statements hold. Now, we state
and prove the inductive step to complete the strong induction proof.
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Let k ≥ 32. Assume P (j) for all j such that 28 ≤ j ≤ k. We prove P (k+ 1). Since k ≥ 32, we have
k − 4 ≥ 28, and we know P (k − 4) is true. So k − 4 cent postage can be formed using 5-cent and
8-cent stamps. Add a 5-cent stamp to form (k− 4) + 5 = k + 1 cent postage. Therefore, P (k + 1).

4. Draw the expression tree (parse tree) from the prefix string ”→ ∧ p r ∧ s ∨ q → r ∨ q p”.
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The easiest solution is to process the string recursively, and for each
operator, construct the left and right subtree.
A more laborious option is to repeatedly process the string bottom up
and group triples of the form operator expression expression to an ex-
pression, starting with ∧ p q and ∨ q p.

5. Given the recurrence a0 = 0, a1 = 1, an+1 = 2an + 3an−1 for n > 0, find and prove a statement
about when an is divisible by 7.

We unroll an = 2an−1 + 3an−2 = 2(2an−2 + 3an−3) + 3an−2 = 7an−2 + 6an−3. Indices must be ≥ 0,
so n ≥ 3. We get an ≡ 6an−3 (mod 7). This gives us an ≡ 0 (mod 3) ↔ an−3 ≡ 0 (mod 3),
since gcd(6, 7) = 1 and 6 has an inverse mod 7. We claim an ≡ 0 (mod 7)↔ n ≡ 0 (mod 3).

This is true for the base cases n = 0, 1, 2: a0 = 0, a1 = 1, a2 = 2. We prove the statement by
strong induction for n ≥ 3, assuming it true for all n′ < n.
We have an ≡ 0 (mod 7) ↔ an−3 ≡ 0 (mod 7) ↔ n− 3 ≡ 0 (mod 3) ↔ n ≡ 0 (mod 3),
with the middle equivalence by inductive hypothesis.

6. Fibonacci words are strings of 0 and 1 defined as follows: S0 = 0, S1 = 01, Sn+1 = Sn · Sn−1,
where · means concatenation.

Find a recurrence for the number Cn of occurrences of the string 01 in Sn. First, find an even/odd
recurrence and argue why it holds. Then, find a single recurrence valid for all n. Finally, find and
prove a closed formula for Cn in terms of the Fibonacci numbers.

We see immediately by induction that Sn starts with 0 for any n, since this is true for S0 and S1,
and Sn+1 starts with the same digit as Sn. Therefore, the number of 01 strings in Sn+1 is the sum
of the number of 10 strings in each of Sn and Sn−1. No extra string is created by joining, since
Sn−1 starts with 0. We get the recurrence Cn+1 = Cn + Cn−1, for n > 0, with C0 = 0, C1 = 1.
There is no need for separate even-odd recurrences. Since Cn has the same recurrence and initial
values as the Fibonacci sequence, we have Cn = Fn for all n.
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