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Abstract— This paper investigates learning hierarchical sta-
tistical activity models in indoor environments. The Abstract
Hidden Markov Model (AHMM) is used to represent behav-
iors in stochastic environments. We train the model using both
labeled and unlabeled data and estimate the parameters using
Expectation Maximization (EM). Results are shown on three
datasets: data collected in a lab environment, data collected
in a home environment and simulated data. The results show
that hierarchical models outperform flat models.

I. INTRODUCTION

Robots increasingly work and function within
environments such as offices, museums, and hospitals that
are also populated by human beings. In order to fully
interact in this dynamic environment, it is necessary for
them to understand the movement of other occupants
throughout the environment. A first step toward this
understanding of other agents, be they human or robotic,
is the ability to recognize different activities based on
movements throughout the space.

Much previous research in mobile robotics has explored
localization and mapping given a static environment.
Some of this work [1], [2] has studied methods to detect
and track people within an environment. However, in this
work the person is tracked based on a motion model of
typical human movement: the intentions or the higher
level task of the person is not modeled. Other work has
been done that does model intention [3], [4]. This work
clusters similar motion trajectories but does not model
activity in a hierarchical manner.

Bui [5] introduces the Abstract Hidden Markov
Model (AHMM) as a hierarchical statistical model
for representing activities. In this work the AHMM was
used as a probabilistic framework for plan recognition,
where the model parameters were hand coded instead
of learned. Murphy [6] investigated learning restricted
1-level AHMM models where the value of the top-level
nodes were observed.

In this paper we use AHMMs [5] to model motion
through indoor environments. We represent the model as
a Dynamic Bayesian Network (DBN) and use Expectation
Maximization (EM) to estimate the parameters of the
DBN in order to learn behaviors. This work extends
previous work by investigating what advantages different
levels of hierarchy provide, and compares the performance

of 1-level and 2-level AHMM models on both labeled and
unlabeled training instances.

The rest of this paper is organized as follows. Section II
reviews the basics of the AHMM. Section III describes
algorithms learning the model. Section IV describes the
datasets and methods. Section V presents the results and
Section VI summarizes the contributions and describes
future work.

II. ABSTRACT HIDDEN MARKOV MODEL

The AHMM is a multi-scale statistical model for
representing behaviors in stochastic, noisy situations.
Hierarchy plays an important role in activities. Imagine a
person exiting a building from a room on the second floor.
This behavior can be broken into multiple sub-behaviors.
A possible sub-behavior of the general behavior is to exit
the second floor. A sub-behavior of this behavior could be
to navigate to the stairway. As part of this behavior the
person must leave the room. To do this, the person must
take an action, in this case a step in the right direction. The
AHMM provides a way to model this type of stochastic
process and allows the robot to infer what the person is
doing based on its observations at each timestep.

The AHMM provides a top down decomposition for
a fixed behavior. A behavior maps a state to an action.
The AHMM provides a method of modeling hierarchical
behaviors. In hierarchical behaviors a high-level behavior
can call a more refined low-level behavior according to
some distribution. This low-level behavior will call a
lower-level behavior. This process continues until the most
primitive behavior possible is performed. In the domains
with discrete actions the most primitive behavior would
be a single action. When a low-level behavior terminates
in some state then the parent behavior may also terminate
with some probability so long as the current state is in the
set of destination states of the parent behavior.

A. Representation

An AHMM can be represented as a DBN as in Figure 1.
Edges between nodes represent dependencies. An AHMM
has four different types of nodes, �����������
	����
��� � and ��� . Let
� � represent the state of the agent at time � . Since the true
state of the agent is hidden, observations, � � , which are a
stochastic function of the state, are required. Observations
are modeled as a mixture of Gaussians. 	 � represents



the mixture component of � � . ��� represents the abstract
behavior at level � and time � . � � is the termination flag
for ��� . ����� terminate signifies the natural completion of
� � .

B. Transition Model

Each node represents a conditional probability distribu-
tion (CPD) or table (CPT). The level 2 behavior at time �
depends upon the level 2 behavior, state, and termination
flag 2 at the previous timestep ����� . We define this as�	� ��
�� ��
����� � � ����� ����
������� ����� ���

� � � ����� �
� 
��� if � 
����� � terminate� if � 
����� � continue and
� 
��� � 
������
otherwise

The level 1 behavior at time � depends upon the level 2
behavior at � and the level 1 behavior, state, and termination
flag 1 at the previous timestep ����� . We define this as�	� � ��� ��
� ��� ������ ��� ����� ��� �������� ����� ���

���� � � 
 � � ����� � if � ������!� terminate� if � ������ � continue and
� ���� � �������
otherwise

Termination flag 1 at time � depends upon the level 1
behavior and state at time � . We define this as�	� � ��"� � � �
� ���� ��# ��� � � � �
Termination flag 2 at time � depends upon the level 1
behavior, termination flag 1, and state at time � . We define
this as �	� ��
�$� � �� �
��
� ��� � � �% # �'& � � � � if � ��(� terminate�

otherwise

The state at time � depends upon the level 1 behavior taken
at time � and the state at time ���)� .�	� � � � � ����� �
� ���� �+* � � ����� �
� �� ��� � �
C. Observation Model

The observation model signifies the probability of seeing
an x,y position conditioned on a discrete hidden state. For
this application the observations are modeled as a mixture
of Gaussians. We explicitly model the mixture variable, 	 ,
as can be seen in Figure 1. The CPDs for this model can
be written as follows.
For the observation nodes:�	� ��� � � � �+, �
	�� � 	 � �.- � ���0/21�354 6 �879354 6 �
For the mixture node:�	� 	 � � � � �+, � �+: � , ��	 �
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Fig. 1. DBN representation of a 2-level AHMM. The horizontal dashed
lines indicate levels of hierarchy. For this specific application we use
a mixture of Gaussians for the observation model. However this is not
required by the model, thus we draw the links to and from the discrete
mixture nodes ( ;=< ) with a dashed line.

III. INFERENCE AND LEARNING IN AHMM MODELS

The input to our models is a set of trajectories, > �� >��@?A?A? >�B � . Each trajectory consists of a sequence of ob-
served positions �C3 � �ED 3
�2F'3 � which means that a trajectory>@3 � � �'� ��� 
 �G?H?A? ���JI � . �'� is the starting position and �CI is
the final destination. Using these trajectories we are able
to perform inference and learning in these models.

A. Inference

Inference can be thought of as querying the model. IfK
represents the node(s) of interest and L is the evidence,�	�5K � L � is the query. In our model L is the trajectory > 3 .K
can be a node, for instance � 
� or � � , or a conjunction of

nodes, � 
� and � � . Currently we use the junction tree (jtree)
algorithm [7] for inference in the AHMM. Jtree is an
algorithm for exact inference and calculates the marginals
on all the nodes with a single forward-backward pass.
However, Bui [5] presents a Rao-Blackwellised Particle
Filter for approximate inference which is significantly
more efficient.

There are different types of inference that can be
performed, depending upon the type of questions asked
of the model. If we return to our example there are
several questions we might ask. As the person leaves
the building we can ask which sub-behavior is currently
being performed based upon the movements up until
this time. Filtering is a type of inference that answers
this type of question by recursively computing the belief
state

�	�MK � � � � ?A?H? � � � . For example, in our model we can
calculate the belief state of an abstract behavior given the
sequence of

D �2F positions observed thus far by calculating�	� � � � � � ?A?H? � � � . If the person is walking down the stairs we
can ask what behavior was performed at some previous
time step given all the movement we have seen up until
the current time. This type of question is answered by
smoothing. Smoothing estimates past states while using
all the evidence at our current time,

�	�5K ���N � �'�J?H?A? ��� � .
In our model we might ask for the abstract behavior
performed at � timesteps in the past given all the current
information we can calculate

�	� � ���N � � � ?H?A? � � � . If the
person is currently in the hallway we can ask where



they will be 3 timesteps into the future given all the
information up until this time. Prediction estimates future
states given the evidence available at the current time
step,

�	�5K ����N � � � ?A?H? � � � . Prediction allows us to predict what
abstract behavior the agent will perform at some point in
the future,

�	� � ��� � � � � ?A?H? � � � . Or we could determine where
the agent will be in future

�	� � ��� � � �'�J?H?A? ��� � .
B. Learning

Since we do not handcode the parameters (CPTs or
CPDs) of the models it is necessary to perform learning
before inference can be done. We use EM to learn the
parameters of our model.

1) Likelihood: Let
�

represent the model parameters.
Given the data � , the likelihood

�	� � � � � can generally
be computed from the joint distribution

�	�5K ��� � � � by
marginalizing (summing over) the hidden variables

K
in

the model whose values are not defined by � . For the
DBN representation of an AHMM, the likelihood can be
computed by unrolling the DBN over the length of each
trajectory. However, more efficient approximate inference
methods are available, including variable elimination and
particle filtering [5]. Let � denote the number of trajec-
tories representing the evidence L and ��3 represent the
length of the , th trajectory. The joint distribution of the
overall 1-level AHMM network given the parameters

�
can

be written as (the 2-level AHMM is specified by extending
this case to include the extra level of hierarchy):�	� � � ��� � ��� ��	 ��� � � � � B�

3	� � �	� � �3M4 � � �	� � �3M4 � � � �3M4 � ���@354 � ��	� � 354 � � � �354 ��� �	� 	 3M4 � � � 354 � ��	� � 354 � � 	 354 � ��� 3M4 � �I�
�

��� 

�	� � �354 ��� � �3M4 ����� ��� �354 ����� ���@354 ����� ��	� � �354 �8� � �354 � ��� 354 � � �	� � 354 � � � �3M4 � � � 354 ����� ��	� 	 3M4 � � � 3M4 � � �	� � 3M4 � � 	 3M4 � � � 354 � �

2) Expectation Maximization: EM is a framework for
maximum-likelihood parameter estimation with missing
data [8]. If the data � are complete, i.e. if all the nodes in
the model are observed, the maximum likelihood estimate
of

�
is �

� � argmax ������ �	� � � � � , where � is the complete
data. However, for training (1-level) AHMM models, the
data � can be decomposed into an observed component�

, and a hidden component � consisting of the nodes,
� � ��� � ��� � and 	 that are not observed. EM finds the
model parameters that maximize the expected value of the
log-likelihood, where the data for the missing parameters
are “filled in” by using their expected value given the
observed data. EM consists of two steps, the Expectation
step (E-step) and the Maximization step (M-step). The
E-step computes the expected value of the log-likelihood,� � � � ��� � � L���� � 4 �� ��� �! �	� � � � � � , where the expectation is

computed using
�"�

, the model parameter estimate from the
last iteration. For AHMMs, exact inference methods such
as the junction tree algorithm can be used to determine
the posterior distribution over the missing high-level
nodes, given the observed trajectory. Alternatively, faster
approximate methods based on particle filtering can also
be used [5]. The M-step finds a new setting for the
parameters such that

�"� � � � argmax 
� � � � ��� � .

3) Training on Labeled Data: We ran experiments
where the models were trained with labels indicating
which behavior was being performed. These labels were
observed as the values of the highest level behaviors
during training. Figure 2 shows both the 1-level and
2-level AHMMs used during training. Nodes that are
shaded were observed during training. The models’
performances were tested by performing inference to
estimate the probability of the highest level behavior
given test observations to see if the models distinguish the
sequences by predicting the correct label.

4) Training on Unlabeled Data: We also trained the
model on data where the highest level behavior was
unobserved. Figure 3 shows the two types of models used
when training with unlabeled data. When training with
unlabeled data, we tested the ability of the models to
cluster similar sequences together.

In order for the model to learn one label for each
sequence at the highest level of behavior modeled it was
necessary to fix the CPTs such that the highest level
behavior never terminated. If the CPTs were not fixed the
models learned behaviors that changed frequently over
time. We fixed the CPTs for the 2-level AHMM as follows�	� � 
� � � �� �
� 
� ��� � � � % � if � 
� � continue�

otherwise�	� ��
� � ��
����� ��� ����� ����
����� � ��� � � if ����� continue
and � 
� � � 
������
otherwise

We fixed the CPTs for the 1-level AHMM as follows�	� � �� � � �� � � � � � % � if � ��(� continue�
otherwise�	� � �� � � 
� �
� ������ ��� ��������� ������ � ��� � � if � ��(� continue
and � �� � � �������
otherwise

IV. EXPERIMENTS

We performed several different types of experiments
to evaluate the AHMM as a framework for hierarchical
activity modeling. We limited our models to the 1-level
AHMM and the 2-level AHMM. We tested the models on
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three different datasets. Experiments were run using the
Bayes Net Tool Box for Matlab (BNT) [9].

A. Lab Data

Our first dataset was collected using Hema, a B21r robot
equipped with a laser range finder. Hema was positioned
so she could view most of the activity occurring within
the hallway of a lab environment. Laser readings were
collected using CARMEN [10]. Figure 4 shows the lab
environment: Hema was positioned at the end of the long
corridor. Laser scans of people walking along different
trajectories through the lab were collected. An example
trajectory can be seen in Figure 4(b).

The laser scans were processed to extract the (x,y)
position of each person walking. This was achieved by
first computing the difference between scans at time �
and ��� and finding the degree where the greatest change
between the two scans occurs. The position was calculated
using the robot’s localized position on the map. Every
third time slice was used to smooth the trajectory.

There were 6 different classes of sequences collected in
the lab. The models were trained using 3 instances of each
sequence. The test set consisted of three previously unseen
instances. The sequences differed in length, consisting of
anywhere from 6 to 24 (x,y) pairs. Figure 4(a) shows the
18 training sequences plotted in the lab environment.

(a) The x,y positions of the 18 training samples
plotted in the lab environment.

(b) An example of a single trajectory. In this
example the person walks from one cube near
the door toward the robot until it goes into
another cube.

Fig. 4. Data collection within the lab environment

1) Model Definition: We found that setting the obser-
vation model to one mixture component gave the best
performance. All models were initialized using six values
for highest level behavior multinomial nodes and 50 values
for the discrete multinomial state nodes. Often, far fewer
states were needed to represent the data as seen in Figure
6 where only 15 states were used. For the experiments
with the 2-level AHMM, level 1 behavior nodes were
initialized to have 15 values. The highest level behaviors
were initialized to have a uniform probability. The means
of the Gaussians were initialized to be random points in
the data and the covariance matrices were initialized to
identity. All other parameters were initialized randomly.

B. Entryway Data

One of the characteristics of the data in the lab
environment was that the trajectories overlapped for most
of their duration. Data were collected in the entryway
of the 2nd floor of the computer science building where
typical paths of motion were more distinct. The data are
shown in Figure 5. Data collection and processing was
the same as the lab data in the previous section.

The dataset consisted of eight different types of
sequences. The training set consisted of eight instances
of each sequence; the test set contained 2 instances. The
sequences differed in length, consisting of between 15 to
30 (x,y) pairs.

1) Model Definition: Once again we found that setting
the observation model to one mixture component gave



Fig. 5. Data collected in the entry to the 2nd floor of the UMass CS
department. The data consists of 8 different classes of trajectories. The
location of the robot is indicated by the filled circle.

the best results. All models used eight values for the
highest level behavior nodes and 60 values for state nodes,
although approximately 30 were typically used. For the
experiments with the 2-level AHMM, level 1 behaviors
had 25 possible values. The highest level behaviors were
initialized uniformly. As above, the means of the Gaussians
were initialized to be random points in the data and the
covariance matrices were initialized to identity. All other
parameters were initialized randomly.

C. Home Data

We also ran experiments on data collected by Bennewitz
et al [4]. The data consist of sequences of a person
moving around a house. The data were collected using
three Pioneer I robots equipped with laser range finders.

This data set has 11 different sequences with three
instances for each sequence type. Due to the small
amount of data, we used cross-validation to evaluate the
performance of the models.

1) Model Definition: We found that setting the obser-
vation model to a single mixture component gave the
best results. All models had 11 values for the highest
level behavior nodes and state nodes had 50 values of
which 17 were approximately used. For the experiments
with 2-level AHMMs, level 1 behaviors could take on
17 values. The highest level behaviors were initialized
with uniform probability. Once again, the means of the
Gaussians were initialized to be random points in the data
and the covariance matrices were initialized to identity. All
other parameters were initialized randomly.

V. RESULTS

The performance of each model was determined using
the percent of test sequences that were correctly classified
when the model was run on unseen test data. These results
are shown in Table I. This table shows that in all cases
the 2-level AHMM performs as well, if not better, than
the 1-level AHMM. The models trained with labeled data
learn to distinguish the trajectories better than the models
found using unlabeled data. The results for the unlabeled
data show how the levels of hierarchy make a difference.
The 2-level AHMM performed better in the cases where
there was more overlap between the trajectories, such

Fig. 6. The learned observation distributions
����� <�� �2<	�5;=<�
 . Each ellipse

represents the covariance matrix of the Gaussian for each given state � < .
The Gaussians are overlaid on the (x,y) points that make up the data.
This set of states was learned using a 2-level AHMM.

Fig. 7. The learned observation distributions
����� < � � < �5; < 
 . Each ellipse

represents the covariance matrix of the Gaussian associated with a given
state � < . The Gaussians are overlaid on the (x,y) points that make up the
data. This set of states was learned using a 2-level AHMM.

as lab there where the overlap made it more difficult to
distinguish between the trajectories. The entryway data
has some overlap but overall the trajectories differ over
much of their duration. It may be possible to gain better
prediction results in the models trained with unlabeled
data by biasing the values of the parameters and hidden
nodes.

After training the observation model,
�	� � � � � � �
	 � �

was plotted on top of the
�ED �2F � positions of the data.

The observations model clustered areas where motion
took place within the environment. Figure 6 shows the
observation model for the lab data and Figure 7 shows the
same plot for the entryway data.

We also performed inference to test the models ability to
predict higher level behavior. Figure 9 shows the results
of filtering in a 2-level AHMM trained on labeled data
for a trajectory in the entryway. The plot shows the
probability of the level 2 behavior at each time given the
current sequence of observations,

�	� � 
� � � � ?H?A? � � � . Figure 8
shows the same results except in the model trained with
unlabeled data. Both graphs show that the likelihood of
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Fig. 8. The probability of the level 2 behavior at each time given the
current sequence of observations,
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 plotted for one trajectory
recorded in the entryway. The model was a 2-level AHMM trained with
labeled data.

the correct class goes up as the trajectory progresses,
distinguishing itself from other trajectories that share
overlapping portions.

TABLE I

PERCENTAGE OF TEST SEQUENCES CORRECTLY CLASSIFIED AFTER

TRAINING. RANDOM GIVES RESULTS FOR GUESSING WITH EQUAL

PROBABILITY FOR EACH BEHAVIOR.

Model Lab Entryway Home

Random 16.67% 12.5% 9.09%

1-level AHMM with

unobserved Level 1 behavior 61.11% 75% 57.57%

1-level AHMM with

observed Level 1 behavior 94.49% 100% 100%

2-level AHMM with

unobserved Level 2 behavior 83.33% 75% 60.60%

2-level AHMM with

observed Level 2 behavior 100% 100% 100%

VI. CONCLUSION AND FUTURE WORK

In this paper we presented a hierarchical approach
to modeling motion behavior in an indoor environment.
We compared 1-level and 2-level AHMMs, where the
parameters of the models were learned using EM. We
show that hierarchical models outperform flat models in
cases when classification is especially difficult. We also
compared both supervised and unsupervised learning in
these model.

There are several areas for future work. Currently
we have only investigated the case where one person
is moving through the environment, and extending it
to the multi-agent case can be addressed using the
multi-agent AHMM model proposed in [11]. Other open
questions involve structure learning and model selection
for AHMMs. In this paper we assumed that the number of
abstract behaviors, and states were known ahead of time,
as well as the number of levels in the hierarchy. Efficient
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Fig. 9. The probability of the level 2 behavior at each time given the
current sequence of observations,
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 plotted for one trajectory
recorded in the entryway. The model was a 2-level AHMM trained with
unlabeled data.

approaches to model selection for AHMMs remains an
open problem to be investigated.
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