
NAME:

COMPSCI 250
Introduction to Computation
Second Midterm Fall 2019

M. Minea 7 November 2019

DIRECTIONS:

• Answer the problems on the exam pages.

• There are 4 problems on pages 2–6, some with multiple parts, for 100 points + 10 extra credit.
Probable scale is around A=95, C=65, but will be determined after we grade the exam.

• Justify your answers and show your work. This may help with assigning partial credit.

• If you need extra space use a blank page.

• No books, notes, calculators, or collaboration.

1

Question 1 (20):

Let Cn be the number of strings of length n over Σ = {a, b, c} that do not contain either aa or ba.

(a) Find a recurrence for Cn (i.e., a relation using previous terms of the sequence).

If a string w ends in a, it is valid precisely when the preceding letter, if any, is a c, and the prefix
before it (of n − 2 letters) is valid (has no aa or ba). If w ends in b or c, there are no constraints
on any preceding letter, so the string is valid precisely if the prefix of n− 1 letters is valid. Thus,
Cn = 2Cn−1 + Cn−2 for n > 1, and C0 = 1, C1 = 3 (λ and the one-letter strings are valid).

Some tried to reason about the n− 1
st

letter, without realizing this may constrain both the letter
before and after. There were wrong statements that w[n − 1] = a doubles the number of strings
that can be constructed, without realizing that fixing a last letter changes the problem (counting
how many of the Cn strings end with a, b or c – in fact, that’s precisely Cn−2 and Cn−1, for n > 1).

(b) Show by induction that Cn =
(
(1 +

√
2)n+1 + (1−

√
2)n+1

)
/2.

Since the recurrence we found for Cn needs something other than Cn−1, we need strong induction
– many did not realize that. Since Cn depends on Cn−2, we need to verify two base cases:
C0 = ((1 +

√
2) + (1−

√
2))/2 = 1, and C1 = ((1 +

√
2)2 + (1−

√
2)2)/2 = 2 · (1 + 2)/2 = 3.

We assume the formula holds for all k ≤ n, with arbitrary n ≥ 1, and prove it for n+ 1:

Cn+1 = 2Cn + Cn−1 = 1
2

(
2(1 +

√
2)n+1 + 2(1−

√
2)n+1 + (1 +

√
2)n + (1−

√
2)n
)

=
1
2

(
(1+
√

2)n(2+2
√

2+1)+(1−
√

2)n(2−2
√

2+1)
)

= 1
2

(
(1+
√

2)n(1+
√

2)2+(1−
√

2)n(1−
√

2)2
)

=
1
2

(
(1 +

√
2)n+2 + (1−

√
2)n+2, so the relation holds.

A frequent error was not to verify the second base case, C1 = 3. There are (infinitely) many formulas
that verify the recurrence and C0 = 1 but not C1 = 3, for instance, Cn =

(
(1+
√

2)n+(1−
√

2)n
)
/2.

So verifying C1 is essential for a correct proof.

Another error was to state the induction hypothesis as “for all n, Cn = ...”. This is not induction:
if we know the statement for all n, there is nothing left to prove!

2

Question 2 (20):

(a) Consider the sequence given by a0 = 0, a1 = 1, an = 2an−1 + an−2 for n > 1.

State and prove a theorem that tells for exactly which values of n the value an is divisible by 5.

We compute a2 = 2, and for n ≥ 3 we get an = 2an−1 + an−2 = 2(2an−2 + an−3) + an−2 =
5an−2+2an−3, so an ≡ 2an−3 (mod 5). We claim P (n): an ≡ 0 (mod 5) if and only if n ≡ 0 (mod 3).
(Surprisingly many did not multiply both terms within () with 2 and only got 5an−2 + an−3.)

Since our relation links an with an−3, we need three base cases. We check that a0 ≡ 0 (mod 5) and
a1 = 1, a2 = 2 are not divisible by 5, so P (0) through P (2) hold. We use strong induction, take
arbitrary n ≥ 3, assume P (k) for any 0 ≤ k < n and prove P (n). We have an ≡ 2an−3 (mod 5).
Since gcd(2, 5) = 1, we get an ≡ 0 (mod 5) ⇔ an−3 (mod 5) ⇔ n − 3 ≡ 0 (mod 3) (by the IH)
⇔ n ≡ 0 (mod 3), which completes the proof.

Noticing a “pattern” is not enough, we need a proof by strong induction. We need three base cases
(0, 1, 2), since an−3 is only defined for n ≥ 3. Some writeups stated only a one-way implication (if
n is divisible by 3, then an is divisible by 5). This is incomplete, an could still be divisible by 5 in
other cases. A related error was to only state the property with an if, yet also assume in the proof
that an is not divisible by 5 if n is not divisible by 3. This is wrong, our inductive step cannot
assume a stronger statement than the one we’re proving. The solution is to strengthen our proof
goal, and with it, the inductive hypothesis, which will then make the inductive step go through.

(b) Consider the directed graph Gn (G3 is depicted), with all edges going
up, right, or down and right. More precisely, Gn has all nodes (x, y) with
0 ≤ x, y ≤ n and x+ y ≤ n, and edges (x, y)→ (x+ 1, y), (x, y)→ (x, y+ 1)
and (x, y + 1)→ (x+ 1, y) (if both endpoints belong to Gn).
Find and prove a recurrence and then a formula for the number of directed
paths from node (0, 0) to the rightmost node (n, 0). Justify your arguments
completely and rigorously.

(0,0)

(0,1)

(0,2)

(0,3)

(1,0)

(1,1)

(1,2)

(2,0)

(2,1)

(3,0)

The ”extra credit” problem was harder than intended, the figure had more edges than initially
designed, resulting in extra path combinations. Significant partial credit was given for estimating
the number of paths (many answers were around 2n or 3n; it can be seen that the paths more than
triple after n = 1). Full credit was given for writing a recurrence for the number of paths reaching
each node, which simply looks at where edges enter from: P (x, 0) = P (x − 1, 0) + P (x − 1, 1) for
x > 0, P (x, y) = P (x − 1, y) + P (x, y − 1) + P (x − 1, y + 1) for x, y > 0, P (0, y) = 1. There is a
closed form,

∑n
k=0

1
k+1

(
n
k

)(
n+k
k

)
, but that’s not exam material, it has to do with picking k edges

going up, and counting their possible orderings with respect to the corresponding k edges going
right-down and the remaining n− k horizontal ones.

If we remove the inner edges going up, we get a smaller and simpler count of 2n paths.

(0,0) (1,0) (2,0) (3,0)

(0,1) (1,1) (2,1)

(0,2) (1,2)

(0,3)

3

Question 3 (40p) In your graph searches, use a closed list. Show the evolution of the open list.
When you need to decide which node to explore first, choose alphabetical order.

(a) In the given directed graph, carry out a DFS from node 00 without a
goal node. Draw the DFS tree, and identify the type of any non-tree edges.

00

01

02

03

12

21

10 20 30

(b) In the given undirected graph, carry out a BFS from node 12 without a
goal node. Draw the BFS tree, and also show any non-tree edges.

00

01

02

03

12

21

10 20 30

4

For the following two questions, the cost of diagonal edges is 1.5, all other edges have cost 1.

(c) In the given undirected graph, perform a UCS from node 03 with goal 30.

00

01

02

03

12

21

10 20 30

(d) In the given undirected graph, carry out an A∗ search from node 03 with
goal node 30. The heuristic function for node xy is h(xy) = (y + 3− x)/2.

00

01

02

03

12

21

10 20 30

5

Question 4 (30p)

The following are fifteen true/false questions, with no explanation needed or wanted, no partial
credit for wrong answers, and no penalty for guessing.

a. The following is not a well-defined recursive function on binary strings: f(λ) = 1, f(u0) = f(u),
f(u11) = f(u), f(u01) = 1− f(u).
TRUE, f(1) is not defined.

b. If P (0), P (1) and P (2) are true, and for all n > 3, (P (n − 4) → P (n)) ∨ (P (n − 3) → P (n))
then P (n) is true for all n.
FALSE, P (5) could be false

c. If P (0) holds, and (P (j)∧P (k))→ P (2k(2j + 1)) for all j, k ≥ 0, then P (n) holds for all n ≥ 0.
TRUE by strong induction, every positive natural is a product of a power of 2 with an odd
number

d. Consider the relation D on naturals, so that D(0, 0) holds and D(S(x), S(S(y))) ↔ D(x, y),
where S means successor. Then D(x, y) holds iff y = 2x.
FALSE, D(0, Sy) could be anything, as well as D(x, 1).

e. Let f be a function on strings, so that f(λ) = λ and f(u) = (f(uR))R, where R is string reversal.
Then f is the identity function.
FALSE, f is not well-defined and could be many things, including reversal

f. If nodes u and v are in different strongly connected components of a directed graph, then
P (u, v)⊕ P (v, u), where P is the path predicate.
FALSE, there could be no path in either direction

g. By concatenating a shortest u v path with a shortest v w path we get a shortest path u w.
FALSE, consider a graph with edges u→ v, v → w, u→ w.

h. For any arithmetic expression with at least two operators, either the prefix form or the postfix
form contains two consecutive operators.
TRUE, there is one operator with the other as a child. Prefix if left, postfix if right.

i. If we have a sequence of n binary operators and n operands, there are at most n ways to insert
another operand and make it a valid postfix expression string.
FALSE, there may be n+ 1, easily seen for n = 1: a op→ a b op, b a op

j. If an undirected graph with n nodes has a simple cycle containing all nodes, then any DFS tree
will have depth n− 1.
FALSE, consider a square with one diagonal

k. In an undirected graph, if using a closed list, the number of times a node is reached is the same
in BFS and DFS from the same starting node.
TRUE, reached once from each neighbor

l. In a BFS of a directed graph, no graph edge links nodes that are more than one level apart.
FALSE, this is true for undirected graphs

m. During uniform cost search, any node u that has an edge from the start node s will be placed
on the queue only once.
FALSE, it could be placed up to n− 1 times.

n. If the heuristic h is admissible, when we take (u, prio(u)) off the queue, we might put on a
neighbor of u with a lower value.
TRUE, we need a consistent heuristic to prevent that.

o. In a game tree with two choices at each step, which terminates in three moves (W-B-W), White
might have a winning strategy even if only 2 of the 8 leaves are winning.
TRUE, example in class (one half losing, other subtrees are win/lose)

6

