CS250 Fall 2020 Midterm 1 Solutions, Morning Exam

1.1 Translate the following sentences into predicate logic. State what your predicate names mean.

A(z,y): z gets assigned task y. F(z,y): xisa friend of y. H(z): x is happy. S(z,y): z solves task y.
T(z): x is a troubleshooter. Implicitly, a task is only assigned to one person:

A Vy:Vo:Vz: (A(z,y) NA(z,y)) 22 ==z

1. Any happy person has all tasks that are assigned to them solved by someone.

Vo : H(x) = Vy : A(x,y) = 3z : S(z,y) or

Vo :Vy: (H(z) NA(z,y)) = 3z : S(2,y)

2. A task assigned to someone can only be solved by themselves or by a troubleshooter.

Yy : Vo : A(z,y) = Vz: S(z,y) = ((z=2) VT(z)), or

Yy Vo :Vz: (Alz,y) ANS(z,y)) = (z=2) VT (2))

3. A troubleshooter solves precisely any tasks assigned to any friend of theirs.

Vo :T(x) = Vy: S(z,y) < 3z : A(z,y) A F(z,x)

C. If someone does not solve all their assigned tasks and they are happy, they have a troubleshooter
as friend.

Ve : (Jy: A(z,y) A=S(x,y) NH(x)) = 32 : T(2) A F(z,2)

1.2 Prove the conclusion C from the premises 1-3. Assume the friendship relation is antireflexive
and symmetric. Indicate the use of proof rules as clearly as possible.

We start a direct proof by assuming the premise of the implication in C:

(4) Jy : A(z,y) A=S(z,y) A H(z) Assumption (z arbitrary)
(5) A(x,b) AN =S(x,b) N H(x) Existence (4) (b: new constant)
(6) H(x) Separation (5)
We show that there is some a who solves the task b that x does not solve.
(7) H(z) = Vy : A(z,y) — 3z : S(z,y). Specification (to x)
(8) Yy : A(z,y) — 3z : S(z,y) Modus Ponens (6, 7)
(9) A(z,b) — 3z : S(z,b) Specification, y = b
(10) A(x,b) Separation (5)
(11) 3z : S(z,b) Modus Ponens (9, 10)
(12) S(a,b) Existence (11) (a: new constant)
We prove by contradiction that a is not z, and then that ¢ must be a trubleshooter.
(13) =S(x,b) Separation (5)
(14) S(a,b) A =S(x,b) Conjunction (12, 13)
(15) x =a Assume
(16) S(a,b) A =S(a,b) Substitution (14, 15)
(17) =(z = a) Contradiction (15, 16)
(18) A(x,b) A S(a,b) Conjunction (10, 12)
(19) A(z,b) A S(a,b) — (a=2x) VT(a) 3x Specification (2)
(20) (a =z)VT(a) Modus Ponens (18, 19)
(21) T'(a) Zero Rule for v (17, 20)
We show that z and a must be friends.
(22) T'(a) = Vy : S(a,y) > 3z : A(z,y) AN F(z,a) Specification (3)
(23) Yy : S(a,y) <> Jz: A(z,y) A F(z,a) Modus Ponens (21, 22)
(24) S(a,b) <» 3z : A(z,b) AN F(z,a) Specification (23)
(25) S(a,b) — 3z : A(z,b) A F(z,a) Equivalence, Separation (24)
(26) 3z : A(z,b) A F(z,a) Modus Ponens (12, 25)
(27) A(c,b) A F(c,a) Existence (26)
(28) A(c,b) Separation (27)
(29) c==x Uniqueness of task assignment (A, 10, 28)
(30) F(z,a) Separation (27), Substitution ¢ = x
(31) F(a,x) Symmetry of F'



We end by introducing quantifiers and discharging the assumption (premise of C).

(32) T'(a) A F(a, ) Conjunction (21, 31)
(33) 3z : T(2) N F(z,x) Existence (32)
(34) Fy : A(z,y) AN=S(z,y) NH(z)) = F2: T(2) N F(z,x) Direct Proof (4, 33)

(35) Vo : (Jy : A(z,y) AN—=S(z,y) NH(z)) = Iz : T(2) AN F(z,2) Generalization (34)

2.1 Convert the following formula to conjunctive normal form. Show your steps.
((a—=b)—==c)A=(a@d)A(b— —(c—a)A(=(bVd) = —c)A(d— —(aVec))
(=(@a—=b)V-ac)AN(a—d)AN(d—a)AN(=bV (cA=a)) ANV AV =) (=dV (—a A —c))
((an=b)V=c)A(maVd)A(aV-d)N(=bVe)A(=bV—a)A(bVdV-e)A(—dV—a)A(=dV —c)
(aV=c)AN(=bV=c)A(maVd)A(aV—=d)A(=bVe)A(=bV =a) A bV AV —c)A(=dV —a)A(—dV —c)
2.2 Determine all truth assignments that satisfy the formula. Show your work.

We can simplify (=bV —¢) A (=bV ¢) = =bA (—cV c) = —b.

We duplicate (—dV—a) by idempotence and simplify again using distributivity and excluded middle:
(maVd)A(=aV—d) = —a and (aV—-d)A(—aV—d) = =d. These three unit clauses givea =b=d = F.
The remaining clauses are: (aV —¢) A (=bV =a) A (bV dV —c) A (—d V —c).

Substituting the found values, we get —c, thus ¢ = F', and we have a unique satisfying assignment.

3. Consider the set P of all partitions of a finite set S. Define a relation on P as follows: R(C1,Cs)
iff for any set X € Cy there is a set Y € Cy such that Y C X (proper subset). Show that R is a
strict order (antireflexive, antisymmetric, and transitive).

Take an arbitrary partition C' and let X,, € C be a set of minimum cardinality (since the underlying
set S is finite, this exists). Then ~R(C,C) since Y € C with Y C X,,, with would imply |Y| < |X].
For antisymmetry, define m(C) = minycc| |X|. Again, this exists, S being finite. Then R(Cy, C2) —
m(Cy) < m(Ch) if we choose X € Cy with | X| = m(C). Likewise, R(C,C1) — m(C1) < m(Cs).
Thus, R(C1,C2) A R(C2,C1) is a contradiction, and the condition for implication is vacuously true.
For transitivity, take arbitrary Ci,Cs,C3, and X € C;. Then R(Cy,C2) implies there is Y € Cy
with Y C X, and R(Cy,Cs) gives Z € Cs with Z C Y. The transitivity of C gives Z C X gives
R(C1,C3), and by generalization, R is transitive.

4.1 Let x,y, z,w be naturals. Assuming we know x is divisible by the three numbers y, z, and
Yy + 2z 4+ w, prove or disprove that x is divisible by w.

False. A counterexampleisz=5,y=1,z2=1 and w = 3.

We see z is divisible by y, z and y 4+ z + w but not by w.

4.2 Let x,y, z,w be naturals. Assuming we know z divides the three numbers y, z, and y + z + w,
prove or disprove that x divides w.

True. We know for some integers k, m,n we have: kx =y, mx =z, nx =y + 2 + w.

Then w =nx —y — z = nx — kax — mz = x(n — k —m), which shows w is divisible by z.

5. Define the binary relation R on N by R(x,y) iff lem(z,y) = z - y.

Argue whether this relation is reflexive, antireflexive, symmetric, antisymmetric, or transitive.

If lem(z,y) = xy, then ged(z,y) = 1, since lem(z,y) - ged(z, y) = xy.

Not Reflexive: ged(2,2) =2s0 (2,2) ¢ R Not Antireflexive: ged(1,1) =1so (1,1) € R
Symmetric: ged(z,y) =1 — ged(y,z) =1 so (z,y) € R — (y,z) € R

Not Antisymmetric: (2,3) € R and (3,2) € R, but 2 # 3

Not Transitive: gcd(2,3) =1, ged(3,4) =1, ged(2,4) # 1,50 (2,3) € R, (3,4) € R, but (2,4) ¢ R
6.1 Use the Euclidean Algorithm to compute 6.2 Find m and n so that 2g = 429m + 357n.

g = ged (429, 357) Use the Extended Euclidean Algorithm.
429 % 357 = 72 429 =1 %429 + 0 x 357

357 % 72 =69 357 = 0%429 + 1 % 357

72 % 69 = 3 72 =1%429 — 1 % 357

69 % 3=0 69 = —4 %429 4+ 5 = 357

Thus g = 3. 3= 5%429 — 6% 357

Thus, 6 = 10%x429—12%357. m = 10 and n = —12



CS250 Fall 2020 Midterm 1 Solutions, Evening Exam

1.1 Translate the following sentences into predicate logic. State what your predicate names mean.

A(z,y): x gets assigned task y. E(x): = is an expert. H(x): x is happy. S(z,y): x solves task y.
Implicitly, a task is only assigned to one person:
A Vy:Vo:Vz: (A(z,y) NA(z,y)) 22 ==z

1. A person is happy precisely when all tasks that are assigned to them are solved by someone.
Vo : H(x) < Yy : A(z,y) — 3z : S(z,y)

2. A task assigned to someone can only be solved by themselves or by an expert.

Yy : Vo : A(x,y) = Vz:S(z,y) = ((z=2)V E(z)), or

Yy Vo :Vz: (Alz,y) ANS(z,y)) = (z=2)V E(2))

3. An expert does not solve a task unless that task is assigned to a person who is not an expert
and does not solve the task themselves.

Vo : E(x) = Yy : S(z,y) = Iz : A(z,y) A—E(z) AN=S(z,y) or

Vo :Vy: (E(x) ANS(z,y)) = 3z A(z,y) A ~E(2) A =S(z,y)

C. Any happy expert has no assigned tasks.

Vo : (E(x) NH(x)) — -3y : A(x,y)

1.2 Prove the conclusion C from the premises 1-3. Indicate the use of proof rules as clearly as
possible.

We do a proof by contradiction, negating C":
-C =-Vo: (E(x)ANH(z)) —» —Jy: Alx,y) =3z : E(x) N H(x) A Jy : A(z,y)

(4) E(a) N H(a) N A(a,b) (2x Instantiation of =C', a, b new constants)
From (1), task b is solved by someone

(5) H(a) Separation (4)

(6) H(a) = Yy : A(a,y) — 3z : S(z,y) Specification (1, x = a)

(7) Yy : A(a,y) = 3z : S(z,9) Modus Ponens (5, 6)

(8) A(a,b) — Iz : S(z,b) Speification (7, y = b)

(9) A(a,b) Separation (4)

(10) 3z : S(z,b) Modus Ponens (8, 9)

(11) S(e,b) Instantiation (10, ¢ new constant)
From (2), we show ¢ is an expert

(12) (A(a,b) A S(c,b)) = (a=c)V E(c) 3x Specification (2, z =a, y =b, z =c¢)

(13) A(a,b) A S(c,b) Conjunction (9, 11)

(14) (a=1c¢) V E(c) Modus Ponens (12, 13)

(15) E(a) Separation (4)

(16) a =c— E(c) Substitution (15)

(17) E(c) Proof by Cases (14, 16, split on a = ¢)
From (3), we derive a contradiction

(18) (E(c) A S(e,b)) — Jz: A(z,b) A (mE(2) A—S(2,b) 2x Specification (3, x = ¢, y = b)

(19) E(c) A S(e,b) Conjunction (11, 17)

(20) 3z : A(z,b) A —E(z) A =S(z,b) Modus Ponens (18, 19)

(21) A(c,b) AN—=E(c) N =S(c,b) Existence (20, new constant c)

(22) A(c,b) Separation (21)

(23) c=a Uniqueness of assignment (A, 9, 22)

(24) =E(a) A =S(a,b) Separation (21), Substitution ¢ = a

(25) ~E(a) Separation (24)

(26) E(a) A —E(a) Conjunction (15, 25)

We have derived a contradiction, which completes our proof of the conclusion.



2.1 Convert the following formula to conjunctive normal form. Show your steps.

(a—= (=b——=d)A(=(aVe)—=—d)A({(b—a) = —~d)A=(bDc)A (¢ — =(—-b— d))

(maV (=bA—==d)A(aVecV=d)A(=(b—=a)V-d)Ab—=c)A(c—=b)A(mcV (=bA-d))

(maV (=bAd))A(aVeV—d)A((bA—a)V—=d)A(=bVec)A bV —e)A(—eV —b)A(—eV —d)
(maV=b)A(maVd)A(aVeV=d)A bV -d)A(maV—d)A(=bVe)A bV —e)A(=bV—e)A(=eV—d)
2.2 Determine all truth assignments that satisfy the formula. Show your work.

We can simplify: (-a V d) A (-aV —d) = -a A (dV —d) = —a.

We duplicate (—bV —c) by idempotence and simplify again using distributivity and excluded middle:
(=bVe)A(=bV—=e) = =band (bV —c)A(=bV—c) = —c. These three unit clauses givea =b=c = F.
The remaining clauses are: (ma V. =b) A (aVcV —=d) A (bV —d) A (—cV —d).

Substituting the found values, we get —d, thus d = F', and we have a unique satisfying assignment.

3. Consider the set C of all sets of languages over a nonempty alphabet Y. Define a relation R on
C as follows: R(X,Y) iff for any two languages L, Lo € X we have L; U Ly € Y. Show that R is
antisymmetric and transitive. Is it reflexive or antireflexive?

Take arbitrary X and Y and specify L; and Ly to the same arbitrary language L € X. Then
R(X,Y) gives us L € Y, thus X C Y. Likewise, R(Y,X) — Y C X; their conjunction gives us
X =Y. Since X and Y were arbitrary, generalization gives us antisymmetry.

For transitivity, take arbitrary X,Y, Z, and arbitrary Ly, Ly € X, resulting in L; U Ly € Y. We
have seen that R(Y,Z) — Y C Z, thus L; U Ly € Z. This gives us R(X, Z) by definition, and by
generalization, R is transitive.

R is not reflexive, take X = {{a}, {b}}; since {a,b} ¢ X, R(X, X) is false.

R is also not antireflexive, R((),0) = true (or we can take any X closed under union, such as the
powerset of any set).

4.1 Let x,y, z,w be naturals. Assuming we know x is divisible by the three numbers y, z, and
yz + w, prove or disprove that « is divisible by w.

False. A counterexampleisz =3 ,y=1,2=1and w = 2. As we see y, z and yz + w all divide
z, but w does not divide z.

4.2 Let z,y, z,w be naturals. Assuming we know z divides the three numbers y, z, and yz + w,
prove or disprove that x divides w.

True. We know for some integers k, m,n we have: kx =y, mx = z, nx = yz + w.

Then w = nx — yz = nx — kma? = z(n — kma), which shows w is divisible by z.

5. Define the binary relation R on N by R(x,y) iff x is the inverse of y modulo 2. Argue whether
this relation is reflexive, antireflexive, symmetric, antisymmetric, or transitive.

(z,y) € Rif x is inverse of y mod 2. So zy = 1 mod 2 which means z and y are both odd numbers.
Not Reflexive: (2,2) ¢ R (or any other even number)

Not Antieflexive: (1,1) € R (or any other odd number)

Symmetric: xy =1 mod 2 <> yz = 1 mod 2.

Not AntiSymmetric: (1,3) € R and (3,1) € R, but 1 # 3

Transitive: (z,y) € RA (y,z) € R means z, y and z all are odd numbers and since any two odd
numbers are in R we can say (z,z) € R.

6. Find all solutions to the system of congruences:

x=4 (mod1l),z=1 (mod3)andz=5 (mod 8).

First we check if all moduli are pairwise prime: ged(11,3) =1, ged(11,8) =1, ged(3,8) =1
Since they are relatively prime we can use the CRT to find the solution:

mp =11, my =3, mg=8 M=11%x3%x8=264, M/my =24, M/mg =88, M/ms = 33.
We compute the inverses: -5 of 24 modulo 11, 1 of 88 modulo 3, 1 of 33 modulo 8.

Then, x = (4% 24 % —5) + (1 88 % 1) + (5% 33 x 1) = —227. Thus, z = —227 = 37 (mod 264).



