NAME: ____________________

COMPSCI 250
Introduction to Computation
Second Midterm Fall 2019

M. Minea 7 November 2019

DIRECTIONS:

• Answer the problems on the exam pages.

• There are 4 problems on pages 2–6, some with multiple parts, for 100 points + 10 extra credit. Probable scale is around A=95, C=65, but will be determined after we grade the exam.

• Justify your answers and show your work. This may help with assigning partial credit.

• If you need extra space use a blank page.

• No books, notes, calculators, or collaboration.
Question 1 (20):
Let \(C_n \) be the number of strings of length \(n \) over \(\Sigma = \{a, b, c\} \) that do not contain either \(aa \) or \(ba \).

(a) Find a recurrence for \(C_n \) (i.e., a relation using previous terms of the sequence).

(b) Show by induction that \(C_n = \frac{(1 + \sqrt{2})^{n+1} + (1 - \sqrt{2})^{n+1}}{2} \).
Question 2 (20):

(a) Consider the sequence given by \(a_0 = 0, a_1 = 1, a_n = 2a_{n-1} + a_{n-2}\) for \(n > 1\).
State and prove a theorem that tells for exactly which values of \(n\) the value \(a_n\) is divisible by 5.

(b) Consider the directed graph \(G_n\) (\(G_3\) is depicted), with all edges going up, right, or down and right. More precisely, \(G_n\) has all nodes \((x, y)\) with \(0 \leq x, y \leq n\) and \(x + y \leq n\), and edges \((x, y) \rightarrow (x + 1, y)\), \((x, y) \rightarrow (x, y + 1)\) and \((x, y + 1) \rightarrow (x + 1, y)\) (if both endpoints belong to \(G_n\)).
Find and prove a recurrence and then a formula for the number of directed paths from node \((0, 0)\) to the rightmost node \((n, 0)\). Justify your arguments completely and rigorously.
Question 3 (40p) In your graph searches, use a closed list. Show the evolution of the open list. When you need to decide which node to explore first, choose alphabetical order.

(a) In the given directed graph, carry out a DFS from node 00 without a goal node. Draw the DFS tree, and identify the type of any non-tree edges.

(b) In the given undirected graph, carry out a BFS from node 12 without a goal node. Draw the BFS tree, and also show any non-tree edges.
For the following two questions, the cost of diagonal edges is 1.5, all other edges have cost 1.

(c) In the given undirected graph, perform a UCS from node 03 with goal 30.

(d) In the given undirected graph, carry out an A* search from node 03 with goal node 30. The heuristic function for node xy is $h(xy) = (y + 3 - x)/2$.
Question 4 (30p)

The following are fifteen true/false questions, with no explanation needed or wanted, no partial credit for wrong answers, and no penalty for guessing.

a. The following is not a well-defined recursive function on binary strings: \(f(\lambda) = 1, f(u0) = f(u), f(u11) = f(u), f(u01) = 1 - f(u). \)

b. If \(P(0), P(1) \) and \(P(2) \) are true, and for all \(n > 3, (P(n - 4) \rightarrow P(n)) \lor (P(n - 3) \rightarrow P(n)) \) then \(P(n) \) is true for all \(n \).

c. If \(P(0) \) holds, and \((P(j) \land P(k)) \rightarrow P(2^k(2j + 1)) \) for all \(j, k \geq 0 \), then \(P(n) \) holds for all \(n \geq 0 \).

d. Consider the relation \(D \) on naturals, so that \(D(0,0) \) holds and \(D(S(x), S(S(y))) \leftrightarrow D(x, y) \), where \(S \) means successor. Then \(D(x, y) \) holds iff \(y = 2x \).

e. Let \(f \) be a function on strings, so that \(f(\lambda) = \lambda \) and \(f(u) = (f(u^R))^R \), where \(R \) is string reversal. Then \(f \) is the identity function.

f. If nodes \(u \) and \(v \) are in different strongly connected components of a directed graph, then \(P(u,v) \oplus P(v,u) \), where \(P \) is the path predicate.

g. By concatenating a shortest \(u \leadsto v \) path with a shortest \(v \leadsto w \) path we get a shortest path \(u \leadsto w \).

h. For any arithmetic expression with at least two operators, either the prefix form or the postfix form contains two consecutive operators.

i. If we have a sequence of \(n \) binary operators and \(n \) operands, there are at most \(n \) ways to insert another operand and make it a valid postfix expression string.

j. If an undirected graph with \(n \) nodes has a simple cycle containing all nodes, then any DFS tree will have depth \(n - 1 \).

k. In an undirected graph, if using a closed list, the number of times a node is reached is the same in BFS and DFS from the same starting node.

l. In a BFS of a directed graph, no graph edge links nodes that are more than one level apart.

m. During uniform cost search, any node \(u \) that has an edge from the start node \(s \) will be placed on the queue only once.

n. If the heuristic \(h \) is admissible, when we take \((u, \text{prio}(u)) \) off the queue, we might put on a neighbor of \(u \) with a lower value.

o. In a game tree with two choices at each step, which terminates in three moves (W-B-W), White might have a winning strategy even if only 2 of the 8 leaves are winning.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>/20</th>
<th>/30</th>
<th>/40</th>
<th>/110</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1/20</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2/20</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3/40</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4/30</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>110</td>
</tr>
</tbody>
</table>