\qquad

COMPSCI 250
Introduction to Computation Second Midterm Fall 2019

DIRECTIONS:

- Answer the problems on the exam pages.
- There are 4 problems on pages 2-6, some with multiple parts, for 100 points +10 extra credit. Probable scale is around $\mathrm{A}=95, \mathrm{C}=65$, but will be determined after we grade the exam.
- Justify your answers and show your work. This may help with assigning partial credit.
- If you need extra space use a blank page.
- No books, notes, calculators, or collaboration.

Question 1 (20):
Let C_{n} be the number of strings of length n over $\Sigma=\{a, b, c\}$ that do not contain either $a a$ or $b a$.
(a) Find a recurrence for C_{n} (i.e., a relation using previous terms of the sequence).
(b) Show by induction that $C_{n}=\left((1+\sqrt{2})^{n+1}+(1-\sqrt{2})^{n+1}\right) / 2$.

Question 2 (20):
(a) Consider the sequence given by $a_{0}=0, a_{1}=1, a_{n}=2 a_{n-1}+a_{n-2}$ for $n>1$.

State and prove a theorem that tells for exactly which values of n the value a_{n} is divisible by 5 .
(b) Consider the directed graph G_{n} (G_{3} is depicted), with all edges going up, right, or down and right. More precisely, G_{n} has all nodes (x, y) with $0 \leq x, y \leq n$ and $x+y \leq n$, and edges $(x, y) \rightarrow(x+1, y),(x, y) \rightarrow(x, y+1)$ and $(x, y+1) \rightarrow(x+1, y)$ (if both endpoints belong to G_{n}).
Find and prove a recurrence and then a formula for the number of directed paths from node $(0,0)$ to the rightmost node $(n, 0)$. Justify your arguments completely and rigorously.

Question 3 (40p) In your graph searches, use a closed list. Show the evolution of the open list. When you need to decide which node to explore first, choose alphabetical order.
(a) In the given directed graph, carry out a DFS from node 00 without a 03 goal node. Draw the DFS tree, and identify the type of any non-tree edges.

(b) In the given undirected graph, carry out a BFS from node 12 without a goal node. Draw the BFS tree, and also show any non-tree edges.

For the following two questions, the cost of diagonal edges is 1.5 , all other edges have cost 1 .
(c) In the given undirected graph, perform a UCS from node 03 with goal 30 .

(d) In the given undirected graph, carry out an A* search from node 03 with goal node 30. The heuristic function for node $x y$ is $h(x y)=(y+3-x) / 2$.

Question 4 (30p)

The following are fifteen true/false questions, with no explanation needed or wanted, no partial credit for wrong answers, and no penalty for guessing.
a. The following is not a well-defined recursive function on binary strings: $f(\lambda)=1, f(u 0)=f(u)$, $f(u 11)=f(u), f(u 01)=1-f(u)$.
b. If $P(0), P(1)$ and $P(2)$ are true, and for all $n>3,(P(n-4) \rightarrow P(n)) \vee(P(n-3) \rightarrow P(n))$ then $P(n)$ is true for all n.
c. If $P(0)$ holds, and $(P(j) \wedge P(k)) \rightarrow P\left(2^{k}(2 j+1)\right)$ for all $j, k \geq 0$, then $P(n)$ holds for all $n \geq 0$.
d. Consider the relation D on naturals, so that $D(0,0)$ holds and $D(S(x), S(S(y))) \leftrightarrow D(x, y)$, where S means successor. Then $D(x, y)$ holds iff $y=2 x$.
e. Let f be a function on strings, so that $f(\lambda)=\lambda$ and $f(u)=\left(f\left(u^{R}\right)\right)^{R}$, where ${ }^{R}$ is string reversal. Then f is the identity function.
f. If nodes u and v are in different strongly connected components of a directed graph, then $P(u, v) \oplus P(v, u)$, where P is the path predicate.
g. By concatenating a shortest $u \rightsquigarrow v$ path with a shortest $v \rightsquigarrow w$ path we get a shortest path $u \rightsquigarrow w$.
h. For any arithmetic expression with at least two operators, either the prefix form or the postfix form contains two consecutive operators.
i. If we have a sequence of n binary operators and n operands, there are at most n ways to insert another operand and make it a valid postfix expression string.
j. If an undirected graph with n nodes has a simple cycle containing all nodes, then any DFS tree will have depth $n-1$.
k. In an undirected graph, if using a closed list, the number of times a node is reached is the same in BFS and DFS from the same starting node.

1. In a BFS of a directed graph, no graph edge links nodes that are more than one level apart.
\mathbf{m}. During uniform cost search, any node u that has an edge from the start node s will be placed on the queue only once.
n. If the heuristic h is admissible, when we take $(u, \operatorname{prio}(u))$ off the queue, we might put on a neighbor of u with a lower value.
o. In a game tree with two choices at each step, which terminates in three moves (W-B-W), White might have a winning strategy even if only 2 of the 8 leaves are winning.

1	$/ 20$
2	$/ 20$
3	$/ 40$
4	$/ 30$
Total	$/ 110$

Blank page

Blank page

