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Abstract

We characterize homotopical equivalences between causal DAG models, exploiting the close connec-
tions between partially ordered set representations of DAGs (posets) and finite Alexandroff topologies.
Alexandroff spaces yield a directional topological space: the topology is defined by a unique minimal
basis defined by open sets Ux for each variable x, specified as the intersection of all open sets
containing x. Alexandroff spaces induce a (reflexive, transitive) preorder: a variable x ≤ y if x ∈ Uy.
Alexandroff spaces satisfying the Kolmogorov T0 separation criterion, where open sets distinguish
variables, converts the preordering into a partial ordering. Our approach broadly is to construct
a topological representation of posets from data, and then use the poset representation to build a
conventional DAG-oriented causal model. We illustrate our framework by showing how it unifies
disparate algorithms and case studies proposed previously. Topology plays two key roles in causal
discovery. First, topological separability constraints on datasets have been used in several previous
approaches to infer causal structure from observations and interventions. Second, a diverse range of
graphical models used to represent causal structures can be represented in a unified way in terms of
a topological representation of the induced poset structure. We show that the homotopy theory of
Alexandroff spaces can be exploited to significantly efficiently reduce the number of possible DAG
structures, reducing the search space by several orders of magnitude.

1 Introduction

Topology (Munkres, 1984a) has found extensive use in many areas in AI, machine learning and optimization. The
Hahn-Banach theorem is a topological result concerning separation of points from convex sets by hyperplanes, and
the entire framework of Lagrange duality can be derived from this topological insight (Luenberger, 1997). The
Hahn-Banach theorem is also the basis for the universal representation theorem in deep neural networks (Cybenko,
1989). Topological data analysis techniques, such as persistent homology, are playing an increasingly important role in
different areas of machine learning (Edelsbrunner, 2007; Zomorodian and Carlsson, 2005).

Graphical models have been extensively studied in artificial intelligence (AI), causal reasoning, machine learning
(ML), physics, statistics, and many other fields (Koller and Friedman, 2009; Lauritzen, 1996; Pearl, 1989, 2019).
Causal discovery (Spirtes et al., 2000) involves the construction of a causal model, for example a DAG graphical
model structure and the specification of a probability model, from observational or experimental data. A broad family
of models, ranging from Bayes networks (Pearl, 1989) on directed acyclic graphs (DAGs) to more recent variants,
such as directed acyclic mixed graphs (ADMG) (Richardson, 2009), marginalized DAGs (mDAGs) (Evans, 2018) and
hyperedge-directed graphical models (HEDGs) (Forre and Mooij, 2017), can be represented by finite Alexandroff
spaces with different topological properties. For example, a DAG model imposes a T0 topology on a finite Alexandroff
space, which induces a partial ordering σ on the variables V in the model so that function fi determining the value of
variable Xσi in the model is measurable given the values of the previous variables Xσ1 , . . . , Xσi−1 . A directed acyclic
mixed graph (ADMG) (Richardson, 2009) and chain graphs (Andersson et al., 1996), on the other hand, have both
undirected and directed edges, which induce only a preordering on the set of variables. Marginalized DAGs (MDAGs)
(Evans, 2018) and HEDG (Forre and Mooij, 2017) models allow hyperedges between nodes, representing the effect
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of latent variables. These can be represented using topological constructions, such as non-Hausdorff cones C(X) or
non-Hausdorff suspensions S(X) (Barmak, 2011).

We propose a novel topological framework for causal inference, building an initial topological representation of a
partially ordered set (poset) from data, prior to building a probabilistic graphical model from the poset (see Figure 1).
To that end, we represent posets using the algebraic topology of finite Alexandroff spaces (Alexandroff, 1956; Barmak,
2011; May). Representing posets as topological spaces confers many computational advantages, such as the ability
to combine multiple posets into a joint poset, and to use algebraic homotopy theory (Barmak, 2011; May) of finite
topological spaces to significantly reduce the search space of possible structures. We show how a wide variety of
graphical models, from chain graphs (Lauritzen and Richardson, 2002) to DAGs (Pearl, 1989), can be topologically
represented as posets in a finite Alexandroff space. We illustrate our approach using a real-world dataset of pancreatic
cancer (Beerenwinkel and Sullivant, 2009; Diaz-Uriarte, 2017). Our primary goal is to illustrate how algebraic topology
provides some powerful tools to design more scalable algorithms for structure discovery, which otherwise presents an
intractable combinatorial search space. We also relate our approach to previous studies of causal discovery showing
how to classify them using the concept of intervention topology (Pearl, 2009; Spirtes et al., 2000; Eberhardt, 2008;
Hauser and Bühlmann, 2012a; Kocaoglu et al., 2017; Mao-cheng, 1984; Tadepalli and Russell, 2021). (Bernstein et al.,
2020) develop a greedy poset-based algorithm for learning DAG models, but do not exploit poset topological properties.

Our approach builds on a key technical innovation of using a topological representation of partially ordered sets,
in between the original datasets and the final probabilistic or statistical graphical model. The principal reasons for
explicitly modeling posets as topological spaces is that it allows us to exploit the rich algebraic theory of finite spaces
(Barmak, 2011; May; McCord, 1966; Stong, 1966) to our computational advantage. For example, in modeling cancer
disease progression, in addition to obtaining crucial timing information about mutations from clinical datasets on
tumors and their associated genotypes, we can also exploit the disease pathways (Jones et al., 2008) that are known
from medical research. Each source of information results in a different poset, which can be combined together using
the algebraic topology theory of finite spaces. In addition, algebraic topology gives powerful tools for reducing the
combinatorial search space of possible structures. We characterize homeomorphic equivalences among minimal poset
models, and show homotopical equivalences sharply reduce the number of structures that need to be examined during
structure discovery. In the case of pancreatic cancer, for example, we can reduce the search space of possible structures
by three orders of magnitude.

The topology of posets of graphical models based on the algebraic topology of finite Alexandroff spaces (Alexandroff,
1956). We show how a wide variety of graphical models, from chain graphs (Lauritzen and Richardson, 2002) to DAGs
(Pearl, 1989), can be topologically embedded in a finite Alexandroff space. For a DAG G, simply compute the unique
transitive closure graph Gtc, and define the open sets of the induced topological model (M,≤) by defining the open
sets Ux ⊂ T as the ancestors of a node x (including itself) in Gtc. To revert from a topological modelM = (X,T ) to
its DAG representation, form the Hasse diagram of the partial order defined by x ≤ y if x ∈ Uy. We present a novel
algorithmic paradigm for structure discovery as iterating between searching among topologically distinct structures
and causally faithful structures. We show how this paradigm can be used to characterize many previous studies of
causal discovery in terms of the concept of intervention topology, collections of subsets intervened on to determine
directionality (Pearl, 2009; Spirtes et al., 2000; Eberhardt, 2008; Hauser and Bühlmann, 2012a; Kocaoglu et al., 2017;
Mao-cheng, 1984; Tadepalli and Russell, 2021). This connection immediately suggests topological generalizations of
these previous algorithms.

2 Representing Causal DAGs as Finite Topological Spaces

We begin with brief review of basic point-set topology, and then give a succinct characterization of finite space
topologies. Topology (Munkres, 1984a) characterizes the abstract properties of arbitrary spaces that are equivalent
under smooth deformations, usually represented as continuous invertible mappings called homeomorphisms. Formally,
a general topological space (X,U) is characterized by a base space X, along with a collection of “open" sets Oi ⊆ U

closed under arbitrary union and finite intersection. Note the asymmetry in these restrictions. For example, if we define
X = R to be the real line, and consider the open sets Oi = (− 1

i ,
1
i ) to be the open intervals around 0 for i = 1, . . .∞, then

∩∞i=1(− 1
i ,

1
i ) = {0}, which is not an open set!

Alexandroff (Alexandroff, 1956) pioneered the study of the subclass of topological spaces that are closed under both
arbitrary union and intersection. While our framework can be potentially be extended to the non-finite case, for
simplicity, we will restrict our presentation in this paper to the case of finite Alexandroff spaces (Barmak, 2011; May;
McCord, 1966; Stong, 1966). It is obvious to note that finite topological spaces (X,U) are trivially closed under
arbitrary unions and intersections, because there are only a finite number of open sets O ∈ U. However, what turns out
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to be surprising is that the particular construction used by Alexandroff in defining open sets applies even in the finite
case, and results in spaces with surprising topological richness, even though they are finite.
Definition 1. A finite Alexandroff topological space (or simply, finite space, in the remainder of the paper) (X,U) is a
finite set X and a collectionU of “open" sets, namely subsets of X, such that (i) ∅ (the empty set) and X are inU (ii)
Any union of sets inU is inU (iii) Any intersection of subsets inU is inU as well.

We will often refer to a finite space simply by its elements X, where the topology is left implicit, unless its character
is important, when we will clarify it. The most common topologies on X will be the discrete topology, where the
collection of open setsU is just the powerset 2X , and the trivial topologyU = {∅, X}.

The major contribution of this paper is the use of a specific topological representation of partially ordered sets based on
Alexandroff spaces (Alexandroff, 1956), who showed that finite topological spaces naturally defined preordered and
partially ordered sets. Two classic papers by McCord (McCord, 1966) and Stong (Stong, 1966) laid the foundations for
much of the subsequent study of finite topological spaces. Detailed proofs of all the main theorems on finite topological
spaces in this paper can be found in (Barmak, 2011; May; McCord, 1966; Stong, 1966).

Remarkably, a key idea that is implicit in many causal discovery algorithms is the topological notion of separability
(Beerenwinkel et al., 2007; Kocaoglu et al., 2017; Acharya et al., 2018), which intimately relates to the topology of
the finite space. In order to construct a poset model from data, (Beerenwinkel et al., 2007) assume that the dataset
u : G → N specifies the number of observations of each genotype g. For example, Table 5 specifies the number of
tumors that contain a specific set of gene mutations g. The support S(u) is the non-zero coordinates of u, namely the
genotypes that occur in the data. A crucial assumption here is that the dataset u separates the events e and f if there
exists some genotype g ∈ S(u) such that g ∩ {e, f } , ∅. Viewed more abstractly, this notion of separability implies
that the underlying space has the T0 Kolmogorov topology. (Kocaoglu et al., 2017) assume a separating set, which is
essentially a restricted type of finite topological space.
Definition 2. The neighborhood of an element x in a finite space X is a subset V ⊂ X such that x ∈ U for some open
set U ⊂ V.

• X is a Kolmogorov (or T0) finite space X if each pair of points x, y ∈ X is distinguishable in the space, namely
for each x, y ∈ X, there is an open set U ∈ U such that x ∈ U and y < U. Alternatively, if x ∈ U if and only if
y ∈ U, ∀U ∈ U implies that x = y.

• X is a T1 finite space if element x ∈ X defines a closed set {x}.

• X is a T2 finite space or a Hausdorff space if any two points have distinct neighborhoods.

It turns out that T1 finite spaces are not interesting since the only topology defined on them is the discrete (powerset)
topology. The most interesting finite spaces are those equipped with the T0 topology.
Lemma 1. (May) If X is a T2 space, then it is a T1 space. If X is a T1 space, then it is a T0 space.

The key concept that gives finite (Alexandroff) spaces its power is the definition of the minimal open basis. First, we
introduce the concept of a basis in a topological space.
Definition 3. A basis for the topological space X is a collection B of subsets of X such that

• For each x ∈ X, there is at least one B ∈ B such that x ∈ B.

• If x ∈ B′ ∩ B”, where B, B” ∈ B, then there is at least one B ∈ B such that x ∈ B ⊂ B′ ∩ B”.

The topologyU generated by the basis B is the set of subsets U such that for every x ∈ U, there is a B ∈ B such that
x ∈ B ⊂ U. In other words, U ∈ U if and only if U can be generated by taking unions of the sets in the basis B. Now,
we turn to giving the most important definition in Alexandroff spaces, namely the unique minimal basis.
Lemma 2. (May) Let X be a finite Alexandroff space. For each x ∈ X, define the open set Ux to be the intersection of
all open sets that contain x. Define the relationship ≤ on X by x ≤ y if x ∈ Uy, or equivalently, Ux ⊂ Uy (where x < y if
the inclusion is strict). The open sets Ux constitute a unique minimal basis B for X in that if C is another basis for X,
then B ⊂ C. Alternatively, define the closed sets Fx = {y | y ≥ x}, which provide an equivalent characterization of finite
Alexandroff spaces.1

Note that the relation ≤ defined above is a preorder because it is reflexive (clearly, x ∈ Ux) and transitive (if x ∈ Uy,
and y ∈ Uz, then x ∈ Uz). However, in the special case where the finite space X has a T0 topology, then the relation ≤

1The minimal basic closed sets in a T0 finite Alexandroff space correspond to the ancestral sets in a DAG graphical model.
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becomes a partial ordering. This gives a topological way to model DAG models, which will play a crucial role in our
framework.

Lemma 3. A function f : X → Y from one finite space to another is continuous if and only if f −1(U) is open in X if U
is open in Y.

Lemma 4. If X is a T2 space, then it is a T1 space. If X is a T1 space, then it is a T0 space.

Lemma 5. A function f : X → Y between two finite spaces is continuous if and only if it is order-preserving, meaning
if x ≤ x′ for x, x′ ∈ X, this implies f (x) ≤ f (x′).

Lemma 6. Let x, y be two comparable points in a finite space X. Then, there exists a path from x to y in X, that is, a
continuous map α : (0, 1)→ X such that α(0) = x and α(1) = y.

Theorem 1. If X is a finite topological space containing a point y such that the only open (or closed) subset of X
containing y is X itself, then X is contractible. In particular, the non-Hausdorff cone C(X) is contractible for any X.

Proof: Let Y = {∗} denote the space with a single element, ∗. Define the retraction mapping r : X → ∗ by r(x) = ∗
for all x ∈ X, and define the inclusion mapping i : Y → X by i(∗) = y. Clearly, r ◦ i = idY . Define the homotopy
h : X → I → X by h(x, t) = x if t < 1, and h(x, 1) = y. Then, h is continuous, because for any open set U in X, if y ∈ U,
then clearly U = X (as X is the only open set containing y), and hence h−1(U) = X × I, which is open. If on the other
hand, y < U, then h−1(U) = U × [0, 1). It follows that h is a homotopy h � idX = i ◦ r. �

Lemma 7. If X is an finite Alexandroff space, then Ux is contractible. In particular, if X has a unique maximal point or
unique minimal point, then X is contractible.

2.1 Open sets induced by Causal DAGs

We use a motivational example of causal discovery for treatment of patients for the COVID pandemic using vaccines
(Greinacher et al., 2021; Schultz et al., 2021). In the COVID vaccination causal discovery problem, we are given a
finite set of 5 variables X = {AZV,PF4,H,BC,VITT}, defined as follows:

• AZV: This variable represents the adminstration of the AstraZeneca vaccine.

• PF4: A number of patients suffering from vaccine-induced abnormal blood clotting tested positive for
heparin-induced platelet factor 4 (PF4).

• Gender: Many of the patients who exhibited adverse effects to the Covid vaccine were disproportionately
women, so gender may be a causal factor.
HIT: Heparin is a blood thinner used to prevent blood clots. Triggered by the immune system in response to
heparin, HIT causes a low platelet count (thrombocytopenia).

• VITT: This variable denotes whether patients suffered from this rare vaccine-related variant of spontaneous
heparin-induced thrombocytopenia that the authors of these studies referred to as vaccine-induced immune
thrombotic thrombocytopenia.

Figure 1 illustrates a simple causal model for the COVID problem, represented both conventionally as a DAG, as well
as two alternative representations of a finite topological space (X,T ), where X is represented by the two variables
shown, and T is a either a set of open sets, defined as the descendants of a node (including itself), or a set of closed sets
comprised of the ancestors of a node (including itself). In the open set parameterization, there is an arrow from node x
to node y whenever x ∈ Oy, that is, when the node x is in the open set corresponding to node y.

Figure 2 shows how latent variables are typically modeled in causal reasoning using acyclic mixed directed graphs
(ADMGs), where the latent variable is represented by a dashed undirected edge connecting the two observable variables.
Such latent variables can be captured in our finite space topological framework by the use of the non-Hausdorff cone
construction, which is one of several ways of connecting two topological spaces. Recall the non-Hausdorff cone
merging of topological space X with {∗} yields the new space C(X), whose open sets are now OC(X) = OX ∪ {X ∪ {∗}}.

To take a real-world example, recently two studies were published in the New England Journal of Medicine that described
patients in Austria, Germany and Norway who developed an unexpected blood clotting disorder in reaction to their first
dose of the AstraZeneca/Oxford COVID-19 vaccine (Greinacher et al., 2021; Schultz et al., 2021). Understanding causal
pathways in such problems requires modeling the effects of tens of thousands of discrete and continuous variables,
from the administration of the vaccine, heparin-induced platelet factors like PF4, thromocytopenia (blood clots) and its
various causes, and the entire previous medical history of the patient. Clinicians have to juggle through all these factors
in describing a potential treatment (e.g., should heparin be given to a patient?).
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Figure 1: A simple example of a causal relationship between AZV, the adminstering of the AstraZeneca vaccine,
and VITT, the potentially vaccine-induced clotting of blood. On the left is a traditional DAG model of this causal
relationship. In the middle, we give one characterization of this DAG as a finite space topological model, where the
open sets of the model correspond to descendants of each node (including the node itself). On the right is an equivalent
characterization in terms of closed sets, which correspond to ancestors of a node (including the node itself).

Figure 2: A simple causal model with a latent variable correlating AZV, the adminstering of the AstraZeneca vaccine,
and VITT, the potentially vaccine-induced clotting of blood. On the left is a traditional acyclic mixed directed graphical
model (ADMG) of this causal relationship. On the right is the equivalent finite space topological model, where the open
sets of the model correspond to descendants of each node (including the node itself), and the latent unobserved variable
is represented by the element * joined to the remainder of the model using a non-Hausdorff cone.

Figure 3: A directed graph with hyper-edges (HEDG) represented as a finite topological space. Open sets associated
with variables are shown as circles or ellipsoids. The + and − nodes are two latent factors connected by hyper-edges to
observables. The non-Hausdorff suspension S defined in Section 2 permits composing the hyper-edge latent variable
model with the topological model induced by the DAG over observables.

2.2 Connectivity in Topological Spaces

As mentioned above, every concept in a topological space must be defined in terms of the open (or closed) set topology,
and that includes (path) connectivity. The crucial idea here is that connectivity is defined in terms of a continuous
mapping from the unit interval I = (0, 1) to a topological space X. Remarkably, the upshot of this construction is that
every graph-theoretic concept in causal models, e.g. separation and conditional independence, can be translated into
properties of open sets in the topology.
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Lemma 8. A function f : X → Y between two finite spaces is continuous if and only if it is order-preserving, meaning
if x ≤ x′ for x, x′ ∈ X, this implies f (x) ≤ f (x′).
Definition 4. We call two points x, y ∈ X comparable if there is a sequence of elements x0, . . . , xn, where x0 = x, xn = y
and for each pair xi, xi+1 either xi ≤ xi+1 or xi ≥ xi+1. A fence in X is a sequence x0, x1, . . . , xn of elements such that
any two consecutive elements are comparable. X is order connected if for any two elements x, y ∈ X, there exists a
fence starting in x and ending in y.
Lemma 9. Let x, y be two comparable points in a finite space X. Then, there exists a path from x to y in X, that is, a
continuous map α : (0, 1)→ X such that α(0) = x and α(1) = y.
Lemma 10. Let X be a finite space. The following are equivalent: (i) X is a connected topological space. (ii) X is an
order-connected topological space (iii) X is a path-connected topological space.

To illustrate the notion of connectivity, Table 4 gives examples of connected and disconnected finite space topologies
for a small three element space.

2.3 Separation and Conditional Independence in Topological Spaces

We now give a purely topological characterization of separation and conditional independence in finite topological
spaces, which draw upon equivalent notions in graphical models (Lauritzen and Richardson, 2002; Pearl, 1989), but are
defined with respect to the open sets of the topology.
Definition 5. Given a connected finite space X, with an induced (pre,partial) ordering ≤, and subsets U,V,Z ⊂ X,
the subset U is topologically blocked or d-separated from V given Z, if for every fence from an element u ∈ V to an
element v ∈ V, the following conditions hold:

1. The fence x0, x1, . . . , xn, where x0 = u and xn = v is such that every consecutive pair of elements is of the form
xi ≤ xi+1 or xi+1 ≤ xi, and some element xk ∈ Z (this condition is equivalent to stating that all the edges are of
the form xi → xi+1 or xi ← xi+1).

2. The fence x0, x1, . . . , xn, where x0 = u and xn = v is such that for every collider in the fence, namely a triple of
elements xi, xi+1, xi+2 is such that xi ≤ xi+1, and xi+2 ≤ xi+1, it holds that Uxi+1 ∩ Z = ∅. This condition is the
topological restatement of the standard collider condition in graphical models, where for a path to be blocked,
no collider or any of its descendants can be in the conditioning set.

Definition 6. Given a finite space X, and subsets U,V,Z ⊂ X, U is topologically conditionally independent (TCI) of
V given Z if and only if every fence from an element u ∈ U to an element v ∈ V is topologically blocked with respect to
the conditioning set Z.

3 Stable and Solvable Causal Models over Finite Topological Spaces

We now precisely define stable and solvable causal models, including both their Alexandroff topological structure, and
a decomposable product probability measure constituting the parameters of the model. We impose the condition that
the product probability measure respect the underlying Alexandroff topology, namely its open (or closed) sets, and
requirement of a particular factorization is translated into a requirement of a particular topology. Our formulation is
related to the intrinsic model of decision making (Witsenhausen, 1975), which was recently adapted to causal inference
(Heymann et al., 2020). Neither of these investigated Alexandroff topologies.
Definition 7. A finite space causal model is defined asM = (Uα,Fα,Iα, (Ω,B, P)), where α ∈ X, a finite Alexandroff
space topology. Uα is a non-empty set that defines the range of values that variable α can take. Fα is a sigma field
(or algebra) of measurable sets for variable α. The triple (Ω,B, P) is a probability space, where B is a sigma field of
measurable subsets of sample space Ω. The information field Iα ⊂ F represents the “receptive field" of an element
α ∈ X, namely the set of other elements β ∈ X whose values α must consult in determining its own value. We impose the
restriction that the information field Iα respect the Alexandroff topology on X, so that Iα ⊂ F (Uα), where Uα is the
minimal basic open set associated with element α ∈ X.

Following structural causal models (Pearl, 1989), we can decompose the elements of the topological space into disjoint
subsets X = U t V , where U represents “exogenous" variables that have no parents, namely α is exogenous precisely
when Iα ⊂ F (∅), and V are “endogenous" variables whose values are defined by measurable functions over exogenous
and endogenous variables. Note that the probability space can be defined over the “exogenous" variables α ∈ U, in
which case it is convenient to attach a local probability space (Ωα,Bα, P) to each exogenous variable, where Bα ⊂ B.
We define conditional independence with respect to the induced information fields over the open sets of the Alexandroff
space.

6
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Definition 8. Given the induced probability space over information fields in a topological finite space, a stochastic
basis is a sequence of information fields G = I1, . . . ,In such that for 1 ≤ i ≤ n − 1,Ii ⊂ Ii+1, and ∪n

1=1Ii = F . Two
such sequences G1 and G2 are conditionally independent given the base sigma algebra F , if for all subsets A ∈ G1,
B ∈ G2, it follows that P(A B|F ) = P(A|F )P(B|F ).
Definition 9. The decision field U =

∏
α∈X Uα defines the space of all possible values of the variables in the finite

space causal model, where the cartesian product is interpreted as a map u : X → ∪α∈XUα such that u(α) ≡ uα ∈ Uα.

Definition 10. For any subset of elements B ∈ X, let PB denote the projection of the product
∏

α Uα upon the product∏
β∈B Uβ, that is PB(u) is simply the restriction of u to the domain B.

Definition 11. The product sigma field is defined as
∏

α∈B Fα over
∏

α∈B Uα, where F (B) is the smallest sigma-field
such that PB is measurable. Note that if B1 ⊂ B2, then FB1 ⊂ FB2 . The finest sigma-field F (X) =

∏
α∈X Fα.

Definition 12. A finite space causal modelM is causally faithful with respect to the probability distribution P over
M if every conditional independence in the topology, as defined in Section 2.3, is satisfied by the distribution P, and
vice-versa, every conditional independence property of the P is satisfied by the topology.

We can now formally define what it means to “solve" a causal finite space modelM. We impose the requirement that
each variable α ∈ X must compute its value using a function measurable on its own information field.
Definition 13. Let the policy function fα of each element α ∈ X be constrained so that fα : U ×Ω→ Uα is measurable
on the product sigma field Iα × Bα, namely f −1

α (Fα) ⊂ Iα × Bα.

Definition 14. The finite space causal modelM = (X,Uα,Fα,Iα) is measurably solvable if for every ω ∈ Ω, the
closed loop equations Pα(u) = fα(u, ω) have a unique solution for all α ∈ X, where for a fixed ω ∈ Ω, the induced map
Mγ : Ω→ U is a measurable function from the measurable space (Ω,B) into (U,F ).
Definition 15. The finite space causal model M = (X,Uα,Fα,Iα) is stable if for every ω ∈ Ω, the closed loop
equations Pα(u) = fα(u, ω) are solvable by a fixed constant ordering Ξ that does not depend on ω ∈ Ω.

Measurably solvable models capture the corresponding property in a structural causal model (U,V, F, P), which states
that for any fixed probability distribution P defined over the exogenous variables U, each function fi computes the
value of variable xi ∈ V , given the value of its parents Pa(xi) uniquely as a function of u ∈ U. This allows defining
the induced distribution Pu(V) over exogenous variables in a unique functional manner depending on some particular
instantiation of the random exogenous variables U. Stable models are those where the ordering of variables is fixed. We
now extend the notion of recursive causal models in DAGs (Pearl, 2009) to finite topological spaces.
Definition 16. The finite space causal modelM = (X,Uα,Fα,Iα) is a recursively causal model if there exists an
ordering function ψ : X → Ξn, where Ξn is the set of all injective (1-1) mappings of (1, . . . , n) to the set X, such that for
any 1 ≤ k ≤ n, the information field of variable αk in the ordering Ξn is contained in the joint information fields of the
variables preceding it:

Iαk ⊂ F (α1, . . . , αk−1) (1)
Definition 17. A causal intervention do(β=uβ) in a finite space topological modelM = (X,Uα,Fα,Iα) is defined as
the submodelMβ whose information fields Iα are exactly the same as in M for all elements α , β, and the information
field of the intervened element β is defined to be Iβ ⊂ F (∅) × Bβ. Note that since the only measurable function on F (∅)
is the constant function, whose value depends on a random sample space element ω ∈ Ωβ, this generalizes the notion of
causal intervention in DAGs, where an intervened node has all its incoming edges deleted. 2

3.1 Embedding Causal Graphical Models into Finite Topological Spaces

We now explain how to construct faithful topological embeddings of causal graphical models. The following lemma
plays a fundamental role in constructing topologically faithful embeddings of graphical models.
Lemma 11. (Barmak, 2011; May) A preorder {X,≤} determines a topologyU on space X with the basis given by the
collection of open sets Ux = {y | y ≤ x}. It is referred to as the order topology on X. The space (X,U) is a T0 space if
and only if (X,≤) is a partially ordered set (poset). As before, we can alternatively characterize finite space topologies
by the closed sets Fx = {y | y ≥ x}.

The unique minimal basis gives us a way of characterizing whether or not a finite space has T0 topology.
Lemma 12. (May) Two elements x, y ∈ X have the same neighborhoods if and only if Ux = Uy. Thus, a finite space X
has T0 topology if and only if Ux = Uy.

2Our definition of causal intervention differs from that proposed in causal information fields (Heymann et al., 2020), where
additional intervention nodes were added to the model.
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Table 1: Examples of finite Alexandroff spaces on X = {a, b, c}, and their equivalent graphical models. A proper open
set is any set other than ∅ or X (which are in any topology). Pn is a topology on a set of size n with only one proper
open set. Dn is the discrete topology over n elements. Pm,n are topologies where the proper open sets are all non-empty
subsets of a subset of size m. The � equivalence relation is homotopy equivalence. See text for explanation.

Proper Open Sets Name T0? Connected? Equivalent graphical model
All D3 yes no HEDG (hyper-edge over (a,b,c)) (Forre and Mooij, 2017)
b, c yes yes DAG b→ a, c→ a (collider over a)

a, b, (a, b) P2,3 � CD2 yes yes Chain graph: a→ c, b→ c, a − b
a, b, (a, b), (b, c) D1

⊔
P2 yes no DAG with node a disconnected, b→ c

a P3 no yes Chain graph: a→ b, a→ c, and b − c

Proof: If x and y have the same neighborhoods, then trivially Ux = Uy. Conversely, if Ux = Uy, then if x ∈ U for some
open set U, then Uy = Ux ⊂ U (recall that Ux is the intersection of all sets that contain x), and hence y ∈ U. Similarly,
if y ∈ U, the same argument shows x ∈ U. Thus, x and y have the same neighborhoods. �

We state three theorems that show how to reduce several popular causal models into their faithful topological embedding.
The same construction can be followed for all the other models in the literature as well. We focus on embedding the
topology of a graphical model, leaving aside the parametric specification of a probability measure on the model (which
we discuss in more depth in the appendix).
Theorem 2. Every causal DAG graphical structure G = (V, E) defines a finite T0 Alexandroff topological space with a
partial ordering.

Proof: Define the elements of the topology X = V , the vertices representing the variables of the DAG G = (V, E).
Construct the transitive closure Gtc of the DAG G. Define the partial ordering x ≤ y in the topological space if the
variable x is a descendant of y in Gtc. Define the open sets of X as Uy = {x|x ≤ y}. �

Theorem 3. Every chain graph (Lauritzen and Richardson, 2002) structure G = (V, E) defines a finite Alexandroff
topological space X with a ≤ preordering.

Proof: Once again, define X as the variables in the chain graph. Recall that in a chain graph G = (V, E), two nodes x and
y are connected by an edge that is either directed, so x← y or x→ y, or there is an undirected edge x − y between them.
Define the ordering x ≤ y on the topology X if and only if there exists a path from x to y such that every comparable pair
of nodes on this path is either of the form xk ← xk+1 or alternatively xk − xk+1. This ordering ≤ on X is a preordering,
and hence defines a general Alexandroff finite space topology. Define the open sets of X as Ux = {y|y ≤ x}. �

Theorem 4. Every mDAG graphical model (Evans, 2018) or HEDG hyper-edge directed graphical model (Forre and
Mooij, 2017) G = (V, E,H), where H is a set of hyper-edges, represented by an abstract simplicial complex, can be
represented by a finite Alexandroff topological space X with a ≤ preordering.

Proof: Define the space X by the variables in the graphical model G = (V, E,H). For the observable edges represented
by E, we follow the same construction as in DAG models described above. Note the hyper-edges h ∈ H in effect
represent an abstract simplicial complex. For example, in Table 4, the D3 discrete topology on X = {a, b, c} can be
represented as an mDAG model where the three observable variables a, b, c are connected only through one latent
variable, whose effect on the observable variables is manifested by the hyper-edge that constitutes a simplicial complex
C defined by the non-empty power set of X. This simplicial complex C can be modeled as a non-Hausdorff cone C
between the latent variable and the open set topology of the observable variables (see Section 3.2 below). �

3.2 Combining Poset Models

A crucial strength of our topological framework is the ability to combine two topological spaces X and Y into a new
space, which can generate a rich panoply of models. Here are a few of the myriad ways in which topological spaces can
be combined (Munkres, 1984a). Table 1 illustrates some of these ways of combining spaces for a small finite space X
comprised of just three elements.

• Subspaces: The subspace topology on A ⊂ X is defined by the set of all intersections A ∩ U for open sets U
over X.
• Quotient topology: The quotient topology on U defined by a surjective mapping q : X → Y is the set of

subsets U such that q−1(U) is open on X.
• Union: The topology of the union of two spaces X and Y is given by their disjoint union X

⊔
Y , which has as

its open sets the unions of the open sets of X and that of Y .
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Table 2: Enumeration of Alexandroff finite space topologies (see (May)).
n Distinct Distinct T0 Inequivalent Inequivalent T0
1 1 1 1 1
2 4 3 3 2
3 29 19 9 5
4 355 219 33 16
5 6942 4231 139 63
6 209,527 130,023 718 318
7 9,535,241 6,129,859 4,535 2,045
8 642,779,354 431,723,379 35,979 16,999
9 63,260,289,423 44,511,042,511 363,083 183,231
10 8,977,053,873,043 6,611,065,248,783 4,717,687 2,567,284

• Product of two spaces: The product topology on the cartesian product X × Y is the topology with basis the
“rectangles" U × V of an open set U in X with an open set V in Y .
• Wedge sum of two spaces: The wedge sum is the “one point" union of two “pointed" spaces (X, xo) with (Y, yo),

defined by X
∨

Y/x0 ∼ y0, the quotient space of the disjoint union of X and Y , where x0 and y0 are identified.
• Smash product: The smash product topology is defined as the quotient topology X

∧
Y = X × Y/X

∨
Y .

• Non-Hausdorff cone: The non-Hausdorff cone of topological space X with Y = {∗} yields the new space
C(X), whose open sets are now OC(X) = OX ∪ {X ∪ {∗}}.
• Non-Hausdorff suspension: The non-Hausdorff suspension of topological space X with Y = {+,−} yields the

new space S(X), whose open sets are now OC(X) = OX ∪ {X ∪ {+,−}}.

3.3 Homeomorphisms and Homotopical Equivalences

Like the number of possible DAG structures, the number of possible finite space topologies grows extremely rapidly.
However, there are powerful tools in algebraic topology, such as homotopies, which characterize equivalences among
spaces (Munkres, 1984a). In particular, Table 2 shows that exploiting homotopical inequivalences, we can save over
three orders of magnitude in searching for an appropriate poset model over naive search. Given that evolutionary
processes, such as pancreatic cancer, may potentially involve multiple thousands of elements (genes), the savings may
be very significant. Of course, it is crucial to combine the savings from domain knowledge, as provided in Table 5 and
Table 4 with that provided by efficient enumeration of poset topologies under homemorphic equivalences.
Definition 18. A topological space X is contractible if the identity map idX : X → X is homotopically equivalent to
the constant map f (x) = c for some c ∈ X.

For example, any convex subset A ⊂ Rn is contractible. Let f (x) = c, c ∈ A be the constant map. Define the homotopy
H : A × I → X as equal to H(x, t) = tc + (1 − t)x. Note that at t = 0, we have H(x, 0) = x, and that at t = 1, we have
H(x, 1) = c, and since A is a convex subset, the convex combination tc + (1 − t)x ∈ A for any t ∈ [0, 1].
Theorem 5. If X is a finite topological space containing a point y such that the only open (or closed) subset of X
containing y is X itself, then X is contractible. In particular, the non-Hausdorff cone C(X) is contractible for any X.

Proof: Let Y = {∗} denote the space with a single element, ∗. Define the retraction mapping r : X → ∗ by r(x) = ∗
for all x ∈ X, and define the inclusion mapping i : Y → X by i(∗) = y. Clearly, r ◦ i = idY . Define the homotopy
h : X → I → X by h(x, t) = x if t < 1, and h(x, 1) = y. Then, h is continuous, because for any open set U in X, if y ∈ U,
then clearly U = X (as X is the only open set containing y), and hence h−1(U) = X × I, which is open. If on the other
hand, y < U, then h−1(U) = U × [0, 1). It follows that h is a homotopy h � idX = i ◦ r. �

The following lemma is of crucial importance in Section 4, where we will define beat points, elements of a topological
space that can be removed, reducing model size.
Definition 19. A point x in a finite Alexandroff topological space X is maximal if there is no y > x, and minimal if
there is no y < x.

Lemma 13. If X is an finite Alexandroff space, then Ux is contractible. In particular, if X has a unique maximal point
or unique minimal point, then X is contractible.

Definition 20. Let f , g : X → Y be two continuous maps between finite space topologies X and Y. We say f is
homotopic to g, denoted as f � g if there exists a continuous map h : X × [0, 1] → Y such that h(x, 0) = f (x) and
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h(x, 1) = g(x). In other words, there is a smooth “deformation" between f and g, so we can visualize f being slowly
warped into g. Note that � is an equivalence relation, since f � f (reflexivity), and if f � g, then g � f (symmetry),
and finally f � g, g � h =⇒ f � h (transitivity).

Definition 21. A map f : X → Y is a homotopy equivalence if there exists another map g : Y → X such that g◦ f � idX
and f ◦ g � idY , where idX and idY are the identity mappings on X and Y, respectively.

4 Algorithms for Learning Causal Posets

In this section, we describe a number of algorithms for constructing causal poset models. Our approach is intended to
highlight the important role played by topological constraints, which were implicit in many previous studies. We use the
domain of cancer genomics to illustrate how topological constraints on datasets makes it possible to efficiently learn the
structure and parameters of a causal model from observational data (Beerenwinkel and Sullivant, 2009; Beerenwinkel
et al., 2007, 2006; Gerstung et al., 2011). A greedy algorithm for learning causal poset models is described in (Bernstein
et al., 2020), but it does not fully exploit the algebraic topology of posets for efficient enumeration. We show that the
space of causal structures can be significantly pruned by exploiting the algebraic topology of finite spaces, in particular
using homeomorphisms among topologically equivalent finite space models.

4.1 Intervention Topologies

First, we show that many previous studies of causal discovery from interventions, including the conservative family of
intervention targets (Hauser and Bühlmann, 2012a), path queries (Bello and Honorio, 2018), and separating systems of
finite sets or graphs. (Eberhardt, 2008; Hauser and Bühlmann, 2012a; Kocaoglu et al., 2017; Katona, 1966; Mao-cheng,
1984) can all be viewed as imposing an intervention topology. Table 3 classifies a few previous studies in terms of the
induced intervention topology.

If no experiments are allowed, the intervention topology is simply the trivial topology. If X = I t X \ I, where I is the
intervention target (Eberhardt, 2008), then the intervention topology is disconnected. (Shpitser and Tchetgen, 2016)
study single node interventions, which can be viewed as a T1 intervention topology where singleton sets are closed.
(Hauser and Bühlmann, 2012a) introduce the idea of conservative family I of intervention targets, meaning a family of
(open) subsets of variables in a causal model such that for every variable x ∈ X, there exists an I ⊂ I such that x < I.
This is closely related to the idea of Alexandroff topologies where elements have distinguishable neighborhoods, and
each intervention target I ∈ I defines a neighborhood. A very related notion is that of separating systems of finite sets
as intervention targets (Eberhardt, 2008; Hauser and Bühlmann, 2012a; Kocaoglu et al., 2017). or separating systems of
graphs (Mao-cheng, 1984; Hauser and Bühlmann, 2012b). (Kocaoglu et al., 2017) used antichains, a partitioning of a
poset into subsets of non-comparable elements. (Bello and Honorio, 2018) use path queries, which can be viewed as
chains. Finally, (Tadepalli and Russell, 2021) used leaf queries on tree structures, where none of the interior nodes can
be intervened on.

We first introduce the notion of a separating system, which is a special case of the T0 topology separation axiom of
finite Alexandroff spaces.

Definition 22. A separating system on a finite set X is a collection of subsets {U1, . . . ,Um} such that for every pair of
elements x, y ∈ X, there is a setUk such that either x ∈ Uk, y < Uk or alternatively, x < Uk, y ∈ Uk. An (m, n) strongly
separating system is a pair of setsUi,U j such that x ∈ Ui, y < U j and x < Ui, y ∈ U j.

Definition 23. Given a finite space Alexandroff topology (X,T ), the T0-topogenous matrix A (Shiraki, 1969) associated
with it is defined as the m × n binary matrix defined as A(i, j) = 1 if x j ∈ Ui, and A(i, j) = 0 otherwise. In words, each
row defines the open sets that element j belongs to, and each column defines the elements that are contained in open set
Ui.

Table 3: Intervention topologies of some previous causal discovery methods.
Intervention Sets Topology Intervention Class Causal Structure Reference

{∅, X} Trivial Observations Conjunctive Bayes Network (Beerenwinkel et al., 2006)
I t X \ I Disconnected All subsets DAG (Eberhardt, 2008)
Fx = {x} T1 Single-node Tree graphs (Shpitser and Tchetgen, 2016)

Strong separating sets T2 Restricted open sets Latent DAG (Kocaoglu et al., 2017)
{x} T1 Path queries Transitive DAG (Bello and Honorio, 2018)

Minimal elements Restricted open sets Leaf queries Tree Graphs (Tadepalli and Russell, 2021)
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Algorithm 1: Learn Causal Poset using Interventions and Conditional Independence Oracle.
Input: DatasetD = (E,T ) of a finite set of events E and their associated open sets U ∈ T , represented as a

topological space of open sets g ⊂ E. A conditional independence oracle is also assumed.
Output: Causally faithful poset P that is consistent with conditional independences in data.
begin

Set the basic closed sets Fe ← ∅

repeat
Select an open separating set g ∈ T and intervene on g.
for e ∈ g, f < g do

Use samples and the CI oracle to test if (e y f )Mg on datasetD.
If CI test fails, then set Fe ← Fe ∪ { f } because f is an ancestor of e.

end
until convergence;
Define the relation e ≤ f if f ∈ Fe, for all e, f ∈ E, and compute its transitive closure.
Return the poset P = (E,≤), where ≤ is the induced relation on the poset P.

end

Theorem 6. Given a finite space Alexandroff topology (X,T ), the T0-topogenous matrix A associated with it defines a
separating set.

Proof: Note that in a T0 finite space Alexandroff topology, each element is distinguished by a unique neighborhood.
Consequently, the open sets Ux and Ux associated with x, y ∈ X must be distinct, and if Ux = Uy, then trivially x = y.
Consequently, the topogenous matrix defines a separating set for the topology (X,T ). Similarly, the closed sets Fx in
Algorithm 1 also define separating sets. �

4.2 Learning Causal Poset from Interventions

Algorithm 2: Given a causally faithful T0 topological model (X,≤,T and access to a conditional independence
testing oracle, compute causal (observable) DAG model G = (V, E).
Input: T0 causally faithful topologyM = (X,≤,T ) with ≤ defining a transitively closed partial ordering sets.
Output: Causal DAG model G = (V, E) on observable nodes.
begin

Compute the antichain sets Ti induced by partial ordering ≤. The set of open (or closed) sets inM are in 1−
correspondence with the antichain sets.

Set E ← ∅.
repeat

Intervene on an antichain set Ti.
for x ∈ Ti, y < U do

Use samples and the CI oracle to test if (x y y)MTi
on a dataset.

If CI test fails, then set E ← E ∪ (x, y).
end

until convergence;
Set V = X, and return observable causal DAG G = (V, E)

end

Theorem 7. Algorithm 1 requires only |T | interventions and conditional independence tests on samples obtained
from each post-interventional distribution, to find a statistically consistent T0 topological model. If there are O(log n)
separating sets, the algorithm requires O(log n) interventions.

Proof: If we intervene on the separating open set U and find an element y < Fx that is statistically dependent on x, then
we change Fx to include y (since x needs to “consult" y in determining its value). The bound O(log n) in (Kocaoglu
et al., 2017) assumes that there are up to 2 log n sets in the original separating system. It has been argued in (Bello and
Honorio, 2018) that interventions on multiple variables, such as used here and in the previous work (Kocaoglu et al.,
2017) can potentially require an exponential number of experiments, if for example a separating set has O(n) distinct
elements, and each node is a binary variable, which requires two experiments (setting it to both 0 and 1). There is an
inherent trade off between the size of each separating set, and the number of separating sets. �
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Algorithm 2 is a generalization of Algorithm 1 in the recent paper by (Kocaoglu et al., 2017), who construct a DAG
by doing interventions on the antichains of posets, and extend this approach to discover causal models with latent
variables as well. (Acharya et al., 2018) propose a related approach for inferring causal models, which does not require
conditional independence testing, but uses a sample efficient testing methodology based on squared Hellinger distances.

Algorithm 2 constructs the observable DAG model, based on antichain sets, namely the set of incomparable elements at
each level of the partial ordering. Antichain sets can be shown to be in bijective correspondence with the open sets on
an Alexandroff T0 topology.
Theorem 8. Mirsky’s theorem (mir, 1971): The height of a T0 topology causal model (X,≤,T ) is defined to be the
maximum cardinality of a chain, a totally ordered subset of the given partial order. For every partially ordered T0
causal model (X,≤,T ), the height also equals the minimum number of antichains, namely subsets in which no pair of
elements are ordered, into which the set may be partitioned.
Theorem 9. Algorithm 2 requires O(h) interventions and conditional independence tests on samples obtained from the
post-interventional distributions, where h is the height h of a T0 topology causal model (X,≤,T ).

Note that Algorithms 1 and 2 are topological generalizations of Algorithm 1 and 2 in (Kocaoglu et al., 2017). The
remaining Algorithms 3 and 4 in (Kocaoglu et al., 2017) on learning a latent variable DAG model can be generalized as
well (see the appendix).

4.3 Efficient Enumeration of Homeomorphically Distinct Posets

Next, we turn to the fundamental problem of how to efficiently enumerate posets, which is a key requirement for scaling
many causal discovery algorithms (Kocaoglu et al., 2017; Acharya et al., 2018; Bernstein et al., 2020; Beerenwinkel
et al., 2006).
Definition 24. For every T0 finite space modelM with a partial ordering ≤, define its associated Hasse diagram HM
as a directed graph which captures all the relevant order information ofM. More precisely, the vertices of HM are the
elements ofM, and the edges of HM are such that there is a directed edge from x to y whenever y ≤ x, but there is no
other vertex z such that y ≤ z ≤ x.

General pre-ordered finite spaces can be reduced to partially ordered T0 topologies up to homomeomorphic equivalence.
Theorem 10. (Stong, 1966) Let (X,T ) be an arbitrary finite space model with an associated preordering ≤. Let X0
represent the quotient topological space X/ ∼, where x ∼ y if x ≤ y and y ≤ x. Then X0 is a homotopically equivalent
topological model with T0 separability, and the quotient map q : X → X0 is a homotopy equivalence. Furthermore, X0
induces a partial ordering on the elements x ∈ X0.

A key idea in the enumeration is to assume that each element in the Hasse diagram of the poset does not have an
in-degree or out-degree of 1.
Definition 25. (Stong, 1966) An element x ∈ X in a finite T0 space X is a down beat point if x covers one and only one
element of of X. Alternatively, the set Ûx = Ux \ {x} has a (unique) maximum. Similarly, x ∈ X is an up beat point if x
is covered by a unique element, or equivalently if F̂x = Fx \ {x} has a (unique) minimum. A beat point is either a down
beat or up beat point.
Theorem 11. (Stong, 1966) Let X be a finite T0 topological model, and let x ∈ X be a (down, up) beat point. Then the
reduced model X \ {x} is a strong deformation retract of X.3 A point x in a finite spaceM is an upbeat point if and
only if it has in-degree one in the associated Hasse diagram HM, i.e., it has only one incoming edge). Similarly, x is
downbeat if and only if it has out-degree one (it has only one outgoing edge).
Definition 26. A finite T0 topological space is a minimal model if it has no beat points. A core of a finite topological
space X is a strong deformation retract, which is a minimal finite space. The minimal graph of a minimal model is its
equivalent Hasse diagram.
Theorem 12. (Stong, 1966) Classification Theorem: A homotopy equivalence between minimal finite space topologi-
cal models is a homeomorphism. In particular, the core of a finite space model is unique up to homeomorphism and two
finite spaces are homotopy equivalent if and only if they have homeomorphic cores.

Figure 4 illustrates the process of removing beat points to construct the minimal poset. b is an up beat point of X, c is
an upbeat point of X \ {b}, and e is an up beat point of X \ {b, c}. Similarly, points c and e are removed, resulting in the
minimal poset. The figure also shows that homeomorphic equivalences greatly reduces the search space of possible
structures. Note the plot is on log scale. For example, for 12 variables, the number of minimal posets is < 0.1% of the
number of possible posets, a savings of three orders of magnitude.

3In algebraic topology, a subspace A ⊂ X is called a strong deformation retract of X if there is a homotopy F : X × [0, 1]→ A
such that F(x, 0) = x, F(x, 1) ∈ A, F(a, t) = a for all x ∈ X, t ∈ [0, 1], a ∈ A. (Munkres, 1984b).
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Figure 4: Left: Constructing minimal posets by removing beat points (Barmak, 2011; Stong, 1966). Right: Efficiently
enumerating minimal posets (Fix and Partias; Brinkmann and McKay, 2002).

Algorithm 3: Find Topologically Minimal T0 Causal Model.
Input: General pre-ordered causal model, such as a chain graph G = (V, E) that is causally faithful to a dataset.
Output: Minimal T0 causal model homotopically equivalent to original non-T0 model (e.g., from a chain graph G).
The algorithm uses homotopy theory to find the core T0 model of a general chain graph.
begin

Define the topological model (X,U) where X = V and the open sets inU are constructed from the induced
pre-order ≤ from G. Define the minimal model (X0,U

′), and set X0 = X.
repeat

for x, y ∈ X0 s.t. x ≤ y, y ≤ x do
Remove x, y from X0, and replace them with a new variable z = x ∼ y.
Set X0 ← X0 \ {x, y} ∪ {z}. z represents the equivalence class that includes x and y.

end
for x ∈ X0 do

Remove down beat points: If Ûx = Ux \ {x} has a maximum, then X0 ← X0 \ {x}.
Remove up beat points: If F̂x = F \ {x} has a minimum, then X0 ← X0 \ {x}.

end
until convergence;
Define the open sets Ux ∈ U

′ as Ux = {y | y ≤ x} for x ∈ X0.
end

Algorithm 3 determines a quotient T0 topology that is homotopically equivalent to the general non-T0 topology defined
by a chain graphical models. Second, the algorithm further reduces the model to its core by removing beat points
(Barmak, 2011; May; McCord, 1966; Stong, 1966).

5 Bioinformatics application

Table 5 shows a small fragment of a dataset for pancreatic cancer (Jones et al., 2008). Like many cancers, it is marked
by a particular partial ordering of mutations in some specific genes, such as KRAS, TP53, and so on. In order to
understand how to model and treat this deadly disease, it is crucial to understand the inherent partial ordering in the
mutations of such genes. Pancreatic cancer remains one of the most prevalent and deadly forms of cancer. Roughly half
a million humans contract the disease each year, most of whom succumb to it within a few years. 4 Figure 5 shows the
roughly 20 most common genes that undergo mutations during the progression of this disease. The most common gene,
the KRAS gene, provides instructions for making a protein called K-Ras that is part of a signaling pathway known
as the RAS/MAPK pathway. The protein relays signals from outside the cell to the cell’s nucleus. The second most
common mutation occurs in the TP53 gene, which makes the p53 protein that normally acts as the supervisor in the
cell as the body tries to repair damaged DNA. Like many cancers, pancreatic cancers occur as the normal reproductive
machinery of the body is taken over by the cancer.

In the pancreatic cancer problem, for example, the topological space X is comprised of the significant events that mark
the progression of the disease, as shown in Table 5. In particular, the table shows that specific genes are mutated at

4Sadly, this disease killed the much admired and long-time host of Jeopardy, Alex Trebek, last year.
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Tumor Gene
Pa017C KRAS
Pa017C TP53
Pa019C KRAS
Pa022C KRAS
Pa022C SMAD4
Pa022C TP53
Pa032X CDKN2A

Figure 5: Left: Genetic mutations in pancreatic cancer (Jones et al., 2008). Middle: histogram of genes sorted by
mutation frequencies. Right: Poset learned from dataset.

Figure 6: Top: causal poset and DAG model of pathways in pancreatic cancer learned from a real-world dataset (Jones
et al., 2008), showing genetic mutations occur along distinct pathways. Bottom: Topological representation of causal
poset and DAG models for COVID-19 AZV (AstraZeneca vaccine), VITT (vaccine-induced clotting of blood), and
other factors (Greinacher et al., 2021; Schultz et al., 2021).

specific locations by the change of an amino acid, causing the gene to malfunction. We can model a tumor in terms of
its genotype, namely the subset of X, the gene events, that characterize the tumor. For example, the table shows the
tumor Pa022C can be characterized by the genotype KRAS, SMAD4, and TP53. In general, a finite space topology is
just the elements of the space (e.g. genetic events), and the subspaces (e.g., genomes) that define the topology.

We illustrate our framework using the problem of inferring topological causal models for cancer (Beerenwinkel and
Sullivant, 2009; Beerenwinkel et al., 2007, 2006; Gerstung et al., 2011). The progression of many types of cancer are
marked by mutations of key genes whose normal reproductive machinery is subverted by the cancer (Jones et al., 2008).
Often, viruses such as HIV and COVID-19 are constantly mutating to combat the pressure of interventions such as
drugs, and successful treatment requires understanding the partial ordering of mutations. A number of past approaches
use topological separability constraints on the data, assuming observed genotypes separate events, which as we will
show, is abstractly a separability constraint on the underlying topological space.

A key computational level in making model discovery tractable in evolutionary processes, such as pancreatic cancer, is
that multiple sources of information are available that guide the discovery of the underlying poset model. In particular,
for pancreatic cancer (Jones et al., 2008), in addition to the tumor genotype information show in Table 5, it is also
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Table 4: Core signaling pathways and processes genetically altered in most pancreatic cancers (Jones et al., 2008).
Regulatory pathway % altered genes Tumors Representative altered genes
Apoptosis 9 100% CASP10, VCP, CAD, HIP1
DNA damage control 9 83% ERCC4, ERCC6, EP300, TP53
G1/S phase transition 19 100% CDKN2A, FBXW7, CHD1, APC2
Hedgehog signaling 19 100% TBX5, SOX3, LRP2, GLI1, GLI3
Homophilic cell adhesion 30 79% CDH1, CDH10, CDH2, CDH7, FAT
Integrin signaling 24 67% ITGA4, ITGA9, ITGA11, LAMA1
c-Jun N-terminal kinase 9 96% MAP4K3, TNF, ATF2, NFATC3
KRAS signaling 5 100% KRAS, MAP2K4, RASGRP3
Regulation of invasion 46 92% ADAM11, ADAM12, ADAM19
Small GTPase–dependent 33 79% AGHGEF7, ARHGEF9, CDC42BPA
TGF-β signaling 37 100% TGFBR2, BMPR2, SMAD4, SMAD3
Wnt/Notch signaling 29 100% MYC, PPP2R3A, WNT9A

Algorithm 4: Application of Poset Discovery Algorithm to Bioinformatics.
Input: DatasetD = (E,T ) of a finite set of events E and their associated genotypes U ∈ T , represented as a

topological space of open sets g ⊂ E. Here, it is assumed that each genome is an intervention target, whose
size will affect the complexity of each causal experiment. A conditional independence oracle is also
assumed.

Output: Causally faithful poset P that is consistent with conditional independences in data.
begin

Set the basic closed sets Fe ← ∅

repeat
Select an open separating set g ∈ T and intervene on g.
for e ∈ g, f < g do

Use samples and the CI oracle to test if (e y f )Mg on datasetD.
If CI test fails, then set Fe ← Fe ∪ { f } because f is an ancestor of e.

end
until convergence;
Define the relation e ≤ f if f ∈ Fe, for all e, f ∈ E, and compute its transitive closure.
Return the poset P = (E,≤), where ≤ is the induced relation on the poset P.

end

known that the disease follows certain pathways, as shown in Table 4. This type of information from multiple sources
gives the ability to construct multiple posets that reflect different event constraints (Beerenwinkel et al., 2006).

Algorithm 4 is a generalization of past algorithms that infer conjunctive Bayesian networks (CBN) from a dataset of
events (e.g., tumors or signaling pathways) and their associated genotypes (e.g., sets of genes) (Beerenwinkel et al.,
2007, 2006) The pathway poset and DAG shown in Figure 1 and the poset in Figure 5 were learned using Algorithm 4
using the pancreatic cancer dataset published in (Jones et al., 2008).

5.1 Limitations and Future Work

We proposed a topological framework for causal discovery, building on the key relationship between posets and finite
Alexandroff topologies. In the supplementary material, we elaborate on additional details. We gave some examples
from the domain of cancer genomics. A growing body of work in causal discovery has implicitly used topological
constraints to constrain search. Our paper uses insights from algebraic topology of finite spaces into developing more
scalable algorithms. Our paper has a number of significant limitations. We did not discuss building poset models over
latent variables, which is important in many applications. Furthermore, a deeper study of the empirical performance of
the algorithms proposed here is necessary to fully evaluate the promise of the proposed framework.
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