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Abstract. This paper describes research to analyze students’ initial
skill level and to predict their hidden characteristics while working with
an intelligent tutor. Based only on pre-test problems, a learned network
was able to evaluate a students mastery of twelve geometry skills. This
model will be used online by an Intelligent Tutoring System to dynami-
cally determine a policy for individualizing selection of problems/hints,
based on a students learning needs. Using Expectation Maximization,
we learned the hidden parameters of several Bayesian networks that
linked observed student actions with inferences about unobserved fea-
tures. Bayesian Information Criterion was used to evaluate different skill
models. The contribution of this work includes learning the parameters
of the best network, whereas in previous work, the structure of a student
model was fixed.

1 Introduction

Intelligent tutoring systems provide individualized instruction based on students’
knowledge level. This is a hard problem mainly because knowledge is measured in
terms of skill mastery, which are unobservable abstractions. Previous approaches
include belief networks [12] and Bayesian networks [3],[1]. Traditional Bayesian
approaches to determining students’ understanding of a skill consist of the eval-
uation of observable student behavior on problems that are thought to require
specific skills to be solved correctly. For example, the cognitive mastery approach
performs Bayesian estimations of mastery given some observed evidence about
students’ correct or incorrect responses to problems [4]. Such models rely on
parameters that link problems to skills, such as the probability of answering a
problem correctly even though the skill is not mastered (guessing) and the prob-
ability of answering incorrectly given that the skill is mastered (slipping). These
parameters are easier to estimate when a problem involves just one skill, but get
more complicated as the number of skills involved in a problem increases.

We propose that a full model of student mastery of skills can be learned with
machine learning techniques that deal with missing data. Our past work showed
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that student models can be learned from simulated data of students’ responses
on problems [8]. In this paper, we present the results of learning a student model
from real student data. We take students’ actual responses from a pencil-and-
paper pre-test and learn the parameters that link problems to skills, producing
a model that allows us to make inferences about students’ mastery levels. Last,
we use the resulting model for inference and show how the mastery of skills
improves after using our tutoring system.

One concrete future use of this model is a proper initialization of the student
model before the tutoring session starts. Students will take an online pre-test,
skill mastery will be inferred, and then the tutoring session will start, well in-
formed about each student’s strengths and weaknesses. More precisely, the ITS
will have information about which skills a student has already mastered and
what level of improvement is still needed for others.

2 Problem Definition

The goal of this research is to gain knowledge of the student’s skill level and
thereby improve the problem and hint selector of the Intelligent Tutoring System.
Decisions made by the problem selector improve the tutor’s ability to customize
problems for an individual student.

Wayang Outpost is an Intelligent Tutoring System that emphasizes SAT-math
preparation [2]. The system can individualize the tutoring based upon a student’s
specific needs. In particular, the intent is to develop a tutor that will select an
action (i.e. a particular problem or hint) based on knowledge about a student’s
learning needs (i.e. problems he or she tend to get correct/incorrect/skip, in-
ferred knowledge and skills, motivation level, mathematics fact retrieval time
and learning style). The information we know about students increases as they
use the system, but we also need to gather some student characteristics before
the tutoring session begins, to initialize the student model and start proper tu-
toring. This information is collected by giving a pre-test to the students that
includes short-answer problems similar to the problems within the tutoring ses-
sion. This helps determine which skills a student initially has mastered so this
information can be used to discern the best policy for optimizing the student’s
learning.

We cannot observe a student’s mastery of a skill directly, so the tutor must
infer this knowledge from student answers to problems involving these skills.
Twelve basic geometry skills were identified by psychology and education re-
searchers based on skills commonly used on the math portion of the SAT. These
skills include: Skill 1. area of a square; Skill 2. area of a right triangle; Skill 3.
properties of an isosceles triangle; Skill 4. identify rectangle; Skill 5. area of a
rectangle; Skill 6. perimeter of a rectangle; Skill 7. identify right triangle; Skill 8.
area of a triangle; Skill 9. Pythagorean theorem; Skill 10: corresponding angles;
Skill 11: supplementary angles; Skill 12: sum of interior angles of a triangle.

Geometry problems were created utilizing these 12 skills, in the following
fashion: 12 one-skill problems each of which used only 1 of each of the 12 skills;
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12 two-skill problems which combine 2 of the 12 skills; 4 three-skill problems.
Each set of three skills {1,2,3}, {4,5,6}, {7,8,9}, and {10,11,12} (see Figure 2) was
combined to create the one-skill, two-skill and three-skill problems as described
above for each set. This totals 28 problems for the student pre-test, 7 from each
set of 3 skills. Some skills are obviously simpler than others (i.e. identify rectangle
versus Pythagorean theorem); thus, we expect to find results that these skills
are initially mastered more than others. Similarly, the one-skill problems were
generally easier for students than the two-skill and three-skill problems.

We know exactly which problems involve which skills, and we know how each
student answers each problem: incorrect, correct, or skipped. However, the actual
mastery of a skill, which is what we really want to know, is a hidden variable.
We treated these hidden skill variables as missing data and used Expectaction
Maximization (EM) to estimate the parameters of the Bayesian network to learn
skill mastery. This methodology is described in Section 4.

3 Data

The data used to create the models comes from a Spring 2005 study in an urban
area High School in Massachusetts. Students took the pre-test, then spent two
days using the tutor (50 minutes the first day and 30 minutes the next day)
and then took the post-test. A total of 159 students took the pre-tests that were
used to learn the Bayesian network and 132 students took the post-tests that
were used to learn a second Bayesian network. The post-test involves different
problems than the pre-test, but each problem is associated with the same set of
skills as in the pre-test. Each problem resulted in one of four observable student
actions: incorrect, correct, skipped or left blank1. Problems that are skipped
supply information about the associated skill(s) being possibly unmastered, as
opposed to problems that are left blank that we discount as uninformative.

Some information can be gathered based on the raw counts of how many stu-
dent observed answers for problems involving each skill were incorrect, correct,
or skipped (See Figure 1). Note when examining the raw counts that due to
various reasons 27 more students took the pretest than the posttest, therefore
small decreases/increases may not be significant.

The difference between the pre-test and post-test graphs suggests that the
Intelligent Tutoring System is teaching students to improve their performance on
these types of problems. More problems were answered correctly and less skipped
from pre-test to post-test. More importantly, the non-uniform distribution of
skill levels suggests that students improve more on certain skills than others,
highlighting the value in modeling and learning the distribution of skill mastery
levels across all students as well as within individual students.
1 Left blank is different than skipped since a problem is left blank when the student

runs out of time before reaching the problem (and thus is left blank at the end of
the test); instead, a problem is considered skipped when the student may not know
how to solve the problem and then skips to the following problem (and leaves the
problem blank in between other answered problems).
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(a) Pretest Observed Counts Across
Skills

(b) Posttest Observed Counts Across
Skills

Fig. 1. Improvement in student skill mastery from pre-test to post-test

4 Methodology

As stated earlier, the goal is to infer a student’s skills based on evaluating only
the pre-test. We now describe how to learn a Bayesian model of skill mastery
that links problem outcomes to skill mastery levels. Such a network has hidden
nodes representing the mastery of each skill (modeled by a binomial distribution)
and observed nodes representing student answers (modeled by a multinomial
distribution). Problems were created by hand to be associated with specific skills,
so we have a clear idea of how problems are linked to skills. We constructed a
Bayesian network (BN) linking each of the 12 skills to each of the problems that
are associated with it. Each skill is used in four problems: 1 one-skill problem, 2
two-skill problems, and 1 three-skill problems (see Figure 2).

Even though the dependencies between skills and problems are known, it is
not clear what the structure of the skills should be–whether the domain skills
should be linked within the network (i.e., does the mastery of one skill affect the
mastery of another skill?). Thus, we analyzed different models using the following
methodology: 1) Expectation Maximization method (EM) was used to learn the

Fig. 2. Bayesian Network for Flat Skill Model: This identical linking pattern is repeated
for each group of 3 skills and 7 problems. In total, there are 12 Skills (hidden nodes), and
28 Problems (observed nodes). Skills have 2 possible values: Not Mastered, Mastered.
Problems have 3 possible observed actions: Incorrect, Correct, Skipped.
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parameters of each Bayesian network on the pre-test data; 2) different BN models
were evaluated using the Bayesian Information Criterion (BIC) to decide which
model fit the data best; 3) the best fitting model was used for inference of student
mastery levels given some outcome of responses to problems.

– Parameter Learning using Expectation Maximization: EM is a framework for
maximum-likelihood parameter estimation with missing data [5]. EM finds
the model parameters that maximize the expected value of the log-likelihood,
where the data for the missing parameters are “filled in” by using their
expected value given the observed data. In general, EM is trying to learn
the pattern that best associates the observed data and the hidden parameters
within the context of the specified graphical model. The log-likelihood value
maximized though EM is used to calculate the BIC score of that model.

– Model Evaluation using Bayesian Information Criterion: The BIC [13] is
used to evaluate different models. Simply put, given a set of data and prob-
ability distribution generating the likelihood, the larger the likelihood, the
better the model fits. The BIC score is calculated with the following formula:
−2 ∗ ll + npar ∗ log(nobs), where ll is the log-liklihood, npar represents the
number of parameters and nobs the number of observations in the model.
Thus, the model with the highest BIC score is assumed to have the best
structure for this task.

– Inferring Mastery Levels: Inference can be thought of as querying the model.
The junction tree inference algorithm was used, which is an exact inference
engine that uses dynamic programming to avoid redundant computation.
Given a set of observations, the algorithm provides the probability of other
events. For example, when a student answers Problem 1 (using only Skill 1)
and Problem 2 (using only Skill 2) correctly, how likely is it that he or she
will answer Problem 4 (using Skills 1 and 2) correctly as well. Inference is
used to predict a student’s overall skill mastery. Given a pre-test for a new
student, inference is run on the learned model given the new student answers
to estimate this student’s skill levels.

Flat Skill Model
Based on the parameters learned when using uniform priors (where the proba-
bilities of mastered and not mastered are both initially 50%), we discovered that
it is not the incorrect answers from which we infer a lack of mastery, but the
skipped answers instead. See technical report for more results [6].

Hierarchical Skill Difficulty Model
Figures 3 and 4 capture the idea that the skills are not mutually exclusive and
may have different difficulty levels. For example, if the skill of identifying a
triangle is not mastered, it seems probable that the skill of finding the area of
a triangle is not mastered either. In particular, this Hierarchical Skill Difficulty
Model is arranged so that each parent node is a skill which should be mastered
before its child node can be mastered.
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Fig. 3. Bayesian Network for Hierarchical Skill Difficulty Model: The hierarchy is based
on the order in which skills should be learned (i.e. a student should know how to identify
a right triangle (Skill 7) before learning how to take its area (Skill 8) which should all
be mastered before learning the Pythagorean Theorem (Skill 9)). See Figure 4 for a
higher level view.

Fig. 4. Higher Level Look at Skill Difficulty Hierarchy Model (hidden skill nodes shown
only)

5 Results and Discussion

Flat Skill Model With Simulated Priors. This section describes and compares
the results achieved for the different models. As a first sanity check, we created
an experiment using hand-coded priors to get baseline conditional probability
Tables (CPTs). The structure of the model is identical to that of the flat skill
model (Figure 2) only with user-specified parameters for all 40 nodes. We then
sampled from this network to create simulated training data and built an identi-
cal model with the skill nodes hidden and initialized randomly. Finally, we found
the maximum likelihood estimates of the parameters using the generated data on
the model with random parameters. We compared the learned parameters to the
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Fig. 5. Kullback-Leibler Divergence across 28 problems for increasing sample size

parameters set in the initial model using the Kullback-Leibler Divergence (see
Figure 5). The KL-Divergence is a distance metric used to measure the differ-
ence between two probability distributions. We see that the learned parameters
are fairly close to the “true” ones. The divergence decreases as the number of
samples is increased, but begins to converge at an achievable sample size (400
students). The improvement to estimating the distribution with just 100 more
samples is significant. We are in the process of collecting additional data which
will increase our model’s accuracy.

Fig. 6. Reflects the learned conditional probabilities of seeing each of the observations
given it is know whether the skill is mastered or not: Flat Skill Model with uniform
priors, One-skill problems involving Skills 1, 2 & 3
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Flat Skill Model With Uniform Priors
Learned Model
In Figure 6, we consider one-skill problems. We have learned the conditional
probabilities of a student getting a specific problem incorrect/correct/skipped
assuming we know if the skill is mastered or not. Notice that it is not the incorrect
answers from which we infer a lack of mastery, but skipped instead. This makes
sense since the pre-test problems are not multiple choice, so if a student has no
mastery of the skill needed, he or she will usually skip it. When the observation
is correct we can usually infer the skill is mastered and when the observation
is skipped we can usually infer the skill is unmastered, but incorrect can mean
either. Perhaps, the student does not have the skill fully mastered and thus
answers incorrectly, or he or she may make a simple math error or misunderstand
the wording of the problem. For example, the graph on the top left of Figure 6
shows that a correct answer on problem 1 indicates a 90% certainty that Skill 1
(area of a square) is mastered.

Table 1. Bayesian Information Criterion For Flat and Hierarchical Skill Model (max-
imum BICs and average BICs are based on 50 random runs)

Max BIC Average BIC Standard Deviation Variance
Flat Skill Model −5202.4 −5294.7 47.022 2216.7
Hierarchical Skill Difficulty Model −4927.7 −5041.1 47.4178 2248.4

Hierarchical Skill Difficulty Model
In Table 1 we see that the Hierarchical Skill Difficulty Model yields the maximum
BIC, as well as the highest average BIC. Thus, we conclude that this has the
best structure to fit our data. This may be because some sets of skills/problems
which were independent previously are now relevant to each other. For example,
Skill 2 (area of a right triangle) is actually a subset of Skill 8 (area of a triangle),
but in the flat BN these skills are not linked, and are no way dependent on
each other. However, in this model, these skills are conditionally dependent on
each other. Recall that the skills and their associated problems were originally
split up into the following 4 independent sets of skills: {1,2,3}, {4,5,6}, {7,8,9},
{10,11,12}. In this model, these sets of skills are no longer independent so this
model is actually more informative than the flat skill model.

Inference. We will look at a student’s results to show the inference results of the
best model: Hierarchical Skill Difficulty Model. We will look at the observations
of the last set of 7 problems involving Skills 10, 11 and 12.

For Student 1 (Figure 7) we see an overall improvement in skill mastery from
pre-test to post-test. This aligns with the student’s performance on the tests.
The test scores are calculated to evaluate individual improvement as follows:
corr/attmp, the number of problems the students answered correctly divided
by the number of problem the student attempted to answer (did not skip).
Student 1 got a score of 27 on the pre-test and 83 on the post-test. For most skills,
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(a) Student 1 Pretest Skill Mastery In-
ferred Probabilities

(b) Student 1 Posttest Skill Mastery
Inferred Probabilities

Fig. 7. Student 1 Improvement in the probabilities of overall student skill mastery from
pre-test to post-test

Student 1 shows a higher certainty of mastery in the post-test than in the pre-
test. However, the certainty that Skill 6 (perimeter of a rectangle) is mastered has
lowered from pre-test to post-test. This may be because the student did poorly
on the post-test problem involving this skill. It is unclear as to whether this
assumption should lead to the conclusion of mastery or non-mastery of Skill 6.
Notice that Skill 7 (identify right triangle) initially had the most certainty of
being unmastered in the pre-test, but shows a high certainty of being mastered
in the post-test. This is an easy skill, and this result allows us to assume our
tutor does a good job of teaching it. However, Skill 11 (supplementary angles)
actually increases in it’s probability of being not mastered from pre-test to post-
test. This may show that the tutor is not doing a good job of teaching Skill 11,
but may also be caused simply by the answers this student supplied on the tests
and not the tutor’s capability.

6 Conclusions

In summary, a data-centric approach was demonstrated to build a model of how
student outcomes in a pre-test are linked to skill mastery. Graphical models were
built to infer student mastery of skills, and the Bayesian Information Criterion
used to evaluate several models and pick the most accurate one. A hierarchical
model that links skills that are dependent on each other gave a better fit than a
flat skill model that did not use this dependency information about the domain.
In this best fitting model, related skills were linked so that parent nodes repre-
sented more basic skills that should be mastered before their more difficult child
node skills are mastered (prerequisites).

We can now make predictions not only of how a student will do on a particu-
lar problem, but also of how much a student’s performance on problems reflects
their ability of individual specific skills. With the sparsity of data our current
predictions are not optimally accurate, however, the Kullback-Leibler divergence
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results prove that with a little more data, accuracy will greatly improve. Some-
thing interesting learned from this data-centric approach to estimation of skill
mastery was the fact that the resulting models automatically found that if a
skill is not mastered the student is more likely to skip the problem than answer
incorrectly. This makes sense if we think that when students do not know the
underlying skills, then they do not even attempt it; meanwhile, if the student
has some idea, they probably attempt an answer and give an incorrect response.
In general, data-centric models can help reveal valuable information such as this,
which was not obvious at first sight. Finally, student improvement from pre- to
post-test was demonstrated through raw counts, learned parameters, and infer-
ence, again highlighting the positive effect of the Intelligent Tutoring System.
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