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Abstract
Most reinforcement learning methods are based
upon the key assumption that the transition dy-
namics and reward functions are fixed, that is, the
underlying Markov decision process is stationary.
However, in many real-world applications, this as-
sumption is violated and using existing algorithms
may result in a performance lag. To proactively
search for a good future policy, we present a pol-
icy gradient algorithm that maximizes a forecast
of future performance. This forecast is obtained
by fitting a curve to the counter-factual estimates
of policy performance over time, without explic-
itly modeling the underlying non-stationarity. The
resulting algorithm amounts to a non-uniform
reweighting of past data, and we observe that min-
imizing performance over some of the data from
past episodes can be beneficial when searching
for a policy that maximizes future performance.
We show that our algorithm, called Prognostica-
tor, is more robust to non-stationarity than two
online adaptation techniques, on three simulated
problems motivated by real-world applications.

1. Introduction
Policy optimization algorithms in RL are promising for
obtaining general purpose control algorithms. They are
designed for Markov decision processes (MDPs), which
model a large class of problems (Sutton & Barto, 2018).
This generality can facilitate application to a variety of real-
world problems. However, most existing algorithms assume
that the transition dynamics and reward functions are fixed,
that is, the underlying Markov decision process is stationary.

This assumption is often violated in practical problems of
interest. For example, consider an assistive driving system.
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Over time, tires suffer from wear and tear, leading to in-
creased friction. Similarly, in almost all human-computer
interaction applications, e.g., automated medical care, di-
alogue systems, and marketing, human behavior changes
over time. In such scenarios, if the automated system is not
adapted to take such changes into account, or if it is adapted
only after observing such changes, then the system might
quickly become sub-optimal, incurring severe loss (Moore
et al., 2014). This raises our main question: how do we
build systems that proactively search for a policy that will
be good for the future MDP?

In this paper we present a policy gradient based approach
to search for a policy that maximizes the forecasted fu-
ture performance when the environment is non-stationary.
To capture the impact of changes in the environment on a
policy’s performance, first, the performance of the policy
during the past episodes is estimated using counter-factual
reasoning. Subsequently, a regression curve is fit to these
estimates to model the performance trend of the policy over
time, thereby enabling the forecast of future performance.
By differentiating this performance forecast with respect
to the parameters of the policy being evaluated, we obtain
a gradient-based optimization procedure that proactively
searches for a policy that will perform well in the future.1

Recently, Al-Shedivat et al. (2017) and Finn et al. (2019)
also presented methods that search for initial parameters
that are effective when the objective is changing over time.
These approaches are complementary to our own, as they
could be additionally applied to set the initial parameters of
our algorithms. In our empirical study, we show how the
adaptation procedure of their methods alone can result in
a performance lag that is mitigated by our method, which
explicitly captures the trend of the objective due to non-
stationarity. A detailed survey on other approaches can be
found in the work by Padakandla (2020).

Advantages: The proposed method has the following ad-
vantages: (a) It does not require modeling the transition
function, reward function, or how either changes in a non-
stationary environment, and thus scales gracefully with re-
spect to the number of states and actions in the environment.

1Code for our algorithm can be obtained using the following
link: https://github.com/yashchandak/OptFuture_NSMDP.

https://github.com/yashchandak/OptFuture_NSMDP
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(b) Irrespective of the complexity of the environment or
the policy parameterization, it concisely models the effect
of changes in the environment on a policy’s performance
using a univariate time-series. (c) It is data-efficient in that
it leverages all available data. (d) It mitigates performance
lag by proactively optimizing performance for episodes in
both the immediate and near future. (e) It degenerates to
an estimator of the ordinary policy gradient if the system is
stationary, meaning that there is little reason not to use our
approach if there is a possibility that the system might be
non-stationary.

Limitations: The method that we propose is limited to
settings where (a) non-stationarity is governed by an exoge-
nous process (i.e., past actions do not impact the underlying
non-stationarity), which has no auto-correlated noise, and
(b) performance of every policy changes smoothly over time
and has no abrupt breaks/jumps. Further, we found that our
method is sensitive to a hyper-parameter that trades off ex-
ploration and exploitation in the non-stationary setting. We
conclude the paper with a discussion of these limitations.

2. Notation
An MDP M is a tuple (S,A,P,R, γ, d0), where S is

the set of possible states, A is the set of actions, P is
the transition function, R is the reward function, γ is the
discount factor, and d0 is the start state distribution. Let
R(s, a) denote the expected reward of taking action a in
state s. For any given set X , we use ∆(X ) to denote the
set of distributions over X . A policy π : S → ∆(A) is
a distribution over the actions conditioned on the state.
When π is parameterized using θ ∈ Rd, we denote it as
πθ. Often we write θ in place of πθ when the depen-
dence on θ is important. In a non-stationary setting, as
the MDP changes over time, we use Mk to denote the
MDP during episode k. In general, we will use sub-script
k to denote the episode number and a super-script t to
denote the time-step within an episode. Stk, A

t
k, and Rtk

are the random variables corresponding to the state, ac-
tion, and reward at time step t, in episode k. Let Hk de-
note a trajectory in episode k: (s0

k, a
0
k, r

0
k, s

1
k, a

1
k, ..., s

T
k ),

where T is the finite horizon. The value function eval-
uated at state s, during episode k, under a policy π is
vπk (s) = E[

∑T−t
j=0 γ

jRt+jk |Stk = s, π], where condition-
ing on π denotes that the trajectory in episode k was sam-
pled using π. The start state objective for a policy π, in
episode k, is defined as Jk(π) :=

∑
s d0(s)vπk (s). Let

J∗k = maxπ Jk(π) be the maximum performance forMk.

3. Problem Statement
To model non-stationarity, we let an exogenous process
change the MDP fromMk toMk+1, i.e., between episodes.

Let {Mk}∞k=1 represent a sequence of MDPs, where each
MDPMk is denoted by the tuple (S,A,Pk,Rk, γ, d0).2

In many problems, like adapting to friction in robotics,
human-machine interaction, etc., the transition dynamics
and rewards function change, but every other aspect of the
MDP remains the same throughout. Therefore, we assume
that for any two MDPs,Mk andMk+1, the state set S , the
action set A, the starting distribution d0, and the discount
factor γ are the same.

If the exogenous process changing the MDPs is arbitrary
and changes it in unreasonable ways, then there is little hope
of finding a good policy for the future MDP asMk+1 can
be wildly different from everything the agent has observed
by interacting with the past MDPs,M1, ...,Mk. However,
in many practical problems of interest, such changes are
smooth and have an underlying (unknown) structure. To
make the problem tractable, we therefore assume that both
the transition dynamics (P1,P2, ...), and the reward func-
tions (R1,R2, ...) vary smoothly over time in a way that
ensures there are no abrupt jumps in the performance of any
policy.

Problem Statement. We seek to find a sequence of poli-
cies that minimizes lifelong regret:

arg min
{π1,π2,...πk,...}

∞∑
k=1

J∗k −
∞∑
k=1

Jk(πk).

4. Related Work
The problem of non-stationarity has a long history and no
effort is enough to thoroughly review it. Here, we briefly
touch upon the most relevant work and defer a more detailed
literature review to the appendix. A more exhaustive survey
can be found in the work by Padakandla (2020).

Perhaps the work most closely related to ours is that of Al-
Shedivat et al. (2017). They consider a setting where an
agent is required to solve test tasks that have different transi-
tion dynamics than the training tasks. Using meta-learning,
they aim to use training tasks to find an initialization vec-
tor for the policy parameters that can be quickly fine-tuned
when facing tasks in the test set. In many real-world prob-
lems, however, access to such independent training tasks
may not be available a priori. In this work, we are inter-
ested in the continually changing setting where there is no
boundary between training and testing tasks. As such, we
show how their proposed online adaptation technique that

2An alternate way to formulate this problem could be to convert
a non-stationary MDP into a stationary (PO)MDP by considering
an ‘expanded’ (PO)MDP consisting of all possible variants of
the given problem. Then a single, never-ending, episode in that
(PO)MDP can be considered with state dependent discounting
(White, 2017) for task specifications. We plan to explore the
single, never-ending, episode formulation in future work.
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fine-tunes parameters, by discarding past data and only us-
ing samples observed online, can create performance lag
and can therefore be data-inefficient. In settings where train-
ing and testing tasks do exist, our method can be leveraged
to better adapt during test time, starting from any desired
parameter vector.

Recent work by Finn et al. (2019) aims at bridging both
the continuously changing setting and the train-test setting
for supervised-learning problems. They propose contin-
uously improving an underlying parameter initialization
vector and running a Follow-The-Leader (FTL) algorithm
(Shalev-Shwartz et al., 2012) every time new data is ob-
served. A naive adaption of this for RL would require
access to all the underlying MDPs in the past for contin-
uously updating the initialization vector, which would be
impractical. Doing this efficiently remains an open question
and our method is complementary to choosing the initial-
ization vector. Additionally, FTL based adaptation always
lags in tracking optimal performance as it uniformly maxi-
mizes performance over all the past samples that might not
be directly related to the future. Further, we show that by
explicitly capturing the trend in the non-stationarity, we can
mitigate this performance lag resulting from the use of an
FTL algorithm during the adaptation process.

The problem of adapting to non-stationarity is also related
to continual learning (Ring, 1994), lifelong-learning (Thrun,
1998), and meta-learning (Schmidhuber, 1999). Several
meta-learning based approaches for fine-tuning a (mixture
of) trained model(s) using samples observed during a simi-
lar task at test time have been proposed (Nagabandi et al.,
2018a;b). Other works have also shown how models of
the environment can be used for continual learning (Lu
et al., 2019) or using it along with a model predictive con-
trol (Wagener et al., 2019). Concurrent work by Xie et al.
(2020) also demonstrates how modeling the changes in a
dynamic-parameter MDP can be useful. We focus on the
model-free paradigm and our approach is complementary
to these model-based methods.

More importantly, in many real-world applications, it can
be infeasible to update the system frequently if it involves
high computational or monetary expense. In such a case,
even optimizing for the immediate future might be greedy
and sub-optimal. The system should optimize for a longer
term in the future, to compensate for the time until the next
update is performed. None of the prior approaches can
efficiently tackle this problem.

5. Optimizing for the Future
The problem of minimizing lifelong regret is straightforward
if the agent has access to sufficient samples, in advance,
from the future environment,Mk+1, that it is going to face

(where k denotes the current episode number). That is, if
we could estimate the start-state objective, Jk+1(π), for the
future MDP Mk+1, then we could search for a policy π
whose performance is close to J∗K+1. However, obtaining
even a single sample from the future is impossible, let alone
getting a sufficient number of samples. This necessitates
rethinking the optimization paradigm for searching for a pol-
icy that performs well when faced with the future unknown
MDP. There are two immediate challenges here:

1. How can we estimate Jk+1(π) without any samples
fromMk+1?

2. How can gradients, ∂Jk+1(π)/∂θ, of this future per-
formance be estimated?

In this section we address both of these issues using the fol-
lowing idea. When the transition dynamics (P1,P2, ...), and
the reward functions (R1,R2, ...) are changing smoothly
the performances (J1(π), J2(π), ...) of any policy π can
also be expected to vary smoothly over time. The impact
of smooth changes in the environment thus manifests as
smooth changes in the performance of any policy, π. In
cases where there is an underlying, unknown, structure in
the changes of the environment, one can now ask: if the
performances J1:k(π) := (J1(π), ..., Jk(π)) of π over the
course of past episodes were known, can we analyze the
trend in its past performances to find a policy that maximizes
future performance Jk+1(π)?

5.1. Forecasting Future Performance

In this section we address the first challenge of estimating
future performance Jk+1(π) and pose it as a time series
forecasting problem.

Broadly, this requires two components: (a) A procedure to
compute past performances, J1:k(π), of π. (b) A procedure
to create an estimate, Ĵk+1(π), of π’s future performance,
Jk+1(π), using these estimated values from component (a).
An illustration of this idea is provided in Figure 1.

Component (a). As we do not have access to the past
MDPs for computing the true values of past performances,
J1:k(π), we propose computing estimates, Ĵ1:k(π), of them
from the observed data. That is, in a non-stationary MDP,
starting with the fixed transition matrix P1 and the reward
functionR1, we want to estimate the performance Ji(π) of
a given policy in episode i ≤ k. Leveraging the fact that the
changes to the underlying MDP are due to an exogenous
processes, we can estimate Ji(π) as,

Ji(π) =

T∑
t=0

γtE
[
Rti
∣∣π,Pi,Ri] , (1)
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Figure 1. An illustration, where the blue and red filled circles
represent counter-factually reasoned performance estimates of
policies π1 and π2, respectively, using data collected from a given
policy β. The open circles represent the forecasted performance
of π1 and π2 estimated by fitting a curve on the counter-factual
estimates represented by filled circles.

where Pi and Ri are also random variables. Next we de-
scribe how an estimate of Ji(π) can be obtained from (1)
using information only from the ith episode.

To get an unbiased estimate, Ĵi(π), of π’s performance
during episode i, consider the past trajectory Hi of the
ith episode that was observed when executing a policy βi.
By using counter-factual reasoning (Rosenbaum & Rubin,
1983) and leveraging the per-decision importance sampling
(PDIS) estimator (Precup, 2000), an unbiased estimate of
Ji(π) is thus given by:3

Ĵi(π) :=

H∑
t=0

(
t∏
l=0

π(Ali|Sli)
βi(Ali|Sli)

)
γtRti. (2)

It is worth noting that computing (2) does not require storing
all the past policies βi, one needs to only store the actions
and the probabilities with which these actions were chosen.

Component (b). To obtain the second component, which
captures the structure in Ĵ1:k(π) := (Ĵ1(π), ..., Ĵk(π)) and
predicts future performances, we make use of a forecast-
ing function Ψ that estimates future performance Ĵk+1(π)
conditioned on the past performances:

Ĵk+1(θ) := Ψ(Ĵ1(π), Ĵ2(π), ...., Ĵk(π)). (3)

While Ψ can be any forecasting function, we consider Ψ to
be an ordinary least squares (OLS) regression model with
parameters w ∈ Rd×1, and the following input and output
variables,

X := [1, 2, ..., k]> ∈ Rk×1,

Y := [Ĵ1(π), Ĵ2(π), Ĵ2(π), ..., Ĵk(π)]> ∈ Rk×1.

3We assume that ∀i ∈ N the distribution of Hi has full support
over the set of all possible trajectories of the MDP Mi.

For any x ∈ X , let φ(x) ∈ R1×d denote a d-dimensional
basis function for encoding the time index. For example, an
identity basis φ(x) := {x, 1}, or a Fourier basis, where

φ(x) := {sin(2πnx|n ∈ N} ∪ {cos(2πnx)|n ∈ N} ∪ {1}.

Let Φ ∈ Rk×d be the corresponding basis matrix. The solu-
tion to above least squares problem is w = (Φ>Φ)−1Φ>Y
(Bishop, 2006) and the forecast of the future performance
can be obtained using,

Ĵk+1(π) = φ(k + 1)w = φ(k + 1)(Φ>Φ)−1Φ>Y. (4)

This procedure enjoys an important advantage – by just us-
ing a univariate time-series to estimate future performance,
it bypasses the need for modeling the environment, which
can be prohibitively hard or even impossible. Further, note
that Φ>Φ ∈ Rd×d, where d << k typically, and thus the
cost of computing the matrix inverse is negligible. These
advantages allows this procedure to gracefully scale to more
challenging problems, while being robust to the size, |S|, of
the state set or the action set |A|.

5.2. Differentiating Forecasted Future Performance

In the previous section, we addressed the first challenge
and showed how to proactively estimate future performance,
Ĵk+1(θ), of a policy πθ by explicitly modeling the trend in
its past performances Ĵ1:k(θ). In this section, we address
the second challenge to facilitate a complete optimization
procedure. A pictorial illustration of the idea is provided in
Figure 2.

Gradients for Ĵk+1(θ) with respect to θ can be obtained as
follows,

dĴk+1(θ)

dθ
=
dΨ(Ĵ1(θ), ..., Ĵk(θ))

dθ

=

k∑
i=1

∂Ψ(Ĵ1(θ), ..., Ĵk(θ))

∂Ĵi(θ)︸ ︷︷ ︸
(a)

· dĴi(θ)
dθ︸ ︷︷ ︸
(b)

. (5)

The decomposition in (5) has an elegant intuitive interpre-
tation. The terms assigned to (a) in (5) correspond to how
the future prediction would change as a function of past out-
comes, and the terms in (b) indicate how the past outcomes
would change due to changes in the parameters of the policy
πθ. In the next paragraphs, we discuss how to obtain the
terms (a) and (b).

To obtain term (a), note that in (4), Ĵi(θ) corresponds to the
ith element of Y , and so using (3) the gradients of the terms
(a) in (5) are,

∂Ĵk+1(θ)

∂Ĵi(θ)
=
∂φ(k + 1)(Φ>Φ)−1Φ>Y

∂Yi

= [φ(k + 1)(Φ>Φ)−1Φ>]i, (6)
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Figure 2. The proposed method from the lens of differentiable pro-
gramming. At any time k, we aim to optimize policy’s parameters,
θ, to maximize its performance in the future, Jk+1(θ). However,
conventional methods (dotted arrows) can not be used to directly
optimize for this. In this work, we achieve this as a composition
of two programs: one which connects the policy’s parameters to
its past performances, and the other which forecasts future perfor-
mance as a function of these past performances. The optimization
procedure then corresponds to taking derivatives through this com-
position of programs to update policy parameters in a direction
that maximizes future performance. Arrows (a) and (b) correspond
to the respective terms marked in (5).

where [Z]i represents the ith element of a vector Z. There-
fore, (6) is the gradient of predicted future performance with
respect to an estimated past performance.

The term (b) in (5) corresponds to the gradient of the PDIS
estimate Ĵi(θ) of the past performance with respect to policy
parameters θ. The following Property provides a form for
(b) that makes its computation straightforward.

Property 1 (PDIS gradient). Let ρi(0, l) :=∏l
j=0

πθ(Aji |S
j
i )

βi(A
j
i |S

j
i )

.

dĴi(θ)

dθ
=

T∑
t=0

∂ log πθ(Ati|Sti )
∂θ

(
T∑
l=t

ρi(0, l)γ
lRli

)
.

Proof. See Appendix B.

5.3. Algorithm

We provide a sketch of our proposed Prognosticator pro-
cedure for optimizing the future performance of the policy
in Algorithm 1. To make the method more practical, we
incorporated two additional modifications to reduce compu-
tational cost and variance.

First, it is often desirable to perform an update only after a
certain episode interval δ to reduce computational cost. This
raises the question: if a newly found policy will be executed
for the next δ episodes, should we choose this new policy
to maximize performance on just the single next episode,
or to maximize the average performance over the next δ
episodes? An advantage of our proposed method is that we
can easily tune how far in the future we want to optimize for.
Thus, to minimize lifelong regret, we propose optimizing

Algorithm 1: Prognosticator

1 Input Learning-rate η, time-duration δ,
entropy-regularizer λ

2 Initialize Forecasting function Ψ, Buffer B
3 while True do

# Record a new batch of trajectories using πθ

4 for episode = 1, 2, ..., δ do
5 h = {(s0:T , a0:T ,Pr(a0:T |s0:T ), r0:T )}
6 B.insert(h)

# Update for future performance
7 for i = 1, 2, ... do

# Evaluate past performances
8 for k = 1, 2, ..., |B| do
9 Ĵk(θ) =

∑T
t=0 ρ(0, t)γtRtk . (2)

# Future forecast and its gradient
10 L(θ) = 1

δ

∑δ
∆=1 Ĵk+∆(θ) . (4)

11 θ ← θ + η ∂
∂θ (L(θ) + λH(θ)) . (5)

for the mean performance over the next δ episodes. That is,
arg maxθ (1/δ)

∑δ
∆=1 Ĵk+∆(θ).

Second, notice that if the policy becomes too close to de-
terministic, there would be two undesired consequences.
(a) The policy will not cause exploration, precluding the
agent from observing any changes to the environment in
states that it no longer revisits—changes that might make
entering those states worthwhile to the agent. (b) In the
future when estimating Ĵk+1(θ) using the past performance
of θ, importance sampling will have high variance if the pol-
icy executed during episode k + 1 is close to deterministic.
To mitigate these issues, we add an entropy regularizer H
during policy optimization. More details are available in
Appendix D.

6. Understanding the Behavior of
Prognosticator

Notice that as the scalar term (a) is multiplied by the PDIS
gradient term (b) in (5), the gradient of future performance
can be viewed as a weighted sum of off-policy policy gradi-
ents. In Figure 3, we provide visualization of the weights
ζi := ∂Ĵ100(θ)/∂Ĵi(θ) for PDIS gradients of each episode
i, when the performance for 100th episode is forecasted us-
ing data from the past 99 episodes. For the specific setting
when Ψ is an OLS estimator, these weights are independent
of Y in (6) and their pattern remains constant for any given
sequence of MDPs.

Importantly, note the occurrence of negative weights in
Figure 3 when the identity basis or Fourier basis is used,
suggesting that the optimization procedure should move
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Figure 3. The value of weights ζi for all values of i ∈ [1, 99]
using different basis functions to encode the time index. Notice
that many weights are negative when using the identity or Fourier
bases.

towards a policy that had lower performance in some of the
past episodes. While this negative weighting seems unusual
at first glance, it has an intriguing interpretation.

To better understand these negative weights, consider a qual-
itative comparison when weights from different methods
in Figure 3 are used along with the performance estimates
of policies π1 and π2 in Figure 1. Despite having lower
estimates of return everywhere, π2’s rising trend suggests
that it might have higher performance in the future, that
is, Jk+1(π2) > Jk+1(π1). Existing online learning meth-
ods like FTL, maximize performance on all the past data
uniformly (green curve in Figure 3). Similarly, the expo-
nential weights (red curve in Figure 3) are representative
of approaches that only optimize using data from recent
episodes and discard previous data. Either of these meth-
ods that use only non-negative weights can never capture
the trend to forecast Jk+1(π2) > Jk+1(π1). However, the
weights obtained when using the identity basis would facil-
itate minimization of performances in the distant past and
maximization of performance in the recent past. Intuitively,
this means that it moves towards a policy whose perfor-
mance is on a linear rise, as it expects that policy to have
better performance in the future.

While weights from the identity basis are useful for forecast-
ing whether Jk+1(π2) > Jk+1(π1), it cannot be expected
that the trend will always be linear as in Figure 1. To be
more flexible and allow for any smooth trend, we opt to
use the Fourier basis in our experiments. Observe the alter-
nating sign of weights in Figure 3 when using the Fourier
basis. This suggests that the optimization procedure will
take into account the sequential differences in performances
over the past, thereby favoring the policy that has shown the
most performance increments in the past. This also avoids
restricting the performance trend of a policy to be linear.

7. Mitigating Variance
While model-free algorithms for finding a good policy are
scalable to large problems, they tend to suffer from high-
variance (Greensmith et al., 2004). In particular, the use of
importance sampling estimators can increase the variance
further (Guo et al., 2017). In our setup, high variance in
estimates of past performances Ĵ1:k(π) of π can hinder cap-
turing π’s performance trend, thereby making the forecasts
less reliable.

Notice that a major source of variance is the availability
of only a single trajectory sample per MDP Mi, for all
i ∈ N. If this trajectory Hi, generated using βi is likely
when using βi, but has near-zero probability when using π
then the estimated Ĵi(π) is also nearly zero. While Ĵi(π) is
an unbiased estimate of Ji(π), information provided by this
single Hi is of little use to evaluate Ji(π). Subsequently,
discarding this from time-series analysis, rather than setting
it to be 0, can make the time series forecast more robust
against outliers. In comparison, if trajectory Hi is unlikely
when using βi but likely when using π, then not only is
Hi very useful for estimating Ji(π) but it also has a lower
chance of occurring in the future, so this trajectory must
be emphasized when making a forecast. Such a process
of (de-)emphasizing estimates of past returns using the col-
lected data itself can introduce bias, but this bias might be
beneficial in this few-sample regime.

To capture this idea formally, we build upon the insights of
Hachiya et al. (2012) and Mahmood et al. (2014), who draw
an equivalence between weighted least-squares (WLS) esti-
mation and the weighted importance sampling (WIS) (Pre-
cup, 2000) estimator. Particularly, let Gi :=

∑T
t=0 γ

tRti be
the discounted return of the ith trajectory observed from a
stationary MDP, and ρ‡i := ρi(0, T ) be the importance ratio
of the entire trajectory. Then the WIS estimator, Ĵ‡(π), of
the performance of π in a stationary MDP is,

Ĵ‡(π) := argmin
c∈R

1

n

n∑
i=1

ρ‡i (Gi − c)
2 =

∑n
i=1 ρ

‡
iGi∑n

i=1 ρ
‡
i

.

To mitigate variance in our setup, we propose extending
WIS. In the non-stationary setting, to perform WIS while
capturing the trend in performance over time, we use a
modified forecasting function Ψ‡, which is a weighted least-
squares regression model with a d−dimensional basis func-
tion φ, and parameters w‡ ∈ Rd×1,

w‡ := argmin
c∈Rd×1

1

n

n∑
i=1

ρ‡i (Gi − c
>φ(i))2. (7)

Let Λ ∈ Rk×k be a diagonal weight matrix such that Λii =
ρ‡i , let Φ ∈ Rk×d be the basis matrix, and let the following
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be input and output variables,

X := [1, 2, ..., k]> ∈ Rk×1,

Y := [G1, G2, ..., Gk]> ∈ Rk×1.

The solution to the weighted least squares problem in (7) is
then given by w‡ = (Φ>ΛΦ)−1Φ>ΛY and the forecast of
the future performance can be obtained using,

Ĵ‡k+1(π) := φ(k + 1)w‡ = φ(k + 1)(Φ>ΛΦ)−1Φ>ΛY.

Ĵ‡k+1(π) has several desired properties. It incorporates a
notion of how relevant each observed trajectory is towards
forecasting, while also capturing the trend in performance.
The forecasts are less sensitive to the importance sampling
variances and the entire process is still differentiable.

8. Generalizing to the Stationary Setting
As the agent is unaware of how the environment is changing,
a natural question to ask is: What if the agent wrongly as-
sumed a stationary environment was non-stationary? What
is the quality of of the agent’s performance forecasts? What
is the impact of the negative weights on past evaluations of
a policy’s performance? Here we answer these questions.

Before stating the formal results, we introduce some neces-
sary notation and two additional properties. Let J(π) be the
performance of policy π for a stationary MDP. Let Ĵk+δ(π)

and Ĵ‡k+δ(π) be the non-stationary importance sampling
(NIS) and non-stationary weighted importance sampling
(NWIS) estimators of performance δ episodes in future. Fur-
ther, let the basis function φ used for encoding the time
index in both Ψ and Ψ‡ be such that it satisfies the follow-
ing conditions: (a) φ(·) always contains 1 to incorporate
a bias/intercept coefficient in least-squares regression (for
example, φ(·) = [φ1(·), ..., φd−1(·), 1], where φi(·) are ar-
bitrary functions). (b) Φ has full column rank such that
(Φ>Φ)−1 exists. Both these properties are trivially satis-
fied by most basis functions. With this notation and these
properties, we first formalize the stationarity assumption:

Assumption 1 (Stationarity). For all i,Mi =Mi+1.

This implies that E[Ĵi(π)] = J(π). Following prior litera-
ture (Precup, 2000; Thomas, 2015; Mahmood et al., 2014)
we also make a simplifying assumption that allows us to
later apply a standard form of the laws of large numbers:

Assumption 2 (Independence). Ĵi(π) are independent for
all i in {1, . . . , k}.

This assumption is satisfied if there is only one behavior
policy (i.e., ∀i, βi = βi+1) or if the sequence of behavior
policies does not depend on the data. This assumption is not
satisfied when the sequence of behavior policies depends on

Figure 4. Blood-glucose level of an in-silico patient for 24 hours
(one episode). Humps in the graph occur at times when a meal is
consumed by the patient.

the data because then episodes are not independent. While
we expect that the following theorems apply even without
Assumption 2, we have not established this result formally.

We then have the following results indicating that NIS is
unbiased and consistent like ordinary importance sampling
and NWIS is biased and consistent like weighted importance
sampling.

Theorem 1 (Unbiased NIS). Under Assumptions 1 and 2,
for all δ ≥ 1, Ĵk+δ(π) is an unbiased estimator of J(π).
That is, E[Ĵk+δ(π)] = J(π).

Theorem 2 (Biased NWIS). Under Assumptions 1 and 2,
for all δ ≥ 1, Ĵ‡k+δ(π) may be a biased estimator of J(π).
That is, it is possible that E[Ĵ‡k+δ(π)] 6= J(π).

Theorem 3 (Consistent NIS). Under Assumptions 1 and 2,
for all δ ≥ 1, Ĵk+δ(π) is a consistent estimator of J(π).
That is, as N →∞, ĴN+δ(π)

a.s.−→ J(π).

Theorem 4 (Consistent NWIS). Under Assumptions 1
and 2, for all δ ≥ 1, Ĵ‡k+δ(π) is a consistent estimator
of J(π). That is, as N →∞, Ĵ‡N+δ(π)

a.s.−→ J(π).

Proof. See Appendix A for all of these proofs.

NWIS is biased and consistent like the WIS estimator, and
our experiments show that it also has similar variance re-
duction properties that can make the optimization process
more efficient for non-stationary MDPs when the variance
of Ĵi(π) is high.

9. Empirical Analysis
This section presents empirical evaluations using several en-
vironments inspired by real-world applications that exhibit
non-stationarity. In the following paragraphs, we briefly
discuss each environment; a more detailed description is
available in Appendix D.
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Figure 5. Best performances of all the algorithms obtained by conducting a hyper-parameter sweep over 2000 hyper-parameter combina-
tions per algorithm, per environment. For each hyper-parameter setting, 30 trials were executed for the recommender system and the
goal reacher environments, and 10 trials for the diabetes treatment environment. Error bars correspond to the standard error. The x-axis
represents how fast the environment is changing and the y-axis represents regret (lower is better). Individual learning curves for each
speed, for each domain, is available in Appendix E.

Non-stationary Diabetes Treatment:

This environment is based on an open-source implemen-
tation (Xie, 2019) of the FDA approved Type-1 Diabetes
Mellitus simulator (T1DMS) (Man et al., 2014) for treat-
ment of Type-1 Diabetes. Each episode consists of a day in
an in-silico patient’s life. Consumption of a meal increases
the blood-glucose level in the body and if the blood-glucose
level becomes too high, then the patient suffers from hyper-
glycemia and if the level becomes too low, then the patient
suffers from hypoglycemia. The goal is to control the blood-
glucose level by regulating the insulin dosage to minimize
the risk associated with both hyper and hypoglycemia.

However, the insulin sensitivity of a patient’s internal body
organs vary over time, inducing non-stationarity that should
be accounted for. In the T1DMS simulator, we induce this
non-stationarity by oscillating the body parameters (e.g.,
insulin sensitivity, rate of glucose absorption, etc.) between
two known configurations available in the simulator.

Non-stationary Recommender System: In this environ-
ment a recommender engine interacts with a user whose
interests in different items fluctuate over time. In particular,
the rewards associated with each item vary in seasonal cy-
cles. The goal is to maximize revenue by recommending an
item that the user is most interested in at any time.

Non-stationary Goal Reacher: This is a 2D environment
with four (left, right, up, and down) actions and a continuous
state set representing the Cartesian coordinates. The goal is
to make the agent reach a moving goal position.

For all of the above environments, we regulate the speed
of non-stationarity to characterize an algorithms’ ability to
adapt. Higher speed corresponds to a greater amount of non-
stationarity; A speed of zero indicates that the environment
is stationary.

We consider the following algorithms for comparison:

Prognosticator: Two variants of our algorithm, Pro-OLS
and Pro-WLS, which use OLS and WLS estimators for Ψ.

ONPG: Similar to the adaptation technique presented by Al-
Shedivat et al. (2017), this baseline performs purely online
optimization by fine-tuning the existing policy using only
the trajectory being observed online.

FTRL-PG: Similar to the adaptation technique presented
by Finn et al. (2019), this baseline performs Follow-the-
(regularized)-leader optimization by maximizing perfor-
mance over both the current and all the past trajectories.

9.1. Results

In the non-stationary recommender system, as the exact
value of J∗k is available from the simulator, we can compute
the true value of regret. However, for the non-stationary
goal reacher and diabetes treatment environment, as J∗k
is not known for any k, we use a surrogate measure for
regret. That is, let J̃∗k be the maximum return obtained
in episode k by any algorithm, then we use (

∑N
k=1(J̃∗k −

Jk(π)))/(
∑N
k=1 J̃

∗
k ) as the surrogate regret for a policy π.

In the non-stationary recommender system, all the methods
perform nearly the same when the environment is stationary.
FTRL-PG has a slight edge over ONPG when the environ-
ment is stationary as all the past data is directly indicative of
the future MDP. It is interesting to note that while FTRL-PG
works the best for the stationary setting in the recommender
system and the goal reacher task, it is not the best in the
diabetes treatment task as it can suffer from high variance.
We discuss the impact of variance in later paragraphs.

With the increase in the speed of non-stationarity, perfor-
mance of both the baselines deteriorate quickly. Of the
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two, ONPG is better able to mitigate performance lag as
it discards all the past data. In contrast, both the proposed
methods, Pro-OLS and Pro-WLS, can leverage all the past
data to better capture the impact of non-stationarity and thus
are consistently more robust to the changes in the environ-
ment.

In the non-stationary goal reacher environment, a similar
trend as above is observed. While considering all the past
data equally is useful for FTRL-PG in the stationary set-
ting, it creates drastic performance lag as the speed of the
non-stationarity increases. Between Pro-OLS and Pro-WLS,
in the stationary setting, once the agent nearly solves the
task all subsequent trajectories come from nearly the same
distribution and thus the variance resulting from importance
sampling ratio is not severe. In such a case, where the vari-
ance is low, Pro-WLS has less advantage over Pro-OLS and
additionally suffers from being biased. However, as the non-
stationarity increases, the optimal policy keeps changing
and there is a higher discrepancy between distributions of
past and current trajectories. This makes the lower vari-
ance property of Pro-WLS particularly useful. Having the
ability to better capture the underlying trend, both Pro-OLS
and Pro-WLS consistently perform better than the baselines
when there is non-stationarity.

The non-stationary diabetes treatment environment is par-
ticularly challenging as it has a continuous action set. This
makes importance sampling based estimators subject to
much higher variance. Consequently, Pro-OLS is not able
to reliably capture the impact of non-stationarity and per-
forms similar to FTRL-PG. In comparison, ONPG is data-
inefficient and performs poorly on this domain across all
the speeds. The most advantageous algorithm in this envi-
ronment is Pro-WLS. Since Pro-WLS is designed to bet-
ter tackle variance stemming from importance sampling,
it is able to efficiently use the past data to capture the un-
derlying trend and performs well across all the speeds of
non-stationarity.

10. Conclusion
We presented a policy gradient-based algorithm that com-
bines counter-factual reasoning with curve-fitting to proac-
tively search for a good policy for future MDPs. Irrespective
of the environment being stationary or non-stationary, the
proposed method can leverage all the past data, and in non-
stationary settings it can pro-actively optimize for future
performance as well. Therefore, our method provides a
single solution for mitigating performance lag and being
data-efficient.

While the proposed algorithm has several desired proper-
ties, many open questions remain. In our experiments, we
noticed that the proposed algorithm is particularly sensitive

to the value of the entropy regularizer λ. Keeping λ too
high prevents the policy from adapting quickly. Keeping λ
too low lets the policy overfit to the forecast and become
close to deterministic, thereby increasing the variance for
subsequent importance sampling estimates of policy per-
formance. While we resorted to hyper-parameter search,
leveraging methods that adapt λ automatically might be
fruitful (Haarnoja et al., 2018).

Our framework highlights new research directions for study-
ing bias-variance trade-offs in the non-stationary setting.
While tackling the problem from the point of view of a
univariate time-series is advantageous as the model-bias of
the environment can be reduced, this can result in higher
variance in the forecasted performance. Developing lower
variance off-policy performance estimators is also an active
research direction which directly complements our algo-
rithm. In particular, often a partial model of the environment
is available and using it through doubly-robust estimators
(Jiang & Li, 2015; Thomas & Brunskill, 2016) is an inter-
esting future direction.

Further, there are other forecasting functions, like kernel
regression, Gaussian Processes, ARIMA, etc., and some
break-point detection algorithms that can potentially be used
to incorporate more domain knowledge in the forecasting
function Ψ, or make Ψ robust to jumps and auto-correlations
in the time series.
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