
NAME:

COMPSCI 250
Introduction to Computation

Final Exam Spring 2019 – Solutions

M. Minea and S. Reddy 3 May 2019

DIRECTIONS:

• Answer the problems on the exam pages.

• There are four problems on pages 2-7, each with multiple
parts, for 110 total points plus 10 extra credit. Proba-
ble scale is somewhere around A=100, C=70, but will be
determined after we grade the exam.

• If you need extra space use the back of a page.

• No books, notes, calculators, or collaboration.

1



Question 1 (30): Last month Cardie and Duncan were invited to an Easter Egg Hunt with their
neighbors Shelby, Vianna, and Whistle. The set of dogs in the hunt was D = {c, d, s, v, w}. The
unary predicate T (x) on D means “dog x is a terrier”. Each dog x found a natural number of eggs
f(x), and the binary predicate ME (x, y) on D means “dog x found strictly more eggs than dog y”
or equivalently “f(x) > f(y)”.

a. (10) Translate each of these four statements as indicated.

Statement I (to English): T (d) ∧ME (v, d)

Duncan is a terrier and Vianna found more eggs than Duncan.

Statement II (to symbols): Each terrier found more eggs than each non-terrier.

∀x : ∀y : ((T (x) ∧ ¬T (y))→ ME (x, y))

Statement III (to English): ∃x : ∃y : (x 6= y) ∧ ¬ME (x, y) ∧ ¬ME (y, x)

There exist two different dogs such that neither found more eggs than the other.
(This implies: there exist two different dogs who found the same number of eggs).

Statement IV (to symbols):
Neither Cardie nor Whistle are terriers, and each found more eggs than did Shelby.

¬T (c) ∧ ¬T (w) ∧ME (c, s) ∧ME (w, s)

b. (10) Prove that Vianna is a terrier who found at least three eggs.

From Statement II by Specification (x = d, y = v), we have T (d) ∧ ¬T (v)→ ME (d, v). This
is equivalent to ¬T (d) ∨ T (v) ∨ME (d, v), and further to T (d) → (¬ME (d, v) → T (v)) (1).
From (I), we have T (d) (2) and ME (v, d) (3) by Separation. Modus Ponens from (1) and (2)
yields ¬ME (d, v)→ T (v) (4). (3) is equivalent to f(v) > f(d), which implies ¬(f(d) > f(v)),
which is ¬ME (d, v) (5). From (4) and (5) by Hypothetical Syllogism we have T (v).

By Separation from IV we get ¬T (c) and ME (c, s), thus f(c) > f(s). Specification of II
(x = d, y = c) yields T (d) ∧ ¬T (c) → ME (d, c). By Conjunction, T (d) ∧ ¬T (c) and then by
Modus Ponens, ME (d, c), thus f(d) > f(c), so f(d) ≥ f(c) + 1. M(v, d) is f(v) > f(d), so
f(v) ≥ f(d) + 1 ≥ f(c) + 2. Since f(c) > f(s) ≥ 0, we get f(c) ≥ 1 and f(v) ≥ 3.

c. (10) What is the smallest total number of eggs (found by all dogs) if Statement III is false,
while the other statements are true? What if we know that Shelby found an egg?

The same arguments for Cardie apply to Whistle, so we get f(d) > f(w) > f(s).

The negation of (III) can be rewritten as ∀x : ∀y : (x 6= y → (ME (x, y)∨ME (y, x)). Specifying
x = c, y = w yields ME (c, w) ∨ME (w, c) (by Modus Ponens, as c 6= w). Asume f(w) > f(c)
(the other case is symmetric). We then have f(v) > f(d) > f(w) > f(c) > f(s) ≥ 0. If S is
the total number of eggs found by all dogs, this gives us S ≥ 5f(s)+4+3+2+1 = 5f(s)+10.
The smallest total number of eggs is 10. If f(s) ≥ 1, the smallest total is 15.

2



Question 2 (30):

a. (10p) A sequence of integers an is defined recursively by a0 = 0, a1 = 1, an = an−1 − 2an−2
for n > 1. Find and prove a theorem stating for which values of n we have an ≡ 0 (mod 3).

For n ≥ 4, we can rewrite: an = an−1 − 2an−2 = an−2 − 2an−3 − 2an−2 = −an−2 − 2an−3 =
−an−3 + 2an−4 − 2an−3 = 2an−4 − 3an−3. Thus, an ≡ 2an−4 (mod 3). Since 2 and 3 are
relatively prime, this implies an ≡ 0 (mod 3)↔ an−4 ≡ 0 (mod 3). We have a2 = 1, a3 = −1.
We can now state that an ≡ 0 (mod 3) ↔ n ≡ 0 (mod 4). We prove this by strong induction.
The statement is true for n < 4. Taking n ≥ 4, and assuming it true for all k < n, we have
an ≡ 0 (mod 3) ↔ an−4 ≡ 0 (mod 3) ↔ n− 4 ≡ 0 (mod 4) ↔ n ≡ 0 (mod 4), q.e.d.

We could also do a proof by cases stating the value of an (mod 3) for each of the four values of
n (mod 4), but avoiding case splitting is shorter. Note that we proved not just the implication
n ≡ 0 (mod 4) → an ≡ 0 (mod 3), but equivalence, these are the only values divisible by 3.

b. (10p) Show by induction that if A is a regular expression then L(A)R, the set of reversals of
strings in L(A), is a regular language.

See proof in book (sec. 5.5.2)

3



c. (10p) No-abb is the language of strings over Σ = {a, b} that have
no abb substring. An NFA for No-abb with properties of strings
reaching each state is shown. Prove by induction that the number
of strings of length n in No-abb is Sn = Fn+3−1, where Fn is the
Fibonacci sequence (F0 = 0, F1 = 1, Fn+1 = Fn+Fn−1 for n > 1). b∗ last:a last:ab

b

a

a
b

a

Hint: Consider the last letter(s) and write recurrences for the number of No-abb strings that
end in a and ab respectively. They are also related to the Fibonacci sequence.

As the NFA shows, a No-abb string either has a last, or has a next-to-last (ends in ab), or
contains no a (since if the last a is earlier, it would be followed by at least two b’s). There is
exactly one string of n b’s, so we can write: Sn = An +ABn + 1. No-abb strings can end in a
or ab precisely if the remaining string is in No-abb. Thus, we have An = Sn−1, ABn = Sn−2,
and Sn = Sn−1 + Sn−2 + 1. We can now prove the statement by strong induction. We have
S0 = 1 = F3− 1, and S1 = 2 = F4− 1 (all strings of length < 2 are in No-abb). Taking n ≥ 2
and assuming Sk = Fk+3 for k < n, we get Sn = Sn−1 +Sn−2 + 1 = Fn+2−1 +Fn+1−1 + 1 =
Fn+2 + Fn+1 − 1 = Fn+3 − 1 and the statement is proved.

Question 3 (30): Do the following constructions for the language L = (a+ (a+ b)a)∗(ba+ b)∗.

a. (5) Find a λ-NFA N whose language is given by the regular expression (a+(a+b)a)∗(ba+b)∗.
For full credit, use the construction from the lecture and text exactly, without simplifications;
you may use the alternate Kleene star construction given in the lecture.

0 1

2

3 4 5

6

7 8
λ

a, b

a
λ

a

λ
λ λ

b

b
λ

a

λ
λ

“Compressed” self-loop construction: 0 1

2

3 4

5

6
λ

a

a, b

λ

a

λ

b

b

λ

a

4



b. (10) Using the construction from the text on your λ-NFA N from part (a), build an ordinary
NFA N ′ such that L(N ′) = L(N).
You may make simplifications of N before doing this, as long as they do not change the
language of the machine and you clearly argue that what you are doing is correct.

The two λ-transitions from the initial state and into the final state do not affect the language.
The two central λ-moves can only be taken in sequence; we merge them, removing one state.

Full star-construction:

1

2

3 5

6

7

a, b

a
λ

a

λ
λ

b

b
λ

a

λ

The transitive closure of λ-transitions is:
1→ 1, 3, 5, 7 3→ 1, 3, 5, 7, 5→ 5, 7 7→ 5, 7.
a - transitions
(1, a, 2): 1, 3→ 2
(1, a, 3): 1, 3→ 1, 3, 5, 7
(2, a, 3): 2→ 1, 3, 5, 7
(6, a, 7): 6→ 5, 7

b - transitions
(1, b, 2): 1, 3→ 2
(5, b, 6): 1, 3, 5, 7→ 6
(5, b, 7): 1, 3, 5, 7→ 5, 7
(1) becomes final.

Compressed star-construction:

1

2

4

5

a

a, b

λ

a

b

ba

a - moves
1→ 1, 4
1→ 2
2→ 1, 4
5→ 4

b - moves
1→ 2
1, 4→ 4
1, 4→ 5
(1) is final.

The NFA resulting from the “compressed” star construction is: 1

2 4

5

a

a, b
a, b

b

a

a b

ba

c. (5) Using the Subset Construction on N ′, find a DFA D such that L(D) = L(N ′).

From ”full” construction:

a b

1 12357 2567
A 12357 12357 2567
B 2567 1357 567
C 567 57 567
D 1357 12357 2567
E 57 ∅ 567

1

A

B

D

C E

∅

a

b

a

b
a

b
a

b

a

b a
b

a, b

We get the same result from the ”compressed” construction:

a b

1 124 245
A 124 124 245
B 245 14 45
C 45 4 45
D 14 124 245

4 ∅ 45

1

A

B C

D

4

∅

a

b

a

b
a

b
a

b

a

b a
b

a, b

5



d. (5) Find a minimal DFA D′ with L(D′) = L(D). You may use the minimization construction,
or prove directly that your D is already minimal.

States 1, A, and D are equivalent since they transition to A and B respectively. We merge 1
and D with A. The resulting automaton is:

A B C E ∅

a
b

a

b
a

b

a

b

a, b

We can also do the standard minimization construction, starting from two classes, f and n.
At each step, the rightmost column shows the classes each state transitions to on a and b.

a b

1 A B ff
A A B ff
B D C ff
C E C ff
D A B ff
E ∅ C nf

a b

1 A B ff
A A B ff
B D C ff
C E C Ef
D A B ff
E ∅ C E

a b

1 A B ff
A A B ff
B D C fC
C E C C
D A B ff
E ∅ C E

a b

1 A B ff
A A B ff
B D C B
C E C C
D A B ff
E ∅ C E

At this point, we can no longer separate states; the three states 1, A, and D are equivalent
and we get the automaton depicted above.

e. (5) Using the state elimination construction on D or D′, find a regular expression for L(N).
(The construction may produce a simpler or more complicated expression than the initial one).

We first insert a unique initial and a unique final state.

i A B C E ∅

f

λ

a

b

λ

a
b

λ

a
b

λ

a
b

λ

We eliminate ∅ (useless), then E and B (the nodes with no self-loops), and then C:

i A B C

f

λ

a

b

λ

a
b

λ

b+ ab

λ+ a

i A C

f

λ

a+ ba

bb

λ+ b

b+ ab

λ+ a

i A f
λ

a+ ba

R

where R = λ+b+bb(b+ab)∗(λ+a). The final language is L = (a+ba)∗(λ+b+bb(b+ab)∗(λ+a)).

You did not have to simplify this, but one can: we have repetitions of no-bb followed by no-aa.
In part 2, we rewrite b(b+ab)∗(λ+a) = b((λ+a)b)∗(λ+a) = (b(λ+a))+ = (b+ba)+. We get
λ+b+b(b+ba)+ = λ+b(λ+(b+ba)+) = λ+b(b+ba)∗. Then, L = (a+ba)∗(λ+b(b+ba)∗) =
(a+ ba)∗(ba)∗(λ+ b(b+ ba)∗) = (a+ ba)∗((ba)∗ + (ba)∗b(b+ ba)∗) = (a+ ba)∗(b+ ba)∗.
We can see that in the initial regular expression, the +aa in the first repetition is superfluous,
being covered by +a, so (a+ aa+ ba)∗ = (a+ ba)∗.

6



Question 4 (30p)

The following are fifteen true/false questions, with no explanation needed or wanted, no partial
credit for wrong answers, and no penalty for guessing.

a. In Question 1, neither the relation ME (x, y) nor its complement ¬ME (x, y) is a partial order.
FALSE, ¬ME is the relation ≤ on naturals, which is a partial order.

b. Let x > 1 be an integer. Then propositions 2 and 3 are equivalent negations of proposition 1:
1. x is a composite number. 2. x is not a composite number. 3. x is a prime number.
TRUE, a number > 1 is defined as composite iff it is not prime.

c. If P (0), P (1) and P (2) are true, and for all n > 3, (P (n − 4) → P (n)) ∨ (P (n − 3) → P (n))
then P (n) is true for all n.
FALSE, P (3) could be false

d. If a, b ∈ N, a > b, and a = bq + r, then gcd(a, b) = gcd(b, r).
TRUE, either if b is zero, or by Euclid’s algorithm

e. The following is an equivalence relation over the set of all functions from Z to Z:
{(f, g) | ∃c : ∀x : f(x)− g(x) = c}.
TRUE, c = 0 for reflexivity, −c for symmetry, c1 + c2 for transitivity

f. Let R be the set of all regular languages and D the set of al DFAs, both with alphabet Σ.
Then the function L : D → R defining the language of a DFA is onto, but not one-to-one.
TRUE, all regular languages are accepted by DFAs, but there are many DFAs for one language.

g. A regular expression for the set of strings containing a string of 1s so that the number of 1s
equals 2 modulo 3, followed by an even number of 0s is: 11(111)∗(100)∗.
FALSE, the answer is 11(111)∗(00)∗

h. If L is a regular language and a is a symbol, then the language {w : wa ∈ L} is regular.
TRUE, make any a-predecessor of an accepting state accepting.

i. Let Σ = {a, b}, w ∈ Σ∗, and L the language of all strings in Σ∗ that end in w. Then the minimal
DFA and the minimal NFA recognizing L may have the same number of states.
TRUE, if w is n a’s or b’s, we need n+ 1 states (counting up to n for the DFA).

j. The language of descriptions of 2WDFAs that may loop on some input string is Turing decidable.
TRUE: If any string causes a loop, there is a short one (the number of configurations is bounded).
We check all strings up to that length, and detect a loop by remembering configurations.

k. If X is Turing recognizable, and X\Y is not Turing recognizable, then Y is not Turing decidable.
TRUE, otherwise Ȳ would be decidable, thus recognizable, and so would be X ∩ Ȳ = X \ Y .

l. It may be that a language is not Turing recognizable, but its complement is Turing recognizable.
TRUE, we have seen this for the ” Barber of Seville” language LBS .

m. A Turing machine with tape symbols 0, 1, b (blank) and transition function δ(ι, 0) = (h, 1, R),
δ(ι, 1) = (ι, 1, R), δ(ι, b) = (ι, b, R) will replace the first 0 with a 1 and will not change any of
the other symbols on the tape.
TRUE, this skips blanks and 1s to the first 0, writes a 1 and halts.

n. If we keep merging any DFA states p and q for which δ(p, x) = δ(q, x) for any letter x ∈ Σ, we
will obtain an equivalent minimal DFA.
FALSE, the automaton will be equivalent but we can’t simplify a 3-cycle in this way.

o. Let L be the language of strings for which in any prefix, the count of a’s and the count of b’s are
at most 2 apart. Then the L-equivalence relation has an infinite number of equivalence classes.
FALSE, it has six equivalence classes, for the integers from -2 to 2, and the rejected strings.

7


