
CS250 Fall 2020 Midterm 1 Solutions, Morning Exam

1.1 Translate the following sentences into predicate logic. State what your predicate names mean.

A(x, y): x gets assigned task y. F (x, y): x is a friend of y. H(x): x is happy. S(x, y): x solves task y.
T (x): x is a troubleshooter. Implicitly, a task is only assigned to one person:
A. ∀y : ∀x : ∀z : (A(x, y) ∧A(z, y))→ x = z

1. Any happy person has all tasks that are assigned to them solved by someone.
∀x : H(x)→ ∀y : A(x, y)→ ∃z : S(z, y) or
∀x : ∀y : (H(x) ∧A(x, y))→ ∃z : S(z, y)

2. A task assigned to someone can only be solved by themselves or by a troubleshooter.
∀y : ∀x : A(x, y)→ ∀z : S(z, y)→ ((z = x) ∨ T (z)), or
∀y : ∀x : ∀z : (A(x, y) ∧ S(z, y))→ ((z = x) ∨ T (z))

3. A troubleshooter solves precisely any tasks assigned to any friend of theirs.
∀x : T (x)→ ∀y : S(x, y)↔ ∃z : A(z, y) ∧ F (z, x)

C. If someone does not solve all their assigned tasks and they are happy, they have a troubleshooter
as friend.
∀x : (∃y : A(x, y) ∧ ¬S(x, y) ∧H(x))→ ∃z : T (z) ∧ F (z, x)

1.2 Prove the conclusion C from the premises 1-3. Assume the friendship relation is antireflexive
and symmetric. Indicate the use of proof rules as clearly as possible.

We start a direct proof by assuming the premise of the implication in C:
(4) ∃y : A(x, y) ∧ ¬S(x, y) ∧H(x) Assumption (x arbitrary)
(5) A(x, b) ∧ ¬S(x, b) ∧H(x) Existence (4) (b: new constant)
(6) H(x) Separation (5)

We show that there is some a who solves the task b that x does not solve.
(7) H(x)→ ∀y : A(x, y)→ ∃z : S(z, y). Specification (to x)
(8) ∀y : A(x, y)→ ∃z : S(z, y) Modus Ponens (6, 7)
(9) A(x, b)→ ∃z : S(z, b) Specification, y = b
(10) A(x, b) Separation (5)
(11) ∃z : S(z, b) Modus Ponens (9, 10)
(12) S(a, b) Existence (11) (a: new constant)

We prove by contradiction that a is not x, and then that a must be a trubleshooter.
(13) ¬S(x, b) Separation (5)
(14) S(a, b) ∧ ¬S(x, b) Conjunction (12, 13)

(15) x = a Assume
(16) S(a, b) ∧ ¬S(a, b) Substitution (14, 15)

(17) ¬(x = a) Contradiction (15, 16)
(18) A(x, b) ∧ S(a, b) Conjunction (10, 12)
(19) A(x, b) ∧ S(a, b)→ (a = x) ∨ T (a) 3× Specification (2)
(20) (a = x) ∨ T (a) Modus Ponens (18, 19)
(21) T (a) Zero Rule for ∨ (17, 20)

We show that x and a must be friends.
(22) T (a)→ ∀y : S(a, y)↔ ∃z : A(z, y) ∧ F (z, a) Specification (3)
(23) ∀y : S(a, y)↔ ∃z : A(z, y) ∧ F (z, a) Modus Ponens (21, 22)
(24) S(a, b)↔ ∃z : A(z, b) ∧ F (z, a) Specification (23)
(25) S(a, b)→ ∃z : A(z, b) ∧ F (z, a) Equivalence, Separation (24)
(26) ∃z : A(z, b) ∧ F (z, a) Modus Ponens (12, 25)
(27) A(c, b) ∧ F (c, a) Existence (26)
(28) A(c, b) Separation (27)
(29) c = x Uniqueness of task assignment (A, 10, 28)
(30) F (x, a) Separation (27), Substitution c = x
(31) F (a, x) Symmetry of F
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We end by introducing quantifiers and discharging the assumption (premise of C).
(32) T (a) ∧ F (a, x) Conjunction (21, 31)
(33) ∃z : T (z) ∧ F (z, x) Existence (32)

(34) (∃y : A(x, y) ∧ ¬S(x, y) ∧H(x))→ ∃z : T (z) ∧ F (z, x) Direct Proof (4, 33)
(35) ∀x : (∃y : A(x, y) ∧ ¬S(x, y) ∧H(x))→ ∃z : T (z) ∧ F (z, x) Generalization (34)

2.1 Convert the following formula to conjunctive normal form. Show your steps.

((a→ b)→ ¬c) ∧ ¬(a⊕ d) ∧ (b→ ¬(c→ a)) ∧ (¬(b ∨ d)→ ¬c) ∧ (d→ ¬(a ∨ c))
(¬(a→ b) ∨ ¬c) ∧ (a→ d) ∧ (d→ a) ∧ (¬b ∨ (c ∧ ¬a)) ∧ (b ∨ d ∨ ¬c) ∧ (¬d ∨ (¬a ∧ ¬c))
((a ∧ ¬b) ∨ ¬c) ∧ (¬a ∨ d) ∧ (a ∨ ¬d) ∧ (¬b ∨ c) ∧ (¬b ∨ ¬a) ∧ (b ∨ d ∨ ¬c) ∧ (¬d ∨ ¬a) ∧ (¬d ∨ ¬c)
(a∨¬c)∧ (¬b∨¬c)∧ (¬a∨ d)∧ (a∨¬d)∧ (¬b∨ c)∧ (¬b∨¬a)∧ (b∨ d∨¬c)∧ (¬d∨¬a)∧ (¬d∨¬c)
2.2 Determine all truth assignments that satisfy the formula. Show your work.

We can simplify (¬b ∨ ¬c) ∧ (¬b ∨ c) = ¬b ∧ (¬c ∨ c) = ¬b.
We duplicate (¬d∨¬a) by idempotence and simplify again using distributivity and excluded middle:
(¬a∨d)∧(¬a∨¬d) = ¬a and (a∨¬d)∧(¬a∨¬d) = ¬d. These three unit clauses give a = b = d = F .
The remaining clauses are: (a ∨ ¬c) ∧ (¬b ∨ ¬a) ∧ (b ∨ d ∨ ¬c) ∧ (¬d ∨ ¬c).
Substituting the found values, we get ¬c, thus c = F , and we have a unique satisfying assignment.

3. Consider the set P of all partitions of a finite set S. Define a relation on P as follows: R(C1, C2)
iff for any set X ∈ C1 there is a set Y ∈ C2 such that Y ⊂ X (proper subset). Show that R is a
strict order (antireflexive, antisymmetric, and transitive).

Take an arbitrary partition C and let Xm ∈ C be a set of minimum cardinality (since the underlying
set S is finite, this exists). Then ¬R(C,C) since Y ∈ C with Y ⊂ Xm with would imply |Y | < |Xm|.
For antisymmetry, define m(C) = minX∈C| |X|. Again, this exists, S being finite. Then R(C1, C2)→
m(C2) < m(C1) if we choose X ∈ C1 with |X| = m(C1). Likewise, R(C2, C1) → m(C1) < m(C2).
Thus, R(C1, C2)∧R(C2, C1) is a contradiction, and the condition for implication is vacuously true.

For transitivity, take arbitrary C1, C2, C3, and X ∈ C1. Then R(C1, C2) implies there is Y ∈ C2

with Y ⊂ X, and R(C2, C3) gives Z ∈ C3 with Z ⊂ Y . The transitivity of ⊂ gives Z ⊂ X gives
R(C1, C3), and by generalization, R is transitive.

4.1 Let x, y, z, w be naturals. Assuming we know x is divisible by the three numbers y, z, and
y + z + w, prove or disprove that x is divisible by w.
False. A counterexample is x = 5, y = 1, z = 1 and w = 3.
We see x is divisible by y, z and y + z + w but not by w.
4.2 Let x, y, z, w be naturals. Assuming we know x divides the three numbers y, z, and y + z +w,
prove or disprove that x divides w.
True. We know for some integers k,m, n we have: kx = y, mx = z, nx = y + z + w.
Then w = nx− y − z = nx− kx−mx = x(n− k −m), which shows w is divisible by x.

5. Define the binary relation R on N by R(x, y) iff lcm(x, y) = x · y.
Argue whether this relation is reflexive, antireflexive, symmetric, antisymmetric, or transitive.

If lcm(x, y) = xy, then gcd(x, y) = 1, since lcm(x, y) · gcd(x, y) = xy.
Not Reflexive: gcd(2, 2) = 2 so (2, 2) /∈ R Not Antireflexive: gcd(1, 1) = 1 so (1, 1) ∈ R
Symmetric: gcd(x, y) = 1→ gcd(y, x) = 1 so (x, y) ∈ R→ (y, x) ∈ R
Not Antisymmetric: (2, 3) ∈ R and (3, 2) ∈ R, but 2 6= 3
Not Transitive: gcd(2, 3) = 1, gcd(3, 4) = 1, gcd(2, 4) 6= 1, so (2, 3) ∈ R, (3, 4) ∈ R, but (2, 4) /∈ R

6.1 Use the Euclidean Algorithm to compute
g = gcd(429, 357)

429 % 357 = 72
357 % 72 = 69
72 % 69 = 3
69 % 3 = 0
Thus g = 3.

6.2 Find m and n so that 2g = 429m + 357n.
Use the Extended Euclidean Algorithm.
429 = 1 ∗ 429 + 0 ∗ 357
357 = 0 ∗ 429 + 1 ∗ 357
72 = 1 ∗ 429− 1 ∗ 357
69 = −4 ∗ 429 + 5 ∗ 357
3 = 5 ∗ 429− 6 ∗ 357
Thus, 6 = 10∗429−12∗357. m = 10 and n = −12

2



CS250 Fall 2020 Midterm 1 Solutions, Evening Exam

1.1 Translate the following sentences into predicate logic. State what your predicate names mean.

A(x, y): x gets assigned task y. E(x): x is an expert. H(x): x is happy. S(x, y): x solves task y.
Implicitly, a task is only assigned to one person:
A. ∀y : ∀x : ∀z : (A(x, y) ∧A(z, y))→ x = z

1. A person is happy precisely when all tasks that are assigned to them are solved by someone.

∀x : H(x)↔ ∀y : A(x, y)→ ∃z : S(z, y)

2. A task assigned to someone can only be solved by themselves or by an expert.

∀y : ∀x : A(x, y)→ ∀z : S(z, y)→ ((z = x) ∨ E(z)), or
∀y : ∀x : ∀z : (A(x, y) ∧ S(z, y))→ ((z = x) ∨ E(z))

3. An expert does not solve a task unless that task is assigned to a person who is not an expert
and does not solve the task themselves.

∀x : E(x)→ ∀y : S(x, y)→ ∃z : A(z, y) ∧ ¬E(z) ∧ ¬S(z, y) or
∀x : ∀y : (E(x) ∧ S(x, y))→ ∃z : A(z, y) ∧ ¬E(z) ∧ ¬S(z, y)

C. Any happy expert has no assigned tasks.

∀x : (E(x) ∧H(x))→ ¬∃y : A(x, y)

1.2 Prove the conclusion C from the premises 1-3. Indicate the use of proof rules as clearly as
possible.

We do a proof by contradiction, negating C:
¬C = ¬∀x : (E(x) ∧H(x))→ ¬∃y : A(x, y) = ∃x : E(x) ∧H(x) ∧ ∃y : A(x, y)

(4) E(a) ∧H(a) ∧A(a, b) (2× Instantiation of ¬C, a, b new constants)
From (1), task b is solved by someone

(5) H(a) Separation (4)
(6) H(a)→ ∀y : A(a, y)→ ∃z : S(z, y) Specification (1, x = a)
(7) ∀y : A(a, y)→ ∃z : S(z, y) Modus Ponens (5, 6)
(8) A(a, b)→ ∃z : S(z, b) Speification (7, y = b)
(9) A(a, b) Separation (4)
(10) ∃z : S(z, b) Modus Ponens (8, 9)
(11) S(c, b) Instantiation (10, c new constant)

From (2), we show c is an expert
(12) (A(a, b) ∧ S(c, b))→ (a = c) ∨ E(c) 3× Specification (2, x = a, y = b, z = c)
(13) A(a, b) ∧ S(c, b) Conjunction (9, 11)
(14) (a = c) ∨ E(c) Modus Ponens (12, 13)
(15) E(a) Separation (4)
(16) a = c→ E(c) Substitution (15)
(17) E(c) Proof by Cases (14, 16, split on a = c)

From (3), we derive a contradiction
(18) (E(c) ∧ S(c, b))→ ∃z : A(z, b) ∧ (¬E(z) ∧ ¬S(z, b) 2× Specification (3, x = c, y = b)
(19) E(c) ∧ S(c, b) Conjunction (11, 17)
(20) ∃z : A(z, b) ∧ ¬E(z) ∧ ¬S(z, b) Modus Ponens (18, 19)
(21) A(c, b) ∧ ¬E(c) ∧ ¬S(c, b) Existence (20, new constant c)
(22) A(c, b) Separation (21)
(23) c = a Uniqueness of assignment (A, 9, 22)
(24) ¬E(a) ∧ ¬S(a, b) Separation (21), Substitution c = a
(25) ¬E(a) Separation (24)
(26) E(a) ∧ ¬E(a) Conjunction (15, 25)

We have derived a contradiction, which completes our proof of the conclusion.
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2.1 Convert the following formula to conjunctive normal form. Show your steps.

(a→ ¬(¬b→ ¬d)) ∧ (¬(a ∨ c)→ ¬d) ∧ ((b→ a)→ ¬d) ∧ ¬(b⊕ c) ∧ (c→ ¬(¬b→ d))
(¬a ∨ (¬b ∧ ¬¬d)) ∧ (a ∨ c ∨ ¬d) ∧ (¬(b→ a) ∨ ¬d) ∧ (b→ c) ∧ (c→ b) ∧ (¬c ∨ (¬b ∧ ¬d))
(¬a ∨ (¬b ∧ d)) ∧ (a ∨ c ∨ ¬d) ∧ ((b ∧ ¬a) ∨ ¬d) ∧ (¬b ∨ c) ∧ (b ∨ ¬c) ∧ (¬c ∨ ¬b) ∧ (¬c ∨ ¬d)
(¬a∨¬b)∧ (¬a∨ d)∧ (a∨ c∨¬d)∧ (b∨¬d)∧ (¬a∨¬d)∧ (¬b∨ c)∧ (b∨¬c)∧ (¬b∨¬c)∧ (¬c∨¬d)

2.2 Determine all truth assignments that satisfy the formula. Show your work.

We can simplify: (¬a ∨ d) ∧ (¬a ∨ ¬d) = ¬a ∧ (d ∨ ¬d) = ¬a.
We duplicate (¬b∨¬c) by idempotence and simplify again using distributivity and excluded middle:
(¬b∨c)∧ (¬b∨¬c) = ¬b and (b∨¬c)∧ (¬b∨¬c) = ¬c. These three unit clauses give a = b = c = F .
The remaining clauses are: (¬a ∨ ¬b) ∧ (a ∨ c ∨ ¬d) ∧ (b ∨ ¬d) ∧ (¬c ∨ ¬d).
Substituting the found values, we get ¬d, thus d = F , and we have a unique satisfying assignment.

3. Consider the set C of all sets of languages over a nonempty alphabet Σ. Define a relation R on
C as follows: R(X,Y ) iff for any two languages L1, L2 ∈ X we have L1 ∪ L2 ∈ Y . Show that R is
antisymmetric and transitive. Is it reflexive or antireflexive?

Take arbitrary X and Y and specify L1 and L2 to the same arbitrary language L ∈ X. Then
R(X,Y ) gives us L ∈ Y , thus X ⊆ Y . Likewise, R(Y,X) → Y ⊆ X; their conjunction gives us
X = Y . Since X and Y were arbitrary, generalization gives us antisymmetry.

For transitivity, take arbitrary X,Y, Z, and arbitrary L1, L2 ∈ X, resulting in L1 ∪ L2 ∈ Y . We
have seen that R(Y,Z) → Y ⊆ Z, thus L1 ∪ L2 ∈ Z. This gives us R(X,Z) by definition, and by
generalization, R is transitive.

R is not reflexive, take X = {{a}, {b}}; since {a, b} /∈ X, R(X,X) is false.
R is also not antireflexive, R(∅, ∅) = true (or we can take any X closed under union, such as the
powerset of any set).

4.1 Let x, y, z, w be naturals. Assuming we know x is divisible by the three numbers y, z, and
yz + w, prove or disprove that x is divisible by w.
False. A counterexample is x = 3 , y = 1, z = 1 and w = 2. As we see y, z and yz + w all divide
x, but w does not divide x.

4.2 Let x, y, z, w be naturals. Assuming we know x divides the three numbers y, z, and yz + w,
prove or disprove that x divides w.
True. We know for some integers k,m, n we have: kx = y, mx = z, nx = yz + w.
Then w = nx− yz = nx− kmx2 = x(n− kmx), which shows w is divisible by x.

5. Define the binary relation R on N by R(x, y) iff x is the inverse of y modulo 2. Argue whether
this relation is reflexive, antireflexive, symmetric, antisymmetric, or transitive.

(x, y) ∈ R if x is inverse of y mod 2. So xy ≡ 1 mod 2 which means x and y are both odd numbers.
Not Reflexive: (2, 2) /∈ R (or any other even number)
Not Antieflexive: (1, 1) ∈ R (or any other odd number)
Symmetric: xy ≡ 1 mod 2↔ yx ≡ 1 mod 2.
Not AntiSymmetric: (1, 3) ∈ R and (3, 1) ∈ R, but 1 6= 3
Transitive: (x, y) ∈ R ∧ (y, z) ∈ R means x, y and z all are odd numbers and since any two odd
numbers are in R we can say (x, z) ∈ R.

6. Find all solutions to the system of congruences:
x ≡ 4 (mod 11), x ≡ 1 (mod 3) and x ≡ 5 (mod 8).

First we check if all moduli are pairwise prime: gcd(11, 3) = 1, gcd(11, 8) = 1, gcd(3, 8) = 1
Since they are relatively prime we can use the CRT to find the solution:
m1 = 11, m2 = 3, m3 = 8, M = 11 ∗ 3 ∗ 8 = 264, M/m1 = 24, M/m2 = 88, M/m3 = 33.
We compute the inverses: -5 of 24 modulo 11, 1 of 88 modulo 3, 1 of 33 modulo 8.
Then, x = (4 ∗ 24 ∗ −5) + (1 ∗ 88 ∗ 1) + (5 ∗ 33 ∗ 1) = −227. Thus, x ≡ −227 ≡ 37 (mod 264).
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