
COMPSCI 250 Final Exam, Fall 2019 - Solutions

Question 1 (30):

Cardie and Duncan, along with several other dogs, recently auditioned for the part of Toto in a
community theatre production of The Wizard of Oz. The casting committee ranked each dog for
three attributes: Appearance, Experience, and Temperament. The predicate RA(x, y, z) means
“dog x ranked above dog y for attribute z”.

For each attribute z, the binary relation RAz on the dogs, defined by RAz(x, y) ↔ RA(x, y, z), is
a strict total order, meaning that it is antireflexive, antisymmetric, transitive, and has no incom-
parable elements. The unary predicate GP (x) means “dog x got the part”.

(a) Translate the following statements to predicate logic or English, as appropriate:

Statement I: Duncan ranked above all other dogs for Appearance, Maeve ranked above all other
dogs for Experience, and Cardie ranked above all other dogs for Temperament.

(∀x : (x 6= d)→ RA(d, x, a)) ∧ (∀x : (x 6= m)→ RA(m,x, e)) ∧ ∀x : (x 6= c)→ RA(c, x, t).
Using a single quantifier is equivalent, but this is the way the sentence is worded.

Statement II: ∀x : GP (x)↔ ∀y : y 6= x→ ∃a : ∃b : (a 6= b) ∧RA(x, y, a) ∧RA(x, y, b).

A dog got the part if and only for every other dog there are two different attributes on which the
former dog ranks higher.

It is important to state unambiguously that the two attributes depend on the dog compared against.
The wording “for every other dog there are two attributes” mirrors the quantifier order. “Ranks
above any other dog on two attributes” is less clear. Many confused this in proofs with “there are
two attributes on which it ranks higher than any other dog”, which is false (and contradicts S I).

Statement III: Maeve is the one and only dog who both ranked ahead of Duncan for Temperament
and ranked ahead of Cardie for Appearance.

∀x : (x = m)↔ (RA(x, d, t) ∧RA(x, c, a))

In the following proofs, make clear what proof rules you use in your reasoning.

(b) Assuming Statements I, II, and III, prove it can’t be that two different dogs both got the part.

Answer: The simplest answer only uses S II. If GP (x) and GP (y) are both true, by Specification
and Instantiation on Statement II we get RA(x, y, r) and RA(x, y, s) for two distinct attributes r
and s, and also RA(y, x, u) and RA(y, x, v) for two distinct attributes u and v. But there are only
three attributes, so the sets {r, s} and {u, v} must have a common element w. We can’t have both
RA(x, y, w) and R(y, x, w) since RAw is antisymmetric.

(c) Prove that Maeve got the part.

Answer: Suppose that Maeve did not get the part. By S II, there exists a dog y who ranked above
Maeve on two of the three attributes. Neither of these can be e by S I, so they must be a and t.
But if y ranks above m with respect to both a and t, then by transitivity RA(y, d, t) and RA(y, c, a)
are both true, contradicting S III.

1



Question 2 (30): Define the directed graph Gn (n ≥ 0) as follows. G0 has one node and no edges.
If n is odd, Gn is obtained from Gn−1 by adding an extra node sn, with an edge to each node of
Gn−1 that has no incoming edges. If n > 0 is even, Gn is obtained by taking two copies of Gn/2,
called G′ and G′′, and two extra nodes sn and tn, with edges from sn to all nodes of G′ and G′′

with no incoming edges, and edges to tn from all nodes of G′ and G′′ with no outgoing edges.

G0: G1:
s1 G0

G2:
s2 t2G′

G′′

a (5) Prove by induction a theorem about the number of nodes with no incoming edges and the
number of nodes with no outgoing edges in Gn.

We prove by strong induction for any n that Gn has exactly one node with no incoming edges and
one node with no outgoing edges. The statement is true for n = 0. Let n > 0 be arbitrary, and
assume the statement is true for all k < n. We prove it for Gn, by cases. If n is odd, Gn−1 has a
single node u with indegree 0 and a single node v with outdegree zero, by the IH. The new node
sn has an edge to u, therefore u no longer has indegree 0, but sn does. Node v is unchanged, so
the goal holds. If n is even, the new node sn has edges to all nodes that had indegree 0, so it
becomes the only node with this property. Likewise, tn has edges from all nodes with outdegree 0,
and becomes the only node with this property, so the goal again holds.

b (10) Write and justify a recurrence for the number Vn of nodes in Gn.
Find and prove by induction a formula for Vn when n = 2k, k ≥ 0.

We have V0 = 1. For odd n, we add a single new node, so Vn = Vn−1 + 1. For even n > 0, we have
two copies of Gn/2, and two additional nodes, so Vn = 2Vn/2 + 2. We get V2 = 6, V4 = 14, and

conjecture V2k = 2k+2 − 2 for k > 0. We can prove this by induction on k > 0.

The base case holds, for k = 1 we have V2 = 6 = 21+2−2. Assume the statement holds for arbitrary
k > 0. Then, V2k+1 = 2V2k + 2 = 2(2k+2)− 2) + 2 = 2k+1+2 − 2, so the relation holds.

c (5) Prove by induction that Vn < 4n for n > 0.

We have seen that Vn = 4n− 2 for n = 2k (k > 0). We will prove by strong indu ction Vn ≤ 4n− 2,
which implies Vn < 4n. For the base case n = 1, the statement holds: V1 = 2 ≤ 4 · 1 − 2.
We take an arbitrary n > 1, assume Vk ≤ 4k − 2 for all 0 < k < n, and prove Vn ≤ 4n − 2.
If n is even, n ≥ 2, so the IH holds for n/2 > 0, and Vn/2 ≤ 4(n/2) − 2 = 2n − 2. We have
Vn = 2Vn/2 + 2 ≤ 2(2n − 1) + 2 = 4n − 2. If n > 1 is odd, then n ≥ 3, thus the IH holds for
n−1 > 0. We have Vn = Vn−1 + 1 ≤ 4(n−1)−2 + 1 = 4n−5 ≤ 4n−2, which completes the proof.

d (10) Write and prove by induction a formula for the number Vn of nodes when n = 2k−1, k > 0.
(Hint: look for a formula of the form V2k−1 = a · 2k + b).

Following the hint, we take V2k−1 = a · 2k + b. For k = 1, we want V1 = 2 = a · 21 + b, so b = 2− 2a.
Take as IH V2k−1 = a · 2k + 2− 2a for k > 0, and use the odd and then the even rule to compute
V2k+1−1 = V2k+1−2 + 1 = 2V2k−1 + 2 + 1 = 2(a · 2k + 2− 2a) + 3 = a · 2k+1 + 2− 2a+ (5− 2a). Our
inductive goal holds if 5− 2a = 0, so a = 5/2. Thus, we have proved V2k−1 = 5 · 2k−1− 3 for k > 0.

2



Question 3 (30): Do the following constructions for the language L = (b∗ + aab∗b)∗.

a (5) Find a λ-NFA N whose language is L.
For full credit, use only constructions shown in the lecture.

For b∗ + aab∗b we get the construction:

1 2

3 4 5 6

7
λ

a b

λ

a λ

b

λ

b
12

3 4

56

i

f

λ

a

λ

λ
b a

λ

b
λ

b

λ

For the outer Kleene star, we merge state 7 with 1, and add the extra initial and final state.

b (10) Build an ordinary NFA N ′ such that L(N ′) = L(N), using the construction from the book.
You may make simplifications of N before doing this, as long as they do not change the language
of the machine and you clearly argue that what you are doing is correct.

We can simplify the automaton N by removing states i and f (which only append λ to any string,
thus don’t change the language) and making 1 both initial and final state. We can also eliminate
state 4, getting an a-transition from 3 to 5, and state 6, getting a b-transition from 5 to 1.

12

3

5
λ

aλ
b

a

bb

12

3

5

b

b
a

b
b

a

a

b
bb

In the transitive closure, we get λ-moves from any of the states 1, 2 to any of these states. Then:

2
b→ 2 gives us four transitions, 1, 2

b→ 1, 2; 1
a→ 3 gives us two transitions 1, 2

a→ 3;

5
b→ 1 gives us two transitions 5

b→ 1, 2. The resulting automaton is shown on the right.

In our initial simplification process, we could also apply the state elimination construction for 2,

getting a self-loop 1
b→ 1, which would directly give us a three-state NFA with no λ-transitions.

This was acceptable as long as you argued it’s correct (e.g., by the state elimination rules).

c (5) Using the Subset Construction on N ′, find a DFA D such that L(D) = L(N ′).

We construct the transition table:

a b

1 3 12

3 5 ∅
12 3 12

5 ∅ 125

125 3 125

1

12

3

125 5

∅
a

b
a

b

a

b

a

b

a

b

a, b

States {1}, {1, 2}, and {1, 2, 5} are final, they contain the final state 1 of N ′; state ∅ is a dead state.

3



d (5) Find a minimal DFA D′ with L(D′) = L(D). You may use the minimization construction,
or prove directly that your D is already minimal.

We group states 1, 12, and 125 since they are final, transition on a to 3 and on b to the same group
(1, 12, 125), so they are equivalent. Merging them gives us the following automaton:

1 3 5 ∅
a

b

a

b

a

b

a, b

This automaton is minimal. State 1 is final, thus not equivalent to any non-final state. States 3
(reached by a) and 5 (reached by aa) are distinguished by ab (accepted in 1, rejected in ∅). State
∅ is not equivalent to either 3 or 5, since it has no paths to a final state, while 3 and 5 have.

e (5) Using the state elimination construction on D or D′, find a regular expression for L(N).
(The construction may produce a simpler or more complicated expression than the initial one).

Since the automaton has a unique final state, we could directly do the construction without intro-
ducing a special initial and a special final state; we need all paths from 1 to 1. We first eliminate
the death state, without adding anything, as there are no edges out of it. We next eliminate 3, as
there is only one path through it. Finally, we eliminate 5, which creates a transition labeled b+aab
from 1 to 1. The resulting regular expression is (b+ aab)∗, which we could prove to be equivalent
with the original one.

1 3 5
a

b

a

b

.
1 5

aa

b b

.
1 b+ aab

4



Question 4 (30p)

The following are fifteen true/false questions, with no explanation needed or wanted, no partial
credit for wrong answers, and no penalty for guessing.

(a) The statement (∀x : P (x)) ∨ ∃y : P (y)→ Q(y) is a tautology.
TRUE, if P is false for an element, then the second part holds

(b) The number of antireflexive relations on a finite set with n > 2 elements is larger than the
number of reflexive relations.
FALSE, they are equal

(c) If the system x ≡ a (mod m) and x ≡ b (mod n) has a unique natural solution < mn, then m
and n are relatively prime.
TRUE, otherwise there are either zero or multiple solutions

(d) The prefix and postfix form of an arithmetic expression cannot both have consecutive operators.
FALSE, consider a ∗ b+ c ∗ d. prefix: + ∗ ab ∗ cd, postfix: ab ∗ cd ∗+

(e) Iterative deepening search will always find the shortest path to the goal (if it exists), even when
not using a closed set.
TRUE, it tries all paths in length order.

(f) The regular expression (ab+ ba)∗ describes the even-length strings in which a and b alternate.
FALSE, it contains abba

(g) Let Σ = {a}, and L = {an : n is even or prime}. Then L is not regular.
TRUE, if it were, subtracting the regular language of evens would make primes regular (it isn’t).

(h) If p, q > 0, the language a∗ \ (ap + aq)∗ is finite if and only if p and q are relatively prime.
TRUE, ap + aq has all lengths > pq − p− q, or only those divisible by gcd(p, q)

(i) Let k > 1 and Lk be the language of strings over {a, b} with no k consecutive equal letters.
Then the Lk-equivalence relation has 2k − 1 equivalence classes.
FALSE, one for λ, 2(k − 1) for 1 to k − 1 consecutive a’s and b’s, and one for rejected strings.

(j) Let p and q be two states in a DFA such that δ(p, x) = δ(q, x) for any letter x ∈ Σ.
Then it is possible that p and q are not equivalent.
TRUE, if one state is accepting and the other one not

(k) A minimal DFAs with n > 1 states may have any number 0 ≤ k ≤ n of final states.
FALSE, if all n > 1 states are accepting, it’s no longer minimal.

(l) If every left move of a 2WDFA goes to a state which has only right moves, then it cannot hang.
FALSE, it can hang if it moves left from the initial state

(m) If three of the languages X∩Y , X̄∩Y , X∩Ȳ , X̄∩Ȳ are decidable, then X and Y are decidable.
TRUE, we use union to get X or X̄ and Y or Ȳ .

(n) The set of Turing machines that write to at most the first 100 tape cells is Turing-decidable.
TRUE, they have a bounded number of configurations, so we can simulate them and see if they
halt or revisit a configuration

(o) The set of Turing machines that use an unbounded amount of tape is Turing-recognizable.
FALSE. The set of Turing machines that use only a bounded amount of tape is recognizable (such
a TM will halt or revisit a configuration and loop). We can recognize invalid TM encodings. Their
union is the complement of the examined language. If both were recognizable, we could decide if a
Turing machine uses unbounded tape, and then we could decide halting.

5


