
CS250 Fall 2020 Final Solutions

Q1 (35p). (a, 15p) Translate the statements into predicate logic. State what your predicates mean.
1. An exam is easier than another iff everyone who passed the second exam also passed the first,
and there is someone who passed the first but not the second.
2. A exam that is not easier than some other exam is hard.
3. Someone is unsurpassed if noone passes an exam that they did not pass.
C. Someone who passes all hard exams is unsurpassed.

P (x, y): x passes exam y. E(x, y): exam x is easier than y. H(x): exam x is hard. U(x): x is unsurpassed.

1. ∀e : ∀e2 : E(e, e2)↔ (∀x : P (x, e2)→ P (x, e)) ∧ ∃y : P (y, e) ∧ ¬P (y, e2))
2. ∀e : (¬∃e2 : e2 6= e ∧ E(e, e2))→ H(e)
3. ∀x : (¬∃y : ∃e : (P (y, e) ∧ ¬P (x, e))→ U(x) or ∀x : (∀y : ∀e : P (y, e)→ P (x, e))→ U(x)
C. ∀x : (∀e : H(e)→ P (x, e))→ U(x)

(b, 8p) Assume a finite number of people pass each exam. Write the following statement in logic, and
prove it, assuming statements (1)-(3): “Any exam that is not hard is easier than some hard exam.”
You may reason in words, but be precise.

Let S(e) be the set of people passing exam e. By contrapositive of (2), ¬H(e) → ∃e2 : E(e, e2),
and E(e, e2) → S(e2) ⊂ S(e) (1). The implication P (x, e2) → P (x, e) ensures ⊆ and the second
conjunct implies the inclusion is strict. Since S(e) is finite, any chain of strict subsets will be finite
(by the least number principle). Therefore, for any exam e, any chain of exams “harder” than e
must stop at some e0. By (2), e0 is a hard exam. We write ∀e : ¬H(e)→ ∃e0 : E(e, e0) ∧H(e0).

(c, 12p) If a finite number of people pass each exam, prove formally, showing deduction rules used,
that statements (1)-(3) imply C, or show a counterexample. You may use the statement at (b).

Solution: We use proof by cases, for hard exams (premise of C), and those that aren’t (b).

(4) ∀e : H(e)→ P (x, e) Assumption (x arbitrary)
(5) H(e)→ P (x, e) Specification (4, e arbitrary)
(6) ∀e : ¬H(e)→ ∃e0 : E(e, e0) ∧H(e0) Statement (b)
(7) ¬H(e)→ ∃e0 : E(e, e0) ∧H(e0) Specification (6)
(8) ¬H(e) Assumption

(9) ∃e0 : E(e, e0) ∧H(e0) Modus Ponens (7, 8)
(10) E(e, f) ∧H(f) Instantiation (9, f constant)
(11) H(f) Separation (10)
(12) H(f)→ P (x, f) Specification (4)
(13) P (x, f) Modus Ponens (11, 12)
(14) E(e, f)↔ (∀x : P (x, f)→ P (x, e)) ∧ ∃y : P (y, e) ∧ ¬P (y, f) Specification (1)
(15) E(e, f)→ (∀x : P (x, f)→ P (x, e)) ∧ ∃y : P (y, e) ∧ ¬P (y, f) Equivalence and Implication (14)
(16) E(e, f) Separation (10)
(17) (∀x : P (x, f)→ P (x, e)) ∧ ∃y : P (y, e) ∧ ¬P (y, f) Modus Ponens (15, 16)
(18) ∀x : P (x, f)→ P (x, e) Separation (17)
(19) P (x, f)→ P (x, e) Specification (18)
(20) P (x, e) Modus Ponens (13, 19)

(21) ¬H(e)→ P (x, e) Deduction/Fantasy Rule (8, 20)
(22) P (x, e) Proof by Cases (5, 21)
(23) P (y, e)→ P (x, e) Trivial Proof (22, y arbitrary)
(24) ∀y : ∀e : P (y, e)→ P (x, e) 2× Generalization (23)
(25) (¬∃y : ∃e : (P (y, e) ∧ ¬P (x, e))→ U(x) Specification (3, x arbirtrary)
(26) U(x) Modus Ponens (24, 25)

(27) (∀e : H(e)→ P (x, e))→ U(x) Deduction/Fantasy Rule (4, 26)
(28) ∀x : (∀e : H(e)→ P (x, e))→ U(x) Generalization (27)
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Q2 (30p). Let L be the regular language ((ab∗)∗c)∗.

(a, 10p) Find a recurrence for the number Sn of strings of length n in L, using the sum of Sk for k<n.
Hint: Consider what a string in L can start with and write it as w = uv, where u is the shortest
nonempty prefix such that v ∈ L.

Solution: A string in L starts with a or c. If it starts with c, it has the form cv, with v ∈L, |v| = n−1.
We have Sn−1 such strings. If it starts with a, it has the form ab∗v, with v ∈ L, |v| ≥ 1. We get∑n−1

k=1 Sk such strings. Thus, Sn = Sn−1 +
∑n−1

k=1 Sk, for n > 0. We have S0 = 1, since λ ∈ L.

(b, 5p) Find a recurrence for Sn+1 in terms of Sn and Sn−1. Hint: consider the difference Sn+1−Sn.
For partial credit, find S2 and S3 by counting strings, then find the recurrence coefficients. (5p)

Solution: From the recurrence Sn = Sn−1 +
∑n−1

k=1 Sk, we get Sn+1 − Sn = Sn − Sn−1 +
∑n

k=1 Sk −∑n−1
k=1 Sk = Sn − Sn−1 + Sn, so Sn+1 = 3Sn − Sn−1, for n > 0, with S0 = 1, and S1 = 1 (c ∈ L).

Partial credit: We have S2 = 2 (a, c) and S3 = 5 (aac, abc, acc, cac, ccc). We write Sn+1 =
cSn + dSn−1, with 2 = c+ d, 5 = 2c+ d. We get c = 3, d = −1, and Sn+1 = 3Sn − Sn−1 for n > 0.

(c, 5p) Prove by induction that Sn = 1
2(1− 1√

5
)(3+

√
5

2 )n + 1
2(1 + 1√

5
)(3−

√
5

2 )n.

Solution: The initial exam draft had “Find and prove a closed form for Sn.”, asking to also find the

formula above. The characteristic equation is x2− 3x+ 1 = 0, with roots r1,2 = 3±
√
5

2 . The general

form is Sn = A3+
√
5

2 +B 3−
√
5

2 . We get A+B = 1 and (A+B)32 + (A−B)
√
5
2 = 1, so B−A = 1√

5
.

Thus, A = 1
2(1− 1√

5
) and B = 1

2(1 + 1√
5
). We have Sn = 1

2(1− 1√
5
)(3+

√
5

2 )n + 1
2(1 + 1√

5
)(3−

√
5

2 )n.

Having the formula, we can prove it by strong induction. Let P (n) mean the formula is true for n.
Base cases: n = 0: 1

2(1− 1√
5
) + 1

2(1 + 1√
5
) = 1 = S0.

n = 1: 1
2(1− 1√

5
)(3+

√
5

2 ) + 1
2(1 + 1√

5
)(3−

√
5

2 ) = 1
2 · 2 · (1 ·

3
2 −

1√
5
·
√
5
2 ) = 3

2 −
1
2 = 1 = S1.

Inductive step: Assume the formula is true for all k ≤ n, and prove it for n+ 1. With the notations
above, since r1 and r2 are the roots of x2 = 3x−1, Arn+1

1 +Brn+1
2 = A(3rn1−r

n−1
1 )+B(3rn2−r

n−1
2 ) =

3(Arn1 +Brn2 )− (Arn−11 +Brn−12 ) = 3Sn − Sn−1 = Sn+1, which completes the inductive goal.

(d, 10p) Prove that S2k+2 ≤ 2 · 7k and S2k+3 ≤ 5 · 7k for k ≥ 0.
First, prove that Sn+1 = 7Sn−1 − Sn−3 for n ≥ 3.

We expand Sn+1 = 3Sn−Sn−1 = 3(3Sn−1−Sn−2)−Sn−1 = 7Sn−1 +Sn−1−3Sn−2 = 7Sn−1−Sn−3.
We do a proof by induction over k. Since S2 = 2 and S3 = 5, the statements hold for k = 0. Assume
the statements hold for arbitrary k ≥ 0. We have S2k+4 = 7S2k+2−S2k < 7S2k+2 ≤ 7·2·7k = 2·7k+1,
and S2k+5 = 7S2k+3 − S2k+1 < 7S2k+3 ≤ 7 · 5 · 7k = 5 · 7k+1, which proves both inequalities.

Q3 (10p). Show that (n/2)n > n! for all n > 6.
Hint: The binomial expansion says (a+ b)n =

∑n
k=0

(
n
k

)
an−kbk, where

(
n
k

)
= n!

(n−k)!k! .

Base case: We show (7/2)7 > 7!, or equivalently, 77 > 27 · 7!, or 76 > 27 · 6!. We have 76 = 493 >
483 = 26 · 123, and 27 · 6! = 26 · 12 · 5!. We have 122 = 144 > 120 = 5!, so the inequality holds.

Assume (n/2)n > n! for arbitrary n ≥ 7. To prove (n+1
2 )n+1 > (n+ 1)! it suffices to take the ratio

of both sides and prove that (n+ 1)n+1/nn · 2n/2n+1 ≥ (n+ 1)!/n!, or (n+ 1)n+1/nn/2 ≥ (n+ 1),
or (n+ 1)n ≥ 2nn. The latter is true, since (n+ 1)n ≥ nn +

(
n
1

)
nn−1 for n ≥ 1, so the proof holds.
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Q!4 (35p). Kleene constructions.

(a, 8p) Construct a λ-NFA for the regular expression ((a∗b)∗c)∗. Use one of the constructions from
the book or class. Show intermediate stages for each Kleene star.

We use the simplified Kleene star construction:

1 2 3
λ

a

λ
1 4

2 3

5
λ
λ

a λ

b
λ

1 4

2 3

5

0

6

λ
λ

λ

λ

a λ

b
λ

c

(b, 8p) Build an NFA from the λ-NFA obtained previously, using the construction from the book.
You may simplify the λ-NFA first, stating the rules you use.

We can eliminate states 0 and 6 added for the normal form, and make 1 both initial and final state.

We can also apply the state elimination procedure for state 3, getting transition 2
b→ 4, and state 5,

getting 4
c→ 1. The simplified λ-NFA is 1 4 2λ a

b

λ

c

The transitive closure adds move 1
λ→ 2. We get the letter moves:

14 2
a→ 2, 14 2

b→ 4 2, and 1 4
c→ 1 24, totaling 15 transitions.

The initial state is already final. The NFA is shown right.

1 4 2

c

a, b, c

b,c a, b

bc

a, b, cb,c

(c, 7p) Using the subset construction, build a DFA from the NFA obtained at the previous point.

We build the transition table
and draw the DFA.
States 1 and 124 are final.

a b c

1 2 24 124

2 2 24 ∅
24 2 24 124

124 2 24 124

24 2

1

124 ∅

a

b

c

a

b
c

a
b

c
a

b

c

a, b, c

(d, 5p) Minimize the DFA obtained previously obtained. If not using the minimization construction,
show that your result is indeed minimal.

States 1 and 124 transition to the same states, they are equivalent.
After merging them, the automaton is minimal.
1 is the only final state, λ distinguishes it from all others.
24 and 2 are distinguished by c (final/non-final).
2 and 24 are distinguished from ∅ by bc (final/non-final). 1

2 24

∅

a b
c

a

b

c

a b

c

a, b, c

(e, 7p) Using the state elimination construction, find a regular expression from the produced min-
imal DFA, and argue it is equivalent to the initial regular expression.

We add a new initial and final state and eliminate the dead state ∅. We then eliminate state 2,
with transitions from 1 and 24, and to 24. We simplify b + aa∗b = (λ + aa∗)b = a∗b. We then
eliminate state 24, with transitions from and to 1. With R = a∗b, we simplify in the same way
c+RR∗c = (λ+RR∗)c = R∗c = (a∗b)∗c. Finally, eliminating 1 we get back to L = ((a∗b)∗c)∗.

1i f

2 24

λ
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c

λ

a
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a b

c 1

i
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24

λ

b+ aa∗b

c

λ

b+ aa∗b

c

1i f
λ

c+ (a∗b)(a∗b)∗c

λ
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