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Abstract

We investigate the problem of automatically constructing efficient rep-
resentations or basis functions for approximating value functions based
on analyzing the structure and topology of the state space. In particu-
lar, two novel approaches to value function approximation are explored
based on automatically constructing basis functions on state spaces that
can be represented as graphs or manifolds: one approach usesthe eigen-
functions of the Laplacian, in effect performing a global Fourier analysis
on the graph; the second approach is based on diffusion wavelets, which
generalize classical wavelets to graphs using multiscale dilations induced
by powers of a diffusion operator or random walk on the graph.Together,
these approaches form the foundation of a new generation of methods for
solving large Markov decision processes, in which the underlying repre-
sentation and policies are simultaneously learned.

1 Introduction

Value function approximation (VFA) is a well-studied problem: a variety of linear and non-
linear architectures have been studied [1]. A significant drawback of much past work is that
the architecture for VFA is not automatically derived from the geometry of the underlying
state space, but rather handcoded in anad hoctrial-and-error process by a human designer.
A new framework for VFA calledproto-reinforcement learning(PRL) was recently pro-
posed in [7, 8, 9]. Instead of learning task-specific value functions using a handcoded
parametric architecture, agents learn proto-value functions, or global basis functions that
reflect intrinsic large-scale geometric constraints that all value functions on a manifold
[11] or graph [3] adhere to, using spectral analysis of the self-adjoint Laplace operator.
This approach also yields new control learning algorithms called representation policy it-
eration (RPI) where both the underlying representations (basis functions) and policies are
simultaneously learned. Laplacian eigenfunctions also provide ways of automatically de-
composing state spaces since they reflectbottlenecksand other global geometric invariants.

In this paper, we extend the earlier Laplacian approach in a new direction using the recently
proposeddiffusion wavelet transform(DWT), which is a compact multi-level representa-
tion of Markov diffusion processes on manifolds and graphs [4, 2]. Diffusion wavelets



provide an interesting alternative to global Fourier eigenfunctions for value function ap-
proximation, since they encapsulate all the traditional advantages of wavelets: basis func-
tions have compact support, and the representation is inherently hierarchical since it is
based on multi-resolution modeling of processes at different spatial and temporal scales.

2 Technical Background

This paper uses the framework of spectral graph theory [3] tobuild basis representations
for smooth (value) functions on graphs induced by Markov decision processes. Given
any graphG, an obvious but poor choice of representation is the “table-lookup” orthonor-
mal encoding, whereφ(i) = [0 . . . i . . . 0] is the encoding of theith node in the graph.
This representation does not reflect the topology of the specific graph under considera-
tion. Polynomials are another popular choice of orthonormal basis functions [5], where
φ(s) = [1 s . . . sk] for some fixedk. This encoding has two disadvantages: it is numeri-
cally unstable for large graphs, and is dependent on the ordering of vertices. In this paper,
we outline a new approach to the problem of building basis functions on graphs using
Laplacian eigenfunctions and diffusion wavelets.

A finite Markov decision process (MDP)M = (S, A, P a
ss′ , Ra

ss′) is defined as a finite set
of statesS, a finite set of actionsA, a transition modelP a

ss′ specifying the distribution over
future statess′ when an actiona is performed in states, and a corresponding reward model
Ra

ss′ specifying a scalar cost or reward [10]. A state value function is a mappingS → R

or equivalently a vector inR|S|. Given a policyπ : S → A mapping states to actions,
its corresponding value functionV π specifies the expected long-term discounted sum of
rewards received by the agent in any given states when actions are chosen using the policy.
Any optimal policyπ∗ defines the same unique optimal value functionV ∗ which satisfies
the nonlinear constraints

V
∗

(s) = max
a

∑

s′

P a
ss′ (Ra

ss′ + γV ∗(s′))

For any MDP, any policy induces a Markov chain that partitions the states into classes:
transient states are visited initially but not after a finitetime, and recurrent states are visited
infinitely often. InergodicMDPs, the set of transient states is empty. The constructionof
basis functions below assumes that the Markov chain inducedby a policy is a reversible
random walk on the state space. While some policies may not induce such Markov chains,
the set of basis functions learned from a reversible random walk can still be useful in
approximating value functions for (reversible or non-reversible) policies. In other words,
the construction of the basis functions can be considered anoff-policy method: just as
in Q-learning where the exploration policy differs from theoptimal learned policy, in the
proposed approach the actual MDP dynamics may induce a different Markov chain than the
one analyzed to build representations. Reversible random walks greatly simplify spectral
analysis since such random walks are similar to a symmetric operator on the state space.
Ultimately, the constructed basis functions can approximate the value function for any
policy, regardless of what type of Markov chain it induces.

2.1 Smooth Functions on Graphs and Value Function Representation

We assume the state space can be modeled as a finite undirectedweighted graph(G, E, W ),
but the approach generalizes to Riemannian manifolds. We definex ∼ y to mean an edge
betweenx andy, and the degree ofx to bed(x) =

∑
x∼y w(x, y). D will denote the

diagonal matrix defined byDxx = d(x), andW the matrix defined byWxy = w(x, y) =
w(y, x). TheL2 norm of a function onG is ||f ||22 =

∑
x∈G |f(x)|2d(x). The gradient

of a function is∇f(i, j) = w(i, j)(f(i) − f(j)) if there is an edgee connectingi to j, 0



otherwise. The smoothness of a function on a graph, can be measured by the Sobolev norm

||f ||2H2 = ||f ||22 + ||∇f ||22 =
∑

x

|f(x)|2d(x) +
∑

x∼y

|f(x) − f(y)|2w(x, y) . (1)

The first term in this norm controls the size (in terms ofL2-norm) for the functionf , and
the second term controls the size of the gradient. The smaller ||f ||H2 , the smoother isf .
We will assume that the value functions we consider have small H2 norms, except at a
few points, where the gradient may be large. Important variations exist, corresponding to
different measures on the vertices and edges ofG.

Classical techniques, such asvalue iterationandpolicy iteration[10], represent value func-
tions using an orthonormal basis(e1, . . . , e|S|) for the spaceR|S| [1]. For a fixed precision
ε, a value functionV π can be approximated as

||V π −
∑

i∈S(ε)

απ
i ei|| ≤ ε

with αi =< V π, ei > since theei’s are orthonormal, and the approximation is measured
in some norm, such asL2 or H2. The goal is to obtain representations in which the index
setS(ε) in the summation is as small as possible, for a given approximation errorε. This
hope is well founded at least whenV π is smooth or piecewise smooth, since in this case it
should be compressible in some well chosen basis{ei}.

3 Function Approximation using Laplacian Eigenfunctions

The combinatorial LaplacianL [3] is defined as

Lf(x) =
∑

y∼x

w(x, y)(f(x) − f(y)) = (D − W )f .

Often one considers thenormalizedLaplacianL = D− 1
2 (D−W )D− 1

2 which has spectrum
in [0, 2]. This Laplacian is related to the notion of smoothness as above, since〈f,Lf〉 =∑

x f(x)Lf(x) =
∑

x,y w(x, y)(f(x) − f(y))2 = ||∇f ||22, which should be compared
with (1). Functions that satisfy the equationLf = 0 are calledharmonic. The Spectral
Theorem can be applied toL (or L), yielding a discrete set of eigenvalues0 ≤ λ0 ≤ λ1 ≤
. . . λi ≤ . . . and a corresponding orthonormal basis of eigenfunctions{ξi}i≥0, solutions to
the eigenvalue problemLξi = λiξi.

The eigenfunctions of the Laplacian can be viewed as an orthonormal basis of global
Fourier smooth functions that can be used for approximatingany value function on a
graph. These basis functions capture large-scale featuresof the state space, and are par-
ticularly sensitive to “bottlenecks”, a phenomenon widelystudied in Riemannian geometry
and spectral graph theory [3]. Observe thatξi satisfies||∇ξi||

2
2 = λi. In fact, the varia-

tional characterization of eigenvectors shows thatξi is the normalized function orthogonal
to ξ0, . . . , ξi−1 with minimal ||∇ξi||2. Hence the projection of a functionf on S onto the
topk eigenvectors of the Laplacian is the smoothest approximation tof , in the sense of the
norm inH2. A potential drawback of Laplacian approximation is that itdetects only global
smoothness, and may poorly approximate a function which is not globally smooth but only
piecewise smooth, or with different smoothness in different regions. These drawbacks are
addressed in the context of analysis with diffusion wavelets, and in fact partly motivated
their construction.

4 Function Approximation using Diffusion Wavelets

Diffusion wavelets were introduced in [4, 2], in order to perform a fast multiscale analysis
of functions on a manifold or graph, generalizing wavelet analysis and associated signal



DiffusionWaveletTree (H0, Φ0, J, ε):

// H0: symmetric conjugate to random walk matrix, represented onthe basisΦ0

// Φ0 : initial basis (usually Dirac’sδ-function basis), one function per column
// J : number of levels to compute
// ε: precision

for j from 0 to Jdo,

1. Compute sparse factorizationHj ∼ε QjRj , with Qj orthogonal.

2. Φj+1 ← Qj = HjR
−1

j and[H2
j

0 ]
Φj+1

Φj+1
∼jε Hj+1 ← RjR

∗

j .

3. Compute sparse factorizationI − Φj+1Φ
∗

j+1 = Q′

jR
′

j , with Q′

j orthogonal.

4. Ψj+1 ← Q′

j .

end

Figure 1: Pseudo-code for constructing a Diffusion WaveletTree

processing techniques (such as compression or denoising) to functions on manifolds and
graphs. They allow the fast and accurate computation of highpowers of a Markov chain
P on the manifold or graph, including direct computation of the Green’s function (or fun-
damental matrix) of the Markov chain,(I − P )−1, which can be used to solve Bellman’s
equation. Here, “fast” means that the number of operations required isO(|S|), up to loga-
rithmic factors.

Space constraints permit only a brief description of the construction of diffusion wavelet
trees. More details are provided in [4, 2]. The input to the algorithm is a “precision”
parameterε > 0, and a weighted graph(G, E, W ).

We can assume thatG is connected, otherwise we can consider each connected component
separately. The construction is based on using the natural random walkP = D−1W on a
graph and its powers to “dilate”, or “diffuse” functions on the graph, and then defining an
associated coarse-graining of the graph. We symmetrizeP by conjugation and take powers
to obtain

Ht = D
1
2 P tD− 1

2 = (D− 1
2 WD− 1

2 )t = (I − L)t =
∑

i≥0

(1 − λi)
tξi(·)ξi(·) (2)

where{λi} and{ξi} are the eigenvalues and eigenfunctions of the Laplacian as above.
Hence the eigenfunctions ofHt are againξi and theith eigenvalue is(1−λi)

t. We assume
thatH1 is a sparse matrix, and that the spectrum ofH1 has rapid decay.

A diffusion wavelet tree consist of orthogonal diffusion scaling functionsΦj that are
smooth bump functions, with some oscillations, at scale roughly2j (measured with respect
to geodesic distance, for smallj), and orthogonal waveletsΨj that are smooth localized os-
cillatory functions at the same scale. The scaling functionsΦj span a subspaceVj , with the
property thatVj+1 ⊆ Vj , and the span ofΨj, Wj , is the orthogonal complement ofVj into
Vj+1. This is achieved by using the dyadic powersH2j

as “dilations”, to create smoother
and wider (always in a geodesic sense) “bump” functions (which represent densities for the
symmetrized random walk after2j steps), and orthogonalizing and downsampling appro-
priately to transform sets of “bumps” into orthonormal scaling functions.

Computationally (Figure 1), we start with the basisΦ0 = I and the matrixH0 := H1,
sparse by assumption, and construct an orthonormal basis ofwell-localized functions for
its range (the space spanned by the columns), up to precisionε, through a variation of
the Gram-Schmidt orthonormalization scheme, described in[4]. In matrix form, this is a



sparse factorizationH0 ∼ε Q0R0, with Q0 orthonormal. Notice thatH0 is |G| × |G|,
but in generalQ0 is |G| × |G(1)| and R0 is |G(1)| × |G|, with |G(1)| ≤ |G|. In fact
|G(1)| is approximately equal to the number of singular values ofH0 larger thanε. The
columns ofQ0 are an orthonormal basis of scaling functionsΦ1 for the range ofH0, written
as a linear combination of the initial basisΦ0. We can now writeH2

0 on the basisΦ1:
H1 := [H2]Φ1

Φ1
= Q∗

0H0H0Q0 = R0R
∗
0, where we usedH0 = H∗

0 . This is a compressed
representation ofH2

0 acting on the range ofH0, and it is a|G(1)| × |G(1)| matrix. We
proceed by induction: at scalej we have an orthonormal basisΦj for the rank ofH2j−1

up to precisionjε, represented as a linear combination of elements inΦj−1. This basis
contains|G(j)| functions, where|G(j)| is comparable with the number of eigenvaluesλj of

H0 such thatλ2j−1
j ≥ ε. We have the operatorH2j

0 represented onΦj by a|G(j)| × |G(j)|
matrix Hj , up to precisionjε. We compute a sparse decomposition ofHj ∼ε QjRj , and
obtain the next basisΦj+1 = Qj = HjR

−1
j and representH2j+1

on this basis by the

matrixHj+1 := [H2j

]
Φj+1

Φj+1
= Q∗

jHjHjQj = RjR
∗
j .

Wavelet bases for the spacesWj can be built analogously by factorizingIVj
−Qj+1Q

∗
j+1,

which is the orthogonal projection on the complement ofVj+1 into Vj . The spaces can
be further split to obtain wavelet packets [2]. A Fast Diffusion Wavelet Transform al-
lows expanding inO(n) (wheren is the number of vertices) computations any function
in the wavelet, or wavelet packet, basis, and efficiently search for the most suitable basis
set. Diffusion wavelets and wavelet packets are a very efficient tool for representation and
approximation of functions on manifolds and graphs [4, 2], generalizing to these general
spaces the nice properties of wavelets that have been so successfully applied to similar tasks
in Euclidean spaces.

Diffusion wavelets allow computingH2k

f for any fixedf , in orderO(kn). This is non-
trivial because while the matrixH is sparse, large powers of it are not, and the computation
H · H . . . · (H(Hf)) . . .) involves2k matrix-vector products. As a notable consequence,
this yields a fast algorithm for computing the Green’s function, or fundamental matrix,
associated with the Markov processH , via(I−H1)−1f =

∑
k≥0 Hk =

∏
k≥0(I+H2k

)f .
In a similar way one can compute(I − P )−1. For large classes of Markov chains we can
perform this computation in timeO(n), in a direct (as opposed to iterative) fashion. This is
remarkable since in general the matrix(I−H1)−1 is full and only writing down the entries
would take timeO(n2). It is the multiscale compression scheme that allows to efficiently
represent(I −H1)−1 in compress form, taking advantage of the smoothness of the entries
of the matrix. This is discussed in general in [4]. We use thisapproach to develop a faster
policy evaluation step for solving MDPs described in [6]

5 Experiments

Figure 2 contrasts Laplacian eigenfunctions and diffusionwavelet basis functions in a three
room grid world environment. Laplacian eigenfunctions were produced by solvingLf =
λf , whereL is the combinatorial Laplacian, whereas diffusion waveletbasis functions
were produced using the algorithm described in Figure 1. Theinput to both methods is an
undirected graph, where edges connect states reachable through a single (reversible) action.
Such graphs can be easily learned from a sample of transitions, such as that generated by
RL agents while exploring the environment in early phases ofpolicy learning. Note how
the intrinsic multi-room environment is reflected in the Laplacian eigenfunctions. The
Laplacian eigenfunctions are globally defined over the entire state space, whereas diffusion
wavelet basis functions are progressively more compact at higher levels, beginning at the
lowest level with the table-lookup representation, and converging at the highest level to



Figure 2: Examples of Laplacian eigenfunctions (left) and diffusion wavelet basis functions
(right) computed using the graph Laplacian on a complete undirected graph of a determin-
istic grid world environment with reversible actions.

basis functions similar to Laplacian eigenfunctions. Figure 3 compares the approximations
produced in a two-room grid world MDP with630 states. These experiments illustrate
the superiority of diffusion wavelets: in the first experiment (top row), diffusion wavelets
handily outperform Laplacian eigenfunctions because the function is highly nonlinear near
the goal, but mostly linear elsewhere. The eigenfunctions contain a lot of ripples in the flat
region causing a large residual error. In the second experiment (bottom row), Laplacian
eigenfunctions work significantly better because the valuefunction is globally smooth.
Even here, the superiority of diffusion wavelets is clear.
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Figure 3: Left column: value functions in a two room grid world MDP, where each room
has21 × 15 states connected by a door in the middle of the common wall. Middle two
columns: approximations produced by5 diffusion wavelet bases and Laplacian eigenfunc-
tions. Right column: least-squares approximation error (log scale) using up to200 basis
functions (bottom curve: diffusion wavelets; top curve: Laplacian eigenfunctions). In the
top row, the value function corresponds to a random walk. In the bottom row, the value
function corresponds to the optimal policy.



5.1 Control Learning using Representation Policy Iteration

This section describes results of using the automatically generated basis functions inside
a control learning algorithm, in particular the Representation Policy Iteration (RPI) al-
gorithm [8]. RPI is an approximate policy iteration algorithm where the basis functions
φ(s, a) handcoded in other methods, such as LSPI [5] are learned froma random walk of
transitions by computing the graph Laplacian and then computing the eigenfunctions or the
diffusion wavelet bases as described above. One striking property of the eigenfunction and
diffusion wavelet basis functions is their ability to reflect nonlinearities arising from “bot-
tlenecks” in the state space. Figure 4 contrasts the value function approximation produced
by RPI using Laplacian eigenfunctions with that produced bya polynomial approximator.
The polynomial approximator yields a value function that is“blind” to the nonlinearities
produced by the walls in the two room grid world MDP.

Figure 4: This figures compares the value functions producedby RPI using Laplacian
eigenfunctions with that produced by LSPI using a polynomial approximator in a two
room grid world MDP with a “bottleneck” region representingthe door connecting the two
rooms. The Laplacian basis functions on the left clearly capture the nonlinearity arising
from the bottleneck, whereas the polynomial approximator on the right smooths the value
function across the walls as it is “blind” to the large-scalegeometry of the environment.

Table 1 compares the performance of diffusion wavelets and Laplacian eigenfunctions us-
ing RPI on the classic chain MDP from [5]. Here, an initial random walk of5000 steps
was carried out to generate the basis functions in a50 state chain. The chain MDP is a
sequential open (or closed) chain of varying number of states, where there are two actions
for moving left or right along the chain. In the experiments shown, a reward of1 was pro-
vided in states10 and41. Given a fixedk, the encodingφ(s) of a states for Laplacian
eigenfunctions is the vector comprised of the values of thekth lowest-order eigenfunctions
on statek. For diffusion wavelets, all the basis functions at levelk were evaluated at state
s to produce the encoding.

Method #Trials Error
RPI DF (5) 4.4 2.4
RPI DF (14) 6.8 4.8
RPI DF (19) 8.2 0.6
RPI Lap (5) 4.2 3.8
RPI Lap (15) 7.2 3
RPI Lap (25) 9.4 2

Method #Trials Error
LSPI RBF (6) 3.8 20.8
LSPI RBF (14) 4.4 2.8
LSPI RBF (26) 6.4 2.8
LSPI Poly (5) 4.2 4
LSPI Poly (15) 1 34.4
LSPI Poly (25) 1 36

Table 1: This table compares the performance of RPI using diffusion wavelets and Lapla-
cian eigenfunctions with LSPI using handcoded polynomial and radial basis functions on a
50 state chain graph MDP.

Each row reflects the performance of either RPI using learnedbasis functions or LSPI with



a handcoded basis function (values in parentheses indicatethe number of basis functions
used for each architecture). The two numbers reported are steps to convergence and the
error in the learned policy (number of incorrect actions), averaged over 5 runs. Laplacian
and diffusion wavelet basis functions provide a more stableperformance at both the low
end and at the higher end, as compared to the handcoded basis functions. As the number of
basis functions are increased, RPI with Laplacian basis functions takes longer to converge,
but learns a more accurate policy. Diffusion wavelets converge slower as the number of
basis functions is increased, giving the best results overall with 19 basis functions. Unlike
Laplacian eigenfunctions, the policy error is not monotonically decreasing as the number
of bases functions is increased. This result is being investigated. LSPI with RBF is unstable
at the low end, converging to a very poor policy for6 basis functions. LSPI with a5 degree
polynomial approximator works reasonably well, but its performance noticeably degrades
at higher degrees, converging to a very poor policy in one step for k = 15 andk = 25.

6 Future Work

This paper described two novel approaches to state value function approximation where
the underlying basis functions are not handcoded, but learned based on a harmonic anal-
ysis of the state space topology. We are exploring many extensions of this framework,
including approximating action value functions as well as large state spaces by exploiting
symmetries defined by a group of automorphisms of the graph, or certain covering spaces
of the graph. These enhancements will facilitate efficient construction of eigenfunctions
and diffusion wavelets. For large state spaces, one can randomly subsample the graph,
construct the eigenfunctions of the Laplacian or the diffusion wavelets on the subgraph,
and then interpolate these functions using the Nyström approximation and related low-rank
linear algebraic methods. In experiments on the classic inverted pendulum control task,
the Nyström approximation yielded excellent results compared to radial basis functions,
learning a more stable policy with a smaller number of samples. Additional experiments in
more complex continuous and discrete control tasks are ongoing.
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