
COMPSCI 250 –Introduction to Computation
Second Midterm Spring 2019 – Solutions

Question 1 (20):

a. (10p) Perform the extended Euclidean algorithm on numbers 103 and 40, and find the inverse
of 103 modulo 40 and the inverse of 40 modulo 103, if they exist. Clearly state your answer.

We perform the extended Euclidean algorithm: while computing the gcd, we write each
successive remainder as linear combination of the given numbers.

103 = 1 · 103 + 0 · 40
40 = 0 · 103 + 1 · 40
23 = 1 · 103 + (−2) · 40 (23 = 103− 2 · 40)
17 = (−1) · 103 + 3 · 40 (17 = 40− 23)
6 = 2 · 103 + (−5) · 40 (6 = 23− 17)
5 = −5 · 103 + 13 · 40 (5 = 17− 2 · 6)
1 = 7 · 103 + (−18) · 40 (1 = 6− 5)

It is good at this point to check our numbers, indeed 1 = 721− 720.

Since gcd(103, 40) = 1, the two inverses exist and are given by the last linear combination:
the inverse of 103 modulo 40 is 7, and the inverse of 40 modulo 103 is -18 (or 103 - 18 = 85).

b. (10p) Solve the congruence system x ≡ 3 (mod 103), x ≡ 2 (mod 40).

Since we’ve seen 103 and 40 are relatively prime, we can use the Chinese Remainder Theorem.
From the above, we have:

−18 · 40 ≡ 1 (mod 103), thus 3 · −18 · 40 ≡ 3 (mod 103)
7 · 103 ≡ 1 (mod 40), thus 2 · 7 · 103 ≡ 2 (mod 40).

The solution is x ≡ 2 · 7 · 103 + 3 · −18 · 40 (mod 103 · 40), thus x ≡ −718 (mod 4120) or
equivalently x ≡ 3402 (mod 4120). Again, it is good to check our numbers: 3400 is a multiple
of 200 (thus of 40), so 3402 ≡ 2 (mod 40). 3402 = 30 ∗ 103 + 3 ∗ 103 + 3 ≡ 3 (mod 103).

1



Question 2 (20p)

a. (10p) A sequence an is defined recursively by a1 = 1, a2 = 4 and an = 2an−1 − an−2 + 2 for
n > 2. Prove that an = n2 for all positive naturals n.

Proof by strong induction. Base case: a1 = 1 = 12, and a2 = 4 = 22, so P (1) and P (2) hold.
Inductive step: Assume for arbitrary n ≥ 2, ai = i2 for all i with 1 ≤ i ≤ n. We show that
an+1 = (n+ 1)2.

an+1 = 2an−an−1 +2 = 2n2− (n−1)2 +2 = 2n2− (n2−2n+1)+2 = n2 +2n+1 = (n+1)2,
as desired. This completes the proof.

b. (10p) Find a recurrence relation for the number of strings of 0 and 1 with length n ≥ 0 that
do not contain two consecutive 0s. (Hint: Consider the two choices for the first character).

Let an denote the number of bit strings of length n that do not contain two consecutive 0s.
For n < 2, all bit strings are valid, thus a0 = 1 (the empty string), a1 = 2. Consider n ≥ 2.

There are two such types of strings, ending with 1, or with 0. The bit strings of length n that
end with 1 and do not contain two consecutive 0s are the bit strings of length n− 1 with no
two consecutive zeros with a 1 added at the end. There are an−1 such strings.

The bit strings of length n that end with 0 and do not have two consecutive 0s must have 1
as their (n − 1)st bit, otherwise they have two 0s at the end. Therefore such bit strings of
length n are the bit strings of length n− 2 with no consecutive 0s, with 10 added at the end.
There are an−2 such strings. Therefore, the total number of strings with no consecutive 0s
is: an = an−1 + an−2 for n ≥ 2, with a0 = 1, a1 = 2.

2



Question 3 (50): Consider a directed graph Gn formed of successively
larger equilateral triangles, as in the figure (which shows G2). There are
edges from Ck to Lk and Rk (for k ≤ n), from Lk−1 to Ck and Lk, and
from Rk−1 to Ck and Rk, if k > 0. The length of the segment L0R0 is 1.

L2 R2C2

L1 R1
C1

L0 R0

C0

a. (10p) How many paths are there from C0 to Ln?
Find and justify a recurrence. Then find a formula in terms of n, and prove it by induction.

There is one path from C0 to L0. For n > 0, Ln has exactly two incoming edges, from Ln−1

and Cn. Likewise, Cn has two incoming edges, from Ln−1 and Rn−1. Denoting the number
of paths from C0 to these nodes by NC , NL and NR, we get: NL(n) = NL(n − 1) + NC (n)
and NC (n) = NL(n− 1) + NR(n− 1), so NL(n) = 2NL(n− 1) + NR(n− 1). Since the graph
is symmetric relative to the center nodes, we clearly have NR(i) = NL(i) for any i.
Our recurrence is therefore: NL(0) = 1, NL(n) = 3NL(n− 1), for n > 0.
This is a geometric series, so we have NL(n) = 3n. We can also easily prove this by induction:
for the base case, NL(0) = 1 = 30 holds. Assuming NL(n) = 3n for some n ≥ 0, we have
NL(n+ 1) = 3NL(n) = 3 · 3n = 3n+1, so the inductive goal holds, completing the proof.

Most saw that there are two paths from Ln−1 to Ln, either directly or through Cn. Some also
saw the paths from the right but found it harder to count them. The most common mistake
was to jump and guess a formula only based on the number of paths to L0(1), L1(3) and L2.
Many found a wrong count for the paths to L2 (6, 7, 8) and then tried to “prove” wrong
formulas, for instance, 2n + n, 2n+1 − 1, or 2n + n2. Since these formulas are wrong, so must
be the arguments, though the core of doubling the paths through Ln−1 is good. Many seemed
to try to convince themselves that the formula “makes sense”, finding plausible reasons (one
more path from the right for +n, or for 2(2n − 1) + 1, or 2n − 1 more paths to get to +n2.
So directly jumping to conclusions about the formula easily leads to wrong proofs!
The question first asked for a recurrence and a justification for a reason. It’s not possible to
prove a formula by induction just by knowing its value for three points. Even with the right
value for L2 (9), one could still find other “reasonable” formulas that fit, for instance, 2n2+1,
or 2n+2 − 2n − 3. Even guessing the right formula 3n (quite easily seen), we have no way
to prove the inductive step without reasoning about the graph. Some wrote along the lines
“assume NP(n) = 3n paths in Gn; substituting n+1 we get NP(n+1) = 3n+1 paths in Gn+1.”
This is not induction! On the contrary, this is the usual fallacy of proving a statement – here,
our P (n + 1) – by assuming the same statement! The moment we change n to n + 1 we go
from something known to something we don’t yet know. This is also clear in strong induction,
where we know everything up to a value n and try to prove it for the next value n+ 1.

3



b. (10p) In the graph G2, carry out a breadth-first search starting from L0,
without goal node, recognizing nodes as they come off the queue.
Explore neighbors in alphabetical order. Show the search progress,
draw the BFS tree, and identify the non-tree edges.

L2 R2C2

L1 R1
C1

L0 R0

C0

We show the queue contents before adding the neighbors of the node that is taken off.
To draw the edges, we record the predecessor of each node as it is placed on the queue.
Explored nodes are marked canceled as they come off the queue, they don’t re-add neighbors.
Edges from their search predecessors are non-tree edges. C0 and R0 are not reached.

Node Queue (new nodes bold)
L0 C1(L0),L1(L0)
C1(L0) L1(L0),L1(C1),R1(C1)
L1(L0) ����L1(C1), R1(C1),C2(L1),L2(L1)
R1(C1) C2(L1), L2(L1),C2(R1),R2(R1)
C2(L1) L2(L1), C2(R1), R2(R1),L2(C2),R2(C2)
L2(L1) ����C2(R1), R2(R1), L2(C2), R2(C2)
R2(R1) ����L2(C2),����R2(C2)

L0

C1 L1

R1
C2

L2

R2

c. (10p) In the graph G2, carry out a depth-first search starting from C0,
without goal node, recognizing nodes as they come off the stack.
Explore neighbors in alphabetical order. Show the search progress,
draw the DFS tree, and identify the type of any non-tree edges.

L2 R2C2

L1 R1
C1

L0 R0

C0

Node Stack (new nodes bold)
C0 L0(C0),R0(C0)
L0(C0) C1(L0),L1(L0), R0(C0)
C1(L0) L1(C1),R1(C1), L1(L0), R0(C0)
L1(C1) C2(L1),L2(L1), R1(C1), L1(L0), R0(C0)
C2(L1) L2(C2),R2(C2), L2(L1), R1(C1), L1(L0), R0(C0)
L2(C2) R2(C2), L2(L1), R1(C1), L1(L0), R0(C0)
R2(C2) ����L2(L1), R1(C1), L1(L0), R0(C0)
R1(C1) C2(R1),R2(R1), L1(L0), R0(C0)

����C2(R1) ����R2(R1),����L1(L0), R0(C0)
R0(C0) C1(R0),R1(R0)

����C1(R0) ����R1(R0)

C0

L0 R0

C1

L1 R1

C2

L2 R2

Edges L0 → L1 and L1 → L2 are forward edges, as they go to descendants.
The other four non-tree edges are cross edges, as they go between different subtrees.
We should check that every edge in the original graph is a tree edge or a non-tree edge.

4



.

d. (10p) In the undirected version of G2, carry out a uniform-cost search
from L0 with goal node L2.
Edge costs are equal to their lengths. The length of L0R0 is 1.
At equal priority, order nodes alphabetically.

L2 R2C2

L1 R1
C1

L0 R0

C0

Node Neighbors Priority queue (new nodes bold)
L0(0) C0(+.5), C1(+1), L1(+1) C0(.5),C1(1),L1(1)
C0(.5) ��L0, R0(+.5), C1(1), L1(1),R0(1)
C1(1) ��L0, L1(+1), R0(+1), R1(+1) L1(1), R0(1),L1(2),R0(2),R1(2)
L1(1) ��L0,��C1, C2(+2), L2(+2) R0(1), L1(2), R0(2), R1(2),C2(3),L2(3)
R0(1) ��C0,��C1, R1(+1) L1(2), R0(2), R1(2),R1(2), C2(3), L2(3)

�
��L1(2),���R0(2), R1(2), R1(2), C2(3), L2(3)

R1(2) ��C1,��R0, C2(+2), R2(+2) ���R1(2), C2(3), L2(3),C2(4),R2(4)
C2(3) ��L1,��R1, L2(+2), R2(+2) L2(3), C2(4), R2(4),L2(5),R2(5)
L2(3) goal C2(4), R2(4), L2(5), R2(5)

We do not re-add nodes that have come off the queue.
We stop when the goal node comes off the queue, not when we first reach it.
If we want to recover the path, we must also track predecessors, otherwise we don’t need to.
Some chose to draw the search tree; this does not show the order in which nodes were explored.

e. (10p) In the undirected version of G2, carry out an A∗ search from
L0 with goal node L2. The heuristic function is: h(Li) = 2 − i;
h(Ci) = h(Li) + 1/2; and h(Ri) = h(Li) + 1.
Edge costs are equal to their lengths. The length of L0R0 is 1.
At equal priority, order nodes alphabetically.

L2 R2C2

L1 R1
C1

L0 R0

C0

Node Neighbors Priority queue (new nodes bold)
L0(0) L1(1+1), C1(1+1.5), C0(.5+2.5)
L1(1) L2(3+0), C1(2+1.5), C2(3+.5) C1(1+1.5), C0(.5+2.5)
C1(1) ��L1, R1(2+2), R0(2+3) C0(.5+2.5), C1(2+1.5), C2(3+.5)
C0(.5) ��L0, R0(1+3) C1(2+1.5), C2(3+.5), R1(2+2), R0(2+3)
L2(3) goal C1(2+1.5), C2(3+.5), R0(1+3), R1(2+2), R0(2+3)

The most common mistake was to recognize the goal too early, as soon as it is first seen, and
not explore C1 and C0 first. Another common mistake is to add the heuristic multiple times.
A neighbor R1 of an explored node C1(1 + 1.5) is inserted with the cost to C1 (1) + the cost
of C1R1 (1) + h(R1)(2).

5



Question 4 (20p)

The following are ten true/false questions, with no explanation needed or wanted, no partial credit
for wrong answers, and no penalty for guessing.

a. The function f(m,n) = 2m(2n+ 1) is a one-to-one correspondence from N× N to N \ {0}.
TRUE, any positive natural can be written as a power of two times an odd natural (surjection),
and by the fundamental theorem of arithmetic, this decomposition is unique (injection).

b. Let P be a property of strings over {0, 1}. If P (λ) is true, and for any string w, P (w)→ P (w1),
P (w)→ P (w00) and P (w0)→ P (w1), then P (w) is true for all w.

FALSE, P(0) might not be true

c. Let P be a property of naturals. If P (0) is true, P (n) is true for all odd n, and P (n)→ P (2n)
for all n, then P (n) is true for all n.

TRUE, we can get any nonzero even number from an odd number multiplied by a power of two.

d. If the postfix string of an arithmetic expression contains two consecutive operators, then the
prefix string of that expression also contains two consecutive operators.

FALSE, consider 1 + 2 * 3. Postfix: 1 2 3 * +. Prefix: + 1 * 2 3.

e. It is possible to construct a game tree with a winning strategy for the first player if less than
1/4 of the leaf nodes are winning nodes.

TRUE, for an arbitrary low fraction. We can have arbitrarily many and large subtrees in which
all leaf nodes are losing, and one branch to a subtree with identical winning copies (which we
construct in the same way).

f. The height of a rooted tree is the maximum distance from the root to a leaf. Then every rooted
binary tree of height h has exactly 2h leaves.

FALSE, there can be branches of height less than h.

g. Consider the recursive algorithm to cover a 2k by 2k square, with one square missing, with
L-shaped tiles. The base case of this algorithm is to cover a 1 by 1 square (with one square
missing) by doing nothing. When we call this algorithm on a 2k by 2k square, the resulting call
tree has height k and exactly 4k leaves.

TRUE, easily seen by induction, which adds one level and 4 subtrees.

h. Since the number 250 satisfies the congruences x ≡ 16 (mod 39) and x ≡ 55 (mod 65), the next
largest integer to satisfy these two congruences is 250 + 39 · 65 = 2785.

FALSE, gcd(39,65) = 13. The next largest number is 250 + lcm(39,65) = 250+195=445.

i. If in a connected graph G, after cutting an edge, the resulting graph is no longer connected,
then G is a tree.

FALSE, consider a cycle and an extra node connected to it by an edge (which we then cut).

j. A forest is an undirected graph with no cycles. A tree is a connected forest. If F is a forest with
five nodes and three edges, there is at most one node in F that is not the endpoint of any edge.

TRUE, there will be trees with 3 + 2 nodes, or 4 + 1 nodes.

6


