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Abstract. We present a novel framework for domain adaptation, whereby both
geometric and statistical differences between a labeled source domain and unla-
beled target domain can be reconciled using a unified mathematical framework
that exploits the curved Riemannian geometry of statistical manifolds. We ex-
ploit a simple but important observation that as the space of covariance matrices
is both a Riemannian space as well as a homogeneous space, the shortest path
geodesic between two covariances on the manifold can be computed analytically.
Statistics on the SPD matrix manifold, such as the geometric mean of two SPD
matries can be reduced to solving the well-known Riccati equation. We show
how the Ricatti-based solution can be constrained to not only reduce the statisti-
cal differences between the source and target domains, such as aligning second
order covariances and minimizing the maximum mean discrepancy, but also the
underlying geometry of the source and target domains using diffusions on the un-
derlying source and target manifolds. Our solution also emerges as a consequence
of optimal transport theory, which shows that the optimal transport mapping be-
tween source and target distributions that are multivariate Gaussians is a function
of the geometric mean of the source and target covariances, a quantity that also
minimizes the Wasserstein distance. A key strength of our proposed approach is
that it enables integrating multiple sources of variation between source and target
in a unified way, by reducing the combined objective function to a nested set of
Ricatti equations where the solution can be represented by a cascaded series of
geometric mean computations. In addition to showing the theoretical optimality
of our solution, we present detailed experiments using standard transfer learning
testbeds from computer vision comparing our proposed algorithms to past work
in domain adaptation, showing improved results over a large variety of previous
methods.

1 Introduction

When we apply machine learning [19] to real-world problems, e.g., in image recogni-
tion [18] or speech recognition [13], a significant challenge is the need for having large
amounts of (labeled) training data, which may not always be available. Consequently,
there has been longstanding interest in developing machine learning techniques that
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can transfer knowledge across domains, thereby alleviating to some extent the need
for training data as well as the time required to train the machine learning system. A
detailed survey of transfer learning is given in [22].

Traditional machine learning assumes that the distribution of test examples follows
that of the training examples [8], whereas in transfer learning, this assumption is usu-
ally violated. Domain adaptation (DA) is a well-studied formulation of transfer learning
that is based on developing methods that deal with the change of distribution in test in-
stances as compared with training instances [5, 11]. In this paper, we propose a new
framework for domain adaptation, based on formulating transfer from source to target
as a problem of geometric mean metric learning on manifolds. Our proposed approach
enables integrating multiple sources of variation between source and target in a unified
framework with a theoretically optimal solution. We also present detailed experiments
using standard transfer learning testbeds from computer vision, showing how our pro-
posed algorithms give improved results compared to existing methods.

A general way to model domain adaptation is using the framework of optimal trans-
port (OT) [9, 23]. The OT problem, originally studied by Monge in 1781, is defined as
the effort needed to move a given quantity of dirt (formally modeled by some source
distribution) to a new location with no loss in volume (modeled formally by a target dis-
tribution), minimizing some cost of transportation per unit volume of dirt. A revised for-
mulation by Kantorovich in 1942 allowed the transport map to be (in the discrete case)
a bistochastic matrix, whose rows sum to the source distribution, and whose columns
sum to the target distribution. When the cost of transportation is given by a distance
metric, the optimal transport distance is defined as the Wasserstein distance. The so-
lution we propose in this paper, based on the geometric mean of the source and target
covariances, can be derived from optimal transport theory, under the assumption that
the source and target distributions correspond to multivariate Gaussian distributions.
Our approach goes beyond the simple solution proposed by optimal transport theory
in that we take into account not only the cost of transportation, but also other factors,
such as the geometry of source and target domains. In addition, we use the weighted
geometric mean, giving us additional flexibility in tuning the solution.
Background: One standard approach of domain adaptation is based on modeling the
covariate shift [1]. Unlike traditional machine learning, in DA, the training and test
examples are assumed to have different distributions. It is usual in DA to categorize
the problem into different types: (i) semi-supervised domain adaptation (ii) unsuper-
vised domain adaptation (iii) multi-source domain adaptation (iv) heterogeneous do-
main adaptation.

Another popular approach to domain adaptation is based on aligning the distribu-
tions between source and target domains. A common strategy is based on the maximum
mean discrepancy (MMD) metric [7], which is a nonparametric technique for mea-
suring the dissimilarity of empirical distributions between source and target domains.
Domain-invariant projection is one method that seeks to minimize the MMD measure
using optimization on the Grassmannian manifold of fixed-dimensional subspaces of
n-dimensional Euclidean space [2].

Linear approaches to domain adaptation involve the use of alignment of lower-
dimensional subspaces or covariances from a data source domain Ds = {xsi} with
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labels Ls = {yi} to a target data domain Dt = {xti}. We assume both xsi and xti are
n-dimensional Euclidean vectors, representing the values of n features of each train-
ing example. One popular approach to domain adaptation relies on first projecting the
data from the source and target domains onto a low-dimensional subspace, and then
finding correspondences between the source and target subspaces. Of these approaches,
the most widely used one is Canonical Correlation Analysis (CCA) [17], a standard
statistical technique used in many applications of machine learning and bioinformatics.
Several nonlinear versions [15] and deep learning variants [27] of CCA have been pro-
posed. These methods often require explicit correspondences between the source and
target domains to learn a common subspace. Because CCA finds a linear subspace, a
family of manifold alignment methods have been developed that extend CCA [25, 10]
to exploit the nonlinear structure present in many datasets.

In contrast to using a single shared subspace across source and target domains,
subspace alignment finds a linear mapping that transforms the source data subspace
into the target data subspace [14]. To explain the basic algorithm, let PS , PT ∈ Rn×d
denote the two sets of basis vectors that span the subspaces for the “source” and “ target”
domains. Subspace alignment attempts to find a linear mapping M that minimizes

F (M) = ‖PSM − PT ‖2F .

It can be shown that the solution to the above optimization problem is simply the dot
product between PS and PT , i.e.,:

M∗ = argminMF (M) = PTS PT .

Another approach exploits the property that the set of k-dimensional subspaces in
n-dimensional Euclidean space forms a curved manifold called the Grassmannian [12],
a type of matrix manifold. The domain adaptation method called geodesic flow kernels
(GFK) [16] is based on constructing a distance function between source and target
subspaces that is based on the geodesic or shortest path between these two elements on
the Grassmannian.

Rather than aligning subspaces, a popular technique called CORAL [24] aligns cor-
relations between source and target domains. Let µs, µt and As, At represent the mean
and covariance of the source and target domains, respectively. CORAL finds a linear
transformation A that minimizes the distance between the second-order statistics of the
source and target features (which can be assumed as normalized with zero means). Us-
ing the Frobenius (Euclidean) norm as the matrix distance metric, CORAL is based on
solving the following optimization problem:

min
A

∥∥ATAsA−At∥∥2F . (1)

where As, At are of size n × n. Using the singular value decomposition of As and
At, CORAL [24] computes a particular closed-form solution4 to find the desired linear
transformation A.

4 The solution characterization in [24] is non unique. [24, Theorem 1] shows that the optimal
A, for full-rank As and At, is characterized as A = UsΣ

−1
s UTs UtΣ

1/2
t UTt , where UsΣsUTs
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Novelty of our Approach: Our proposed solution differs from the above previous ap-
proaches in several fundamental ways: one, we explicitly model the space of covariance
matrices as a curved Riemannian manifold of symmetric positive definite (SPD) matri-
ces. Note the difference of two SPD matrices is not an SPD matrix, and hence they do
not form a vector space. Second, our approach can be shown to be both unique and glob-
ally optimal, unlike some of the above approaches. Uniqueness and optimality derive
from the fact that we reduce all domain adaptation computations to nested equations
involving solving the well-known Riccati equation [6].

The organization of the paper is as follows. In Section 2, we show the connection
between the domain adaptation problem to the metric learning problem. In particular,
we discuss the Riccati point of view for the domain adaptation problem. Section 3
discusses briefly the Riemannian geometry of the space of SPD matrices. Sections 4
and 5 discuss additional domain adaptation formulations. Our proposed algorithms are
presented in Sections 6 and 7. Finally, in Section 8 we show the experimental results on
the standard Office and the extended Office-Caltech10 datasets, where our algorithms
show clear improvements over CORAL.

2 Domain Adaptation using Metric Learning

In this section, we will describe the central idea of this paper: modeling the problem of
domain adaptation as a geometric mean metric learning problem. Before explaining the
specific approach, it will be useful to introduce some background. The metric learning
problem [4] involves taking input data in Rn and constructing a (non)linear mapping
Φ : Rn → Rm, so that the distance between two points x and y in Rn can be measured
using the distance ‖Φ(x)−Φ(y)‖. A simple approach is to learn a squared Mahalanobis
distance: δ2A(x, y) = (x− y)TA(x− y), where x, y ∈ Rn and A is an n×n symmetric
positive definite (SPD) matrix. If we representA =WTW , for some linear transforma-
tion matrix W , then it is easy to see that δ2A(x, y) = ‖Wx −Wy‖2F , thereby showing
that the Mahalanobis distance is tantamount to projecting the data into a potentially
lower-dimensional space, and measuring distances using Euclidean (Frobenius) norm.
Typically, the matrix A is learned using some weak supervision, given two sets of train-
ing examples of the form:

S = {(xi, xj)|xi and xj are in the same class},

D = {(xi, xj)|xi and xj are in different classes}.

A large variety of metric learning methods can be designed based on formulating dif-
ferent optimization objectives based on functions over the S and D sets to extract in-
formation about the distance matrix A.

and UtΣtUTt are the eigenvalue decompositions of As and At, respectively. However, it can
be readily checked that there exists a continuous set of optimal solutions characterized as
A = UsΣ

−1/2
s UTs OUtΣ

1/2
t UTt , where O is any orthogonal matrix, i.e., OOT = OTO = I

of size n × n. A similar construction for non-uniqueness of the CORAL solution also holds
for rank deficient As and At.
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For our purposes, the method that will provide the closest inspiration to our goal of
designing a domain adaptation method based on metric learning is the recently proposed
geometric mean metric learning (GMML) algorithm [28]. GMML models the distance
between points in the S set by the Mahalanobis distance δA(xi, xj), xi, xj ∈ S by
exploiting the geometry of the SPD matrices, and crucially, also models the distance
between points in the disagreement set D by the inverse metric δA−1(xi, xj), xi, xj ∈
D. GMML is based on solving the objective function over all SPD matrices A:

min
A�0

∑
(xi,xj)∈S

δ2A(xi, xj) +
∑

(xi,xj)∈D

δ2A−1(xi, xj),

where A � 0 refers to the set of all SPD matrices.
Several researchers have previously explored the connection between domain adap-

tation and metric learning. One recent approach is based on constructing a transforma-
tion matrix A that both minimizes the difference between the source and target dis-
tributions based on the previously noted MMD metric, but also captures the manifold
geometry of source and target domains, and attempts to preserve the discriminative
power of the label information in the source domain [26]. Our approach builds on these
ideas, with some significant differences. One, we use an objective function that is based
on finding a solution that lies on the geodesic between source and target (estimated) co-
variance matrices (which are modeled as symmetric positive definite matrices). Second,
we use a cascaded series of geometric mean computations to balance multiple factors.
We describe these ideas in more detail in this and the next section.

We now describe how the problem of domain adaptation can be considered as a
type of metric learning problem, called geometric mean metric learning (GMML) [28].
Recall that in domain adaptation, we are given a source dataset Ds (usually with a set
of training labels) and a target dataset Dt (unlabeled). The aim of domain adaptation,
as reviewed above, is to construct an intermediate representation that combines some
of the features of both the source and target domains, with the rationale being that the
distribution of target features differs from that of the source. Relying purely on either the
source or the target features is therefore suboptimal, and the challenge is to determine
what intermediate representation will provide optimal transfer between the domains.

To connect metric learning to domain adaptation, note that we can define the two
sets S and D in the metric learning problem as associated with the source and target
domains respectively, whereby 5

S ⊆ Ds ×Ds = {(xi, xj)|xi ∈ Ds, xj ∈ Ds}
D ⊆ Dt ×Dt = {(xi, xj)|xi ∈ Dt, xj ∈ Dt}.

Our approach seeks to exploit the nonlinear geometry of covariance matrices to find
a Mahalanobis distance matrix A, such that we can represent distances in the source
domain using A, but crucially we measure distances in the target domain using the
inverse A−1.

min
A�0

∑
(xi,xj)∈S

(xi − xj)TA(xi − xj) +
∑

(xi,xj)∈D

(xi − xj)TA−1(xi − xj).

5 We note that while there are alternative ways to define the S and D sets, the essence of our
approach remains similar.
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To provide some intuition here, we observe that as we vary A to reduce the distance∑
(xi,xj)∈S(xi−xj)

TA(xi−xj) in the source domain, we simultaneously increase the
distance in the target domain by minimizing

∑
(xi,xj)∈D(xi − xj)

TA−1(xi − xj), and
vice versa. Consequently, by appropriately choosing A, we can seek to minimize the
above sum. We can now use the matrix trace to reformulate the Mahalanobis distances:

min
A�0

∑
(xi,xj)∈S

tr(A(xi − xj)(xi − xj)T ) +
∑

(xi,xj)∈D

tr(A−1(xi − xj)(xi − xj)T ).

Denoting the source and target covariance matrices As and At as:

As :=
∑

(xi,xj)∈S

(xi − xj)(xi − xj)T (2)

At :=
∑

(xi,xj)∈D

(xi − xj)(xi − xj)T , (3)

we can finally write a new formulation of the domain adaptation problem as minimizing
the following objective function to find the SPD matrix A such that:

min
A�0

ω(A) := tr(AAs) + tr(A−1At). (4)

3 Riemannian Geometry of SPD Matrices

In this section, we outline some other formulations of domain adaptation that will be
useful to discuss for presenting our overall approach.

Source Domain

Target Domain

Tangent Space

SPD Manifold

Normal Space

Connecting Geodesic

Fig. 1: The space of symmetric positive definite matrices forms a Riemannian manifold,
as illustrated here. The methods we propose are based on computing geodesics (the
shortest distance), shown in the dotted line, between source domain information and
target domain information.

As Figure 1 shows, our proposed approach to domain adaptation builds on the non-
linear geometry of the space of SPD (or covariance) matrices, we review some of this
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material first [6]. Taking a simple example of a 2× 2 SPD matrix M , where:

M =

[
a b
b c

]
,

where a > 0, and the SPD requirement implies the positivity of the determinant ac −
b2 > 0. Thus, the set of all SPD matrices of size 2×2 forms the interior of a cone in R3.
More generally, the space of all n × n SPD matrices forms a manifold of non-positive
curvature in Rn2

[6]. In the CORAL objective function in Equation (1), the goal is to
find a transformation A that makes the source covariance resemble the target as closely
as possible. Our approach simplifies Equation (1) by restricting the transformation ma-
trix A to be a SPD matrix, i.e, A � 0, and furthermore, we solve the resulting nonlinear
equation exactly on the manifold of SPD matrices. More formally, we solve the Riccati
equation [6]:

AAsA = At, for A � 0, (5)

where As and At are source and target covariances SPD matrices, respectively. Note
that in comparison with the CORAL approach in Equation (1), the A matrix is symmet-
ric (and positive definite), so A and AT are the same. The solution to the above Riccati
equation is the well-known geometric mean or sharp mean, of the two SPD matrices,
A−1s and At.

A = A−1s ] 1
2
At = A

− 1
2

s (A
1
2
s AtA

1
2
s )

1
2A
− 1

2
s ,

where ] 1
2

is denotes the geometric mean of SPD matrices [28]. The sharp mean has
an intuitive geometric interpretation: it is the midpoint of the geodesic connecting the
source domain A−1s and target domain At matrices, where length is measured on the
Riemannian manifold of SPD matrices. As mentioned earlier, the geometric mean is
also the solution to the domain adaptation problem from optimal transport theory when
the source and target distributions are given by multivariate Gaussians [23].

In a manifold, the shortest path between two elements, if it exists, can be represented
by a geodesic. For the SPD manifold, it can be shown that the geodesic γ(t) for a scalar
0 ≤ t ≤ 1 between A−1s and At, is given by [6]:

γ(t) = A−1/2s (A1/2
s AtA

1/2
s )tA−1/2s .

It is common to denote γ(t) as the so-called “weighted” sharp mean A−1s ]tAt. It is
easy to see that for t = 0, γ(0) = A−1s , and for t = 1, we have γ(1) = At. For the
distinguished value of t = 1/2, it turns out that γ(1/2) is the geometric mean of A−1s
and At, respectively, and satisfies all the properties of a geometric mean [6].

γ(1/2) = A−1/2s ]1/2At = A−1/2s (A1/2
s AtA

1/2
s )1/2A−1/2s .

The following theorem summarizes some of the properties of the objective function
given by Equation (4).

Theorem 1. [28, Theorem 3] The cost function ω(A) in Equation (4) is both strictly
convex as well as strictly geodesically convex on the SPD manifold.

Theorem 1 ensures the uniqueness of the solution to Equation (4).
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4 Statistical Alignment Across Domains

A key strength of our approach is that it can exploit both geometric and statistical
information, and multiple sources of alignment are integrated by solving nested sets
of Ricatti equations. To illustrate this point, in this section we explicitly introduce a
secondary criterion of aligning the source and target domains so that the underlying
(marginal) distributions are similar. As our results show later, we obtain a significant im-
provement over CORAL on a standard computer vision dataset (Office/Caltech/Amazon
problem). The reason our approach outperforms CORAL is that not only are we able
to solve the Riccati equation uniquely, whereas the CORAL solution proposed is [24]
is only a particular solution due to non-uniqueness4, we can exploit multiple sources of
information.

A common way to incorporate the statistical alignment constraint is based on min-
imizing the maximum mean discrepancy metric (MMD) [7], a nonparametric measure
of the difference between two distributions.∥∥∥∥∥ 1n

n∑
i=1

Wxsi −
1

m

m∑
i=1

Wxti

∥∥∥∥∥
2

= tr(AXLXT ), (6)

where X = {xs1, . . . , xsn, x1t , . . . , xnt } ∈ R(n+m) and L ∈ R(n+m)(n+m), where
L(i, j) = 1

n2 if xi, xj ∈ Xs, L(i, j) = 1
m2 if xi, xj ∈ Xt, and L(i, j) = − 1

mn
otherwise. It is straightforward to show that L � 0, a symmetric positive-semidefinite
matrix [26]. We can now combine the MMD objective in Equation (6) with the pre-
vious geometric mean objective in Equation (4) to give rise to the following modified
objective function:

min
A�0

ξ(A) := tr(AAs) + tr(A−1At) + tr(AXLXT ). (7)

We can once again find a closed-form solution to the modified objective in Equation (7)
by taking gradients:

∇ξ(A) = As −A−1AtA−1 +XLXT = 0,

whose solution is now given A = A−1m ] 1
2
At, where Am = As +XLXT .

5 Geometrical Diffusion on Manifolds

So far we have shown how the solution to the domain adaptation problem can be shown
to involve finding the geometric mean of two terms, one involving the source covariance
information and the Maximum Mean Discrepancy (MMD) of source and target training
instances, and the second involving the target covariance matrix. In this section, we
impose additional geometrical constraints on the solution that involve modeling the
nonlinear manifold geometry of the source and target domains.

The usual approach is to model the source and target domains as a nonlinear man-
ifold and set up a diffusion on a discrete graph approximation of the continuous mani-
fold [20], using a random walk on a nearest neighbor graph connecting nearby points.
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Standard results have been established showing asymptotic convergence of the graph
Laplacian to the underlying manifold Laplacian [3]. We can use the above algorithm
to find two graph kernels Ks and Kt that are based on the eigenvectors of the random
walk on the source and target domain manifold, respectively.

Ks =

m∑
i=1

e
−−σ2s

2λs
i vsi (v

s
i )
T

Kt =

n∑
i=1

e
−−σ2t

2λt
i vti(v

t
i)
T .

Here, vsi and vti refer to the eigenvectors of the random walk diffusion matrix on the
source and target manifolds, respectively, and λsi and λti refer to the corresponding
eigenvalues.

We can now introduce a new objective function that incorporates the source and
target domain manifold geometry:

min
A�0

η(A) := tr(AX(K + µL)XT ) + tr(AAs) + tr(A−1At), (8)

where K � 0 and K =

(
K−1s 0
0 K−1t

)
, and µ is a weighting term that combines the

geometric and statistical constraints over A.
Once again, we can exploit the SPD nature of the matrices involved, the closed-form

solution to Equation (8) is A = Ags] 1
2
At, where Ags = As +X(K + µL)XT .

6 Cascaded Weighted Geometric Mean

One additional refinement that we use is the notion of a weighted geometric mean.
To explain this idea, we introduce the following Riemannian distance metric on the
nonlinear manifold of SPD matrices:

δ2R(X,Y ) ≡
∥∥∥log(Y − 1

2XY −
1
2 )
∥∥∥2
F

for two SPD matricesX and Y . Using this metric, we now introduce a weighted version
of the previous objective functions in Equations (4), (7), and (8).

For the first objective function in Equation (4), we get:

min
A�0

ωt(A) := (1− t) δ2R(A,A−1s ) + t δ2R(A,At), (9)

where 0 ≤ t ≤ 1 is the weight parameter. The unique solution to (9) is given by the
weighted geometric meanA = A−1s ]tAt [28]. Note that the weighted metric mean is no
longer strictly convex (in the Euclidean sense), but remains geodesically strictly convex
[28, 6, Chapter 6].

Similarly, we introduce the weighted variant of the objective function given by
Equation (7):

min
A�0

ξt(A) := (1− t) δ2R(A, (As +XLXT )−1) + t δ2R(A,At), (10)
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whose unique solution is given byA = A−1m ]t At, whereAm = As+XLX
T as before.

A cascaded variant is obtained when we further exploit the SPD structure of As and
XLXT , i.e., Am = As]γ(XLX

T ) (weighted geometric mean of As and (XLXT ) in-
stead ofAm = As+XLX

T (which is akin to the Euclidean mean ofAs and (XLXT ).
Here, 0 ≤ γ ≤ 1 is the weight parameter.

Finally, we obtain the weighted variant of the third objective function in Equa-
tion (8):

min
A�0

ηt(A) := (1− t)δ2R(A, (As +X(K + µI)XT )−1 + t δ2R(A,At), (11)

whose unique solution is given by A = A−1gs ]t At, where Ags = As+X(K+µL)XT

as previously noted. Additionally, the cascaded variant is obtained when As]γ(X(K +
µL)XT ) instead of Ags = As +X(K + µL)XT .

7 Domain Adaptation Algorithms

We now describe the proposed domain adaptation algorithms, based on the above de-
velopment of approaches reflecting geometric and statistical constraints on the inferred
solution. All the proposed algorithms are summarized in Algorithm 1. The algorithms
are based on finding a Mahalanobis distance matrix A interpolating source and target
covariances (GCA1), incorporating an additional MMD metric (GCA2) and finally, in-
corporating the source and target manifold geometry (GCA3). It is noteworthy that all
the variants rely on computation of the sharp mean, a unifying motif that ties together
the various proposed methods. Modeling the Riemannian manifold underlying SDP
matrices ensures the optimality and uniqueness of our proposed methods.

8 Experimental Results

We present experimental results using the standard computer vision testbed used in
prior work: the Office [16] and extended Office-Caltech10 [14] benchmark datasets.
The Office-Caltech10 dataset contains 10 object categories from an office environment
(e.g., keyboard, laptop, and so on) in four image domains: Amazon (A), Caltech256
(C), DSLR (D), and Webcam (W). The Office dataset has 31 categories (the previous
10 categories and 21 additional ones).

An exhaustive comparison of the three proposed methods with a variety of previ-
ous methods is summarized by the table in Table 1. The previous methods compared
in the table refer to the unsupervised domain adaptation approach where a support vec-
tor machine (SVM) classifier is used. The experiments follow the standard protocol
established by previous works in domain adaptation using this dataset. The features
used (SURF) are encoded with 800-bin bag-of-words histograms and normalized to
have zero mean and unit standard deviation in each dimension. As there are four do-
mains, there are 12 ensuing transfer learning problems, denoted in Table 1 below as
A → D (for Amazon to DSLR, etc.). For each of the 12 transfer learning tasks, the
best performing method is indicated in boldface. We used 30 randomized trials for each
experiment, and randomly sample the same number of labeled images in the source
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Algorithm 1 Algorithms for Domain Adaptation using Metric Learning
Given: A source dataset of labeled points xsi ∈ Ds with labels Ls = {yi}, and an unlabeled
target dataset xti ∈ Dt, with hyperparameters t, µ, and γ.

1. Define X = {xs1, . . . , xsn, xt1, . . . , xtm}.
2. Compute the source and target matrices As and At using Equations (2) and (3).
3. Algorithm GCA1: Compute the weighted geometric mean A = A−1

s ]t At (see Equa-
tion (9)).

4. Algorithm GCA2: Compute the weighted geometric mean taking additionally into account
the MMD metric A = A−1

m ]t At (see Equation (10)), where Am = As +XLXT .
5. Algorithm Cascaded-GCA2: Compute the cascaded weighted geometric mean taking ad-

ditionally into account the MMD metric A = A−1
m ]t At (see Equation (10)), Am =

As]γXLX
T .

6. Algorithm GCA3: Compute the weighted geometric mean taking additionally into account
the source and target manifold geometry A = A−1

gs ]t At (see Equation (11)), where Ags =
As +X(K + µL)XT .

7. Algorithm Cascaded-GCA3: Compute the cascaded weighted geometric mean taking ad-
ditionally into account the source and target manifold geometry A = A−1

gs ]t At (see Equa-
tion (11)), where Ags = As]γ(X(K + µL)XT ).

8. Use the learned A matrix to adapt source features to the target domain, and perform classi-
fication (e.g., using support vector machines).

domain as training set, and use all the unlabeled data in the target domain as the test
set. All experiments used a support vector machine (SVM) method to measure classifier
accuracy, using a standard libsvm package. The methods compared against in Table 1
include the following alternatives:

– Baseline-S: This approach uses the projection defined by using PCA in the source
domain to project both source and target data.

– Baseline-T: Here, PCA is used in the target domain to extract a low-dimensional
subspace.

– NA: No adaptation is used and the original subspace is used for both source and
target domains.

– GFK: This approach refers to the geodesic flow kernel [16], which computes the
geodesic on the Grassmannian between the PCA-derived source and target sub-
spaces computed from the source and target domains.

– TCA: This approach refers to the transfer component analysis method [21].
– SA: This approach refers to the subspace alignment method [14].
– CORAL: This approach refers to the correlational alignment method [24].
– GCA1: This is a new proposed method, based on finding the weighted geometric

mean of the inverse of the source matrix As and the target matrix At.
– GCA2: This is a new proposed method, based on finding the (non-cascaded) weighted

geometric mean of the inverse of the source matrix Am and the target matrix At.
– GCA3: This is a new proposed method, based on finding the (non-cascaded) weighted

geometric mean of the inverse of the source matrix Ags and the target matrix At.
– Cascaded-GCA2: This is a new proposed method, based on finding the cascaded

geometric mean of the inverse revised source matrix Am and target matrix At
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Method C→ A D→ A W→ A A→ C D→ C W→ C

NA 44.0 34.6 30.7 35.7 30.6 23.4
B-S 44.3 36.8 32.9 36.8 29.6 24.9
B-T 44.5 38.6 34.2 37.3 31.6 28.4
GFK 44.8 37.9 37.1 38.3 31.4 29.1
TCA 47.2 38.8 34.8 40.8 33.8 30.9
SA 46.1 42.0 39.3 39.9 35.0 31.8

CORAL 47.1 38.0 37.7 40.5 33.9 34.4
GCA1 48.4 40.1 38.6 41.4 36.0 35.0
GCA2 48.9 40.0 38.6 41.0 35.9 35.0
GCA3 48.4 40.9 37.6 41.1 36 33.6

Cascaded-GCA2 49.5 41.1 38.6 41.1 36 35.1
Cascaded-GCA3 49.4 41.0 38.5 41.0 35.9 35

Method A→ D C→ D W→ D A→W C→W D→W

NA 34.5 36.0 67.4 26.1 29.1 70.9
B-S 36.1 38.9 73.6 42.5 34.6 75.4
B-T 32.5 35.3 73.6 37.3 34.2 80.5
GFK 32.5 36.1 74.6 39.8 34.9 79.1
TCA 36.4 39.2 72.1 38.1 36.5 80.3
SA 44.5 38.6 34.2 37.3 31.6 28.4

CORAL 38.1 39.2 84.4 38.2 39.7 85.4
GCA1 39.2 40.9 85.1 40.9 41.1 87.2
GCA2 39.9 41.4 85.1 40.1 41.1 87.2
GCA3 38.9 41.6 84.9 39.9 41.4 86.8

Cascaded-GCA2 40.4 40.7 85.5 41.3 40.3 87.2
Cascaded-GCA3 38.8 42.4 85.3 40.1 40.9 86.9

Table 1: Recognition accuracy with unsupervised domain adaptation using SVM clas-
sifier (Office dataset + Caltech10). Our proposed methods (labeled GCAXX and
Cascaded-GCAXX) perform better than all other methods in a majority of the 12 trans-
fer learning tasks.

– Cascaded-GCA3: This is a new proposed method, based on finding the cascaded
geometric mean of the inverse revised source matrix Ags and target matrix At

One question that arises in proposed algorithms is how to choose the value of t in
computing the weighted sharp mean. Figure 2 illustrates the variation in performance of
the cascaded GCA3 method over CORAL over the range t, γ ∈ (0.1, 0.9), and µ fixed
for simplicity. Repeating such experiments over all 12 transfer learning tasks, Figure 3
shows the percentage improvement of the cascaded GCA3 method over correlational
alignment (CORAL), using the best discovered value of all three hyperparameters using
cross-validation. Figure 4 compares the performance of the proposed GCA1, GCA2,
and GCA3 methods where just the t hyperparameter was varied between 0.1 and 0.9
for the Amazon to DSLR domain adaptation task. Note the variation in performance
with t occurs at different points for the three points, and while their performance is
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Fig. 2: Comparison of the cascaded GCA3 method with correlational alignment
(CORAL). The parameters t and γ were varied between 0.1 and 0.9.

Percentage Improvement of GCA3 vs. Coral

1 2 3 4 5 6 7 8 9 10 11 12

Transfer Problem
0

1

2

3

4

5

6

7

8

9

10

Pe
rc

en
ta

ge
 Im

pr
ov

em
en

t

Fig. 3: Comparison of the cascaded GCA3 method with correlational alignment
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14 S. Mahadevan et al.

superior overall to CORAL, their relative performances at the maximum values are not
very different from each other. Figure 5 once again repeats the same comparison for
the Caltech10 to the Webcam domain adaptation task. As these plots clearly reveal,
the values of the hyperparameters has a crucial influence on the performance of all the
proposed GCAXX methods. The plot compares the performance of GCA1 to the fixed
performance of the CORAL method.

9 Summary and Future Work

In this paper, we introduced a novel formulation of the classic domain adaptation prob-
lem in machine learning, based on computing the cascaded geometric mean of second
order statistics from source and target domains to align them. Our approach builds on
the nonlinear Riemannian geometry of the open cone of symmetric positive definite
matrices (SPDs), using which the geometric mean lies along the shortest path geodesic
that connects source and target covariances. Our approach has three key advantages
over previous work: (a) Simplicity: The Riccati equation is a mathematically elegant
solution to the domain adaptation problem, enabling integrating geometric and statisti-
cal information. (b) Theory: Our approach exploits the Riemannian geometry of SPD
matrices. (c) Extensibility: As our algorithm development indicates, it is possible to
easily extend our approach to capture more types of constraints, from geometrical to
statistical.

There are many directions for extending our work. We briefly alluded to optimal
transport theory as providing an additional theoretical justification for our solution of
using the geometric mean of the source and target covariances, a link that deserves fur-
ther exploration in a subsequent paper. Also, while we did not explore nonlinear vari-
ants of our approach, it is possible to extend our approach to develop a deep learning
version where the gradient of the three objective functions is used to tune the weights
of a multi-layer neural network. As in the case of correlational alignment (CORAL),
we anticipate that the deep learning variants may perform better due to the construc-
tion of improved features of the training data. The experimental results show that the
performance improvement tends to be more significant in some cases than in others.
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