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In preparing for ‘-
battle, I have always 'ﬂ‘
found that plans are ’EJ

useless but planning  T&.
is indispensable. -

— Dwight D. Eisenhower




Markov Decision Processes

Choose
greedy action
given V*

(Bellman, Howard)
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ROMANS VS DEEF 8

Humans learn Atart | 000x faster than
Frostbite any deep RL framework
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Representation

Search Optimization



Optimization Equilibration

min f(X)
X in feasible set K (F(z* ),z — ™) = 0, VoicHs

(Gauss, Newton, Shor,

(Stampacchia, 1960s)

Hestenes
1800s-1950s)




Optimization to Equilibration

AAAl 2015, AAMAS 2020 Tutorials
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GENERALIZING GRADIENT
DESCENT

Wil < Wt — CYtVf(’UJt)

Extragradient
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Nonstationarity

Observability Feedback



SPARSITY OF REWARDS

» Often, rewards are very delayed and sparse
» What can substitute for task-specific rewards?

» Intrinsic rewards: encourage exploration to

discover representations of long-term utility



INTRINSIC MOTIVATION

“Provocative and fascinating.” —MALCOLM GLADWELL

Daniel H. Pink

author ot A Whole New Mind

The Surprising Truth
About What Motivates Us




Proto-Value Functions

, (Mahadevan, ICML 2005)
Eigenvectors of the

graph Laplacian = D-W b

Reward-invariant, orthogonal, diagonalized, flat



Topological Representations for Planning

Weight Matrix, |4/

Random walk on graph =Dt W

[Mahadevan, ICML 2005; Johns and Mahadevan, ICML 2007; Osentoski and Mahadevan, ICML 2007]



The Successor Representation:
Its Computational Logic and Neural Substrates

Journal of Neuroscience 15 August 2018, 38 (33) 7193-7200;

Assuming rewards are linear functions of features: R(s;) = q?st ‘W,

Q(s,3)=E > 1R(s)ln=s,20=a ,

| t=0

=E [R(s0) + Y'R(s1) + Y2R(s2) + ...|so = 5,30 = al

(4)

(5)

=IE:¢50-w+'~/1qb51-w+72¢52-w+...|50:s,30=a]

=E [¢s, + 7' b5, + 105, + ...|50 = 5,30 = a] - w

= M"(s,a)-w

(6)
(7)
(8)

M represents the policy dependent expected features or a partial

model and w represents the goal.

M(s1, si)

M(ss, si)

M(sj, 35)

(Dayan, ML)

Successor representation of states

Goal

Goal

Goal




PV & SUCCESSUES
REPRESENATIONS

» |hese two representations are closely related
(Stachenfield, 2014)

- Another related representation is slow feature analysis
(SFA, Wiscott & Sejnowski, 2002)

- |t I1s possible to unity and generalize these approaches

using more sopnhisticated topological concepts



BOPOLOGY AN
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We know the past but cannot
control it. We control the future but
cannot know it.

— Claude Shannen —

AZ QUOTES
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Observable

operators using
Canonical Variate
Analysis
(Overscheg, et al.)

Originally pioneered In
algebraic automata theory
(Schutzenberger, | 960s)

Rediscovered in Al much later:
OOMs, PSRs, TPSRs (2005-x)




RL IN NONSTATIONARY WORLDS

(Chandak et al., ICML 2020)

Learn a policy that optimizes for tomorrow's world, not today's!
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Imagination

First published Mon Mar 14, 2011; substantive revision Mon Oct 8, 2018

To imagine is to form a mental representation that does not aim at things as they actually,
presently, and subjectively are. One can use imagination to represent possibilities other than the
actual, to represent times other than the present, and to represent perspectives other than one’s
own. Unlike perceiving and believing, imagining something does not require one to consider that
something to be the case. Unlike desiring or anticipating, imagining something does not require
one to wish or expect that something to be the case.

Imagination is involved in a wide variety of human activities, and has been explored from a wide
range of philosophical perspectives. Philosophers of mind have examined imagination’s role in
mindreading and in pretense. Philosophical aestheticians have examined imagination’s role in
creating and in engaging with different types of artworks. Epistemologists have examined
imagination’s role in theoretical thought experiments and in practical decision-making.
Philosophers of language have examined imagination’s role in irony and metaphor.
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Covid in the U.S.: Latest
Map and Case Count

By The New York Times
Updated October 16, 2020, 12:06 P.M. E.T.

Leer en espanol

New
cases —

50,000 cases 7-day
average

0
| | | | | | |
March  April May June July Aug. Sept. Oct.
TOTAL REPORTED ON OCT. 15 14-DAY CHANGE
Cases 8.0 million+ 65,327 +25% —
Deaths 217,867 793 -2% —

Day with data reporting anomaly.
Includes confirmed and probable cases where available. 14-day change

trends use 7-day averages.
e —

Hot spots Total cases Deaths Per capita

Average daily cases per 100,000 people in the past week
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» About this data
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Biden is favored to win the election

We simulate the election 40,000 times to see who wins most often. The sample
of 100 outcomes below gives you a good idea of the range of scenarios our
model thinks is possible.

Biden wins

87in100

Trump wins

121In100

+400 +200
ELECTORAL VOTE
MARGIN

TIE

® Trump win @ Biden win
No Electoral College majority, House decides election



2020: Covid-19
2008: Financial crisis

2001: World Trade Center

Al/ML models
fall In modeling
Black swan

outlier events

NEW YORK TIMES BESTSELLER

) N\

With a new section: “On Robustness and Fragility™

THE

BLACK SWAN

The Impact of the

HIGHLY TMPROBABLE

Nassim Nicholas Taleb
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SPREADER COVID-19 EVENTS
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My colleagues, they study artificial
intelligence; me, | study natural
stupidity.

— Ames [versky —

AZ QUOTES
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Ayurveda and
other herbal
medicines can
help cure
coronavirus

Only old people
are affected by
coronavirus

Onset of
summers mean
a decline of the
Virus

Eating meat
can cause
coronavirus

Spraying
alcohol can
kill
coronavirus

Common Myths around
COVID-19

Vitamin C can
cure the
coronavirus
infection

Eating garlic
will help
prevent the
infection

Taking a hot
bath can
prevent the
virus from
infecting you

You don't have
COVID if you
can hold your
breath for ten
seconds without
discomfort

Dogs can
spread
coronavirus




INFERENCE IN SOCIAL
NETWORKS

Examples:
Traffic
Migration
Pandemic
Conspiracy
Marketing

ealthcare

(Manski, 201 3; Hudgins and Halloran, 2018)



PROJECTIONS IN REINFORCEMENT LEARNING

T (D6)

Projection

MSBE \

26



PROXIMAL MAPPING

1

Moreau, 1965: proxf(’v) = argmin_ (f(z) + §||~T B ’U“%)

Proximal operator generalizes projection:

f(x) = Ic(x) : proxy, (v) = ll¢(v) = argmin, ||z — vl[2



PROXIMAL ABSTRACTIONS
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PROXIMAL PLANNING IN -
PRIMAL-DUAL SPACES

Stephen Giguere

(Mahadevan et al., Arxiv 2015) i

Nicholas Jacek

Will Dabney

Sparsity
Scalability

Proximal Methods

Reliability



PROXIMAL FRAMEWORK COVERS
MANY RL ALGORITHMS

.
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CAUSAL INTERVENTION

New Delhi, India
= During Covid lockdown

AFP/GETTY IMAGES

Normal air




WASHINGTON POST DATABAS
GUNS IN SCHOOLS

More than

April 20 2018 203,000

students have experienced gun
violence at school since

Columbine

One dot * represents 10 children exposed to gun violence

Columbine High
School

APRIL 20, 1999 — 1,820
CHILDREN IN SCHOOL

Marjory SQonellanr-JA
Douglas High
School

FEB. 14,2018 - 2,930
CHILDREN IN SCHOOL

West Nickel Mines
Amish School
OCT. 2,2006 — 20

CHILDREN IN SCHOOL Sandy Hook

Elementary School
DEC. 14,2012 - 420
CHILDREN IN SCHOOL
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CAUSALITY VS PLANNING

The aim of causal inference Is to answer the “Why?!"" question: to understand
the world, not only for planning, but also for explanation

Aggregate model: decisions are often irrevocable

«  WIll remdesivir mprove the chance of survival in a Covid- |9 patient?
Outcomes are only partially observed

+ Control units cannot be observed under treatment

« Jreated units cannot be observed under control



EOTEN TIAL OUTCORSS

Rubin (1974) introduced the potential outcomes model of
causal Inference to reason about counterfactuals

It we classity countries based on their response to Covid-19, we
can do causal analysis of potential outcomes

| reatment units: countries that mandated masks
Control unrts: countries where masks were not mandated

Stable unit treatment value assumption (SUTVA)



CAUSAL INFERENCE AS MATRIX
COMPLETION

Nuclear norm regularization:
Y(est) = min(||Y — Y(obs)||*)

.
<

Time

Units

AdneEnEl, 2O
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Synthetic Control: Proposition 99 in California
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R

ACTIVITY:

3. COUNTERFACTUALS

Imagining, Retrospection, Understanding

What if 1 had dowe ...2 Win?
(Was it X that caused Y? Whar if X had not
occurred? What if | had acted differently?)

Wis it the aspirin thar stopped my headache?
Would Kennedy be alive if Oswald had not
killed him? What if 1 had not smoked for the
last 2 years?

ACTIVITY:

EXAMPLES:

2. INTERVENTION

Doing, Intervening

Whatsf ldo...2 How?
(What would Y be if Ido X?
How can I make Y happen?)

If I take aspirin, will my headache be cured?
What if we ban aigarettes?

ACTIVITY:

j' | ' QUESTIONS:

EXAMPLES:

1. ASSOCIATION

Seeing, Observing

What if 1 see .7
(How are the vanables relared?
How would seeing X change my belief in Y7?)

What does a symptom tell me about a disease?
Whart does a survey rell us abour the
election results?

JUDEA PEARL

WINNER OF THE TURING AWARD
AND DANA MACKENZIE

THE
BOOK OF

WHY
a« - —p—

THE NEW SCIENCE
OF CAUSE AND EFFECT
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A Brief History of
Humankind

By:
Yuval Noah Harari

THE EVOLUTION
OF IMAGINATION

STEPHEN T. ASMA

How lmagination Made

Humans E.\ccpuonal

AGUSTIN FUENTES, PuD

THE

RUNAWAY
SPECIES

HOW HUMAN CREATIVITY
REMAKES THE WORLD

ANTHONY BRANDT
& DAVID EAGLEMAN

TTTTTTTTTTTTTTTTTTT STSELLING AUTHG
OF THE BRAIN, INCOGNITO AND SUM

il

Mimesis as
Make-Believe

ON THE
FOUNDATIONS OF THE
REPRESENTATIONAL ARTS

Kendall L. Walton




Imagination is more important than
knowledge. Knowledge is limited.
Imagination encircles the world.

— Albert Einstein —




IMAGINATION VALUES

« Q-learning estimates value of actions by trial and error
» How to extend Q-learning to counterfactual learning!
- How about values of novel actions in novel states?

- Imagination values: infer action values using synthetic
control by imputing values from other agents

» Similar to off-policy RL (Sutton, Liu et al.)



SYNTHETIC Q-LEARNING

Trajectories

.
<

Agents
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CREATIVITY IN ART

Cy Twombly ean Michel Basquiat

NY Times, Apnl | | 20183 Sold: in NS forbiEiEeR
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Intelligent Machines

The GANfather: The
man who'’s given
machines the gift of
Imagination

By pitting neural networks against one another, lan Goodfellow
has created a powerful Altool. Now he, and the rest of us, must
face the consequences.

by Martin Giles  February 21,2018

ne nightin 2014, lan Goodfellow went drinking to celebrate

with a fellow doctoral student who had just graduated. At

Les 3 Brasseurs (The Three Brewers), a favorite Montreal
watering hole, some friends asked for his help with a thorny project they

were working on: a computer that could create photos by itself.

Researchers were already using neural networks, algorithms loosely
modeled on the web of neurons in the human brain, as “generative”
models to create plausible new data of their own. But the results were
often not very good: images of a computer-generated face tended to be
blurry or have errors like missing ears. The plan Goodfellow’s friends
were proposing was to use a complex statistical analysis of the elements
that make up a photograph to help machines come up with images by
themselves. This would have required a massive amount of number-

crunching, and Goodfellow told them it simply wasn’t going to work.

But as he pondered the problem over his beer, he hit on an idea. What if
you pitted two neural networks against each other? His friends were
skeptical, so once he got home, where his girlfriend was already fast
asleep, he decided to give it a try. Goodfellow coded into the early hours

and then tested his software. It worked the first time.

What he invented that night is now called a GAN, or “generative
adversarial network.” The technique has sparked huge excitement in the

field of machine learning and turned its creator into an Al celebrity.



IMAGINATION WITH GANS
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GENERATIVE MULTI-ADVERSARIAL

NETWORKS (GMAN)

—— Single Disc

— 2 Disc
06 — 5 Disc
05

(Durugkar, Gemp, and Mahadevan, ICLR, 201 7)



X GAN MODEES
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SIMULTANEOUS GRADIENT
Ao TN

Algorithm 1 Simultaneous Gradient Ascent (SimGA)

1: while not converged do
D Vg V¢f<9, ¢)

Vp < VGQ(Q, Qb)

O — ¢+ hv¢

3:
4:
5: 0 < 0 + hvyg
6: end while

(Mescheder et al., Numerics of GANs, Arxiv, 2017)
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GRADIENTS TO VECTOR
PIGLELYS

W11 < Wt — atVf(wt)
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NOVEL GAN ALGORITHMS:
VARIATIONAL INEQUALITIES

« Joint work with my PhD student lan Gemp

» In equilibrium problems, traversing the steepest

descent direction Is not sufficient for convergence

» Orthogonal directions turn out to be crucial for

convergence



VECTOR FIELD GAN
ALGORITHM

[m(l)] 2! [w(l) it f(l)(w)] Simultaneous

Example: 2(2) 2@ — pV. o £ (z) Gradient Descent

Player 1’s lossis: f(z) = 10z 2,
Player 2’s loss is: f® (z) = —102z(1 (3, z(2)

Let ¢ = [(1)] and p = 0.1. 2(1)

Crossing-the-Curl

V.o f(l) (iE)

| Vo O (2)
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|
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Explaining Creativity
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Input vector z
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Ahmed Elgammal'" Bingchen Liu'! Mohamed Elhoseiny? Marian Mazzone

[

|

Art images
With style
labels

CAN: Creative Adversarial Networks
Generating “Art” by Learning About Styles and

Deviating from Style Norms*

3

The Art & Al Laboratory - Rutgers University
! Department of Computer Science, Rutgers University, NJ, USA

2 Facebook Al Research, CA, USA
3 Department of Art History, College of Charleston, SC, USA

Human
Art
Sample

Train with art/not art labels and style class labels

—
—

Art/Not art }_3_

Discriminator

Generated
Sample

---------------------

Train with art/not art and style ambiguity loss



CAN loss function

min max V (D, G) =
G D

e impane 108 Dy () + log Dolc = 2l2)] +




Table 1: Artistic Styles Used in Training

Style name Image number | Style name Image number
Abstract-Expressionism 2782 | Mannerism-Late-Renaissance 1279
Action-Painting 98 | Minimalism 1554
Analytical-Cubism 110 | Naive Art-Primitivism 2405
Art-Nouveau-Modern 4334 | New-Realism 314
Baroque 4241 | Northern-Renaissance 25957
Color-Field-Painting 1615 | Pointillism 513
Contemporary-Realism 481 | Pop-Art 1483
Cubism 2236 | Post-Impressionism 6452
Early-Renaissance 1391 | Realism 10733
Expressionism 6736 | Rococo 2089
Fauvism 934 | Romanticism 7019
High-Renaissance 1343 | Synthetic-Cubism 216
Impressionism 13060 | Total 757753




Sample art
created by CAN




Representation

gearch Optimization



Convex Optimization

lL.inear
Proerammin



Convex set

contains the line segment between any two points in the set

ri,r0€C, 0<0<1 — 0Oxr1+(1—-0)x2€C

convex not convex not convex



Projection onto Convex Sets

X

if y =TIg(z), then (y—2z)' (2 —y)>0,2€ S



Convex Feasibilty

Yo

Proximal splitting methods 1n signal processing
Combetti and Pesquet



Convex function

convex function: domain is a convex set and Jensen’s inequality holds:

f(Oz+(1—-0)y) <0f(z)+(1-0)f(y)

forallz,yedomf,0<6<1

.- (y ()

(z, f(x))

f is strictly convex if Jensen’s inequality is strict for 0 < 0 <1,z # y

f is (strictly) concave if —f is (strictly) convex



Indicator function

the indicator function of a set C' is

0 el
+o00 otherwise

Io(z) = {

I_q,1)(x) I(—l,l)(fv)

xr

| 1

|
fmad

the indicator function of a convex set is a convex function

fod



Bregman Divergence

Dy(x,y) = ¢(x) — o(y) — (x —y) " V(y)

p(z)=zlog z

| De(xy)=xlog J —x+y

/
=

KL divergence




Mirror Descent = Proximal
Algm + Bregman Divergence

*Mirror descent can be viewed as a proximal
method using a Bregman divergence

. 1
Tkl = argmin . ((:13, Of (xr)) + aD(b(az,xk))

*Mirror descent can outperform regular
subgradient method by O(n/log(n)) (Beck and
Teboulle, 2003)



Mirror Maps

(Nemirovski and Yudin, 1980s; Bubeck, 2014)

DUAL v(I)
SPACE
PRIMAL
SPACE
V(I)(It) \\
gradient step Lt X
VO(yt+1 (11
Rn
Vo~




Mirror Descent

(Nemirovsky and Yudin)

“Imagination Space”

Dual Primal




Mirror Descent = “Natural” Gradient

(Nemirovsky and Yudin; Amari, 1980s)

Mirror Map

Mirror Descent Natural gradient

Thomas, Dabney, Mahadevan, Giguere, NIPS 2013



Safe Robot Learning

Our new method

000000

0000000

0000000

000 Previous
~25000 methOd NAC

—30000 — PNAC i

0000000

UBot, Laboratory of Perceptual Robotics N 4I§pisode650

Thomas, Dabney, Mahadevan, Giguere, NIPS 2013



Representation

Search Optimization



Variational Inequality

(Stampacchia, 1960s)

(F(x*),x —x") >0, Ve € K

/

Vector field



Game theory == VI

» A GN game consists of m

players, where player i Player A

Cooperate Defect

chooses a strategy xi | Xi
. Let the joint payoffs for | "
player 1 be Fi(xi, )

' ; oo XM
» A set of strategies x* 1s In

Nash equilibrium it
(zy —27), ViFi(x})) > 0

Player B
Cooperate

Defect




Optimization vs Vls

(Strong)

Monotonteity

(Strong) Convexity

Positive definite

. Asymmetric
and symmetric

Single fixed Multiple or none




Monotone Operators

e relation F' on R" is monotone if
(w—v)'(x—y) >0 forall (z,u), (y,v) € F

e F'is maximal monotone if there is no monotone operator that properly
contains it

for f convex, F'(x) = df(x) is monotone

e suppose u € df(x) and v € df(y)

e then
f) > f@)+u" (y—2),  fl@)>fly)+o" (z—y)
e add these and cancel f(y) + f(x) to get

0 < (u—v)"(z—y)



Subdifferentials

Subdifferential of a convex function:

Of(x) ={veR": f(z) > f(x) + v’ (2 — 2),Vz € dom(f)}

<4 ........

Nofmal Cone: 0l¢(z) = Ne(x)




Monotone Inclusion

Problem

Given a monotone operator F, find x s.t. 0 € F(x)
This means that (x,0) € F

For convex f, if 2" minimizes f, 0 € 0f(x™)



VI as monotone mclusion

0 € F(z*) + Ng(z*)

Feasible set K

L~
o Normal Cone

X > el /
- — -F(x*)
< ‘\~\~

F(X*) \'\~







Spatial Price Equilibria

Manufacturers

\J

Consumers




Spatial Price Equilibrium Model

| o P lfQ*>O
'm—l—cw—{ > b, 1fQ* — 0

Supply level Si
Supply price ]

di
Demand price Pi

Cost of transportation Qjj




Spatial Price Equilibrium
Model as a V|

(m(s7),8 —s7) +
(@), Q@ —Q7) —
(p(d™),d —d*x) >0 V(s,Q,d) € K

if and only if

. ) Q5 >0
7Tz‘|‘Cz3—{2pj lfQ;k,IZO




Can SPE be reduced to an
Optimization Problem?

87% - 87rk

Osk  Osi
Only when

90, _ Opy

od;  0d;

This is obviously not true in general



Optimization => VI

Suppose z* = argmin . f ()

where f is differentiable

Then x* solves the VI
(Vf(z*),z—2") > 0.V € K

Proof: Define ¢(t) = f(z* + t(x — z™))
Since ¢(0) achieves the minimum

¢'(0) =(Vf(z*),z—2%) >0



When VI =

optimization?
- O0F}; OF7 -
0x1 " Ox,
Given VI(F, K), define VF(x) = L
| G Ga

When VF' is symmetric and positive semi-definite

VI(F,K) can be reduced to an optimization problem,



Projection Method Fails

K = {x|[[x]lz2 <1}
F(X7 Y) — {Y7 _X}

Bertsekas and Tsitsiklis, Parallel and Distributed Computation, Athena Scientific.



Extragradient Method

Korpolevich (1970s) developed the extragradient method
for solving saddle point problems and variational
inequalities



Mirror-Prox: Non-Euclidean
Extragradient

(Nemirovski, 2005)

Vo

extragradient step

Vo~




Runge-Kutta Method for Vls

(Gemp & Mahadevan, AAAI Workshop 2014, Spring

Symposium 2019)

Runge Kutta (4) Gradient Descent
k1 = oV F(xy)

ko = aVF(x) — 1ky)
ks = aVF (2 — 5,‘2)
ky = aVF(xy — k3)

Tht1 = Tk — g(k1 + 2k2 + 2k3 + ka)

General Runge Kutta Gradient Descent
ky = aVF(zy)

k‘.Q = (l’VF(.’L’k - (1211{71)

ks = aVF(x) — ag1 k) — azaks)

k‘s = ().‘VF(.’lfk - aslkl - (1»32.182 S

Lyl = Tk — Elebz"*z

Runge Kutta (4) Non-Euclidean Extragradient

ky = aF(xy)

ko = OF(V(,L" (VL";,(I k) %kl))
k3 = aF (VY (Vi (ag) — Ska))
ks = aF (VY (Vg (xg) — ak 3))

i1 = VOL(VYr(zk) — g (k1 + 2k2 + 2ks + k4))

General RK Non-Euclidean Extragradient

ky = aF(xy)
k’g = (IF(V'I,L'JZ(V‘QZ’;‘,(:IJ;‘-) - (Lglk’l))
ks = aF (VY (Vig(zk) — aziky — azzkz))

- a's,s—lks—l)

k. aF (VY (Vi (zr) — asiky
g s—1 ks— 1 ))

- (.1-32182 g

.’],'k.*.l = VU’Z(VQ"’L(IL) — E::lbzkz)




Next Generation Internet Model [Nagurney et al., 2014]

Service Providers

game

Bertrand
Network Providers —_ I game

Demand Markets

Figure 1: The Network Structure of the Cournot-Nash-Bertrand Model
for a Service-Oriented Internet




Problem Formulation

Table 1: Notation for the Game Theoretic Cournot-Nash-Bertrand Model

Notation | Definition

(i the nonnegative service volume from 7z to k via j.

We group the {Q;;r} elements for all j and & into the vector @Q; € R°

and then we group all the vectors @); for all ¢ into the vector () € R"°.
Si the service volume (output) produced by service provider 1.

We group the {s;} elements into the vector s € R™".

ijk the nonnegative quality level of network provider y transporting service
1 to k. We group the g¢;;, for all 7 and k into the vector ¢; € R*° and
all the vectors g; for all j into the vector ¢ € RT*™.

@ the price charged by network provider y for transporting a unit of
service provided by ¢ via 7 to k. We group the m;;; for all < and £ into
the vector m; € R"" and then we group all the vectors 7; for all j into
the vector m € RI*".

fi(s) the total production cost of service provider .

piik(Q,q) | the demand price at k associated with service ¢ transported via j.

ciik(Q,q) | the total transportation cost associated with delivering service 7 via j
to k.

ociir(mi;1) | the opportunity cost associated with pricing by network provider j

services transported from ¢ to k.




VI Fomulation

. Production cost function f(Q) - cost of providing a certain
volume of content

(F(X*),X-X">0, VXek,[|X = (@,q,T)

Demand price function - user offer depends on content quality
and market volume

« Transportation cost function c(Q,q) - cost of transporting
content from service provider to user

« Opportunity cost function oc(m) - network providers lose
business due to high prices

811 (Q) | Opimi (Q, q)
z]k(X) angk ' ik — p’ijk(Qa q) ; lz pathka X Qihla

Fz%k(X) TY Ocnji(Q, Q)

h=1 I=1 qu]k

80(2ka (7Tz_7k)
awz]k

ng(X) = —Qijk



Results on Internet VI Problem

Extragradient

SOl Convergence to C-N-B Equilibrium
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Substainable Blood Banking

(Nagurney and Masoumi, 2012)
The Organization

The Blood Collection Sites

The Blood Centers

The Component Labs

The Storage Facilities

The Distribution Centers

The Demand Points




Experimental Results

(Gemp and Mahadevan, AAAl Workshop on Computational

: Sustainability, 2015)
xtragradient

Blood Banking: Convergence to Equilibrium
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EXperimental Results

(Gemp and Mahadevan, AAAl Workshop on Computational
Substainability, 2015)

Blood Banking: Convergence to Equilibrium
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Sustainable Supply Chain

Nagurney
et al.



Results on Sustainable
Supply Chain VI Problem

Extragradient

SCN Convergence to C-N Equilibrium
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Imagination

Enisality Creativity



EOUN | ERFACTU S

« P(Y, | X, Y) Is the (counterfactual) probability that
Y=y If we artificially set X = x

» given that we actually observed Y to be y when X

naturally took on the value x



IMAGINATION IN BANDITS

SN G s =8 PXEE ]

Play the arm that maximizes the counterfactual estimate
of the reward If action a Is selected, when the agent’s
policy suggests choosing action |

v
\
H, \\
1 A
\
X, Y,

(Forney, Pearl and Bareinboim, 201 7)



IMAGINATION WORKS

BETTER

[Ex1] Probability of Optimal Action

1000 1500 2000

Trial

[Ex1] Regret

2500 3000

@) D=0
P B =0 B =1 |B=0|B=1 |
=0 U RS0 0507 [T 060
A — 0.60 | *0.20 0.30 0.50 %m
L= 0.50 0.60 | *0.20 0.30 g
X =3 0.30 0.50 0.60 | *0.20 & o5
) EwilX] [ EldoX)]
pe—"0 0.20 0.40 03
S ="1] 0.20 0.40
=) 0.20 0.40
X — 3 020 040 100
Table 1: (a) Payout rates decided by reactive slot e}
machines as a function of arm choice X, sobriety D, 0

and machine conspicuousness B. Players’ natural
arm choices (f, = B+2D) under D, B are indicated by
asterisks. (b) Payout rates according to the obser-

Cum. Regret

vational, F[y:|X], and experimental E|y;|do(X)], dis- nf |

tributions, where Y = y; represents winning (shown
in the table). 10-;.1-

____TSRDC+
TSRDC

—T¢
— TS

(Forney, Pearl and Bareinboim, 2017)

1000 1500 2000

Trial

2500 3000



IMAGINATION AND
IMITATION LEARNING

Environment E[Yw] p E[Yx|x1]P(x1) B E[lexK]P(CCK)
uc A ‘

A
A

Observational

Experimental

1 2 5
— History > Counter'factual
B :

(Forney, Pearl and Bareinboim, 201 7)



MDPS WITH UNOBSERVED
CONFOUNDERS

Unobserved Confounders

(Zhang and Bareinboim, Arxiv, 201 6)




IMAGINATION VALUES

Ternary function over states, hypothetical actions,

and policy recommended actions

Q" (s¢,ay,a:) = E (R, |s¢, ay) +
Y Z Z P8t+1a t—|—1|8t7at)vﬂ(8t‘|‘1’a’t+1)

5t+1€5 a, €A



SUMMARTY

- We explored several novel frontiers of planning
- Causality, creativity and imagination

» Planning is much more useful than plans, as it can be used to build long-

term representations that transfer across tasks

» Planning in dual spaces using mirror descent leads to novel RL algorithms

that have attractive properties

 Vanational inequalities enable generalizing to problems without objective

functions (traffic, blood distribution, Internet content distribution)



BUMMARY OF [UTORIAS

- GAN models are examples of equilibrium systems

- Gradient descent Is not the optimal way to train
equilibrium models

- We Introduced variational inequalities as a framework for

modeling equilibrium systems

- VI algorithms provide powerful tools for GANs, RL, and

mMany other areas



