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SCHEDULE OF TUTORIAL
(PACIFIC STANDARD TIME)

• Session 1: 11:00 a.m. – 12:00 noon 

• Discussion: 12:00-12:15 p.m. 

• Break: 12:15-12:45 p.m. (lunch, tea, dinner etc.)

• Session 2: 12:45-1:45 p.m. 

• Discussion: 1:45-2:00 p.m. 
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PLANNING VS PLANS



Markov Decision Processes
(Bellman, Howard)
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HUMANS VS DEEP RL
Frostbite

Tsividis et al.
AAAI 2017

Humans learn Atari 1000x faster than
any deep RL framework
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Optimization Equilibration

min f(x)
x in feasible set K

(Stampacchia, 1960s)(Gauss, Newton, Shor, 
Hestenes

1800s-1950s)



21st
century AI

20th
century AI

Optimization to Equilibration
AAAI 2015, AAMAS 2020 Tutorials



GENERALIZING GRADIENT 
DESCENT

Extragradient
method
for VIs



Challenges

Nonstationarity

FeedbackObservability



SPARSITY OF REWARDS

• Often, rewards are very delayed and sparse

• What can substitute for task-specific rewards?

• Intrinsic rewards: encourage exploration to 
discover representations of long-term utility



INTRINSIC MOTIVATION



Proto-Value Functions
(Mahadevan, ICML 2005)

Reward-invariant, orthogonal, diagonalized, flat

Eigenvectors of the 
graph Laplacian  = D-W



Topological Representations for Planning

MDP Graph
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[Mahadevan, ICML 2005; Johns and Mahadevan, ICML 2007; Osentoski and Mahadevan, ICML 2007]



The Successor Representation: 
Its Computational Logic and Neural Substrates

Journal of Neuroscience 15 August 2018, 38 (33) 7193-7200;

(Dayan, MLJ)



PVF & SUCCESSOR 
REPRESENATIONS

• These two representations are closely related 
(Stachenfield, 2014)

• Another related representation is slow feature analysis 
(SFA, Wiscott & Sejnowski, 2002)

• It is possible to unify and generalize these approaches 
using more sophisticated topological concepts



TOPOLOGY AND 
AFFORDANCE





SYSTEM IDENTIFICATION

Hankel 
Matrix

Future

Past P(f | h) Originally pioneered in 
algebraic automata theory 

(Schutzenberger,1960s)
Rediscovered in AI much later: 
OOMs, PSRs, TPSRs (2005-x)

Observable 
operators using
Canonical Variate 

Analysis
(Overschee, et al.)



RL IN NONSTATIONARY WORLDS
(Chandak et al., ICML 2020)

Learn a policy that optimizes for tomorrow’s world, not today’s! 







fivethirtyeight.com



2020: Covid-19
2008:  Financial crisis

2001: World Trade Center

AI/ML models
fail in modeling

Black swan
outlier events



Corona virus: 30,000 base pairs

Virus genome is 100,000 times smaller than human DNA

Human DNA



SUPER-SPREADER COVID-19 EVENTS







INFERENCE IN SOCIAL 
NETWORKS

(Manski, 2013; Hudgins and Halloran, 2018)

Examples:
Traffic

Migration
Pandemic

Conspiracy
Marketing
Healthcare



MSBE

MSPBE
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PROJECTIONS IN REINFORCEMENT LEARNING

Projection



PROXIMAL MAPPING

Moreau, 1965:

Proximal operator generalizes projection:

v

C
x*



PROXIMAL ABSTRACTIONS



PROXIMAL PLANNING IN 
PRIMAL-DUAL SPACES

Proximal Methods

Scalability

Sparsity

Safety Reliability

(Mahadevan et al., Arxiv 2015)

Bo Liu

Ian Gemp

Philip Thomas

Stephen Giguere

Ji Liu

Nicholas Jacek

Will Dabney



PROXIMAL FRAMEWORK COVERS 
MANY RL ALGORITHMS

Proximal RL

Projected Natural
Actor Critic 

Natural Actor-Critic

Sparse RL

Mirror-Descent TD

Saddle Point formulation

GTD2, TDC, etc.
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CAUSAL INTERVENTION
During Covid lockdownNormal air

New Delhi, India



WASHINGTON POST DATABASE ON 
GUNS IN SCHOOLS

April 20 2018





CAUSALITY VS PLANNING
• The aim of causal inference is to answer the “Why?” question: to understand 

the world, not only for planning, but also for explanation

• Aggregate model: decisions are often irrevocable

• Will remdesivir improve the chance of survival in a Covid-19 patient?

• Outcomes are only partially observed

• Control units cannot be observed under treatment

• Treated units cannot be observed under control



POTENTIAL OUTCOMES
• Rubin (1974) introduced the potential outcomes model of 

causal inference to reason about counterfactuals

• If we classify countries based on their response to Covid-19, we 
can do causal analysis of potential outcomes

• Treatment units: countries that mandated masks

• Control units: countries where masks were not mandated

• Stable unit treatment value assumption (SUTVA)



CAUSAL INFERENCE AS MATRIX 
COMPLETION

Units

Time

Treated

Control

Missing
data

(Athey et al., 2017)

Nuclear norm regularization:
Y(est) = min(||Y – Y(obs)||*)



SYNTHETIC CONTROL

(Abadi)
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Ladder of Causation



imagining
“impossible”

objects







IMAGINATION VALUES
• Q-learning estimates value of actions by trial and error

• How to extend Q-learning to counterfactual learning?

• How about values of novel actions in novel states?

• Imagination values: infer action values using synthetic 
control by imputing values from other agents

• Similar to off-policy RL (Sutton, Liu et al.)



SYNTHETIC Q-LEARNING

Agents

Trajectories

Treated

Control

Missing
data
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CREATIVITY IN ART

Cy Twombly
NY Times, April 11 2018

Jean Michel Basquiat
Sold in NY for $110M



MIT Technology Review
Feb 2018

(Goodfellow et al., 2014)

GENERATIVE 
ADVERSARIAL NETWORKS



IMAGINATION WITH GANS

(Zhu et al., 2017)



GAN ~ ACTOR-CRITIC

Pfau and Vinyals, NeurIPS 2017

Actor-Critic (Barto et al., 1983) (Goodfellow et al., 2014)

z G D

x y

(a) Generative Adversarial Networks [4]

π

st

Q

rt

(b) Deterministic Policy Gradient [7] /
SVG(0) [8] / Neurally-Fitted Q-learning
with Continuous Actions [9]

Figure 1: Information structure of GANs and AC methods. Empty circles represent models with a
distinct loss function. Filled circles represent information from the environment. Diamonds repre-
sent fixed functions, both deterministic and stochastic. Solid lines represent the flow of information,
while dotted lines represent the flow of gradients used by another model. Paths which are analo-
gous between the two models are highlighted in red. The dependence of Q on future states and the
dependence of future states on π are omitted for clarity.

2 Algorithms

Both GANs and AC can be seen as bilevel or two-time-scale optimization problems, where one
model is optimized with respect to the optimum of another model:

x∗ = argmin
x∈X

F (x, y∗(x)) (1)

y∗(x) = argmin
y∈Y

f(x, y) (2)

Bilevel optimization problems have been extensively studied in operations research, including the
study of actor-critic methods [5], but largely in the setting where the two optimization problems are
linear or convex programs [6]. By contrast, the recent applications we review here have largely used
deep neural networks as the class of functions over which to optimize.

2.1 Generative Adversarial Networks

Generative adversarial networks [4] formulate the unsupervised learning problem as a game between
two opponents - a generator G which samples from a distribution, and a discriminator D which
classifies the samples as real or false. Typically the generator is represented as a deterministic
feedforward neural network through which a fixed noise source z ∼ N (0, I) is passed and the
discriminator is another neural network which maps an image to a binary classification probability.
The GAN game is then formulated as a zero sum game where the value is the cross-entropy loss
between the discriminator’s prediction and the true identity of the image as real or generated, which
we denote y:

min
G

max
D

Ew,y[ylogD(w) + (1 − y)log(1−D(w))] =

min
G

max
D

Ew∼pdata
[logD(w)] + Ez∼N (0,I)[log(1 −D(G(z)))] (3)

To make sure the generator has gradients from which to learn even when the discriminator’s clas-
sification accuracy is high, the generator’s loss function is usually formulated as maximizing the
probability of classifying a sample as true rather than minimizing its probability of being classified
false. The modified loss is still easily formulated as a bilevel optimization problem:

F (D,G) = −Ew∼pdata
[logD(w)] − Ez∼N (0,I)[log(1 −D(G(z)))] (4)

f(D,G) = −Ez∼N (0,I)[logD(G(z))] (5)

2

2.2 Actor-Critic Methods

Actor-critic methods are a long-established class of techniques in reinforcement learning [2]. While
most reinforcement learning algorithms either focus on learning a value function, like value iteration
and TD-learning, or learning a policy directly, as in policy gradient methods, AC methods learn
both simultaneously - the actor being the policy and the critic being the value function. In some AC
methods, the critic provides a lower-variance baseline for policy gradient methods than estimating
the value from returns. In this case even a bad estimate of the value function can be useful, as the
policy gradient will be unbiased no matter what baseline is used. In other AC methods, the policy is
updated with respect to the approximate value function, in which case pathologies similar to those in
GANs can result. If the policy is optimized with respect to an incorrect value function, it may lead
to a bad policy which never fully explores the space, preventing a good value function from being
found and leading to degenerate solutions. A number of techniques exist to remedy this problem.
Formally, consider the typical MDP setting for RL, where we have a set of states S, actions A, a
distribution over initial states p0(s), transition function P(st+1|st, at), reward distribution R(st)
and discount factor γ ∈ [0, 1]. The aim of actor-critic methods is to simultaneously learn an action-
value functionQπ(s, a) that predicts the expected discounted reward:

Qπ(s, a) = Est+k∼P,rt+k∼R,at+k∼π

[

∞
∑

k=1

γkrt+k

∣

∣

∣

∣

∣

st = s, at = a

]

(6)

and learn a policy that is optimal for that value function:

π∗ = argmax
π

Es0∼p0,a0∼π[Q
π(s0, a0)] (7)

We can expressQπ as the solution to a minimization problem:

Qπ = argmin
Q

Est,at∼π[D(Est+1,rt,at+1
[rt + γQ(st+1, at+1)]||Q(st, at))] (8)

Where D(·||·) is any divergence that is positive except when the two are equal. Now the actor-critic
problem can be expressed as a bilevel optimization problem as well:

F (Q,π) = Est,at∼π[D(Est+1,rt,at+1
[rt + γQ(st+1, at+1)]||Q(st, at))] (9)

f(Q,π) = −Es0∼p0,a0∼π[Q
π(s0, a0)] (10)

There are manyACmethods that attempt to solve this problem. Traditional ACmethods optimize the
policy through policy gradients and scale the policy gradient by the TD error, while the action-value
function is updated by ordinary TD learning. We focus on deterministic policy gradients (DPG)
[7, 10] and its extension to stochastic policies, SVG(0) [8], as well as neurally-fitted Q-learning with
continuous actions (NFQCA) [9]. These algorithms are all intended for the case where actions and
observations are continuous, and use neural networks for function approximation for both the action-
value function and policy. This is an established approach in RL with continuous actions [11], and
all methods update the policy by passing back gradients of the estimated value with respect to the
actions rather than passing the TD error directly. The distinction between the methods lies mainly
in the way training proceeds. In NFQCA, the actor and critic are trained in batch mode after every
episode, while in DPG and SVG(0), networks are trained online using temporal difference updates.

2.3 GANs as a kind of Actor-Critic

The similarities between GANs and ACmethods are summarized in Figure 1. In both situations, one
model has access to information about errors from the environment (the discriminator in GANs and
the critic in AC), while the other model must be updated based only on gradient information from
the first model.
We can make this connection more precise and describe an MDP in which GANs are a modified
type of actor-critic method. Consider an MDP where the actions set every pixel in an image. The
environment randomly chooses either to show the image the actor generates or show a real image.

3



GENERATIVE MULTI-ADVERSARIAL 
NETWORKS (GMAN)

(Durugkar, Gemp, and Mahadevan, ICLR, 2017)



MIX GAN MODELS

Generators
Discriminators

(Arora et al., ICML 2017)



SIMULTANEOUS GRADIENT 
ASCENT

(Mescheder et al., Numerics of GANs, Arxiv, 2017)



M. C. Escher





GRADIENTS TO VECTOR 
FIELDS



NOVEL GAN ALGORITHMS:
VARIATIONAL INEQUALITIES

• Joint work with my PhD student Ian Gemp

• In equilibrium problems, traversing the steepest 
descent direction is not sufficient for convergence

• Orthogonal directions turn out to be crucial for 
convergence



VECTOR FIELD GAN 
ALGORITHM







CAN loss function





Sample art
created by CAN
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Convex Optimization

Linear
Programming

Game
Theor

y MDPs

OR
Economi

cs





Projection onto Convex Sets

y

x

z



Convex Feasibilty

Proximal splitting methods in signal processing
Combetti and Pesquet





Indicator Function



Bregman Divergence

KL divergence



Mirror Descent = Proximal 
Algm + Bregman Divergence

•Mirror descent can be viewed as a proximal 
method using a Bregman divergence

•Mirror descent can outperform regular 
subgradient method by  O(n/log(n)) (Beck and 
Teboulle, 2003)



Mirror Maps
(Nemirovski and Yudin, 1980s; Bubeck, 2014)



Mirror Descent
(Nemirovsky and Yudin)

PrimalDual

“Imagination Space”



Mirror Descent = “Natural” Gradient 
(Nemirovsky and Yudin; Amari, 1980s)

Natural gradientMirror Descent 

Thomas, Dabney, Mahadevan, Giguere, NIPS 2013

Mirror Map



Safe Robot Learning

UBot, Laboratory of Perceptual Robotics

Our new method

Previous
method

Thomas, Dabney, Mahadevan, Giguere, NIPS 2013
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Variational Inequality
(Stampacchia, 1960s)

Vector field



Game theory => VI

A CN game consists of m 
players, where player i 
chooses a strategy xi � Xi

Let the joint payoffs for 
player i be Fi(x1,…,xm)

A set of strategies x* is in 
Nash equilibrium if 



Optimization vs VIs

Property Optimization VI

Mapping (Strong) Convexity (Strong) 
Monotonicity

Jacobian Positive definite 
and symmetric Asymmetric

Objective function Single fixed Multiple or none



Monotone Operators



Subdifferentials

x

z

Subdifferential of a convex function: 



Monotone Inclusion 
Problem



VI as monotone inclusion



Proximal
Mappings

Operator
Splitting

Mirror
Descent

ADMM
(Dual Decomposition)

Monotone
Inclusion



Spatial Price Equilibria
Manufacturers

Consumers



Spatial Price Equilibrium Model

Supply level si

Supply price πj

Quantity demanded di

Demand price ρj

Cost of transportation Qij



Spatial Price Equilibrium 
Model as a VI

if and only if



Can SPE be reduced to an 
Optimization Problem?

Only when

This is obviously not true in general



Optimization => VI

)



When VI => 
optimization?



Projection Method Fails

Bertsekas and Tsitsiklis, Parallel and Distributed Computation, Athena Scientific. 



Extragradient Method

Korpolevich (1970s) developed the extragradient method
for solving saddle point problems and variational

inequalities



Mirror-Prox: Non-Euclidean 
Extragradient 

(Nemirovski, 2005)



Runge-Kutta Method for VIs 
(Gemp & Mahadevan, AAAI Workshop 2014, Spring 

Symposium 2015)



Cournot-Nash
game

Bertrand 
game

Next Generation Internet Model [Nagurney et al., 2014]



Problem Formulation



VI Fomulation
Production cost function f(Q) - cost of providing a certain 
volume of content

Demand price function - user offer depends on content quality 
and market volume

Transportation cost function c(Q,q) - cost of transporting 
content from service provider to user

Opportunity cost function oc(π) - network providers lose 
business due to high prices



Results on Internet VI Problem

Our new algorithm

Extragradient  



Substainable Blood Banking
(Nagurney and Masoumi, 2012)



Experimental Results
(Gemp and Mahadevan, AAAI Workshop on Computational 

Sustainability, 2015)

Our new algorithm

Extragradient  



Experimental Results
(Gemp and Mahadevan, AAAI Workshop on Computational 

Substainability, 2015)



Sustainable Supply Chain

Nagurney
et al.



Results on Sustainable 
Supply Chain VI Problem

Our new algorithm

Extragradient  
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COUNTERFACTUALS

• P(yx | x’, y’) is the (counterfactual) probability that 
Y=y if we artificially set X = x 

• given that we actually observed Y to be y’ when X 
naturally took on the value x’



IMAGINATION IN BANDITS

Play the arm that maximizes the counterfactual estimate 
of the reward if action a is selected, when the agent’s 

policy suggests choosing action i

(Forney, Pearl and Bareinboim, 2017)



IMAGINATION WORKS 
BETTER

(Forney, Pearl and Bareinboim, 2017)



IMAGINATION AND 
IMITATION LEARNING

(Forney, Pearl and Bareinboim, 2017)

Counterfactual

Observational
Experimental



MDPS WITH UNOBSERVED 
CONFOUNDERS

(Zhang and Bareinboim, Arxiv, 2016)

State
Policy

Action

Reward
Unobserved Confounders



IMAGINATION VALUES
Ternary function over states, hypothetical actions,

and policy recommended actions



SUMMARY
• We explored several novel frontiers of planning 

• Causality, creativity and imagination

• Planning is much more useful than plans, as it can be used to build long-
term representations that transfer across tasks

• Planning in dual spaces using mirror descent leads to novel RL algorithms 
that have attractive properties

• Variational inequalities enable generalizing to problems without objective 
functions (traffic, blood distribution, Internet content distribution)



SUMMARY OF TUTORIAL
• GAN models are examples of equilibrium systems

• Gradient descent is not the optimal way to train 
equilibrium models

• We introduced variational inequalities as a framework for 
modeling equilibrium systems

• VI algorithms provide powerful tools for GANs, RL, and 
many other areas


