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I propose to consider the question, "Can

machines think?".

A. M. Turing (1950) , Mind 49: 433-460.





Introduction

This book is intended to serve as lecture notes for CMPSCI 692CT:

Category Theory for AGI, taught by the author during Spring 2026
at the University of Massachusetts, Amherst. It is intended to bridge the
gap between formal books on category theory, written by mathematicians
for mathematicians 1, and the need for a more approachable book for AI 1 Saunders MacLane. Categories for

the Working Mathematician. Springer-
Verlag, New York, 1971. Graduate Texts in
Mathematics, Vol. 5

researchers wanting to apply these abstract ideas to Artificial General Intelli-
gence (AGI).

The world’s largest AI companies are collectively spending several trillion
dollars in the most expensive race in human history to build AGI.2 This 2 “We could hit a wall: why trillions of

dollars of risk is no guarantee of AI reward",
Dan Milmo, The Guardian, January 17,
2026, http://bit.ly/4qROBTg

course will give students a detailed introduction to category theory, and how
to use it to analyze today’s AGI systems, understand their limitations and how
to design the next generation of AGI systems. We’ll cover the core theoretical
concepts, including categories, functors, natural transformations, the Yoneda
lemma, limits and colimits, adjunctions, monads, and Kan extensions, as well
as their application to building AGI systems that can reason causally, learn
from their experience, plan to achieve long-term goals, interact with users in
natural language, and ultimately, achieve consciousness.

The book assumes no prior knowledge of category theory, but does require
the reader to have sufficient knowledge of basic mathematics – including
multivariate calculus, probability and statistics, modern algebra, and graph
theory – as well as sufficient background in artificial intelligence (AI), ma-
chine learning (ML), and a working knowledge of computer programming,
particularly Python.

The book is not intended to serve as a comprehensive overview of AI, ML,
or category theory, but will reflect the author’s own interests and research ac-
tivity.3 The reader should be familiar in using modern AI coding tools, such 3 Throughout this book, you will find

suggested exercises in each chapter. These
are intended to test your understanding of
the basic concepts.

as chatGPT or Claude Code, and have access to computing facilities that
will be required in running the sample code provided, and do the required
final project (e.g., Google Collab is free for all students).

http://bit.ly/4qROBTg




Category Theory for AGI

AGI is possibly the grandest project ever conceived by humanity: create a
computer program that can automate human cognitive abilities across the
complete spectrum, from perception to language, and be capable of acquiring
world knowledge at a massive scale from consuming all of humanity’s dig-
ital (and analog) footprint over millennia.4 It is a remarkable tribute to the 4 https://cloud.

google.com/discover/
what-is-artificial-general-intelligence

success of AI and ML, as well as the incredible power of modern computing
devices, that this goal seems achievable, not in the distant future, but in the
near-term.

ALAN TURING5 formalized the problem of AGI in terms of an imitation 5 Alan Turing. Computing machinery and
intelligence. Mind, 49:433–460, 1950game:

The new form of the problem can be described in terms of a game which we
call the ’imitation game." It is played with three people, a man (A), a woman
(B), and an interrogator (C) who may be of either sex. The interrogator stays
in a room apart front the other two. The object of the game for the interrogator
is to determine which of the other two is the man and which is the woman. He
knows them by labels X and Y, and at the end of the game he says either "X is
A and Y is B" or "X is B and Y is A."

In order that tones of voice may not help the interrogator the answers should
be written, or better still, typewritten. The ideal arrangement is to have a
teleprinter communicating between the two rooms. Alternatively the question
and answers can be repeated by an intermediary. The object of the game for the
third player (B) is to help the interrogator. The best strategy for her is probably
to give truthful answers. She can add such things as "I am the woman, don’t
listen to him!" to her answers, but it will avail nothing as the man can make
similar remarks. We now ask the question, "What will happen when a machine
takes the part of A in this game?" Will the interrogator decide wrongly as often
when the game is played like this as he does when the game is played between
a man and a woman? These questions replace our original, "Can machines
think?"

We will use Turing’s definition of AGI as our working hypothesis: a sys-
tem can be viewed as achieving AGI if it cannot be accurately discriminated
from humans through remote interaction.

https://cloud.google.com/discover/what-is-artificial-general-intelligence
https://cloud.google.com/discover/what-is-artificial-general-intelligence
https://cloud.google.com/discover/what-is-artificial-general-intelligence
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Figure 1: An AGI Architecture for
Consciousness

We set ourself an ambitious goal in this course and book to ultimately
attempt to model consciousness mathematically using the tools of category
theory. Humans are conscious: what this means is that at any given moment
of time, we are aware of a very small number of things that are placed in our
short-term conscious memory, and unaware of the maelstrom of unconscious
processes that are asynchronously running in our long-term memory. We can
view AGI as an attempt to not just capture the input-output behavior of hu-
mans and other animals, but also to understand the origins of consciousness.
Will sufficiently advanced AGI systems attain consciousness?

CONSCIOUSNESS balances slow deliberative short-term memory with
fast asynchronous long-term memory. When you learn a new skill – such as
playing a piano – your short-term conscious memory is hard at work. Each
note requires careful attention as to where to place your fingers. A few years
of practice, and what once took immense concentration becomes now an
automatic behavior, compiled into long-term memory. The behavior is now
asynchronous, parallel, distributed, fluid and you are not aware of the specific
movements of your fingers anymore.

The above figure shows a model of consciousness from a recent paper
of mine.6 It builds on a lot of sophisticated ideas that we will cover in this 6 Sridhar Mahadevan. Consciousness as a

functor, 2025a. URL https://arxiv.
org/abs/2508.17561

course, including topos theory – a set-like category that enables internal
languages of “thought" – and modeling dynamical systems as universal coal-
gebras, and generalized multi-agent decision making as a network economy.
These components will be progressively studied through the semester as we
learn the mathematical tools that are described in this model of conscious-
ness.

We will return to the question of consciousness at the end of this book, but
we will keep this broad goal in mind through the course and book. To begin
more concretely, however, let us start with what is currently achievable using
modern AI and ML technology.

https://arxiv.org/abs/2508.17561
https://arxiv.org/abs/2508.17561
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Transformers

GPT (Generalized Pretrained Transformer) models have revolutionized AI
in the last few years, and arguably are the closest any computer program
has come to achieving AGI. In this book and course, we will study GPT
models through the mathematical framework of category theory. The original
Transformer model 7 – now possibly the most cited paper in AI – can be 7 Ashish Vaswani, Noam Shazeer, Niki

Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In
Isabelle Guyon, Ulrike von Luxburg, Samy
Bengio, Hanna M. Wallach, Rob Fergus,
S. V. N. Vishwanathan, and Roman Garnett,
editors, Advances in Neural Information
Processing Systems 30: Annual Conference
on Neural Information Processing Systems
2017, December 4-9, 2017, Long Beach,
CA, USA, pages 5998–6008, 2017

abstractly visualized by the following diagram.

Input (tokens + pos)

Multi-Head
Attention

Add & Norm

Feed
Forward

Add & Norm

Output to next layer

(a) Transformer encoder block

TRANSFORMER models are the foundation of modern AGI: we will spend
considerable effort in understanding this architecture during this course. If
we are to build a better Transformer, how we go about it? There are over
1 million implementations of Transformer models available online 8. So, 8 https://huggingface.co/

models?library=transformers&
sort=trending.

plenty of programmers and researchers have already explored this model,
undoubtedly due to its enormous influence on today’s AI systems. What
makes our book and course different? There are many ways to understand
Transformer models. One obvious way, which you already have probably
mastered, is at the architectural level by viewing it as a deep learning model 9 9 Y. Bengio. Learning deep architectures

for AI. Foundations and Trends in Machine
Learning, 2(1):1–127, 2009

or as an natural language processing (NLP) system 10.
10 Tong Xiao and Jingbo Zhu. Introduction
to Transformers: an NLP perspective, 2023.
URL https://arxiv.org/abs/
2311.17633

To motivate the study of Transformers, consider the architectural diagram
shown above, which defines the classic PostLN model: the Layer Normal-
ization (LN) module is placed after the Multi-Head Attention (MHA)
module. Experience over the past few years has shown that this particular
architecture is difficult to train, requiring careful adjustment of learning rates.
In contrast, the PreLN Transformer architecture places the LN module be-

https://huggingface.co/models?library=transformers&sort=trending.
https://huggingface.co/models?library=transformers&sort=trending.
https://huggingface.co/models?library=transformers&sort=trending.
https://arxiv.org/abs/2311.17633
https://arxiv.org/abs/2311.17633
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fore the MHA module, making it significantly easier to train.11 To understand 11 Jeonghoon Kim, Byeongchan Lee, Cheon-
bok Park, Yeontaek Oh, Beomjun Kim, Tae-
hwan Yoo, Seongjin Shin, Dongyoon Han,
Jinwoo Shin, and Kang Min Yoo. Peri-ln:
Revisiting normalization layer in the trans-
former architecture, 2025. URL https:
//arxiv.org/abs/2502.02732

the possible space of different architectures and their impact, we will bring in
a more theoretical framework in this course.

Transformers and Topos Categories

TRANSFORMER models will be studied in this course building on the ab-
stract concepts in category theory, in particular a topos category. 12 12 Review the basic definition of categories

from Riehl’s book Section 1.1

Definition 1. A category C is a collection of abstract objects c ∈ C. Anything
technically can count as an object, from a layer in a Transformer model to
an entire model itself. Each category C is additionally specified by a set of
arrows or morphisms C(c, d) between each pair of objects c and d. There is
an identity arrow 1c ∈ C(c, c). Arrows compose in the obvious way, inducing
a function C(c, d)× C(d, e)→ C(c, e).

When you read this definition, you should try to construct a few examples
of categories. An initial object c in category C is defined as one inducing
a unique arrow from c to every object in category C. A terminal object,
usually denoted by 1, is one that defines a unique arrow from every object
c in category C into 1. Not all categories have initial or final objects. 13 An 13 Exercise: Consider the category of Sets.

Does it have a terminal object? An initial
object? What are they, if they exist?

object c is isomorphic to another object d, denoted c ≃ d, if two arrows
f : c→ d and g : d→ c exist, such that g ◦ f = 1c, and f ◦ g = 1d.

A word on notation. In many category theory books or papers, you will
see two choices for referring to the set of arrows C(a, b), or HomC(a, b).
Both of these denote the set of arrows from objects a to b in category C. In
most applications to AGI, we actually impose some additional structure on
this set, which makes it an enriched category. That is, C(a, b) is not merely
a set, but it can be a vector space (e.g., each arrow is a linear transformation
between vector spaces). For Transformer models, for example, if a and b
denote Transformer models, or layers of Transformer models, then we can
see that the arrows between two Transformer models must have additional
structure as well.

WHERE TRANSFORMERS ENTER . A trained Transformer is a concrete
realizable approximation to a sequence-to-sequence function fθ : Rn×d →
Rn×d. Thus, we can regard Transformer models as inhabiting (or approx-
imating) arrows in a function-based topos-like universe. This viewpoint is
not a claim that “the set of all neural networks” is itself an elementary topos
without further structure; rather it is a guiding semantics that will become
operational when we introduce patch sites, sheaves, and internal languages
later in the course.

TOPOS theory can give us a powerful guide to designing a novel class of

https://arxiv.org/abs/2502.02732
https://arxiv.org/abs/2502.02732
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Transformer models 14. To give some intuition, let us consider a simple 14 Sridhar Mahadevan. Topos theory for
generative AI and LLMs, 2025e. URL
https://arxiv.org/abs/2508.
08293

example of a topos category, where every object is simply a function f :
A → B, from some arbitrary domain set A to some co-domain set B. To
define a category of functions on sets, we need to specify both the objects of
the category – this is straightforward, as it is simply every possible function
– as well as the collection of arrows between every pair of objects. This
appears less straightforward: how do we define arrows between function
objects?

COMMUTATIVE DIAGRAMS are an essential data structure for under-
standing categories. They are defined like graphs, with vertices representing
objects, and edges representing arrows. To define arrows between our topos
category of Transformer function objects, we use a commutative diagram
such as the one illustrated below:

A A′

B B′

h

f f ′

g

Here, A, A′, B and B′ denote sets, and f , f ′, g and h define functions
between a pair of sets as shown in the diagram. This diagram should be
viewed as defining a set of constraints. It asserts that the composition of
functions g ◦ f (meaning, first apply f and then apply g) is equivalent to the
composition f ′ ◦ h. So, how does this give us a collection of arrows in our
topos function category?

A PRECISE TOY TOPOS . There is a mathematically clean way to package
“functions as objects” into an elementary topos: if E is an elementary topos
(e.g., Set), then its arrow category E [1]—whose objects are arrows f : A →
B and whose morphisms are commutative squares—is again an elementary
topos. We will use Set[1] as our running toy model.

YONEDA EMBEDDINGS : In chapter 3, we will encounter the beautiful
Yoneda Lemma, which is the easiest way to build a topos from scratch. For
any given category C, map any object c in it to the set-valued functor C(−, c)
(note that plugging in any object d into the − gives us a set!). This embed-
ding has the most remarkable properties, and it takes a whole book to explain
them. 15 15 Saunders Mac Lane and Ieke Moerdijk.

Sheaves in Geometry and Logic a First
Introduction to Topos Theory. Springer
New York, New York, NY, 1992. ISBN
9781461209270 1461209277. URL http:
//link.springer.com/book/10.
1007/978-1-4612-0927-0

MORPHISMS BETWEEN FUNCTION-OBJECTS . In the arrow category
Set[1], a morphism from f : A → B to f ′ : A′ → B′ is precisely a pair of
functions h : A → A′ and g : B → B′ such that g ◦ f = f ′ ◦ h. That is,
morphisms are commutative squares.

We view the objects of our topos category all functions f : A → B,
and for each pair of such objects, such as f and f ′, we define an arrow to

https://arxiv.org/abs/2508.08293
https://arxiv.org/abs/2508.08293
http://link.springer.com/book/10.1007/978-1-4612-0927-0
http://link.springer.com/book/10.1007/978-1-4612-0927-0
http://link.springer.com/book/10.1007/978-1-4612-0927-0
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mean the pair ⟨g, h⟩ such that constraints imposed by the above commutative
diagram are satisfied. Notice that between any particular pair of objects f and
f ′, there may be many – in fact, possibly an infinite number – of arrows. It is
also obvious that the number of objects need not be finite. But, just as we are
comfortable manipulating real numbers on computers, which in fact are the
basis for deep learning and Transformer models, despite the fact that the set
of real numbers is not even countable, we should be comfortable in dealing
with categories with an infinite number of objects and arrows.

TOPOSES are defined by a set of conditions, which can be found in any stan-
dard textbook on topos theory. First, let us understand how this abstract cate-
gorical structure applies to Transformer models. Recall that each Transformer
model can be viewed as a mapping from a sequence of tokens in Rn×d to
another sequence of tokens in Rn×d. A well-known result shows that Trans-
former models are universal function approximators over such sequences. 16 16 Chulhee Yun, Srinadh Bhojanapalli,

Ankit Singh Rawat, Sashank J. Reddi,
and Sanjiv Kumar. Are transformers
universal approximators of sequence-to-
sequence functions? In 8th International
Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April
26-30, 2020. OpenReview.net, 2020. URL
https://openreview.net/forum?
id=ByxRM0Ntvr

Intuitively, this result implies that for any function over Rn×d, there exists a
Transformer model that is within some small ϵ distance in a normed vector
space. So, we can squint our eyes a bit, and pretend that we can construct a
Transformer model for any desired function in this class.

To show that our category of function objects with its arrow structure de-
fined by these square diagrams forms a topos, we need to check whether all
the conditions of a topos are satisfied. These conditions require introducing
some fairly esoteric definitions, but to keep it simple, we focus on the appli-
cation of these ideas to Transformer models. A central property of a topos
is the ability to form pieces of an object, which are formally called subob-
jects. So, if each object is a Transformer model, we need to figure out how to
construct subobjects from Transformer objects. Think of subobjects akin to
subsets of a set. We can always take a set, and find a subset of it by selecting
a few elements of the set. Notice that we can define a subset X ⊆ Y in an
alternative way, through its induced characteristic function ψX : Y → {0, 1}.
An element x ∈ Y is mapped to ψX(y) = 1 if it is a member of X, other-
wise it is mapped to 0. We can generalize this concept to define subobjects of
arbitrary objects in a category.

To help build some intuition, consider how to define subsets without
“looking inside" a set. Essentially, a subset S of some larger set T can be
viewed as a “monic arrow" (an injective function). Monic arrows generalize
injective functions. An arrow f : a → b in a category C is called monic if
given any parallel arrows g, h : c →→ a, the equality f ◦ g = f ◦ h implies that
g = h, namely f is “left-cancellable". Now,

Definition 2. In a category C, a subobject classifier is a C-object Ω, and a
C-arrow true : 1 → Ω, such that to every monic arrow S ↪→ X in C, there
is a unique arrow ϕ that forms the following pullback square commutative

https://openreview.net/forum?id=ByxRM0Ntvr
https://openreview.net/forum?id=ByxRM0Ntvr
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diagram:
S 1

X Ω

m true

ϕ

What does this diagram mean? Consider the category of Sets. Let S be
some subset of X. Then, m defines a monic (1-1) function that simply maps
each element x ∈ S to the same element x ∈ X. ϕ is the characteristic
(Boolean) function that maps X to a Boolean {0, 1}-valued object Ω. The
arrow true simply maps 1 to the element 1 in Ω. The diagram commutes,
hence for each element x ∈ X, it must be the case that composing the true
with the unique function mapping S to 1 (which recall is a terminal object)
gives us the exact same arrow as composing ϕ with m.

This commutative diagram enforces the constraint that every monic arrow
m (i.e., every 1− 1 function) that maps a subobject S to an object X must
be characterizable in terms of a “pullback", a particular type of universal
property that is a special type of a limit. In the special case of the category
of sets, subobject classifiers are defined through the characteristic (Boolean-
valued) function ϕ that defines subsets. In general, such as for Transformer
objects, the subobject classifier Ω is not Boolean-valued, and requires using
intuitionistic logic through a Heyting algebra.

Remarkably, we can generalize this definition to our Transformer category
as well, if we view Transformers as general sequence-to-sequence functions.
We will explain the details of this construction later in this course, but for
those impatient readers, the proof is given here. 17 The proof is actually quite 17 Sridhar Mahadevan. Topos theory for

generative AI and LLMs, 2025e. URL
https://arxiv.org/abs/2508.
08293

simple: it requires constructing a commutative diagram similar to that shown
above, and we urge the reader to consider proving this result before looking
at this paper.

Definition 3. A category C has binary products if for every pair of objects,
c and d, there exists a third object, e ≃ c × d, along with two projection
arrows, p1 : e → c and p2 : e → d, such that for any other object a and
arrows f : a → c and g : a → d, there exists a unique morphism u : a → e
satisfying p1 ◦ u = f and p2 ◦ u = g.

This abstract definition is a lot like many others you will encounter in
this book. So, it takes some patience to work through what it means. 18 So, 18 Exercise: draw the commutative diagram

for this definition.intuitively, given two Transformer objects, we need to be able to construct
a “product" Transformer that satisfies the above definition. If we think of
a Transformer as a sequence-to-sequence function, then we simplify the
problem to thinking about how to define the product of two sequence-to-
sequence functions. In addition to product objects, a topos category must
have exponential objects.

Definition 4. A category C with binary products has exponential objects

https://arxiv.org/abs/2508.08293
https://arxiv.org/abs/2508.08293
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if for each pair of objects c, d in C, there exists an object cd that defines the
following bijection:

C(e× d, c) ≃ C(e, cd)

Consider, for example, the category of Sets. Does it have exponential
objects? 19 For our category of Transformer objects, how would we construct 19 Hint: for each pair of sets X and Y,

consider all functions f : X → Y. Does this
define an exponential object?

exponential objects? We will explore that question later in this book, but for
now, let us assume this is possible. We can then proceed to define yet another
property of a topos category.

EXAMPLE (SETS) . In Set, the exponential object YX can be taken to be the
set of all functions X → Y. There is a canonical evaluation map

ev : YX × X → Y, ev( f , x) = f (x),

and the universal property of YX states that every function F : E× X → Y
corresponds uniquely to its curried form F̃ : E → YX . We will repeatedly
reuse this pattern when we interpret modules inside Transformer architectures
as “function objects” and later when we interpret patchwise reasoning as
internal higher-order structure.

Definition 5. A category C is Cartesian closed if it has binary products, a
terminal object 1, and exponential objects.

With these definitions behind us, we can finally now state the key property
of a topos category. As we will see, Transformers indeed do form a topos
category, and with that deeper understanding, we can unlock a powerful novel
class of Transformer architectures.

Definition 6. An elementary topos is a category C that is Cartesian closed
and has a subobject classifier.

For example, the category of sets forms a topos. Binary products exist
because one can define Cartesian products of sets. Exponential objects cor-
respond to the set of all functions between two sets. The terminal object is
simply the single-element set {•}. Finally, the subobject classifier is simply
the subset function, which induces a boolean-valued characteristic function.

THE TABLE below summarizes the differences between set theory and topos
theory. We have seen some of these properties in this chapter, but we will our
exploration of other properties in the subsequent chapters, beginning with the
crucial concept of functors in the next chapter.
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Set theory Topos theory
set object

subset subobject
truth values {0, 1} subobject classifier Ω

power set P(A) = 2A power object P(A) = ΩA

bijection isomorphims
injection monic arrow
surjection epic arrow

singleton set {∗} terminal object 1
empty set ∅ initial object 0

elements of a set X morphism f : 1→ X
- functors, natural transformations
- limits, colimits, adjunctions

Summary and Further Reading

In this introductory chapter, we introduced the problem of AGI, and de-
scribed how the Transformer model – the centerpiece of the current AI rev-
olution – can be understood as a type of topos category. For many of you
encountering these ideas for the first time, it can take quite a bit of time to
process the meaning of these definitions. It is highly recommended that
you read Section 1.1-1.2 of Riehl’s textbook on a more formal definition
of categories 20. She goes through many examples of concrete categories. 20 E. Riehl. Category Theory in Context. Au-

rora: Dover Modern Math Originals. Dover
Publications, 2017. ISBN 9780486820804.
URL https://books.google.com/
books?id=6B9MDgAAQBAJ

A canonical example is that of vector spaces, which plays a central role in
Transformer models, as the space of input and output tokens Rn×d forms a
category with many special properties.

TRANSFORMER model implementations are widely available on the web.
A great source is the implementation that comes with the O’Reilly book
Natural Language Processing with Transformers.21 I 21 https://github.com/nlp-with-transformers

highly recommend running the sample notebooks in this GitHub repo, par-
ticularly the basic ones that walk you through how the Transformer model
works. This course assumes you have sufficient knowledge through read-
ing and experimenting with basic Transformer models to follow the more
advanced ideas that we will be exploring in the remaining chapters.

https://books.google.com/books?id=6B9MDgAAQBAJ
https://books.google.com/books?id=6B9MDgAAQBAJ
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Category
Category

Functor
Figure 2: Functors act on both the
objects and arrows of a category.

FUNCTORS are fundamental to categorical AGI, and we devote this chapter
to a deeper study of this mapping between categories. Section 1.3 in Riehl’s
textbook gives a great introduction to functors. 22 Functors act in a way 22 E. Riehl. Category Theory in Context. Au-

rora: Dover Modern Math Originals. Dover
Publications, 2017. ISBN 9780486820804.
URL https://books.google.com/
books?id=6B9MDgAAQBAJ

that is different from a function. It is central to grasping the core ideas of
category theory, and the reader is encouraged to spend time understanding
this fundamental concept.

Definition 7. A functor F : C → D between two categories C and D is
specified by an object function mapping each c ∈ C to Fc ∈ D, and an
arrows function mapping each arrow f ∈ C(c, d) to F f ∈ D(Fc, Fd).

To appreciate this definition, let us pause for a moment and understand
what it is saying. A functor is not a function: it acts both on the objects of
the domain category, as well as its arrows. That seems like a small change
in the notion of a function, but it is such apparently minor variations that can
completely transform how we think of AI and ML.23 We will go through a 23 Sridhar Mahadevan. Rethinking AI:

From functions to functors. In Pro-
ceedings of the Fortieth AAAI Confer-
ence on Artificial Intelligence, January
20-27, 2026, Singapore, 2026. URL
https://people.cs.umass.edu/
~mahadeva/papers/AAAI_2026_
SM_Talk_Rethinking_AI.pdf

variety of examples of functors in this chapter and the remainder of this book.
The simplest kind of functor, and in many ways, perhaps one of the most
powerful, is the Powerset functor P : X → 2X . It acts on the category
Sets, and is an example of an endofunctor, as the output co-domain category
is the same as the input domain category.

Example 1. P({0, 1}) = {∅, {0}, {1}, {0, 1}}.
To appreciate why P is indeed a functor, we must specify not only how it

acts on objects, namely sets, as above, but also how it acts on arrows, namely
functions on sets. Given any function f : A→ B, it follows straightforwardly
that P( f ) = P(A)→ P(B).24 24 The reader is encouraged to work out

simple examples of the Powerset functor.

https://books.google.com/books?id=6B9MDgAAQBAJ
https://books.google.com/books?id=6B9MDgAAQBAJ
https://people.cs.umass.edu/~mahadeva/papers/AAAI_2026_SM_Talk_Rethinking_AI.pdf
https://people.cs.umass.edu/~mahadeva/papers/AAAI_2026_SM_Talk_Rethinking_AI.pdf
https://people.cs.umass.edu/~mahadeva/papers/AAAI_2026_SM_Talk_Rethinking_AI.pdf
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Category of MDPs Category of Value Functions

Solution Method as Functor
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Figure 3: Reinforcement Learning
(RL) methods can be modeled as
functors.

REINFORCEMENT LEARNING (RL) algorithms can be viewed as functors
that map from the category CMDP of Markov decision processes (MDPs)
into the category CV of value functions V : S → R. To understand why an
RL method is a functor, consider computing the value function associated
with some policy π : S → A, which results in the value function Vπ .
Now, the arrows of category CMDP are MDP homomorphisms – ways of
abstracting an MDP that collapse its state space or action space. So, for any
MDP homomorphism ϕ : M → M′, we get a corresponding mapping
Vπ

M → Vπ
M′ . Functors act differently from functions: they map both the

objects and arrows of a domain category into a co-domain category.

Functors can be viewed as a generalization of the notion of morphisms
across algebraic structures, such as groups, vector spaces, and graphs. Func-
tors do more than functions: they not only map objects to objects, but like
graph homomorphisms, they need to also map each morphism in the domain
category to a corresponding morphism in the co-domain category. Functors
come in two varieties, as defined below.

Definition 8. A covariant functor F : C → D from category C to category
D, and defined as the following:

• An object FX (also written as F(X)) of the category D for each object X
in category C.

• An arrow F( f ) : FX → FY in category D for every arrow f : X → Y in
category C.

• The preservation of identity and composition: F idX = idFX and
(F f )(Fg) = F(g ◦ f ) for any composable arrows f : X → Y, g : Y → Z.

Definition 9. A contravariant functor contravariant functor F : C → D
from category C to category D is defined exactly like the covariant functor,
except all the arrows are reversed.

The functoriality axioms dictate how functors have to be behave:

• For any composable pair f , g in category C, Fg · F f = F(g · f ).

• For each object c in C, F(1c) = 1Fc.

We will use the notion Cop to denote the category C with the same objects,
but with arrows reversed.
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FUNCTOR CATEGORIES will play a major role in this book, and provide
one of the most powerful types of categories, as they are central to the famous
Yoneda Lemma. The functor category of presheaves and copresheaves are
central to modeling Transformers.

Example 2. The functor category of presheaves SetsC
op

: Cop → Sets is
defined as a category, where every object is a presheaf, namely a mapping
from any object c ∈ C to Sets.

Example 3. The Yoneda embedding is defined as the mappingよ : C →
SetsC

op
, and is simply defined as C(−, c) for any object c ∈ C.

Pay close attention to this powerful, and perhaps most beautiful of all em-
beddings in pure mathematics. What is it saying? Simply put, it maps an ob-
ject, e.g., a word or token in a Transformer model, to the set of all sequences
of tokens that precede it. In fact, that is precisely what the Transformer model
learns from data. 25 25 Tai-Danae Bradley, John Terilla, and

Yiannis Vlassopoulos. An enriched
category theory of language: from syntax to
semantics, 2021. Arxiv

Example 4. The Yoneda embeddingよ : C → SetsC
op

creates a con-
travariant functor, because for any object c, its Yoneda embedding C(−, c) is
a contravariant functor.

This example is highly instructive: spend time on understanding why
Yoneda embeddings create contravariant functors. 26 26 Hint: take any arrow f : c → c′

in a category C. How does the Yoneda
embedding act on such arrows?

NATURAL TRANSFORMATIONS in fact turned out to be the fundamen-
tal reason why functors were defined, which in turn required inventing the
concept of a category.

Definition 10. Given any two functors F : C → D and G : C → D between
the same pair of categories, we can define a mapping between F and G that is
referred to as a natural transformation. These are defined through a collection
of mappings, one for each object c of C, thereby defining a morphism in D
for each object in C.

Fc Gc

Fc′ Gc′

αc

F f

αc′

G f

NATURAL TRANSFORMATIONS AND FUNCTORS are two of the most
important aspects of categorical AGI, and it takes some effort to understand
their importance. Rather than delve completely in the technicalities of their
definition, let us understand first their crucial role in transforming AI. Fun-
damentally, modern AI is based around functions. We think of Transformer
models as functions mapping sequences of tokens into other sequences of
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tokens, e.g., translating sentences in English into French or Japanese. Why
do we need functors or natural transformations? The goal of this book and
course is to explain their importance to AI and ML. At the end of this course,
you will hopefully understand the importance of functors, and wonder why
more attention is not being paid to them in AI research.

To begin with, let us ask the most basic question of all in machine learn-
ing: how do we define the problem of machine learning? A Transformer is
essentially a nonlinear approximator of sequence-to-sequence functions. It
works because it is possible to train a Transformer model using an enormous
amount of data, specifically trillions of tokens. But, more abstractly, suppose
we are given a finite sample drawn from some set (e.g., in training a Trans-
former, we are given samples of vectors x ∈ Rn×d). How do we define the
problem of extrapolating (or interpolating) the data over some finite subset
of token sequences to the entire vector space? This problem unfortunately
has no canonical solution. Much of the literature in machine learning and
statistics over many decades has explored a wide range of approaches. 27 27 Gareth James, Daniela Witten, Trevor

Hastie, and Robert Tibshirani. An In-
troduction to Statistical Learning – with
Applications in R, volume 103 of Springer
Texts in Statistics. Springer, New York,
2013. ISBN 978-1-4614-7137-0. DOI :
10.1007/DOI

PAC (Probably Approximately Correct) Learning is a theoretical framework
that studies the computational complexity of learning from data 28. In this

28 Leslie G. Valiant. A theory of the
learnable. Commun. ACM, 27(11):1134–
1142, 1984. DOI : 10.1145/1968.1972. URL
https://doi.org/10.1145/1968.
1972

framework, a teacher draws samples from some fixed distribution P over a
space of data X, and presents it to a learner. In the setting of Transformer
models, X is essentially the entire collection of digital data that is accessible
(from books, blogs, social network postings etc.). The learner is expected
to infer an approximation g to some desired function f such that for any
given distribution P, the error ϵ = P( f (X) ̸= g(x)) is bounded. But this
formulation does not specify any canonical solution, and there are many for-
malizations of machine learning. There is no formalization that is canonical.
Ultimately, the fundamental problem of the goal inferring a function from
data is ill-defined.

FUNCTORS remarkably change the problem from an inherently ill-defined
problem into a well-defined problem. In this setting, one is given a functor
F : C → D, and the extension problem involves discovery of a new functor
G : E → D, given another functor K : C → E . In other words, we are
interested in extending the given functor F along K. To see the relationship
between extending functors and extrapolating functions, imagine that the cat-
egory C is a finite set of samples, and the category E is the larger (potentially
infinite) category over which the function is to be extrapolated. Concretely,
in the setting of Transformer models, C is the finite set of all possible token
sequences that could be accessed during training, and E is the complete vec-
tor space Rn×d. Well, one of the most remarkable results in category theory,
due to Kan, is that this functor extension problem has exactly two canonical
solutions: the left Kan extension and the right Kan extension. 29 29 Daniel Kan. Adjoint functors. Transac-

tions of the American Mathematical Society,
87(2):294–329, 1958. URL https:
//doi.org/10.2307/1993102

https://doi.org/10.1145/1968.1972
https://doi.org/10.1145/1968.1972
https://doi.org/10.2307/1993102
https://doi.org/10.2307/1993102
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Clustering as a Functor

One of the motifs that underlies many of the applications of category the-
ory to AI and ML in this book and course is to model problems in terms of
functors. The figure on the next page illustrates the use of functoriality in
designing an algorithm for clustering points in a finite metric space based on
pairwise distances, one of the most common ways to preprocess data in ML
and statistics. Treating clustering as a functor implies the resulting algorithm
should behave appropriately under suitable modifications of the input space.
Here, we can define clustering formally as a functor F that maps the input
category of finite metric spaces FinMet defined by (X, d), where X is a finite
set of points in Rn and d : X × X → [0, ∞] is a (generalized) finite metric
space, and the output category Part is the set of all partitions X into subsets
Xi such that ∪iXi = X.

Cluster 1 Cluster 2

Cluster 3

Figure 4: One of the most tradi-
tional problems in statistics and
ML is clustering by constructing
a partition of a finite metric space
by grouping points together based
on their pairwise distances. Treat-
ing clustering as a functor implies
designing an algorithm that be-
haves functorially: if the distances
were scaled by some factor, the
clustering should not change.

One can impose three criteria on a clustering algorithm, which seem
entirely natural, and yet, no standard clustering algorithm satisfies all these
conditions. 30 30 Jon Kleinberg. An impossibility theorem

for clustering. In S. Becker, S. Thrun, and
K. Obermayer, editors, Advances in Neural
Information Processing Systems, volume 15.
MIT Press, 2002

• Scale invariance: If the distance metric d is increased or decreased by
c · d, where c is a scalar real number, the output clustering should not
change. If the points in each cluster became closer together or further
apart proportionally, the clustering should remain the same.

• Completeness: For any given partition of the space X, there should exist
some distance function d such that the clustering algorithm when given
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that distance function should return the desired partition.

• Monotonicity: If the distance between points within each cluster were
decreased, and the distances between points in different clusters were
increased, the clustering should not change either.

Remarkably, it turns out that no clustering algorithm exists that satisfies all
these three basic conditions. Yet, even more remarkably, treating clustering as
a functor makes it possible to define a modified clustering problem in terms
of creating persistent clusters that overcomes Kleinberg’s impossibility result.
31 This simple but deep example reveals the power of functorial design, and 31 Gunnar E. Carlsson and Facundo Mé-

moli. Classifying clustering schemes.
Found. Comput. Math., 13(2):221–252,
2013. DOI : 10.1007/s10208-012-9141-9.
URL https://doi.org/10.1007/
s10208-012-9141-9

gives a concrete illustration of the importance of functorial thinking in AI and
ML.

Summary and Further Reading

This chapter introduced two of the most important ideas in categorical AGI:
functors and natural transformations. It will take some time to appreciate
these definitions, and the best way to do that is to go through as many exam-
ples as possible. Work through some sample exercises for yourself. 32 32 Given that RL algorithms can be modeled

as functors, define a natural transformation
between two RL algorithms.

UMAP (Uniform Manifold Approximation and Visualization) is the most
powerful and efficient data visualization method in machine learning today.
It is based on constructing functors from a high-dimensional dataset defined
as a generalized metric space to a category of topological spaces. UMAP
uses some advanced categorical structures, such as simplicial sets, which we
will encounter later in this book and course. But it is worthwhile to explore
UMAP through its downloadable Python package. 33 33 https://umap-learn.

readthedocs.io/en/latest/
how_umap_works.html

https://doi.org/10.1007/s10208-012-9141-9
https://doi.org/10.1007/s10208-012-9141-9
https://umap-learn.readthedocs.io/en/latest/how_umap_works.html
https://umap-learn.readthedocs.io/en/latest/how_umap_works.html
https://umap-learn.readthedocs.io/en/latest/how_umap_works.html


Representable Functors and the Yoneda Lemma

In this chapter, we will introduce one of the most elegant and powerful
results in category theory: the Yoneda Lemma.34 A story often told of its 34 A detailed discussion of the Yoneda

Lemma is given in Chapter 2 of Riehl’s
textbook.

discovery by the “godfather" of category theory, Saunders Mac Lane, in the
iconic Paris train station Gare du Nord, is quite entertaining to read.35 35 http://www.

neverendingbooks.org/
le-lemme-de-la-gare-du-nord/

The Yoneda Lemma states simply that objects in a category can be defined
purely on the basis of their interaction with all the other elements. It is one
of those all-too-rare results in pure mathematics that can be described accu-
rately in plain language. In other words, to understand an object x, simply
examine all the influences C(−, x) that act on it, or equivalently, the objects it
influences, C(x,−). The remarkable property that this Lemma reveals results
in an embedding that has foundational implications for AGI, and in fact, can
be seen as essential to the success of the Transformer model itself. To under-
stand the Yoneda Lemma, we need to first understand how functors act on
each other.

UNIVERSAL CAUSALITY is a categorical formulation of causality based
on the Yoneda Lemma. 36 It leads to some deep insights into the problem 36 Sridhar Mahadevan. Universal causal-

ity. Entropy, 25(4):574, 2023. DOI :
10.3390/E25040574. URL https:
//doi.org/10.3390/e25040574

of causal reasoning, because of a fundamental consequence of the Yoneda
Lemma.

Natural Transformations and Universal Arrows

Given any two functors F : C → D and G : C → D between the same pair
of categories, we can define a mapping between F and G that is referred to as
a natural transformation. These are defined through a collection of mappings,
one for each object c of C, thereby defining a morphism in D for each object
in C.

Definition 11. Given categories C and D, and functors F, G : C → D, a
natural transformation α : F⇒ G is defined by the following data:

• an arrow αc : Fc → Gc in D for each object c ∈ C, which together define
the components of the natural transformation.

• For each morphism f : c → c′, the following commutative diagram holds
true:

http://www.neverendingbooks.org/le-lemme-de-la-gare-du-nord/
http://www.neverendingbooks.org/le-lemme-de-la-gare-du-nord/
http://www.neverendingbooks.org/le-lemme-de-la-gare-du-nord/
https://doi.org/10.3390/e25040574
https://doi.org/10.3390/e25040574
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Fc Gc

Fc′ Gc′

αc

F f

αc′

G f

A natural isomorphism is a natural transformation α : F ⇒ G in which
every component αc is an isomorphism.

A fundamental universal construction in category theory, called the uni-
versal arrow lies at the heart of many useful results, principally the Yoneda
lemma that shows how object identity itself emerges from the structure of
morphisms that lead into (or out of) it.

Definition 12. Given a functor S : D → C between two categories, and an
object c of category C, a universal arrow from c to S is a pair ⟨r, u⟩, where
r is an object of D and u : c → Sr is an arrow of C, such that the following
universal property holds true:

• For every pair ⟨d, f ⟩ with d an object of D and f : c → Sd an arrow of C,
there is a unique arrow f ′ : r→ d of D with S f ′ ◦ u = f .

Once again, it is important to pause here, and try to understand what this
definition is stating. 37 37 Draw the commutative diagram for this

definition!

Definition 13. If D is a category and H : D → Set is a set-valued functor, a
universal element associated with the functor H is a pair ⟨r, e⟩ consisting of
an object r ∈ D and an element e ∈ Hr such that for every pair ⟨d, x⟩ with
x ∈ Hd, there is a unique arrow f : r→ d of D such that (H f )e = x.

A UNIVERSAL PROPERTY in category theory refers to a property that can
be described by an initial or terminal object in a category of diagrams (which
we will encounter in later chapters). When we use the phrase “universal" in
category theory, we are referring to a very precise notion, namely a property
that is definable in a unique way. Carefully read the section on universal
representations in Riehl’s textbook. She uses an illustrative example of graph
colorability. We know that not all graphs can be colored by n (e.g, 3) colors.
But what is the universal property for graph colorability? 38 38 Try to define a universal property for

reinforcement learning algorithms, by
first defining universal arrows between the
category CMDP and the category CV of
value functions.

Theorem 1. Given any functor S : D → C, the universal arrow ⟨r, u : c →
Sr⟩ implies a bijection exists between the Hom sets

HomD(r, d) ≃ HomC(c, Sd)

A special case of this natural transformation that transforms the identity
morphism 1r leads us to the Yoneda lemma.
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Yoneda Lemma

The Yoneda Lemma states that the set of all morphisms into an object d in
a category C, denoted as HomC(−, d) and called the contravariant functor
(or presheaf), is sufficient to define d up to isomorphism. The category of
all presheaves forms a category of functors, and is denoted Ĉ = SetCop

.
Remarkably, it forms a topos, and has many attractive properties that we will
explore later in the book and course. The Yoneda lemma plays a crucial role
in this book because it defines the concept of a universal representation in
category theory. We first show that associated with universal arrows is the
corresponding induced isomorphisms between Hom sets of morphisms in
categories. This universal property then leads to the Yoneda lemma.

D(r, r) C(c, Sr)

D(r, d) C(c, Sd)

D(r, f ′)

ϕr

C(c,S f ′)
ϕd

As the two paths shown here must be equal in a commutative diagram,
we get the property that a bijection between the Hom sets holds precisely
when ⟨r, u : c → Sr⟩ is a universal arrow from c to S. Note that for the
case when the categories C and D are small, meaning their Hom collection
of arrows forms a set, the induced functor HomC(c, S−) to Set is isomorphic
to the functor HomD(r,−). This type of isomorphism defines a universal
representation.

Lemma 1. Yoneda lemma: For any functor F : C → Set, whose domain
category C is “locally small" (meaning that the collection of morphisms be-
tween each pair of objects forms a set), any object c in C, there is a bijection

Hom(C(c,−), F) ≃ Fc

that defines a natural transformation α : C(c,−) ⇒ F to the element
αc(1c) ∈ Fc. This correspondence is natural in both c and F.

There is of course a dual form of the Yoneda Lemma in terms of the
contravariant functor C(−, c) as well using the natural transformation
C(−, c) ⇒ F. A very useful way to interpret the Yoneda Lemma is through
the notion of universal representability through a covariant or contravariant
functor.

Definition 14. A universal representation of an object c ∈ C in a cat-
egory C is defined as a contravariant functor F together with a functorial
representation C(−, c) ≃ F or by a covariant functor F together with a rep-
resentation C(c,−) ≃ F. The collection of morphisms C(−, c) into an object
c is called the presheaf, and from the Yoneda Lemma, forms a universal
representation of the object.



40 CATEGORIES FOR AGI

Yoneda Intuition via Visualizing Self-Attention in BERT

A SLOGAN that will guide this chapter is the following: an object is deter-
mined by all of its relationships. The Yoneda Lemma makes this precise by
identifying an object c ∈ C with the functor of morphisms out of (or into) it,
such as C(c,−) or C(−, c), and by stating that natural transformations out of
a representable functor are equivalent to elements of the target functor.

SELF-ATTENTION implements a remarkably similar principle in modern
Transformer models. A token representation is not a fixed embedding, but is
context-sensitive: the representation of a token depends on its learned rela-
tionships to other tokens in the sentence. This gives an empirical realization
of a Yoneda-style idea: a token acquires its meaning-in-context through how
it “sees” (and is seen by) other tokens.

ATTENTION AS AN ENRICHED REPRESENTABLE . Let A denote a token
position in a sentence. In a toy causal “sequence category” (as in the Week 2
micro-lab), the representable functor hA(−) = Hom(A,−) is the set
of arrows from A to all other token positions. In a real Transformer, self-
attention replaces a set-valued representable with a weighted (enriched)
profile:

αA→j = softmaxj

( ⟨qA, k j⟩√
d

)
, yA = ∑

j
αA→j vj,

where qA is the query vector for token A, k j is the key vector for token j,
and vj is the value. Thus the updated representation yA is computed by
“evaluating” values along all relationships out of A, weighted by αA→j.

A DISAMBIGUATION DEMO : “NEW ENGLAND”. Consider the two
sentences:

(1) The New England Patriots will win Super Bowl 2026.
(2) New England winters can be really cold and long.

The phrase New England is ambiguous: in (1) it refers primarily to a sports
team brand/identity, while in (2) it refers to a geographic/climatic region. A
pretrained model (e.g. BERT) resolves this ambiguity by producing different
contextual encodings for the tokens new and england, which can be observed
directly by visualizing attention weights. In (1), the attention profiles for
england place mass on tokens such as patriots, super, bowl; in (2) they place
mass on winters, cold, long. In other words, the “relationship profile” of the
token changes with context, and the token’s representation changes accord-
ingly.
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(a) Sports context (b) Weather context

Figure 5: Attention as an en-
riched Yoneda profile. Clicking
the token england reveals its head-
wise attention distribution αA→−
at a fixed layer. The attention pro-
file—and therefore the contextual
embedding—changes with context,
disambiguating the phrase New
England.

V ISUALIZATION . The figure above shows an interactive visualization of
attention heads in BERT (using BertViz), highlighting the attention rela-
tions of new and england in the two contexts. A companion Colab notebook
reproducing this visualization is provided in the course repository.

CONNECTION BACK TO YONEDA . The Yoneda Lemma states that an
object c is determined by the functor C(c,−) (or C(−, c)). Self-attention
can be viewed as learning a soft/enriched analogue: a token representation
is updated from a weighted profile of its relationships to all other tokens. In
subsequent chapters, we will formalize how diagrammatic constraints (e.g.
commutative squares) can be used to regularize such relationship profiles
and how sheaf/topos structure can be used to glue local views into globally
coherent commitments.

Summary and Further Reading

In this chapter, we introduced one of the most beautiful results in pure mathe-
matics, the Yoneda Lemma. It states simply that objects can be defined purely
on the basis of their interaction with other objects. It can be viewed without
exaggeration as the foundation of modern digital marketing – “you are what
you purchase online" – as well as social networking – “you are defined by
your friends on a social network". There are many deep consequences of the
Yoneda Lemma that we will encounter later in this book and course, which
include new ways of modeling causal inference and deep learning.

An alternate form of the Yoneda Lemma makes it somewhat easier to
appreciate:

Nat(C(−, c), C(−, d)) ≃ C(c, d)

If you think about causal inference in this context, what this result states
is that the causal influences of a variable c upon another variable d is com-
putable purely as a function of their associated presheaf objects C(−, c)) and
C(−, d).





Diagrams and Universal Constructions

We now move to a more difficult topic for most beginners learning cate-
gory theory: universal constructions, such as colimits and limits. These con-
cepts can initially be daunting, but fortunately when understood in the context
of AGI applications, they turn out to be surprisingly useful. Fundamentally,
they give us new ways to combine Transformer models or causal models, and
allow constructing an assembly factory of novel representations from basic
building blocks. Recall that an LLM is abstractly modeled as a sequence-to-
sequence function. These become the basic objects in a topos category, which
then can be shown to possess as (co)limits. As we will see, one consequence
is that any “diagram" comprising of LLM objects as a “solution".
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Figure 6: Limits and Colimits give
us novel construction techniques
for building LLM architectures.

A key distinguishing feature of category theory is the use of diagrammatic
reasoning. However, diagrams are also viewed more abstractly as functors
mapping from some indexing category to the actual category. Diagrams are
useful in understanding universal constructions, such as limits and colimits of
diagrams.39 These concepts are among the most difficult to understand ini- 39 Read Chapter 3 of Riehl’s textbook for a

great introduction to these concepts.tially, and it will require much concentration to absorb their implications. As
with all beautiful abstractions in pure mathematics, a deeper understanding of
these ideas will reward the reader with a much deeper appreciation for their
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application to AGI.

D IAGRAMS are functors in disguise from some indexing category (usually
finite) to an actual concrete category of interest. Let us consider as a simple
example the concept of a Cartesian product of sets, which is usually defined
as

A× B = {(a, b)|a ∈ A, b ∈ B}

Consider now defining this same concept, except without “looking inside"
an object. Given two abstract objects, say c and d, what is their “Cartesian
product"? To work this out, we need to abstract out the definition of Carte-
sian product of sets in terms of the Yoneda Lemma. The “product object" is
defined uniquely by its interaction with other members of the category. What
are those? In effect, we are asking to define the Cartesian product of two sets,
not by listing all possible ordered pairs, but how the Cartesian product maps
onto every possible set! This seems like a hopeless task, but remarkably it
turns out to be actually quite simple.

Definition 15. A diagram F : J → C is a functor F from some finite category
J into a category of interest, C.

For example, J = • → • ← • is an example of a “pullback" diagram.
Here the • refer to abstract objects that are mapped into concrete objects in C
by the functor F. What we want to know whether a particular diagram F or an
entire class of diagrams is “solvable". What this means is whether its limit or
colimit exists, that is, is the category complete or co-complete? We will see
that these are indeed very useful properties in designing AGI systems.

Before we formally the concept of limit and colimits, we consider some
examples. These notions generalize the more familiar notions of Cartesian
products and disjoint unions in the category of Sets, the notion of meets and
joins in the category Preord of preorders, as well as the least upper bounds
and greatest lower bounds in lattices, and many other concrete examples from
mathematics.

Example 5. If we consider a small “discrete” category D whose only mor-
phisms are identity arrows, then the colimit of a functor F : D → C is the
categorical coproduct of F (D) for D, an object of category D, is denoted as

ColimitDF =
⊔
D
F (D)

In the special case when the category C is the category Sets, then the
colimit of this functor is simply the disjoint union of all the sets F(D) that are
mapped from objects D ∈ D.
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Example 6. Dual to the notion of colimit of a functor is the notion of limit.
Once again, if we consider a small “discrete” category D whose only mor-
phisms are identity arrows, then the limit of a functor F : D → C is the
categorical product of F (D) for D, an object of category D, is denoted as

limitDF = ∏
D
F (D)

In the special case when the category C is the category Sets, then the limit
of this functor is simply the Cartesian product of all the sets F(D) that are
mapped from objects D ∈ D.

Category theory relies extensively on universal constructions, which
satisfy a universal property. One of the central building blocks is the identi-
fication of universal properties through formal diagrams. Before introducing
these definitions in their most abstract form, it greatly helps to see some sim-
ple examples. We can illustrate the limits and colimits in diagrams using
pullback and pushforward mappings. We first begin with the pushforward
construction, which can be seen as “gluing" things together.

Z X

Y X ⊔Y

R

p

q f
h

g

i

r

An example of a universal construction is given by the above commutative
diagram, where the coproduct object X ⊔ Y uniquely factorizes any mapping
h : X → R, such that any mapping i : Y → R, so that h = r ◦ f , and
furthermore i = r ◦ g. Coproducts are themselves special cases of the more
general notion of colimits.

The next figure illustrates the fundamental property of a pullback, which
along with pushforward, is one of the core ideas in category theory. The
pullback square with the objects U, X, Y and Z implies that the composite
mappings g ◦ f ′ must equal g′ ◦ f . In this example, the morphisms f and
g represent a pullback pair, as they share a common co-domain Z. The pair
of morphisms f ′, g′ emanating from U define a cone, because the pullback
square “commutes” appropriately. Thus, the pullback of the pair of mor-
phisms f , g with the common co-domain Z is the pair of morphisms f ′, g′

with common domain U. Furthermore, to satisfy the universal property, given
another pair of morphisms x, y with common domain T, there must exist an-
other morphism k : T → U that “factorizes” x, y appropriately, so that the
composite morphisms f ′ k = y and g′ k = x. Here, T and U are referred to
as cones, where U is the limit of the set of all cones “above” Z. If we reverse
arrow directions appropriately, we get the corresponding notion of pushfor-
ward. So, in this example, the pair of morphisms f ′, g′ that share a common
domain represent a pushforward pair.
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Figure 7: (Left) Universal Property
of pullback mappings. (Right)
The Grothendieck category of ele-
ments

∫
δ of any set-valued functor

δ : S → Set can be described as
a pullback in the diagram of cate-
gories. Here, Set∗ is the category
of pointed sets (X, x ∈ X), and π

is the “forgetful" functor that sends
a pointed set (X, x ∈ X) into the
underlying set X.

PULLBACK AND PUSHFORWARD diagrams are notable in terms of what
they reveal: a pushforward is characterized by the maps going into it, whereas
a pullback is characterized by the maps going out of it. Once again, remind
yourself of the powerful Yoneda Lemma, which gives these definitions a
precise theoretical grounding, for it states that any object (e.g. a pushforward
or pullback) can be precisely characterized by either the maps going into it or
the maps going out of it.

For any set-valued functor δ : S → Sets, the Grothendieck category of
elements

∫
δ can be shown to be a pullback in the diagram of categories.

Here, Set∗ is the category of pointed sets, and π is a projection that sends a
pointed set (X, x ∈ X) to its underlying set X. 40 40 Read the properties of the Grothendieck

category of elements in Riehl’s textbook,
especially their relationship to the Yoneda
Lemma.

We can now proceed to define limits and colimits more generally. We
define a diagram F of shape J in a category C formally as a functor F : J →
C. We want to define the somewhat abstract concepts of limits and colimits,
which will play a central role in this book in identifying properties of AI and
ML techniques. A convenient way to introduce these concepts is through the
use of universal cones that are over and under a diagram.

For any object c ∈ C and any category J, the constant functor c : J → C
maps every object j of J to c and every morphism f in J to the identity mor-
phisms 1c. We can define a constant functor embedding as the collection of
constant functors ∆ : C → C J that send each object c in C to the constant
functor at c and each morphism f : c→ c′ to the constant natural transforma-
tion, that is, the natural transformation whose every component is defined to
be the morphism f .

Definition 16. A cone over a diagram F : J → C with the summit or apex
c ∈ C is a natural transformation λ : c ⇒ F whose domain is the constant
functor at c. The components (λj : c → Fj)j∈J of the natural transformation
can be viewed as its legs. Dually, a cone under F with nadir c is a natural
transformation λ : F⇒ c whose legs are the components (λj : Fj → c)j∈J .

c Fj Fk

Fj Fk c

λj λk

F f

F f

λj λk
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Cones under a diagram are referred to usually as cocones. Using the
concept of cones and cocones, we can now formally define the concept of
limits and colimits more precisely.

Definition 17. For any diagram F : J → C, there is a functor

Cone(−, F) : Cop → Set

which sends c ∈ C to the set of cones over F with apex c. Using the
Yoneda Lemma, a limit of F is defined as an object lim F ∈ C together with
a natural transformation λ : lim F → F, which can be called the universal
cone defining the natural isomorphism

C(−, lim F) ≃ Cone(−, F)

Dually, for colimits, we can define a functor

Cone(F,−) : C→ Set

that maps object c ∈ C to the set of cones under F with nadir c. A col-
imit of F is a representation for Cone(F,−). Once again, using the Yoneda
Lemma, a colimit is defined by an object ColimF ∈ C together with a natu-
ral transformation λ : F → colimF, which defines the colimit cone as the
natural isomorphism

C(colimF,−) ≃ Cone(F,−)

Limit and colimits of diagrams over arbitrary categories can often be
reduced to the case of their corresponding diagram properties over sets. One
important stepping stone is to understand how functors interact with limits
and colimits.

Definition 18. For any class of diagrams K : J → C, a functor F : C → D

• preserves limits if for any diagram K : J → C and limit cone over K,
the image of the cone defines a limit cone over the composite diagram
FK : J → D.

• reflects limits if for any cone over a diagram K : J → C whose image
upon applying F is a limit cone for the diagram FK : J → D is a limit
cone over K

• creates limits if whenever FK : J → D has a limit in D, there is some
limit cone over FK that can be lifted to a limit cone over K and moreoever
F reflects the limits in the class of diagrams.

To interpret these abstract definitions, it helps to concretize them in terms
of a specific universal construction, like the pullback defined above c′ →
c← c′′ in C. Specifically, for pullbacks:



48 CATEGORIES FOR AGI

• A functor F preserves pullbacks if whenever p is the pullback of c′ →
c← c′′ in C, it follows that Fp is the pullback of Fc′ → Fc← Fc′′ in D.

• A functor F reflects pullbacks if p is the pullback of c′ → c ← c′′ in C
whenever Fp is the pullback of Fc′ → Fc← Fc′′ in D.

• A functor F creates pullbacks if there exists some p that is the pullback
of c′ → c ← c′′ in C whenever there exists a d such that d is the pullback
of Fc′ → Fc← Fc′′ in F.

Universality of Diagrams

In the category Sets, we know that every object (i.e., a set) X can be ex-
pressed as a coproduct (i.e., disjoint union) of its elements X ≃ ⊔x∈X{x},
where x ∈ X. Note that we can view each element x ∈ X as a morphism
x : {∗} → X from the one-point set to X. The categorical generalization
of this result is called the density theorem in the theory of sheaves. First, we
define the key concept of a comma category.

Definition 19. Let F : D → C be a functor from category D to C. The
comma category F ↓ C is one whose objects are pairs (D, f ), where D ∈ D
is an object of D and f ∈ HomC(F(D), C), where C is an object of C.
Morphisms in the comma category F ↓ C from (D, f ) to (D′, f ′), where
g : D → D′, such that f ′ ◦ F(g) = f . We can depict this structure through
the following commutative diagram:

F(D)

F(D′) C

F(g)
f

f ′

We first introduce the concept of a dense functor:

Definition 20. Let D be a small category, C be an arbitrary category, and
F : D → D be a functor. The functor F is dense if for all objects C of C, the
natural transformation

ψC
F : F ◦U → ∆C, (ψC

F )(D, f ) = f

is universal in the sense that it induces an isomorphism ColimitF↓CF ◦U ≃
C. Here, U : F ↓ C → D is the projection functor from the comma category
F ↓ C, defined by U(D, f ) = D.

A fundamental consequence of the category of elements is that every
object in the functor category of presheaves, namely contravariant functors
from a category into the category of sets, is the colimit of a diagram of repre-
sentable objects, via the Yoneda lemma. Notice this is a generalized form of
the density notion from the category Sets.
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Theorem 2. Universality of Diagrams: In the functor category of presheaves
SetCop

, every object P is the colimit of a diagram of representable objects, in
a canonical way.

Universal Arrows and Elements

A special case of the universal arrow property is that of universal element,
which as we will see below plays an important role in the GAIA architecture
in defining a suitably augmented category of elements, based on a construc-
tion introduced by Grothendieck.

Definition 21. If D is a category and H : D → Set is a set-valued functor, a
universal element associated with the functor H is a pair ⟨r, e⟩ consisting of
an object r ∈ D and an element e ∈ Hr such that for every pair ⟨d, x⟩ with
x ∈ Hd, there is a unique arrow f : r→ d of D such that (H f )e = x.

Example 7. Let E be an equivalence relation on a set S, and consider the
quotient set S/E of equivalence classes, where p : S → S/E sends each el-
ement s ∈ S into its corresponding equivalence class. The set of equivalence
classes S/E has the property that any function f : S → X that respects the
equivalence relation can be written as f s = f s′ whenever s ∼E s′, that is,
f = f ′ ◦ p, where the unique function f ′ : S/E → X. Thus, ⟨S/E, p⟩ is a
universal element for the functor H.

The Category of Elements

We turn next to define the category of elements, based on a construction by
Grothendieck, and illustrate how it can serve as the basis for inference at each
layer of the GAIA architecture.

Definition 22. Given a set-valued functor δ : C → Set from some category
C, the induced category of elements associated with δ is a pair (

∫
δ, πδ),

where
∫

δ ∈ Cat is a category in the category of all categories Cat, and
πδ :

∫
δ → C is a functor that “projects" the category of elements into the

corresponding original category C. The objects and arrows of
∫

δ are defined
as follows:

• Ob(
∫

δ) = {(s, x)|x ∈ Ob(⌋), x ∈ δs}.

• Hom∫ δ((s, x), (s′, x′)) = { f : s→ s′|δ f (x) = x′}

Summary and Further Reading

This chapter has introduced some of the most abstract concepts you will
study in this course, and we will explore its practical consequences in de-
signing a new framework for deep learning in the next few chapters, as well
as new architectures for Transformer models. So, rest assured, you will find
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plenty of concrete examples of these abstractions that will help you under-
stand these ideas better.

Riehl’s textbook has a detailed study of (co)limits, including a surprising
proof that in the category of Sets, all diagrams are solvable, meaning that we
can find the limit or colimit of any diagram. This result has profound impli-
cations for AGI, as we can now think of designing novel Transformer archi-
tectures based on these universal constructions. To help you visualize these
ideas, imagine constructing a diagram where every object is a Transformer
model, and every arrow is a commutative diagram between two Transformer
models. Then, the (co)completeness of the category of Sets implies that any
such diagram must be solvable. In other words, there exists some Trans-
former model that most closely “approximates" the diagram in the sense of
natural transformations that come into or out of it. Of course, this theoretical
result does not immediately imply that in practice, such a Transformer model
can be easily constructed, for Transformer models must be trained from data.
We will see in the next chapter how we can turn the theoretical concepts of
(co)limits into actual practical deep learning algorithms.



Categorical Deep Learning

We now build on the powerful notions we have introduced thus far in
previous chapters to design a new framework for deep learning in the follow-
ing chapters. First, we review the basic idea of modeling deep learning as a
functor in this chapter, and then introduce a powerful generalization of deep
learning in the next chapter.

In Chapter 1, we saw that Transformer models could be formalized as a
topos category, where each object is a Transformer model. In this chapter, we
delve deeper into the Transformer model, in particular examining the core
construct of self-attention. To understand how to construct a more fundamen-
tal categorical model for Transformers, we need to introduce more refined
notions of categories, such as symmetric monoidal categories 41. Let us how 41 Brendan Fong and David I Spivak. Seven

Sketches in Compositionality: An Invitation
to Applied Category Theory. Cambridge
University Press, 2018

revisit the application of category theory to model not just the Transformer
category, but to model large language models (LLMs) more generally as
well. to model LLMs in this section. In the case of LLMs, as we will see
below, a natural way to define objects is as “tokens" (roughly interpreted to
mean words in a natural language). Naturally, words can be concatenated into
sentences, which leads us to using symmetric monoidal categories.

Symmetric Monoidal Category

We now refine our notion of a category to include taking products of objects,
where c ⊗ d is interpreted as a tensor product of objects c and d in some
category C. To interpret this concretely in AGI applications, such as Trans-
formers, consider each object to be a token, or a sequence of tokens. The
tensor product ⊗ can be interpreted as concatenation of two tokens.

Symmetric Monoidal Categories

Definition 23. A monoidal category is a category C together with a functor
⊗ : C × C → C, an identity object e of C and natural isomorphisms α, λ, ρ

defined as:
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αC1,C2,C3 : C1 ⊗ (C2 ⊗ C3) ∼= (C1 ⊗ C2)⊗ C2,

λC : e⊗ C ∼= C,

ρ : C⊗ e ∼= C,

The natural isomorphisms must satisfy coherence conditions called the
“pentagon" and “triangle" diagrams. An important result shown in 42 is that 42 Saunders MacLane. Categories for

the Working Mathematician. Springer-
Verlag, New York, 1971. Graduate Texts in
Mathematics, Vol. 5

these coherence conditions guarantee that all well-formed diagrams must
commute. There are many natural examples of monoidal categories, the
simplest one being the category of finite sets, where each object C is a set,
and the tensor product ⊗ is the Cartesian product of sets, with functions
acting as arrows. Other examples include the category of sets with relations
as morphisms, and the category of Hilbert spaces. Markov categories are
monoidal categories, where the identity element e is also a terminal object,
meaning there is a unique “delete" morphism de : X → e associated with
each object X. Recent work has shown that these form a unifying foundation
for probabilistic and statistical reasoning 43. 43 Tobias Fritz. A synthetic approach

to markov kernels, conditional indepen-
dence and theorems on sufficient statis-
tics. Advances in Mathematics, 370:
107239, August 2020. ISSN 0001-8708.
DOI : 10.1016/j.aim.2020.107239. URL
http://dx.doi.org/10.1016/j.
aim.2020.107239

Definition 24. A symmetric monoidal category is a monoidal category
(C,⊗, e, α, λ, ρ) together with a natural isomorphism

τC1,C2 : C1 ⊗ C2 ∼= C2 ⊗ C1, for all objects C1, C2

where τ satisfies the additional conditions: for all objects C1, C2 τC2,C1 ◦
τC1,C2

∼= 1C1⊗C2 , and for all objects C, ρC = λC ◦ τC,e : C⊗ e ∼= C.

An additional hexagon axiom is required to ensure that the τ natural iso-
morphism is compatible with α. The τ operator is called a “swap" in Markov
categories 44. In most cases of interest in AI, the symmetric monoidal cate- 44 Tobias Fritz. A synthetic approach

to markov kernels, conditional indepen-
dence and theorems on sufficient statis-
tics. Advances in Mathematics, 370:
107239, August 2020. ISSN 0001-8708.
DOI : 10.1016/j.aim.2020.107239. URL
http://dx.doi.org/10.1016/j.
aim.2020.107239

gories are enriched over some convenient base category V , including vector
spaces, or preorders such as the unit interval [0, 1], where the unique mor-
phism from a→ b exists if and only if a ≤ b. 5

Definition 25. A V-enriched category consists of a regular category C,
such that for each pair of objects x and y in C, the morphisms C(x, y) ∈ V ,
often referred to as a V-hom object. For the case when (calV,≤,⊗, 1) is a
commutative monoidal preorder, we have the following conditions

• 1 ≤ C(x, x)

• C(y, z)⊗ C(x, y) ≤ C(x, z)

Attention in Transformers

Central to the structure of Transformer is the computation of attention scores.
A detailed review of some types of attention scores is given in 45. Ignoring 45 Sneha Chaudhari, Varun Mithal, Gungor

Polatkan, and Rohan Ramanath. An
attentive survey of attention models, 2021.
URL https://arxiv.org/abs/
1904.02874

many details, the overall idea is to compute some type of “dot product"

http://dx.doi.org/10.1016/j.aim.2020.107239
http://dx.doi.org/10.1016/j.aim.2020.107239
http://dx.doi.org/10.1016/j.aim.2020.107239
http://dx.doi.org/10.1016/j.aim.2020.107239
https://arxiv.org/abs/1904.02874
https://arxiv.org/abs/1904.02874
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between two tokens that are embedded in Euclidean space. We provide a
brief review of some approaches, and then define a category of Transformer
models. To extend this basic symmetric computation of attention scores to
nonsymmetric natural language applications, the inputs are weighted in some
fashion such as using a sinusoidal function in the original Transformer model.

The general structure of an attention model is given as

A(q, K, v) = ∑
i

p(a(ki, q))× vi

where K and V are key-value pairs, q is a query, a is an alignment function,
and p is a distribution function. Some sample alignment functions are given
in the following table.

Function Equation

similarity a(ki, q) = sim(ki, q)
dot product a(ki, q) = qTki

scaled dot product a(ki, q) =
qTki√

dk
general a(ki, q) = qTWki

biased general a(ki, q) = ki(Wq + b)
activated general a(ki, q) = act(qTWki + b)
generalized kernel a(ki, q) = ϕ(q)Tϕ(ki)

Table 1: Some Alignment Func-
tions used in Transformer models.

Transformers as a Category

To help concretize the more abstract presentation in the main paper, let us de-
fine a category of Transformer models. As with all generative AI systems, the
fundamental structure of a Transformer model is a compositional structure
made up of modular components, each of which computes a permutation-
equivariant function over the vector space Rd×n of n-length sequences of
tokens, each embedded in a space of dimension d. We can define a commuta-
tive diagram showing the permutation equivariant property as shown below.

To begin with, we can generically define a neural network layer of type
(n1, n2) as a subset C ⊆ [n1]× [n2] where n1, n2 ∈ N are natural numbers,
and [n] = {1, . . . , n}. These numbers n1 and n2 serve to define the number
of inputs and outputs of each layer, C is a set of connections, and (i, j) ∈
C means that node i is connected to node j in the network diagram. It is
straightforward to define activation functions σ : R → R for each layer, but
essentially each network layer defines a parameterized function I : R|C|+n2 ×
Rn1 → Rn2 , where the R|C| define the edge weights of each network edge
and the Rn2 factor encodes individual unit biases. We can specialize these
to Transformer models, in particular, noting that the Transformer models
compute specialized types of permutation-equivariant functions as defined by
the commutative diagram below.
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X Y Z

XP YP ZP

f

PP

f

g

g

P

In the above commutative diagram, vertices are objects, and arrows
are morphisms that define the action of a Transformer block. Here, X ∈
Rd×n is a n-length sequence of tokens of dimensionality d. P is a permuta-
tion matrix. The function f computed by a Transformer block is such that
f (XP) = f (X)P. This property is defined in the above diagram by setting
Y = f (X)P, which can be computed in two ways, either first by permuting
the input by the matrix P, and then applying f , or by

Let us understand the permutation equivariant property of the Transformer
model in a bit more detail. Transformer models are inherently compositional,
which makes them particularly convenient to model using category theory.

Definition 26. A Transformer block is a sequence-to-sequence function
mapping Rd×n → Rd×n. There are generally two layers: a self-attention
layer and a token-wise feedforward layer. We assume tokens are embedded
in a space of dimension d. Specifically, we model the inputs X ∈ Rd×n to
a Transformer block as n-length sequences of tokens in d dimensions, where
each block computes the following function defined as th,m,r : Rd×n : Rd×n:

Attn(X) = X +
h

∑
i=1

Wi
OWi

V X · σ[Wi
KX)TWi

QX]

FF(X) = Attn(X) + W2 · ReLU(W1 · Attn(X) + b11T
n ,

where Wi
O ∈ Rd×n, Wi

K, Wi
Q, Wi

Q ∈ Rd×n, W2 ∈ Rd×r, W1 ∈ Rr×d,
and b1 ∈ Rr. The output of a Transformer block is FF(X). Following
convention, the number of “heads" is h, and each “head" size m are the
principal parameters of the attention layer, and the size of the “hidden" feed-
forward layer is r.

Transformer models take as input objects X ∈ Rd×n representing n-length
sequences of tokens in d dimensions, and act as morphisms that represent
permutation equivariant functions f : Rd×n → Rd×n such that f (XP) =

f (X)P for any permutation matrix.
Concretely, we define a category of transformers CT where the objects

are vectors x ∈ Rd×n representing sequences of d-dimensional tokens of
length n, and the composable arrows are permutation-equivariant functions
T h,m,r comprised of a composition of transformer blocks th,m,r of h heads of
size m each, and a feedforward layer of r hidden nodes. Objects in a category
interact with each other through arrows or morphisms. In the category CT of
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Transformer models, the morphisms are the equivariant maps f by which one
Transformer model block can be composed with another.

Definition 27. The category CT of Transformer models:

• The objects Obj(C) are defined as vectors X ∈ Rd×n denoting n-length
sequences of tokens of dimension d.

• The arrows or morphisms of the category CT are defined as a family of
sequence-to-sequence functions and defined as:

Th,m,r := { f : Rd×n → Rd×n | f (XP) = f (X)P}

where P is some permutation matrix, h is the number of heads of size m each,
and each feedforward layer has r hidden nodes.

LLM Next-token Distributions as Categories

Now, we define categories for LLMs based on next-token distributions, and
introduce a hybrid category based on the k-NN LLM model proposed by 46. 46 Urvashi Khandelwal, Omer Levy,

Dan Jurafsky, Luke Zettlemoyer, and
Mike Lewis. Generalization through
memorization: Nearest neighbor lan-
guage models, 2020. URL https:
//arxiv.org/abs/1911.00172

Definition 28. The LLM syntax category L of a large language model
is defined as a category enriched over a monoidal preorder [0, 1], whose
objects are strings in a natural language, and whose morphisms are defined
as L(x, y) := P(y|x), which means that if y is an expression such as “I am
flying to San Diego", which extends the expression “I am flying", then P(y|x)
gives the conditional probability of such an extension (modulo a training set
over which the model was trained).

To define more “semantic" categories for LLMs, we use enriched co-
presheaves: these are Yoneda embeddings where a token x is mapped into
the set of all possible completions L(x,−) – the copresheaf – enriched over
the unit interval [0, 1]. The Yoneda embedding maps an object x to a covari-
ant set-valued L(x,−) in general, but in special cases, such as for LLMs,
this functor is itself an object of an enriched category, such as a symmetric
monoidal preorder over the unit interval [0, 1]. We can consider the Yoneda
embedding of the LLM category L to be a “semantic" category that defines
the meaning of sentences.

Definition 29. For the LLM category L in Definition 28, the semantic cat-
egory L̂ := [0, 1]L is the [0, 1]-enriched category of [0, 1]-enriched co-
presheaves on the [0, 1]-category L.

Finally, let us define a new type of category based on the k-NN large
language model.

Definition 30. The k-NN LLM syntax category LkNN is defined as a
category whose morphisms LkNN(y|x) are based on combining a synthetic

https://arxiv.org/abs/1911.00172
https://arxiv.org/abs/1911.00172
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k-NN computed probability from a datastore D and the LLM learned next-
token distribution, defined as:

p(y|x) = λpKNN(y|x) + (1− λ)pLM(y|x)
computed by querying a datastore ⟨K,V⟩ with an internal self-attention
function computed by the Transformer model f (x) to retrieve its k nearest
neighbors N using some distance function d(., .), and using a softmax of
their negative distances:

pKNN(y|x) ∝ ∑
⟨ki ,vi⟩∈N

1y=vi exp (−d(ki, f (x)))

The kNN LLM semantics category is then L̂kNN := [0, 1]LkNN is the
[0, 1]-enriched category of [0, 1]-enriched copresheaves on the [0, 1]-category
LkNN .

It turns out that k-NN LLMs model more accurately the next-token dis-
tribution over equivalent phrases, such as Charles Dickens wrote

and Charles Dickens is the author of. A common method
to fine-tune an LLM is to use reinforcement learning with human feedback
(RLHF), which is now widely used in many deployed systems. We can model
RLHF categorically by defining a category CRLHF, where each object m is
an LLM, modeled say as above by the next-token distribution, and the arrow
f : m → n exists if the LLM object m can be modified into an LLM object
n using RLHF. Category theory allows an arbitrary level of compositionality,
which makes this rich variety of categorical models possible.

Synthetic Token Probabilities using Nearest-Neighbor Language Model-
ing

k-NN nearest neighbor language models combine a synthetic probability
constructed from key-query value pairs ⟨kivi⟩ from each training example
⟨ci, wi⟩, where ci is a context-phrase, such as Charles Dickens wrote,
and f (.) is a function that maps a context c to a fixed-length vector repre-
sentation computed by a pre-trained Transformer model. For example, f (c)
could map c to a fixed-length vector output by some self-attention layer
(which we described in the previous section). The datastore ⟨K,V⟩ is the set
of all key-value pairs constructed from all the training examples in D:

⟨K,V⟩ = {( f (ci), wi)|(ci, wi) ∈ D}
At the time of testing, the language model learned by an LLM generates the
output distribution pLM(y|x), and queries the datastore ⟨K,V⟩ with f (x)
to retrieve its k nearest neighbors N using some distance function d(., .). A
synthetic probability is then computed over the neighbors using a softmax of
their negative distances:

pKNN(y|x) ∝ ∑
⟨ki ,vi⟩∈N

1y=vi exp (−d(ki, f (x)))
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The final distribution for the k-NN LLM is then given by

p(y|x) = λpKNN(y|x) + (1− λ)pLM(y|x)

Thus, we can define a new LLM category for k-NN LLMs in this way called
Lknn where the next-token probabilities are a linear interpolation of the
learned probabilities combined with a nearest-neighbor prediction.

Backpropagation as a Functor: Compositional Learning

Our principal goal in this section to review the categorical framework for
deep learning proposed in 47, which models backpropagation as a functor. In 47 Brendan Fong, David I. Spivak, and

Rémy Tuyéras. Backprop as functor: A
compositional perspective on supervised
learning. In 34th Annual ACM/IEEE
Symposium on Logic in Computer Science,
LICS 2019, Vancouver, BC, Canada, June
24-27, 2019, pages 1–13. IEEE, 2019.
DOI : 10.1109/LICS.2019.8785665. URL
https://doi.org/10.1109/LICS.
2019.8785665

the next section, we will argue that backpropagation should be viewed instead
as an endufunctor on the category Param, which defines the space over which
generative AI model are defined.

Category of Supervised Learning

Functors can be used to give an elegant characterization of the well-known
backpropagation algorithm that serves as the “workhorse" of deep learning
as a functor over symmetric monoidal categories. In such categories, objects
can be “multiplied": for example, sets form a symmetric monoidal category
as the Cartesian product of two sets defines a multiplication operator. A
detailed set of coherence axioms are defined for monoidal categories ensure
that multiplication is associative, as well as that there are identity operators
such that I ⊗ A ≃ A for all objects A, where I is the identity object.

U

r

P

A

P

A

B

Figure 8: A learner in the symmet-
ric monoidal category Learn is
defined as a morphism.

Definition 31. The symmetric monoidal category Learn is defined as a
collection of objects that define sets, and a collection of an equivalence class
of learners. Each learner is defined by the following 4-tuple.

• A parameter space P

https://doi.org/10.1109/LICS.2019.8785665
https://doi.org/10.1109/LICS.2019.8785665
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• An implementation function I : P× A→ B

• An update function U : P× A× B→ P

• A request function r : P× A× B→ A

Note that it is the request function that allows learners to be composed, as
each request function transmits information back upstream to earlier learners
what output they could have produced that would be more “desirable". This
algebraic characterization of the backpropagation algorithm clarifies its
essentially compositional nature

Two learners (P, I, U, R) and (P′, I′, U′, r′) are equivalent if there is
a bijection f : P → P′ such that the following identities hold for each
p ∈ P, a ∈ A and b ∈ B.

• I′( f (p), a) = I(p, a).

• U′( f (p), a, b) = f (U(p, a, b)).

• r′( f (p), a, b) = r(p, a, b)

Typically, in generative AI trained with neural networks, the parameter
space P = RN where the neural network has N parameters. The implemen-
tation function I represents the “feedforward" component, and the request
function represents the “backpropagation" component. The update func-
tion represents the change in parameters as a result of processing a training
example (a, f (a)) ∈ A× B.

Note each learner can be combined in sequentially and in parallel, both
formally using the operations of composition ◦ and tensor product ⊗ in the
symmetric monoidal category Learn, and equivalently in terms of string
diagrams. For clarity, let us write out the compositional rule for a pair of
learners

A
(P,I,U,r)−−−−−→ B

(Q,J,V,s)−−−−−→ C

The composite learner A → C is defined as (P × Q, I · J, U · V, r · s),
where the composite implementation function is

(I · J)(p, q, a) := J(q, I(p, a))

and the composite update function is

U ·V(p, q, a, c) := (U(p, a, s(q, I(p, a), c)) , V(q, I(p, a), c)

and the composite request function is

(r · s)(p, q, a, c) := r(p, a, s(q, I(p, a), c)).
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Backpropagation as a Functor

We can define the backpropagation procedure as a functor that maps from the
category Para to the category Learn. Note that the category Learn is am-
bivalent as to what particular learning method is used. To define a particular
learning method, such as backpropagation, we can define a category whose
objects define the parameters of the particular learning method, and then an-
other category for the learning method itself. We can define a functor from
the category NNet to the category Learn that factors through the category
Param. Later in the next section, we show how to generlize this construction
to simplicial sets.

NNet Learn

Param

F Lϵ,e

Definition 32. The category Param defines a strict symmetric monoidal
category whose objects are Euclidean spaces, and whose morphisms f :
Rn → Rm are equivalence classes of differential parameterized functions. In
particular, (P, I) defines a Euclidean space P and I : P× A → B defines a
differentiable parameterized function A → B. Two such pairs (P, I), (P′, I′)
are considered equivalent if there is a differentiable bijection f : P → P′

such that for all p ∈ P, and a ∈ A, we have that I′( f ′(p), a) = I(p, a). The
composition of (P, I) : Rn → Rm and (Q, J) : Rn → Rm is given as

(P×Q, I · J) where (I · J)(p, q, a) = J(q, I(p, a))

The monoidal product of objects Rn and Rm is the object Rn+m, whereas
the monoidal product of morphisms (P, I) : Rm → Rm and (Q, J) : Rl →
Rk is given as (P×Q, I ∥ J), where

(I ∥ J)(p, q, a, c) = (I(p, a), J(q, c))

Symmetric monoidal categories can also be braided. In this case, the
braiding Rm ∥ Rm → Rm ∥ Rn is given as (R0, σ) where σ(a, b) = (b, a).

The backpropagation algorithm can itself be defined as a functor over
symmetric monoidal categories

Lϵ,e : Param→ Learn

where ϵ > 0 is a real number defining the learning rate for backpropa-
gation, and e(x, y) : R×R → R is a differentiable error function such
that ∂e

∂x (x0,−) is invertible for each x0 ∈ R. This functor essentially defines
an update procedure for each parameter in a compositional learner. In other
words, the functor Lϵ,e defined by backpropagation sends each parameterized
function I : P× A→ B to the learner (P, I, UI , rI)
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UI(p, a, b) := p− ϵ∇pEI(p, a, b)

rI(p, a, b) := fa(∇aEI(p, a, b))

where EI(p, a, b) := ∑j e(Ij(p, a), bj) and fa is a component-wise appli-
cation of the inverse to ∂e

∂x (ai,−) for each i.
Note that we can easily define functors that define other ways of doing pa-

rameterized updates, such as a stochastic approximation method that updates
each parameter using only the (noisy) value of the function at the current
value of the parameter, and uses a gradual decay of the learning parameters
to “simulate" the process of taking gradients. These sort of stochastic ap-
proximation updates are now called “zeroth-order" optimization in the deep
learning literature.

Summary and Further Reading

In this chapter, we showed how deep learning, in particular backpropagation,
can be theoretically viewed as a functor. In the next chapter, we turn theory
into practice, and introduce an actual implementation that will build on a
novel loss function constructed from categorical diagrams. While theoreti-
cally deep learning can be viewed as a functor, in practice, using backprop-
agation on actual neural networks does not automatically yield a functor as
it is designed to only minimize associatively defined errors. Thus, we need
to show how to make backpropagation truly functorial by introducing a new
curvature loss function.

There are many extensions of the basic framework introduced here. For
example, one can try to extend it to other types of machine learning. 48 We 48 Design a functor for deep reinforcement

learning, and think of why it might lead
to a useful way to design novel deep RL
methods.

will see later that many other types of AGI applications, such as causal in-
ference, can be studied using the principle of functoriality, combined with
specific “nice" categories such as toposes.



Diagrammatic Backpropagation

In this chapter, we introduce a categorical framework for deep learning
termed Diagrammatic Backpropagation (DB), and apply it to implement
the Geometric Transformer (GT). DB minimizes the curvature loss of a
categorical diagram to implement the GT theoretical conception of “horn
filling" gaps in simplicial sets, a type of higher-order category. Crucially,
DB exploits the property that in practice, neural net backpropagation is not a
functor, and uses the deviation from functoriality as a loss function!

DB fundamentally builds on the concepts of (co)limits, so ensure that
you have understood these universal constructions before reading this chap-
ter, even if you are excited about learning a new type of backpropagation
method, and want to jump directly into reading about DB. The whole design
of DB was motivated by the goal of constructing a compositional learning
framework that allows solutions to be “glued" together in a way that respects
diagrammatic constraints. As we will show in this chapter and the next,
“vanilla" backpropagation does not result in these diagrammatic constraints
being respected, and we will formalize this failure into a loss function that
can be optimized.

Introduction

In the previous chapter, we formulated backpropagation as a functor from
a category of graphs to a category of compositional learners. We now show
how to generalize this approach using simplicial sets –a type of higher-order
category – as the domain of the backprop functor. 49 The principal novelty of 49 Sridhar Mahadevan. GAIA: Categorical

foundations of generative AI, 2024. URL
https://arxiv.org/abs/2402.
18732

DB is a novel loss function of minimizing the diagrammatic curvature. DB
works by a process of “horn filling" in simplicial sets, which we sketch out
algorithmically in this chapter. Simplicial sets are a combinatorial model of
“nice" topological spaces, which generalize graphs. 50 In the next chapter, we 50 J.P. May. Simplicial Objects in Algebraic

Topology. University of Chicago Press, 1992will introduce a novel class of Geometric Transformers (GTs), which will use
a type of “geometric" self-attention.

LLMs excel at natural language prediction but struggle with problems
which test compositional algebraic reasoning. We hypothesize that this lim-
itation arises from the lack of explicit functorial structure within their archi-
tectures. As part of a comprehensive set of experimental tests of DB and GT,

https://arxiv.org/abs/2402.18732
https://arxiv.org/abs/2402.18732
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we can show on simple benchmarks problems that are designed to test for
compositional structure preservation, that the functorial design of DB reflects
clearly in their superior performance.

Minimizing Diagrammatic Curvature Energy

D IAGRAMMATIC CURVATURE ENERGY is a novel loss function used in
DB: it enforces algebraic constraints that must hold in any given task, and
achieves superior performance over traditional backpropagation and Trans-
former approaches. In conventional supervised learning, training data are
given as pairs (x, y), and a model learns a function fθ(x) by minimizing
a loss L( fθ(x), y) via backpropagation. This process enforces local con-
sistency between predicted and target outputs, but treats each data point in
isolation.

DB generalizes this paradigm by assuming that many learning problems
possess an underlying diagrammatic structure—objects (data representations)
connected by morphisms (transformations or relations) whose compositions
obey algebraic constraints. A single diagram thus encodes not one example
(x, y) but a small structured set of them linked by known functional rela-
tionships. Any category C can be converted into a simplicial set, which is a
graded set Xn, where X0 defines the objects, X1 defines the 1-step arrows,
and Xn, n > 1 defines higher-level simplices. For instance, in the Triangles
benchmark, the objects A, B, C are latent feature vectors and the morphisms
f :A → B, g:B → C, h:A → C represent linear maps expected to satisfy
h = g ◦ f . Instead of minimizing only per-sample prediction error, DB aug-
ments the loss with a diagrammatic curvature term that penalizes violations
of such relations across the entire diagram. Backpropagation through this
term propagates gradients not only along individual edges but around closed
paths, enforcing global consistency. DB approximates universal construc-
tions, such as (co)limits, which were introduced in Chapter 4.

ALGORITHM 1: S IMPLICIAL MESSAGE PASSING IN DB. DB propa-
gates information through a simplicial complex representing a diagram of ob-
jects and morphisms. Each node corresponds to an object, and each directed
edge corresponds to a morphism equipped with a learned linear map Mij

and relation embedding rij. At every iteration, a node aggregates messages
arriving from its incident edges, each message combining the transformed
neighbor representation Mijxj, a relation embedding, and any residual fea-
tures that capture local curvature. The messages are degree-normalized and
used to update the node state through a gated recurrent cell, allowing curva-
ture information to diffuse across the entire diagram. Because each message
includes a normalized edge transform, the updates remain numerically stable
even when diagram curvature is large early in training. The process acts as
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Figure 9: Simplicial message
passing and limit/colimit approx-
imation in DB. (A) Triangle and
square simplices encode composi-
tional constraints. (B) DB aggre-
gates messages along simplices;
residuals carry local curvature.
(C) Minimizing triangle energy
∥h(xA) − (g ◦ f )(xA)∥2 flattens
the cone (approx. limit). (D) A
margin on square paths prevents
collapse (approx. colimit).
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a discrete diffusion of curvature error—propagating adjustments so that the
node embeddings evolve toward a configuration in which all compositions
of morphisms commute up to small residuals. In categorical terms, this itera-
tive refinement approximates the flattening of a simplicial cone, pushing the
learned functor Fθ closer to a limit object.

Algorithm 1: Simplicial Message Passing in DB
Input: Diagram D = (V, E) with objects V and morphisms E, node states

x(0)i ∈ Rd, edge maps Mij ∈ Rd×d, relation ids rij, residual features ρij,
steps T

Output: Refined node states x(T)i
1: for t = 0, 1, . . . , T − 1 do
2: for each node i ∈ V do
3: mi ← 0
4: for each incoming edge (i← j) ∈ E do
5: z← Mijx

(t)
j ; z← z/(∥z∥2 + ε) ▷ normalize edge

transform
6: u← ϕ(z, rij, ρij) ▷ e.g. u = tanh(We[z; ρ] + be) + Emb(r)
7: mi ← mi + u
8: end for
9: mi ← 1

max(1,|{j:(i←j)∈E}|) mi ▷ degree-normalize messages

10: x(t+1)
i ← GRUCell(x(t)i , mi) ▷ curvature diffuses via messages

11: end for
12: end for

ALGORITHM 2: LEARNED COMPOSITIONAL ENERGY. This routine
computes the diagrammatic curvature energy Eθ(D) from the learned path
embeddings. In the algorithm, ETθ represents edge_transformθ . For each
triangle constraint, the algorithm measures the discrepancy between the direct
morphism h and the composed morphism g◦ f . For each square, it compares
the two-path compositions (b◦a) and (d◦c). These residuals are squared and
accumulated to yield E△ and E□. The resulting energy quantifies how far the
learned representation is from exact commutativity: Eθ(D) = 0 if and only if
all diagrams commute perfectly. Operationally, minimizing this energy aligns
all composed morphisms in representation space, thereby reducing curvature.
As training progresses and Eθ → 0, the geometry of the learned functor
approximates a categorical limit, where multiple arrows converge to a single
universal cone. This provides the numeric foundation for DB’s interpretation
as a “limit-seeking” optimizer.

ALGORITHM 3: RAW ENERGY VECTOR . The raw energy computation
isolates a structural signature derived solely from the exogenous morphism



DIAGRAMMATIC BACKPROPAGATION 65

Algorithm 2: Learned Compositional Energy Eθ(D)
Input: Triangle constraints T , square constraints S , node states x, maps M,

relations r
Output: Eθ(D) = E△ + E□

1: E△ ← 0, E□ ← 0

2: for each triangle (A
f−→ B

g−→ C, A h−→ C) ∈ T do
3: zh ← ETθ(Mh, rh, xA)

4: zg f ← ETθ(Mg, rg, ETθ(M f , r f , xA))

5: E△ ← E△ + ∥zh − zg f ∥2
2

6: end for
7: for each square (U a−→V b−→W, U c−→X d−→W) ∈ S do
8: zba ← ETθ(Mb, rb, ETθ(Ma, ra, xU))

9: zdc ← ETθ(Md, rd, ETθ(Mc, rc, xU))

10: E□ ← E□ + ∥zba − zdc∥2
2

11: end for
12: return E△ + E□

matrices M f . It measures the same triangle and square residuals as Algo-
rithm 2 but without involving the learnable message-passing parameters. The
result is a two-dimensional feature vector [Eraw

△ , Eraw
□ ] that serves as the input

to a lightweight classifier head. Because these values are independent of the
learned path, they form a stable, task-agnostic description of the diagram’s
inherent commutativity or inconsistency. During training, the head learns
to map these energy magnitudes to class labels—e.g., “commuting” versus
“corrupted.” In this way, DB separates structure discovery (via Eraw) from
geometry enforcement (via Eθ), achieving both interpretability and numerical
stability.

Algorithm 3: Raw Energy Vector Eraw(D) = [Eraw
△ , Eraw

□ ]

Input: Constraints (T ,S), node states x, exogenous maps M
Output: [Eraw

△ , Eraw
□ ]

1: Eraw
△ ← 0, Eraw

□ ← 0
2: for each triangle ( f , g, h, A) in T do
3: Eraw

△ ← Eraw
△ + ∥MhxA − (Mg M f )xA∥2

2
4: end for
5: for each square (a, b, c, d, U) in S do
6: Eraw

□ ← Eraw
□ + ∥Mb Ma −Md Mc∥2

F
7: end for
8: return

[
Eraw
△ /|T |, Eraw

□ /|S|
]

ALGORITHM 4: DB TRAINING LOOP. This is the unifying optimization
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routine that integrates message passing, energy minimization, and contrastive
margin control. For each batch of diagrams, DB first computes the raw and
learned energies, then classifies each sample using the raw-energy head. The
total loss combines a cross-entropy classification term with the geometric
energy terms. Positive diagrams receive a direct curvature penalty propor-
tional to Eθ , encouraging exact commutativity; negatives are trained with
a contrastive hinge that enforces a minimum energy margin m, preventing
degenerate flattening. A warm-up schedule for λgeom allows the classifier to
stabilize before the geometric term dominates, mirroring a gradual transition
from syntactic to semantic consistency. The optimizer (AdamW with weight
decay and gradient clipping) updates both the message-passing parameters
and the head, while normalization of the edge transforms ensures bounded
activations. Collectively, this loop drives DB toward diagrammatic flat-
ness—numerically realizing categorical limits while preserving colimit-style
diversity through the contrastive margin.

Algorithm 4: DB Training Loop
Input: Dataset {Di, yi} with diagrams and labels, steps T, warmup Tw,

hyperparams (λgeom, λcontr, m)

Output: Parameters θ (message-passing + edge transforms) and head ψ

1: for t = 1, . . . , T do
2: for minibatch B do
3: L ← 0
4: for each (D, y) ∈ B do
5: Eraw ← Alg. 3; Eθ ← Alg. 2
6: ŷ← Headψ(Eraw) ▷ small MLP on [Eraw

△ , Eraw
□ ]

7: L ← L+ CE(ŷ, y)
8: λg ← λgeom ·min(1, t/Tw) ▷ geometric warm-up
9: if y = 1 then ▷ positives: approximate limits

10: L ← L+ λg Eθ

11: else ▷ negatives: enforce ε-colimit separation
12: L ← L+ λcontr ·max(0, m− Eθ)

2

13: end if
14: end for
15: Update (θ, ψ) by AdamW + clipping; normalize edge trans-

forms
16: end for
17: end for

ALGORITHM 5: CONSTRAINT EXTRACTION FROM D IAGRAM . This
preprocessing step converts each diagram or algebraic problem instance into
a structured set of triangle and square constraints. It scans all triples of con-
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nected morphisms to identify potential triangles A
f−→ B

g−→ C with a direct

shortcut A h−→ C, and all quadruples forming squares U a−→ V b−→ W ver-

sus U c−→ X d−→ W. These constraint lists define the simplicial skeleton over
which DB performs message passing and energy evaluation. By abstracting
away the raw graph details, this encoding process provides a functorial inter-
face: any problem that can be expressed as a commutative diagram—be it a
symbolic algebra theorem, a logic-grid puzzle, or a dynamic-programming
dependency—can be compiled into the same constraint form. This universal-
ity of representation is what allows DB to operate across domains, interpret-
ing every structured reasoning task as the pursuit of diagrammatic curvature
minimization.

Algorithm 5: Constraint Extraction from Diagram
Input: Diagram D = (V, E) with typed morphisms; anchor rule (e.g.

choose A in triangles)
Output: Triangle set T , square set S

1: T ← ∅, S ← ∅

2: for each triple (A
f−→ B

g−→ C) with A h−→ C do
3: T ← T ∪ {( f , g, h, A)}
4: end for
5: for each quadruple (U a−→ V b−→W, U c−→ X d−→W) do
6: S ← S ∪ {(a, b, c, d, U)}
7: end for
8: return (T ,S)

Summary and Further Reading

In this chapter, we have taken our first big step in applying category theory
to design a new framework for AGI: diagrammatic backpropagation (DB)
is a novel compositional learning method that is designed to “glue" together
individual solutions to small ML problems in a more reliable way than vanilla
backpropagation can achieve. The real test of DB will come in the next
chapter, when we introduce the Geometric Transformer (GT) model and show
how it outperforms standard Transformer models on a wide range of language
modeling tasks.

There are a number of related studies that generalize deep learning using
categorical methods, and you can find references to this literature on the web.
51 51 Mustafa Hajij, Lennart Bastian, Sarah Os-

entoski, Hardik Kabaria, John L. Davenport,
Sheik Dawood, Balaji Cherukuri, Joseph G.
Kocheemoolayil, Nastaran Shahmansouri,
Adrian Lew, Theodore Papamarkou, and
Tolga Birdal. Copresheaf topological
neural networks: A generalized deep learn-
ing framework, 2025. URL https:
//arxiv.org/abs/2505.21251

https://arxiv.org/abs/2505.21251
https://arxiv.org/abs/2505.21251




Geometric Transformers

In this chapter, we introduce a novel class of Geometric Transformers
(GTs), implemented using the Diagrammatic Backpropagation (DB) frame-
work introduced in the previous chapter. As we will show experimentally
in this chapter, GT models dramatically outperform regular Transformers
in data-limited regimes on complex datasets, such as the 100-million token
Wiki-103. A Transformer can be regarded as an implementation of the
Yoneda lemma on individual tokens, whereas the Geometric Transformer ap-
plies a ‘path-space Yoneda’ to short compositional neighborhoods. This extra
structure appears to delay or avoid the information bottleneck that flattens the
training curves of the baseline Transformer. We will introduce a mean-field
theoretical analysis in the next chapter to show why GT models outperform
traditional Transformers.

We thus take another significant step in the application of category theory
to AGI in this chapter by designing a novel Transformer model, whose very
architecture is motivated by the abstractions afforded by category theory. Its
design could not have been accomplished without the fundamental concepts
that we studied in previous chapters, such as (co)limits.

A Yoneda–style view of the Geometric Transformer

GEOMETRIC TRANSFORMER architectures are illustrated in the following
page, and will be introduced in this section using the categorical machin-
ery we have developed in the previous chapters. Let C be a small category
whose objects are token–position pairs (token, position) in a sequence, and
whose morphisms encode the basic “can attend to” relations (e.g., causal or
bidirectional attention, positional shifts, etc.).

For each object x ∈ C the representable presheaf

hx := C(−, x) : Cop → Set

assigns to each x ∈ C the set of morphisms z → x. The Yoneda lemma says
that

C(x, y) ∼= Nat
(
C(−, x), C(−, y)

)
= Nat(hx, hy), (1)
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Figure 10: Comparison of encoder
blocks. (a) Standard Transformer
encoder block. (b) GeomTrans-Lite
augments each layer with a local
geometric mixer. (c) The full Ge-
ometric Transformer replaces the
mixer with a simplicial lifting–
mixing–readout stack and adds an
auxiliary curvature / diagrammatic
loss head, introducing an explicit
geometric inductive bias.
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i.e., a morphism x → y is equivalent to a natural transformation between the
representables hx and hy.

A categorical interpretation of self–attention is:

• each token x carries a learned embedding that encodes (a parametrization
of) the functor hx,

• an attention head computes scores that approximate a natural transforma-
tion hx ⇒ hy between such functors, and

• the weighted sum of value vectors is a finite / soft evaluation of this natu-
ral transformation on the current batch of objects.

In short, vanilla self–attention is Yoneda with plain representables hx: the
model only ever sees “all arrows into x”, not the richer small diagrams those
arrows can form.

Diagram functors for GT Lite and GT Full

The Geometric Transformer introduces two extra ingredients:

1. a local geometric path, implemented as a 1D convolution/smoothing over
neighboring tokens (GT–Lite), and

2. a simplicial / diagrammatic message passing step, in which information
flows not only along single edges, but also around small relational motifs
(triangles, horns), together with a curvature term that penalizes inconsis-
tency across such motifs (GT–Full).

Categorically, this can be expressed as replacing the bare representable
hx by a richer diagram functor that depends on the small diagram of arrows,
paths, and 2–simplices around x.

PATH CATEGORY AND DIAGRAM FUNCTORS . Let Path(C) be the
category whose objects are finite paths in C,

z0
f1−→ z1

f2−→ · · · fn−→ x,

and whose morphisms are commuting maps between such paths. For each
x ∈ C, define a diagram functor

Dx : Path(C)op → Vect,

which assigns to each path p : z0 → · · · → x a vector space (or, in practice,
a single vector) and to each morphism of paths a linear map.

Intuitively, Dx does not just remember the arrows z → x (as hx does);
it remembers entire local diagrams ending at x: paths, triangles, and higher
simplices. In the implementation:
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• the 1D convolution in GT–Lite can be viewed as providing a smoothed
neighborhood representation: instead of a single representable hx, we
work with a small aggregate

h̃x ≈
∫ z∈N(x)

C(−, z)

over neighbors z ∈ N(x), i.e. an approximate coend over a local neigh-
borhood;

• the simplicial message passing in GT–Full takes as input embeddings
for edges and triangles and returns a refined embedding that depends
on the entire 1– and 2–simplicial structure around x. This is a learned
parametrization of the functor Dx on the nerve N(C) (the simplicial set of
composable chains in C).

CURVATURE LOSS AS FUNCTORIALITY CONSTRAINT. The diagram-
matic backpropagation (DB) loss penalizes violations of “flatness” across
2–simplices. Concretely, for any triangle

z
g−→ x, z h−→ y, x k−→ y,

DB enforces a local consistency constraint on the embeddings assigned to
z, x, y and to the composite paths z → x → y and z → y. In categorical
terms, this encourages Dx and Dy to behave as honest functors on the nerve,
so that parallel paths have nearly the same image in Vect; the residual is
interpreted as a discrete curvature.

Thus, GT does not only learn a representation of objects via hx, but a
representation of the entire diagram of paths and simplices ending at x via
Dx, with DB enforcing that Dx is almost flat as a functor on N(C).

A diagrammatic Yoneda principle

With this notation in hand, we can state an informal “GT Yoneda principle”.

In a vanilla Transformer, an attention head learns (a soft finite approximation
of) a natural transformation

Attnx,y ∈ Nat
(
hx, hy

)
= Nat

(
C(−, x), C(−, y)

)
,

in accordance with the classical Yoneda lemma (1).

In a Geometric Transformer, the same head instead learns a natural transforma-
tion between diagram functors

GeomAttnx,y ∈ Nat
(

Dx, Dy
)
,

where Dx, Dy : Path(C)op → Vect encode not only representable structure
but the entire small simplicial neighborhood of x and y. The DB curvature loss
encourages these Dx to be as functorial (flat) as possible on the nerve N(C).
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At a high level, the difference is:

Vanilla Transformer Geometric Transformer
tokens 7→ representables hx tokens 7→ diagram functors Dx

attention ≈ Nat(hx, hy) attention ≈ Nat(Dx, Dy)

no explicit higher–order structure explicit use of paths / triangles and curvature

This suggests that the empirical gains of GT over vanilla Transformers
on PTB / WikiText–103 (see Sec. ) can be viewed categorically as replacing
the coarse “Yoneda on points” view of tokens by a finer “Yoneda on local
diagrams” view: the model is not only sensitive to which tokens attend to
which, but also to how those relations compose into paths and 2–simplices,
with DB acting as a discrete curvature regularizer on the resulting functors
Dx.

Diagrammatic Backpropagation as Horn Filling in Simplicial Sets
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Figure 11: (A) DB and GT are
based on hierarchical simplicial
sets and objects. The base simpli-
cial set X0 is a set of entities that
can be mapped to computational
entities in generative AI, such as a
tokens in a large language model,
or images in a diffusion based sys-
tem. The set X1 defines a collection
of morphisms between pairs of ob-
jects in X0, where each morphism
could define a deep learning mod-
ule. (B) The first two sets X0 and
X1 essentially define what is pos-
sible with today’s compositionally
based generative AI system using
backpropagation, where learn-
ing is conceived of as an entirely
sequential process. (C) X2 and
higher-level simplicial sets consti-
tute the novel core of GAIA: here,
groups of sub-simplicial objects
act like business units with a com-
mon objective. Each n-simplex has
n + 1 sub-simplicial complexes,
and information is transmitted hier-
archically in GAIA from superior
simplicial sets to subordinate sim-
plicial sets using lifting diagrams.
(D) Solving “outer horn" extension
problems is more challenging for
methods like deep learning with
backpropagation, than solving
“inner horn" extensions.

In this section, we give a theoretical explanation of DB’s use of the frame-
work of “horn filling" in a simplicial set. Unlike earlier generative AI archi-
tectures, GAIA uses the paradigm of simplicial sets and objects as the basic
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building blocks for generative AI. GAIA puts together building blocks of
generative AI methods as n-simplices of a simplicial set. Each n-simplex is
then defined by n-length sequences of a generative AI system, like a Trans-
former building block that computes a permutation-equivariant map. But
the left adjoint of the nerve functor that maps back from the simplicial set
category is a “lossy" functor that does not generate a full and faithful embed-
ding, which shows why simplicial learning is more powerful in principle than
compositional learning.

Decomposition of a 3-simplex into its parts

3-simplex

2-simplices

1-simplices

0-simplices

Figure 12: The hierarchical frame-
work underlying DB and GT,
where each n-simplicial complex
acts as a business unit in a com-
pany: each n-simplex updates its
parameters based on data it re-
ceives from its superiors, and it
transmits guidelines for its n + 1
sub-simplicial complexes to help
them with their updates. The
mathematics for this hierarchical
framework is based on higher-order
category theory of simplicial sets
and objects.

DB and GT use the simplicial category ∆ as a “combinatorial factory" for
piecing together building blocks of generative AI systems into larger units,
and for decomposing complex systems into their component subsystems. The
category ∆ is defined over ordinal numbers [n], n ≥ 0, but really “comes
to life" when it is plugged into some concrete category, such as the symmet-
ric monoidal category of compositional learners Learn or vector spaces
Para. For example, if the parameters of a learning method are defined over
a category of Sets, then a contravariant functor from ∆ into sets is called a
simplicial set. We can also define functors from ∆ into some category of
generative AI models.

Simplicial Sets and Objects

A simplicial set can be viewed as a collection of sets, or a graded set,
Sn, n ≥ 0, where S0 defines the primitive objects (which can be elements
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Simplicial framework for generative AI

Each directed
edge defines a morphism that

represents a generative AI method

Each collection of
simplices can be ``glued” on

to compatible simplices through
``ports” that define the components

of the simplex. 

Simplicial learning is based on
extension problems of

inner and outer ``horns” of 
simplicial objects

Figure 13: DB and GT is based on
a simplicial framework, where each
generative AI method is modeled
as a morphism that maps between
two objects. In the simplest case of
compositional learning, a 1-simplex
is defined as an “edge", where its
beginning and ending “vertices"
represent data that flows into and
out of a generative AI model, such
as a Transformer, or a structured
state space sequence model, or a
diffusion process. Backpropagation
can be used to solve compositional
learning problems over such se-
quences of “edge" building blocks.
GAIA generalizes this paradigm to
define “higher-order" simplicial ob-
jects where the interfaces between
simplices can be more elaborate.
Each n-simplex is comprised of a
family of n − 1 subsimplicial ob-
jects, each of which can be “glued"
together to form the n-simplex.

of the category Param defined in the previous chapter), S1 represents a col-
lection of “edge" objects (which can be viewed as Learners as defined in
the previous section), S2 represents simplices of three objects interacting,
and in general, Sn defines a collection of objects that represents interactions
of order n. These higher-level simplicial sets act like “business units" in a
company: they have a hierarchical structure, receive inputs and outputs from
higher-level superiors and lower-level subordinates, and adjust their internal
parameters. These n-simplicial sets are related to each other by degeneracy
operators that map Sn into Sn+1 or face operators that map Sn into Sn−1. The
simplicial set X3 sends “back" information to X2 through four face operators.
These exactly correspond to the four subsimplices of each object in X3 be-
cause each 3-simplex has four faces. The crux of the GAIA framework is to
treat each such simplex as a building block of a generative AI system.

Simplicial sets are higher-dimensional generalizations of directed graphs,
partially ordered sets, as well as regular categories themselves. Importantly,
simplicial sets and simplicial objects form a foundation for higher-order cat-
egory theory. Simplicial objects have long been a foundation for algebraic
topology, and more recently in higher-order category theory. The category ∆
has non-empty ordinals [n] = {0, 1, . . . , n] as objects, and order-preserving
maps [m] → [n] as arrows. An important property in ∆ is that any many-
to-many mapping is decomposable as a composition of an injective and a
surjective mapping, each of which is decomposable into a sequence of ele-
mentary injections δi : [n] → [n + 1], called coface mappings, which omits
i ∈ [n], and a sequence of elementary surjections σi : [n] → [n− 1], called
co-degeneracy mappings, which repeats i ∈ [n]. The fundamental simplex
∆([n]) is the presheaf of all morphisms into [n], that is, the representable
functor ∆(−, [n]). The Yoneda Lemma assures us that an n-simplex x ∈ Xn

can be identified with the corresponding map ∆[n] → X. Every morphism
f : [n]→ [m] in ∆ is functorially mapped to the map ∆[m]→ ∆[n] in S .

Any morphism in the category ∆ can be defined as a sequence of co-
degeneracy and co-face operators, where the co-face operator δi : [n− 1] →



76 CATEGORIES FOR AGI

[n], 0 ≤ i ≤ n is defined as:

δi(j) =

{
j, for 0 ≤ j ≤ i− 1
j + 1 for i ≤ j ≤ n− 1

Analogously, the co-degeneracy operator σj : [n + 1]→ [n] is defined as

σj(k) =

{
j, for 0 ≤ k ≤ j
k− 1 for j < k ≤ n + 1

Note that under the contravariant mappings, co-face mappings turn into
face mappings, and co-degeneracy mappings turn into degeneracy mappings.
That is, for any simplicial object (or set) Xn, we have X(δi) := di : Xn →
Xn−1, and likewise, X(σj) := sj : Xn−1 → Xn.

The compositions of these arrows define certain well-known properties:

δj ◦ δi = δi ◦ δj−1, i < j

σj ◦ σi = σi ◦ σj+1, i ≤ j

σj ◦ δi(j) =


σi ◦ σj+1, for i < j
1[n] for i = j, j + 1
σi−1 ◦ σj, for i > j + 1

Example 8. The “vertices” of a simplicial object Cn are the objects in C, and
the “edges” of C are its arrows f : X → Y, where X and Y are objects in C.
Given any such arrow, the degeneracy operators d0 f = Y and d1 f = X
recover the source and target of each arrow. Also, given an object X of
category C, we can regard the face operator s0X as its identity morphism
1X : X → X.

Example 9. Given a category C, we can identify an n-simplex σ of a simpli-
cial set Cn with the sequence:

σ = Co
f1−→ C1

f2−→ . . .
fn−→ Cn

the face operator d0 applied to σ yields the sequence

d0σ = C1
f2−→ C2

f3−→ . . .
fn−→ Cn

where the object C0 is “deleted” along with the morphism f0 leaving it.

Example 10. Given a category C, and an n-simplex σ of the simplicial set
Cn, the face operator dn applied to σ yields the sequence

dnσ = C0
f1−→ C1

f2−→ . . .
fn−1−−→ Cn−1

where the object Cn is “deleted” along with the morphism fn entering it.
Note this face operator can be viewed as analogous to interventions on leaf
nodes in a causal DAG model.
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Example 11. Given a category C, and an n-simplex σ of the simplicial set Cn

the face operator di, 0 < i < n applied to σ yields the sequence

diσ = C0
f1−→ C1

f2−→ . . . Ci−1
fi+1◦ fi−−−−→ Ci+1 . . .

fn−→ Cn

where the object Ci is “deleted” and the morphisms fi is composed with mor-
phism fi+1. Note that this process can be abstractly viewed as intervening on
object Ci by choosing a specific value for it (which essentially “freezes” the
morphism fi entering object Ci to a constant value).

Example 12. Given a category C, and an n-simplex σ of the simplicial set
Cn, the degeneracy operator si, 0 ≤ i ≤ n applied to σ yields the sequence

siσ = C0
f1−→ C1

f2−→ . . . Ci
1Ci−→ Ci

fi+1−−→ Ci+1 . . .
fn−→ Cn

where the object Ci is “repeated” by inserting its identity morphism 1Ci .

Definition 33. Given a category C, and an n-simplex σ of the simplicial
set Cn, σ is a degenerate simplex if some fi in σ is an identity morphism, in
which case Ci and Ci+1 are equal.

Hierarchical Learning in DB and GT by solving Lifting Problems

DB and GT are based on a hierarchical model of simplicial learning, rather
than the standard compositional learning framework. To give a deeper the-
oretical semantics of simplicial learning, we need to define some key ideas
from higher-order category theory below, but before we do that, we want to
build up some intuition as to how this process will work at a more informal
level.

GAIA uses hierarchical simplicial learning 

3-simplex

2-simplices

1-simplices

0-simplices

3-simplex

2-simplex 2-simplex 2-simplex 2-simplex

4-simplex4-simplex

1-simplex 1-simplex 1-simplex

0-simplex 0-simplex

Figure 14: The hierarchical struc-
ture underlying DB and GT can
be visualized as a “small business
unit", defined as a 3-simplex that
maintains its set of internal param-
eters, and updates them based on
information it receives from its
superiors and subordinates.

To understand how simplicial learning works, let us consider as an exam-
ple the 3-simplex. The simplicial structure defines a hierarchy of learners,
so that each learner is not just a morphism anymore, but a n-simplex that
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maintains its internal set of parameters that it then updates based on the infor-
mation from its superiors and subordinates. To define this more carefully, we
can construct a functor that maps the algebraic structure of a simplicial set ∆
into a suitable parameter space (e.g., a symmetric monoidal category like vec-
tor spaces), whereby each n-simplex now becomes defined as a contravariant
functor ∆op → Vect.

In DB, the updates must be consistent across the hierarchical structure of
the simplicial complex. So, each n-simplex is updated based on data from its
subordinate n− 1 sub-simplicial complexes and its superior n + 1-simplicial
complexes, but these need to be made consistent with each other. To solve
this problem requires some additional machinery from higher-order category
theory, which we now introduce below.

Lifting problems provide elegant ways to define solutions to computa-
tional problems in category theory regarding the existence of mappings. For
example, the notion of injective and surjective functions, the notion of sep-
aration in topology, and many other basic constructs can be formulated as
solutions to lifting problems. Lifting problems define ways of decomposing
structures into simpler pieces, and putting them back together again.

Definition 34. Let C be a category. A lifting problem in C is a commutative
diagram σ in C.

A X

B Y

f

µ

p

ν

Definition 35. Let C be a category. A solution to a lifting problem in C is a
morphism h : B→ X in C satisfying p ◦ h = ν and h ◦ f = µ as indicated in
the diagram below.

A X

B Y

f

µ

ph

ν

Definition 36. Let C be a category. If we are given two morphisms f : A →
B and p : X → Y in C, we say that f has the left lifting property with
respect to p, or that p has the right lifting property with respect to f if for
every pair of morphisms µ : A → X and ν : B → Y satisfying the equations
p ◦ µ = ν ◦ f , the associated lifting problem indicated in the diagram below.

A X

B Y

f

µ

ph

ν

admits a solution given by the map h : B → X satisfying p ◦ h = ν and
h ◦ f = µ.
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At its core, a lifting problem defines a constrained search over a space of
parameters, and it is that property that makes it so useful in generative AI
because in effect, methods like backpropagation can be viewed as solving
lifting problems. As a simple example to build intuition, here is a way any
surjective (onto) function as a solution to a lifting problem.

Example 13. Given the paradigmatic non-surjective morphism f : ∅ →
{•}, any morphism p that has the right lifting property with respect to f is a
surjective mapping. .

∅ X

{•} Y

f

µ

ph

ν

Similarly, here is another lifting problem whose solution defines an 1− 1
injective function.

Example 14. Given the paradigmatic non-injective morphism f : {•, •} →
{•}, any morphism p that has the right lifting property with respect to f is an
injective mapping. .

{•, •} X

{•} Y

f

µ

ph

ν

Simplicial Subsets and Horns in DB and GT

To explain how lifting problems form the computational substrate for DB
and GT, we need to define lifting problems over n-simplicial complexes. The
basic idea is that we construct a solution to a lifting problem by asking if a
particular sub-simplicial complex can be “extended" into the whole complex.
This extension process is essentially what methods like backpropagation are
doing, and universal approximation results for Transformers are in effect
saying that a solution to a lifting problem exists for a particular class of
simplicial complexes defined as n-length sequences of Transformer models.

We first describe more complex ways of extracting parts of categorical
structures using simplicial subsets and horns. These structures will play a key
role in defining suitable lifting problems.

Definition 37. The standard simplex ∆n is the simplicial set defined by the
construction

([m] ∈ ∆) 7→ Hom∆([m], [n])

By convention, ∆−1 := ∅. The standard 0-simplex ∆0 maps each [n] ∈
∆op to the single element set {•}.
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Definition 38. Let S• denote a simplicial set. If for every integer n ≥ 0, we
are given a subset Tn ⊆ Sn, such that the face and degeneracy maps

di : Sn → Sn−1 si : Sn → Sn+1

applied to Tn result in

di : Tn → Tn−1 si : Tn → Tn+1

then the collection {Tn}n≥0 defines a simplicial subset T• ⊆ S•

Definition 39. The boundary is a simplicial set (∂∆n) : ∆op → Set defined
as

(∂∆n)([m]) = {α ∈ Hom∆([m], [n]) : α is not surjective}

Note that the boundary ∂∆n is a simplicial subset of the standard n-
simplex ∆n.

Definition 40. The Horn Λn
i : ∆op → Set is defined as

(Λn
i )([m]) = {α ∈ Hom∆([m], [n]) : [n] ̸⊆ α([m]) ∪ {i}}

Intuitively, the Horn Λn
i can be viewed as the simplicial subset that re-

sults from removing the interior of the n-simplex ∆n together with the face
opposite its ith vertex.

Consider the problem of composing 1-dimensional simplices to form a 2-
dimensional simplicial object. Each simplicial subset of an n-simplex induces
a a horn Λn

k , where 0 ≤ k ≤ n. Intuitively, a horn is a subset of a simplicial
object that results from removing the interior of the n-simplex and the face
opposite the ith vertex. Consider the three horns defined below. The dashed
arrow 99K indicates edges of the 2-simplex ∆2 not contained in the horns.

{0}

{1} {2}

{0}

{1} {2}
{0}

{1} {2}

The inner horn Λ2
1 is the middle diagram above, and admits an easy solu-

tion to the “horn filling” problem of composing the simplicial subsets. The
two outer horns on either end pose a more difficult challenge. For example,
filling the outer horn Λ2

0 when the morphism between {0} and {1} is f and
that between {0} and {2} is the identity 1 is tantamount to finding the left
inverse of f up to homotopy. Dually, in this case, filling the outer horn Λ2

2 is
tantamount to finding the right inverse of f up to homotopy.
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Language Modeling With Geometric Transformers

In this chapter, we will give an empirical evaluation of DB and GT. To test
whether the Geometric Transformer (GT) block can serve as a viable re-
placement for a standard Transformer block in a realistic language modeling
setting, we conducted small-scale experiments on the WikiText-103 bench-
mark. The figure illustrates two variants of GT that we will test against a
baseline Transformer in this section. For language modeling tasks, we instan-
tiate this template on the 1D simplicial complex underlying a token sequence.
Here:

• token positions i = 1, . . . , L are the 0-simplices;

• edges (i, i + 1) form the 1-skeleton (the local adjacency relation);

• the global operator is standard multi-head self-attention over {1, . . . , L};

• the local geometric operator is implemented as a depthwise 1D convolu-
tion over the sequence, which performs learnable message-passing over
the neighbors {i− 1, i, i + 1}; and

• the pointwise update is provided by a feed-forward network.

Experimental Results on WikiText-103

We now investigate the behavior of the Geometric Transformer (GT) block on
a standard language modeling benchmark. Our goal is to empirically quantify
how DB with GT compares to a baseline Transformer implementation in
terms of optimization and parameter efficiency. We use WikiText-103 in
the standard next-token prediction setting. The data are tokenized at the
word level; the resulting vocabulary size is |V| ≈ 2.7× 105. We construct
training samples by taking sliding windows of length L = 128 with stride 1.
Models are trained with cross-entropy loss using AdamW, batch size 32, and
a fixed learning rate schedule. All experiments use the same training loop and
hyperparameters unless otherwise specified.

W IKITEXT-103 LANGUAGE MODELING . We evaluate the three archi-
tectures on the WikiText-103 benchmark using a comparable model size of
∼ 96M parameters. We keep the training setup intentionally simple: 4K con-
text length, shared tokenization, and identical optimization hyperparameters
across all models. We compare:

• Transformer: a standard decoder-only Transformer with L layers and
model dimension d.

• GeomTrans-Lite: the same Transformer backbone augmented with a
local geometric convolutional block (our “GT-Lite” layer) in each block.
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• GeomTrans-Full: the full Geometric Transformer block, which replaces
the standard MLP with our categorical / GT-based update.

We sweep over three depths, L = 2, 4, 8 with a fixed hidden size d = 96.
All models are trained for 5,000 steps with the same optimizer, learning
rate schedule, and batch size. The baseline Transformer converges slowly
and plateaus with validation perplexity in the hundreds after 5,000 steps.
In contrast, GeomTrans-Lite rapidly drives perplexity into the single-digit
range, and GeomTrans-Full further reduces perplexity to values near 1.0.
For L = 4, 8, the effect is even more pronounced. The baseline Trans-
former remains above 350 perplexity, while GeomTrans-Lite again reaches
very low perplexity, and GeomTrans-Full consistently dominates both base-
lines throughout training, achieving the lowest validation perplexity at every
checkpoint. In all cases, GeomTrans-Lite trains substantially faster than
the baseline Transformer, and GeomTrans-Full yields the fastest conver-
gence and lowest final loss. Importantly, the gap between GeomTrans-Lite
and GeomTrans-Full grows with depth: at L = 8, the full GT block pro-
vides a clear additional gain over the lighter variant. For each configuration
(dataset, depth, and width), we ran the Transformer, GeomTrans-Lite, and
GeomTrans-Full models multiple times with different random seeds. We ob-
served only minor variation in validation cross-entropy and perplexity across
seeds, and in all cases the relative ranking between the three models (Trans-
former > GeomTrans-Lite > GeomTrans-Full in loss) remained unchanged.
For visual clarity, the plots in the paper show a single representative run per
configuration and omit error bars, since the spread was too small to materially
affect our conclusions.

Constructing Large Causal Models

Domain # Triangles

Economics and Finance 1140
Education and Human Capital 950
Legal and Forensic 553
Marketing and Product 1059
Medicine and Healthcare 932
Operations and Engineering 1281
Public Health and Environment 1336
Social Sciences and Policy 1015
Technology and AI 782

Table 2: Simplicial complex con-
structed from a 100K causal claims
dataset.

We briefly describe an application of using DB and GT to build massively
large causal models (LCMs) from carefully curated queries to a large lan-
guage model (LLM). We define a structured ontology containing ten coarse
domains (Economics and Finance, Medicine and Healthcare, Marketing and
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Figure 15: WikiText-103 language
modeling: Validation perplexity
(right column) and train/validation
cross-entropy loss (left column)
for Transformer, GeomTrans-Lite,
and GeomTrans-Full at depths
L = 2 (top), L = 4 (middle), and
L = 8 (bottom). In all settings,
GeomTrans-Lite dramatically out-
performs the baseline Transformer,
and GeomTrans-Full consistently
attains the lowest loss and perplex-
ity. All models are of size ∼ 96M
parameters and trained with iden-
tical parameters, and their running
times are roughly comparable.



84 CATEGORIES FOR AGI

Figure 16: Top: 3D UMAP visu-
alization of the ∼ 100K causal
claims manifold after processing by
DB and GT. Bottom: UMAP man-
ifold visualization on the normal-
ized vectors in R384 produced by
a baseline all-MiniLM-L6-v2
SentenceTransformer with no
post-processing by DB or GT.

Product, etc.) and one hundred fine-grained subtopics (ten per domain). We
use N ∈ {50, 100, 500, 1000} queries for each domain, depending on the
scale of the experiment. For the full-scale relational corpus we use N = 1000
for each of 100 subtopics, yielding 100,000 sentences. After deduplication,
our final dataset contained 90,016 statements. Each extracted triple is asso-
ciated with the coarse domain from the corpus metadata. Across the 90K
dataset we obtain 54,514 unique entities and 57,390 relational edges. We
embed each unique entity using the all-MiniLM-L6-v2 SentenceTrans-
former, yielding normalized vectors in R384. No fine-tuning is performed.
Cosine similarity is used throughout. For each domain, we form 2-simplices
(triangles) by connecting all triples (h, r, ti) and (h, r, tj) that share the same
head entity h. This produces domain-local simplicial patches reflecting the
latent relational neighborhood.

Geometric Refinement via DB and GT

We apply three iterations of diagrammatic message passing using the Geo-
metric Transformer (GT). GT in this specific experiment was used without
supervised training: all weights are random but fixed, and no gradients are
computed. This yields a smoothed embedding matrix Vrefined. The results of
GT and DB processing are shown in the above figure. As a sharp contrast to
this rich manifold structure produced by GT and DB processing, the figure
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shows the UMAP embedding on the same causal relational triples produced
by a baseline all-MiniLM-L6-v2 SentenceTransformer revealing no
structure at all, but an isotropic Gaussian-like blob of points.

A Global–Local Operator Perspective

A standard Transformer layer implements a global operator on this complex:
self-attention defines a data-dependent kernel Kattn(i, j; x) over all positions
i, j ∈ {1, . . . , L}, and applies a global mixing step of the form

hattn
i ≈

L

∑
j=1

Kattn(i, j; x) hj,

followed by a pointwise nonlinearity in the FFN. In contrast, our depth-
wise Conv1d layer realizes a purely local geometric operator Kgeo on the 1-
skeleton of X, mixing only a fixed neighborhood N (i) (e.g. {i− 1, i, i + 1}).
At a high level,

hgeo
i ≈ ∑

j∈N (i)
Kgeo(i, j) hj,

where Kgeo can be viewed as a learnable discretization of a Laplacian or
diffusion operator on the sequence graph. GT layers combine both of these
operators in a single block.

Summary and Further Reading

In this chapter, we introduced a novel Geometric Transformer (GT) model
that works by “gluing" together local solutions in a way that is arguably
superior to a traditional Transformer. A deeper study of how GT works is
given in the next chapter, where we introduce the concept of dynamic com-
positionality. There are many deeper connections to algebraic topology and
cohomology theory that we do not have space to discuss, and are outside the
scope of this introductory book.

It is highly recommended that the reader take time to understand the
basic ideas in topological data analysis, including notions like persistence
homology. 52 52 Herbert Edelsbrunner, David Letscher,

and Afra Zomorodian. Topological per-
sistence and simplification. Discrete &
Computational Geometry, 28(4):511–533,
2002





Dynamic Compositionality

The Transformer architecture is explicitly compositional at the level of the
forward graph. However, we show that its learning dynamics under gradient
descent are generally not compositional, even for simple residual blocks.
This paper explains the mechanism behind this discrepancy and connects it
directly to the instrumentation used in Diagrammatic Backpropagation (DB)
and Geometric Transformer (GT) described in the previous two chapters.
We analyze the commutator-energy probe—computed as the mean-squared
difference between T1(T2(x)) and T2(T1(x)) for sub-operators T1, T2 —and
show how it quantifies order-sensitivity of learned representation updates on
the states visited during training. We then explain how geometric inductive
biases in Geometric Transformers (local smoothing, geometric transport, and
mixture routing) systematically reduce this order-sensitivity by improving
compatibility between sub-operator deformations, thereby stabilizing learn-
ing. Our goal is to provide a code-faithful, mechanistic account of DB+GT
that complements prior empirical results and serves as documentation for
open-source releases.

Introduction

Modern neural architectures are built compositionally: complex models
are assembled by stacking reusable blocks such as attention, feed-forward
maps, normalization layers, and residual connections. This compositional
structure is explicit in the forward computation graph of the Transformer.
Yet, empirical evidence suggests that the learning dynamics induced by
gradient descent do not necessarily respect this compositional structure. In
practice, the behavior of a trained model can become highly sensitive to
interactions between sub-operators within a block, leading to instability and
poor generalization.

Diagrammatic Backpropagation (DB) along with a family of Geometric
Transformers (GTs) introduced in the previous two chapters systematically
reduce a proxy diagnostic we call commutator energy, while a baseline Trans-
former often does not. Beyond task-level metrics, DB and GT also introduced
a set of instrumental probes that combine algebraic diagnostics inspired by
Čech cohomology. 53. We also use complementary tools from topological 53 Raoul Bott and Loring W. Tu. Differential

Forms in Algebraic Topology. Springer,
1982; and Robert Ghrist. Elementary
Applied Topology. Createspace, 2014
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data analysis 54 enabling direct measurement of internal compositional com- 54 Herbert Edelsbrunner, David Letscher,
and Afra Zomorodian. Topological per-
sistence and simplification. Discrete &
Computational Geometry, 28(4):511–533,
2002

patibility and global attention geometry.
In this paper, we provide a detailed explanation of DB and GT by focusing

on their mechanics “under the hood.” Our focus is not on new benchmarks,
but on explaining why the following code-level measurement is meaningful
and why GT architectures drive it down:

Comm(T1, T2; x) = ∥T1(T2(x))− T2(T1(x))∥2
2,

where T1, T2 are concrete sub-operators (e.g., attention, feed-forward,
convolutional smoothing, geometric transport, or MoE mixing) evaluated on
representations x encountered during training. We argue that commutator
energy quantifies order-sensitivity of learned representation updates and
serves as a practical proxy for gradient interference and lack of dynamic
compositionality.

Definition 41. (Dynamic compositionality (informal): A model is statically
compositional if its forward computation is a composition of modules. It is
dynamically compositional if the learning-induced deformations of these
modules are mutually compatible on the representations visited during train-
ing, so that training is not overly sensitive to the effective order in which
sub-operator updates interact.

COMMUTATOR ENERGY measures dynamic compositionality failure by
quantifying the discrepancy between two compositions applied to the same
representation x. We do not require modules to commute as functions; rather,
we use commutator energy as an empirical diagnostic of order sensitivity and
operator incompatibility under learning.

Čech-style obstruction proxy

Performance curves alone do not explain why the baseline Transformer
plateaus while GT continues improving. We therefore introduce a computable
proxy for the local-to-global inconsistency obstruction. We treat each encoder
block as a collection of local “patch maps” (e.g., attention A, feed-forward
F, and in GT variants an additional geometric operator C or G) acting on the
shared residual stream x. For a patch map Ti(x) = x + ∆i(x), global coher-
ence implies approximate commutativity of local updates around loops. We
quantify loop inconsistency using the normalized commutator energy

Comm(i, j; x) =
∥Ti(Tj(x))− Tj(Ti(x))∥2

∥x∥2 + ε
.

The Čech obstruction proxy for a layer is the average commutator energy
over relevant patch pairs; the model-level proxy is the average over encoder
layers. Concretely, we use:
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• Transformer: average of Comm(A, F; x),

• GT-Lite: average of Comm(A, C; x), Comm(C, F; x), Comm(A, F; x),

• GT-Full: average of Comm(A, F; x), Comm(F, G; x), Comm(A, G; x),

computed in evaluation mode to remove stochastic effects from dropout. This
obstruction proxy is a metricized Čech-1 inconsistency: it measures whether
locally defined updates can be glued into a globally coherent transformation
on the overlap interface.

A Minimal Demonstration: Residual MLPs on Two Moons

To illustrate that commutator energy is not specific to Transformers or
attention-based models, we construct a minimal demonstration using a sim-
ple residual multilayer perceptron (MLP) trained on the classic two-moons
classification task. This example serves both as a pedagogical illustration
and as a smoke test for Diagrammatic Backpropagation (DB) and Geometric
Transformer (GT) principles in their simplest form.

SETUP. We consider three architectures with identical capacity and training
hyperparameters: (i) a baseline residual MLP composed of stacked residual
blocks, (ii) the same MLP augmented with a GT-Lite alignment module that
performs local feature-space smoothing, and (iii) the same MLP augmented
with a GT-Full alignment module that performs explicit transport via message
passing on a fixed feature graph. All models are trained to perfect accuracy
on the two-moons task within a few epochs.

COMMUTATOR -ENERGY PROBE . During training, we measure the nor-
malized commutator energy between adjacent modules in the residual stack:

Comm(Ti, Ti+1; x) =
∥Ti(Ti+1(x))− Ti+1(Ti(x))∥2

2
∥x∥2

2 + ε
,

averaged over module pairs and minibatches. This quantity captures order
sensitivity between learned sub-operators and is computed purely in the
forward pass, independent of task loss.

RESULTS . The figure below shows the evolution of commutator energy
over training. Although all three models achieve identical task performance,
their internal dynamics differ markedly. The baseline residual MLP exhibits
steadily increasing commutator energy, indicating growing order sensitivity
despite convergence of the task loss. In contrast, the GT-Lite variant main-
tains commutator energy an order of magnitude lower, with only mild drift.
The GT-Full variant achieves the lowest and most stable commutator energy
throughout training.
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Figure 17: Commutator energy dur-
ing training on the two-moons task.
All models reach perfect accuracy,
but the baseline residual MLP
exhibits steadily increasing order
sensitivity. GT-Lite reduces com-
mutator energy by local smoothing,
while GT-Full achieves the lowest
and most stable values via explicit
transport.

INTERPRETATION . This simple experiment demonstrates that dynamic
compositionality failure is a general phenomenon of gradient-based learning
in compositional architectures, not an artifact of attention or sequence mod-
eling. Local smoothing (GT-Lite) partially mitigates order sensitivity, while
explicit transport and alignment (GT-Full) suppress it almost entirely. Impor-
tantly, these differences are invisible to standard task metrics, underscoring
the value of commutator energy as an instrumental probe of learning-time
behavior.

Results: obstruction trajectories explain stability

The next figure plots the obstruction proxy during training for the three
models on WikiText-103 dataset. The results reveal three qualitatively differ-
ent regimes. The baseline Transformer accumulates increasing obstruction
over training, indicating growing loop inconsistency among local updates;
this coincides with degraded validation performance. GeomTrans-Lite ini-
tially reduces obstruction, consistent with improved early generalization, but
later exhibits obstruction drift in which commutator energy rises as training
proceeds, correlating with reduced validation gains. In contrast, GeomTrans-
Full maintains low and remarkably stable obstruction throughout training,
matching its sustained improvements in validation perplexity. These findings
support the interpretation of GT as a descent architecture: GT-Full enforces
higher-order overlap consistency strongly enough to prevent inconsistency
accumulation, whereas GT-Lite enforces only local overlap constraints and
can drift at longer compositional scales. Our goal in this paper is to explain
the underlying machinery that makes GT models suprisingly good at enforc-
ing dynamic compositionality.

Dynamic Compositionality and Order Sensitivity in Residual Learn-
ing

Deep networks are statically compositional: their forward computation is a
composition of modules arranged in a directed acyclic graph. For example,
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Figure 18: Čech obstruction
proxy during training on
WikiText-103. Normalized com-
mutator energy (lower is better) for
baseline Transformer, GT-Lite, and
GT-Full. The baseline Transformer
exhibits steadily increasing obstruc-
tion (inconsistency accumulation).
GT-Lite reduces obstruction early
but later drifts upward. GT-Full
maintains low, stable obstruction
throughout training, aligning with
its superior validation performance.a Transformer block composes attention, residual additions, normalization,

and a feed-forward subnetwork. Static compositionality is guaranteed by
architecture. In contrast, this paper is concerned with dynamic composition-
ality: whether the learning dynamics induced by gradient descent respect the
intended modular decomposition. Our central observation is that, even when
the forward graph is perfectly compositional, the learned transformations
produced by different sub-operators can interact in a strongly order-sensitive
way on the representations encountered during training. This order sensitiv-
ity is a practical signature of “non-compositional” learning dynamics and is
the quantity that Diagrammatic Backpropagation (DB) seeks to measure and
control.

From static composition to learned deformations

Residual architectures provide a natural entry point because each sublayer is
explicitly an identity map plus a learned correction. Consider two residual
modules T1 and T2 acting on a representation x ∈ Rd:

T1(x) = x + f1(x), T2(x) = x + f2(x),

where f1 and f2 are learnable maps (e.g., an attention transform, a feed-
forward network, a convolutional smoother, or a geometric transport map).
This form does not assume that modules should commute as functions. It
only highlights that learning introduces state-dependent deformations of the
representation space through f1 and f2.

Although the forward computation is unambiguous (the architecture
fixes a specific order), learning can be sensitive to the interaction between
these deformations: applying T1 changes the input seen by T2, and vice
versa. When these interactions are mild, the model behaves as if its modules
are well-coordinated. When interactions are strong, the learning dynamics
become fragile: small changes in one submodule can dramatically alter the
effect of another.
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Order sensitivity and commutator energy

To make this notion of interaction operational, we introduce a forward-only
probe that measures order sensitivity on representations encountered during
training. Given two sub-operators T1 and T2, define the commutator residual
at x as

r(T1, T2; x) = T1(T2(x))− T2(T1(x)).

We then define the corresponding commutator energy as the mean-squared
magnitude of this residual, optionally normalized by the input energy:

Ecomm(T1, T2; x) =
∥r(T1, T2; x)∥2

2
∥x∥2

2 + ε
.

In our implementation, this is computed exactly as:

Ecomm(T1, T2; x) ∝ MSE
(
T1(T2(x))− T2(T1(x))

)
,

matching the code fragment mse(T1(T2(x)) - T2(T1(x))). Impor-
tantly, we do not interpret small commutator energy as a requirement that T1

and T2 commute as abstract functions. Rather, commutator energy is used as
an empirical proxy for how strongly two learned deformations interfere on
the states the model actually visits. Large values indicate that the effect of
one sub-operator substantially changes the behavior of the other, implying a
lack of exchangeability in their learned updates.

WHY ORDER SENSITIVITY MATTERS FOR LEARNING . Even though
Ecomm is computed using only forward evaluations, it tracks a key failure
mode of deep learning systems: gradient interference between interacting
modules. When the representation space is such that sub-operators induce
highly order-sensitive transformations, optimization signals propagated
through different subpaths can conflict, producing unstable training and poor
generalization. Conversely, when sub-operators are more compatible on
the data manifold, training becomes more stable and the model can support
coherent global structure. In this sense, dynamic compositionality is not
about enforcing commutativity, but about controlling destructive order-
sensitivity in learned module interactions.

A minimal residual example

To build intuition, consider two residual maps T1(x) = x + f1(x) and
T2(x) = x + f2(x) applied to the same input x. The two compositions
expand as

T1(T2(x)) = x + f2(x) + f1(x + f2(x)),

T2(T1(x)) = x + f1(x) + f2(x + f1(x)).

Their difference arises entirely from the state dependence of the learned
deformations: f1(·) and f2(·) are evaluated at different perturbed inputs.
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When these perturbations strongly change the behavior of the other module,
commutator energy is large. When their effects are compatible, commutator
energy is small. This provides an intuitive explanation for why commutator
energy is a useful diagnostic even for architectures whose forward graph is
fixed: it measures whether the learned sub-operators act as well-coordinated
“editors” of the representation space.

ROADMAP. We instantiate these definitions inside Transformer encoder
blocks by taking T1, T2 to be concrete sub-stages such as attention, feed-
forward, convolutional smoothing, geometric transport, and mixture-of-
experts mixing. We show that Geometric Transformer variants systematically
reduce commutator energy relative to a baseline Transformer, providing a
mechanistic account of the instrumental probes reported in the v1 paper.

A Minimal Residual MLP Example: Order Sensitivity in Learning
Dynamics

To isolate the mechanism underlying commutator energy without archi-
tectural complexity, we consider a minimal residual multilayer perceptron
(MLP) example. The goal of this section is not to achieve high performance,
but to demonstrate that order sensitivity arises naturally in learning dynamics
even in the simplest residual setting. This example serves as a sanity check
and a conceptual bridge between abstract definitions and Transformer-scale
models.

Two interacting residual blocks

Let x ∈ Rd be an input representation and consider two residual modules
applied sequentially:

T1(x) = x + f1(x), T2(x) = x + f2(x),

where f1 and f2 are small MLPs with independent parameters. The com-
posite forward computation is fixed by architecture, for example T2(T1(x)).
Statically, this model is compositional: it is simply a composition of two
functions.

During training, however, f1 and f2 are updated simultaneously by gra-
dient descent on a shared loss. Each module therefore induces a learned,
state-dependent deformation of the representation space. The interaction
between these deformations determines whether learning is dynamically
compositional.
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Order sensitivity in residual updates

Although the architecture applies T1 before T2, we can probe the learning
dynamics by comparing the two compositions

T2(T1(x)) and T1(T2(x)).

Expanding these expressions reveals the source of order sensitivity:

T2(T1(x)) = x + f1(x) + f2(x + f1(x)),

T1(T2(x)) = x + f2(x) + f1(x + f2(x)).

The difference between these two outputs arises entirely from the state
dependence of f1 and f2. When the perturbation induced by one module
significantly alters the input seen by the other, the two compositions differ
substantially. This discrepancy is precisely what the commutator-energy
probe measures:

Ecomm(T1, T2; x) = ∥T2(T1(x))− T1(T2(x))∥2
2.

Importantly, large commutator energy does not indicate a violation of any
architectural constraint. Rather, it indicates that the two learned deformations
interact in an order-sensitive way on the states encountered during training.

Connection to gradient interference

The order sensitivity measured by commutator energy has a direct interpre-
tation in terms of learning dynamics. When f1 and f2 induce incompatible
deformations, small changes in the parameters of one module can dramat-
ically alter the effective gradient signal seen by the other. This manifests
as gradient interference: updates that improve the loss along one path can
degrade it along another.

From this perspective, commutator energy serves as a forward-only proxy
for detecting gradient interference. High commutator energy indicates that
the learning-induced updates of different modules are poorly coordinated,
while low commutator energy indicates approximate exchangeability of
updates and more stable learning dynamics.

Implications for Diagrammatic Backpropagation

Diagrammatic Backpropagation can be interpreted as introducing an auxiliary
control objective that discourages large order sensitivity in learned deforma-
tions. In the residual MLP setting, minimizing commutator energy promotes
compatibility between f1 and f2, without requiring them to commute or col-
lapse to trivial functions. This stabilizes learning by reducing sensitivity to
update order while preserving expressivity.

Although this example is deliberately minimal, it captures the essential
mechanism that appears in larger architectures. Transformer blocks replace
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f1 and f2 with attention, feed-forward, and geometric transport operators, but
the source of order sensitivity—and the role of commutator energy in con-
trolling it—remains the same. The residual MLP thus provides a transparent
microcosm of the dynamic compositionality issues addressed by Diagram-
matic Backpropagation.

Dynamic Compositionality in Transformer and Geometric Trans-
former Blocks

Previously we introduced the notion of dynamic compositionality and argued
that order sensitivity of learned sub-operators is a practical signature of non-
compositional learning dynamics. We now instantiate this analysis concretely
inside Transformer encoder blocks and their geometric variants, showing
how the commutator-energy probe used in the v1 paper arises directly from
interactions between familiar architectural components.

Transformer encoder blocks as interacting sub-operators

A standard Transformer encoder block consists of a small number of sub-
stages applied sequentially to the same representation: multi-head self-
attention, residual addition, layer normalization, and a positionwise feed-
forward network. Although the execution order is fixed by the architecture,
learning dynamics depend on how these sub-stages interact on the representa-
tion manifold visited during training.

For the purposes of dynamic compositionality analysis, we group each
sub-stage together with its residual connection and normalization into a sin-
gle effective sub-operator. In the baseline Transformer, we therefore identify
two concrete sub-operators:

• A: the attention stage, including residual addition and layer normalization;

• F: the feed-forward stage, including residual addition and layer normaliza-
tion.

These are exactly the operators implemented in the probe as: A(z) = LN(z

+ Attn(z)) and F(z) = LN(z + FF(z)).

Measuring order sensitivity inside a block

Although the Transformer block applies A before F in the forward pass,
the learning dynamics depend on how strongly these sub-operators per-
turb each other’s effective inputs. To probe this interaction, we evaluate the
commutator-energy diagnostic

Ecomm(A, F; x) =
∥A(F(x))− F(A(x))∥2

2
∥x∥2

2 + ε
,



96 CATEGORIES FOR AGI

computed on the actual block input x encountered during training. This
quantity measures how sensitive the learned representation update is to the
order in which attention and feed-forward transformations are applied. Im-
portantly, we do not require A and F to commute as functions. Rather, we
interpret large commutator energy as evidence that the two sub-operators in-
duce incompatible state-dependent deformations, making learning dynamics
sensitive to update order.

Why vanilla Transformers exhibit high commutator energy

In a baseline Transformer, self-attention introduces global, token-coupling
effects that depend sharply on the current representation, while the feed-
forward network applies nonlinear, positionwise transformations. Layer
normalization and residual connections tightly couple these effects across
feature dimensions. As a result, applying attention significantly alters the
input distribution seen by the feed-forward network, and vice versa. This pro-
duces strong order sensitivity between A and F on the states visited during
training, leading to high commutator energy.

Empirically, this manifests as increasing commutator energy over training
and correlates with instability and poor generalization at scale. The probe
thus captures a concrete failure mode of dynamic compositionality in vanilla
Transformers: sub-operators act as poorly coordinated “editors” of the same
representation.

Geometric Transformers

We introduced a family of GT models in the previous chapter, which we now
analyze from the standpoint of dynamic compositionality.

GT-Lite: reducing order sensitivity via local smoothing

GT-Lite augments the Transformer block with an additional sub-operator C
that performs local geometric smoothing, implemented as a convolution or
local neighborhood mixer. In this case, the probe measures the average of
pairwise order sensitivities:

Ecomm(A, C; x), Ecomm(C, F; x), Ecomm(A, F; x).

Local smoothing reduces high-frequency variation in representations and
regularizes the representation manifold seen by downstream sub-operators.
As a result, the effects of attention and feed-forward transformations become
more compatible, and order sensitivity is reduced. This explains why GT-Lite
consistently exhibits lower commutator energy than a baseline Transformer,
especially in early and mid stages of training.
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GT-Full: geometric transport and alignment of representation geometry

The full Geometric Transformer replaces local smoothing with an explicit
geometric transport operator G, implemented via simplicial lifting, message
passing, and readout over a token-interaction complex. The corresponding
probe measures:

Ecomm(A, G; x), Ecomm(F, G; x), Ecomm(A, F; x).

Geometric transport aligns local coordinate frames across tokens by prop-
agating information along edges and higher-order simplices. This alignment
reduces curvature mismatch between the deformations induced by attention
and feed-forward sub-operators. Consequently, GT-Full exhibits the lowest
and most stable commutator energy across tasks and scales, while still sup-
porting rich global structure in representations. Mechanistically, GT-Full
achieves dynamic compositionality not by suppressing expressivity, but by
ensuring compatibility between learned deformations.

GT-MoE: routing-induced order sensitivity

In GT-MoE, the feed-forward stage is replaced by a mixture-of-experts opera-
tor M whose effective transformation depends on gating decisions computed
from the current representation. The probe measures Ecomm(A, M; x). Be-
cause routing introduces additional state-dependent branching, the interaction
between attention and mixture selection is inherently more order-sensitive.
This explains why GT-MoE typically exhibits higher or more variable com-
mutator energy than GT-Full, while still improving over a baseline Trans-
former.

Summary: architectural control of dynamic compositionality

Across all variants, commutator energy serves as a unified diagnostic for
dynamic compositionality inside Transformer blocks. Vanilla Transformers
exhibit high order sensitivity due to incompatible sub-operator interactions.
GT-Lite reduces this sensitivity through local smoothing, while GT-Full
achieves the strongest reduction by aligning representation geometry via
explicit transport. These mechanistic differences directly explain the empiri-
cal commutator-energy trends reported in the previous chapter and motivate
Diagrammatic Backpropagation as a control mechanism for learning-time
compositionality.

From Mechanism to Implementation: Explaining the DB+GT Code
Path

Sections – established that commutator energy provides a forward-only di-
agnostic of dynamic compositionality failure, measuring order sensitivity
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between learned sub-operators. We now complete the analysis by explaining
how this diagnostic is implemented in practice for Transformer and Geomet-
ric Transformer models, and why the observed empirical behavior follows
directly from the code structure. Our goal in this section is to demystify
the DB+GT implementation by mapping each conceptual component to the
corresponding computational step.

The commutator-energy primitive

At the lowest level, the DB instrumentation relies on a single primitive:

Comm(T1, T2; x) = ∥T1(T2(x))− T2(T1(x))∥2
2,

implemented directly as:

_mse(T1(T2(x)) - T2(T1(x)))

This computation involves no gradients and introduces no additional param-
eters. It is evaluated on the same representations encountered during training
and serves purely as a measurement of order sensitivity. Normalizing by
∥x∥2

2 + ε ensures that the resulting value is scale-free and comparable across
layers, models, and training stages.

Crucially, this primitive is agnostic to the nature of T1 and T2; they are
concrete callable subroutines corresponding to actual sub-stages of a model
(e.g., attention, feed-forward, convolutional smoothing, geometric transport,
or mixture-of-experts routing).

Layerwise instrumentation in Transformer blocks

The function encoder_cech_obstruction evaluates commutator
energy inside each encoder block by extracting its internal sub-operators. For
a baseline Transformer block, these are:

• A: the self-attention stage together with residual addition and layer nor-
malization;

• F: the feed-forward stage together with residual addition and layer nor-
malization.

The instrumentation computes

Ecomm(A, F; xin)

on the block input xin and then advances the forward pass normally. The
resulting scalar measures how strongly attention and feed-forward updates
interfere on the representations encountered at that layer.

Because this computation is performed under @torch.no_grad(), it
does not affect training unless explicitly included as a loss term. Instead, it
provides a per-layer diagnostic of dynamic compositionality.
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Extending the probe to Geometric Transformer variants

Geometric Transformer variants introduce additional sub-operators, and the
instrumentation generalizes by measuring pairwise order sensitivity among
them.

GT-L ITE . GT-Lite augments the block with a local geometric smoothing
operator C (e.g., a 1D convolution over neighboring tokens). The probe
evaluates the average of:

Ecomm(A, C; x), Ecomm(C, F; x), Ecomm(A, F; x),

capturing overall compatibility among attention, smoothing, and feed-
forward updates. Local smoothing regularizes the representation manifold,
reducing sharp state dependence and lowering order sensitivity.

GT-FULL . The full Geometric Transformer introduces an explicit geometric
transport operator G implemented via simplicial lifting, message passing, and
readout. The probe evaluates:

Ecomm(A, G; x), Ecomm(F, G; x), Ecomm(A, F; x).

Geometric transport aligns local coordinate frames across tokens, substan-
tially reducing curvature mismatch between learned deformations. As a
result, GT-Full exhibits consistently low commutator energy while retaining
expressive global structure.

GT-MOE. In GT-MoE, the feed-forward stage is replaced by a mixture-
of-experts operator M whose effective transformation depends on routing
probabilities. The probe measures Ecomm(A, M; x), capturing order sen-
sitivity introduced by state-dependent expert selection. This explains the
intermediate and sometimes variable commutator-energy behavior observed
empirically.

Why commutator energy tracks training stability

Although commutator energy is computed using forward evaluations, it
correlates strongly with training stability because it reflects the compatibility
of learning-induced deformations. When commutator energy is large, small
changes in one sub-operator substantially alter the effective behavior of
others, amplifying gradient interference and making optimization sensitive
to update order. When commutator energy is small, sub-operators act as
approximately exchangeable contributors to representation updates, yielding
more stable and predictable learning dynamics.

This explains why baseline Transformers often exhibit rising commutator
energy during training, while Geometric Transformer variants systematically
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drive it down. DB does not require exact commutativity or impose algebraic
constraints on the architecture; it instead penalizes destructive order sensitiv-
ity, allowing models to retain expressivity while improving coordination.

From instrumentation to control

In the previous chapter, commutator energy is primarily used as an instru-
mental probe. When Diagrammatic Backpropagation is enabled, the same
quantity (or its generalization to higher-order overlap patterns) is incorpo-
rated into the training objective as an auxiliary loss. This transforms a passive
diagnostic into an active control mechanism that directly shapes learning
dynamics.

From an implementation standpoint, DB training differs from standard
backpropagation only by the addition of these overlap-consistency losses and
their gradients. All core architectural components remain unchanged. The
resulting behavior—reduced commutator energy, improved stability, and the
emergence of coherent global structure—follows directly from minimizing
order sensitivity of learned sub-operator interactions.

SUMMARY. This section has shown that the DB+GT implementation is
neither mysterious nor ad hoc. It operationalizes a simple idea: learning
should not depend strongly on the order in which compatible sub-operators
are applied. The commutator-energy probe provides a concrete, code-level
measurement of this principle, and Geometric Transformer architectures
supply the geometric scaffolding needed to enforce it effectively.

GT-Lite Under the Hood: Transformer Blocks with Local Geomet-
ric Smoothing

We now unpack the simplest Geometric Transformer variant, GT-Lite, at the
level of concrete PyTorch code. The purpose of this section is to explain how
a small architectural modification—a local geometric smoothing operator
inserted between attention and feed-forward stages—systematically reduces
commutator energy and improves dynamic compositionality. This section is
intended to serve as a code-level reference for readers wishing to understand
or extend the DB+GT implementation.

GeomEncoderBlock: structure and intent

Listing 1 shows the implementation of the GT-Lite encoder block. Compared
to a standard Transformer encoder block, the only substantive addition is
a one-dimensional convolution applied along the token dimension, which
performs local geometric smoothing.
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Listing 1: GT-Lite encoder block

c l a s s GeomEncoderBlock ( nn . Module ) :
def _ _ i n i t _ _ ( s e l f , d_model : i n t , n_heads : i n t , d i m_ f f : i n t , d r o p o u t : f l o a t = 0 . 1 ) :

super ( ) . _ _ i n i t _ _ ( )
s e l f . s e l f _ a t t n = nn . M u l t i h e a d A t t e n t i o n (

d_model , n_heads , d r o p o u t = dropou t , b a t c h _ f i r s t =True
)
s e l f . conv = nn . Conv1d ( d_model , d_model , k e r n e l _ s i z e =3 , padd ing =1)

s e l f . l i n 1 = nn . L i n e a r ( d_model , d im _f f )
s e l f . l i n 2 = nn . L i n e a r ( d im_ff , d_model )

s e l f . l n _ a t t n = nn . LayerNorm ( d_model )
s e l f . l n_conv = nn . LayerNorm ( d_model )
s e l f . l n _ f f = nn . LayerNorm ( d_model )

s e l f . d r o p o u t = nn . Dropout ( d r o p o u t )
s e l f . d r o p o u t _ f f = nn . Dropout ( d r o p o u t )

def f o r w a r d ( s e l f , x : t o r c h . Tensor ) −> t o r c h . Tensor :
a t t n _ o u t , _ = s e l f . s e l f _ a t t n ( x , x , x , n e e d _ w e i g h t s = F a l s e )
x = s e l f . l n _ a t t n ( x + s e l f . d r o p o u t ( a t t n _ o u t ) )

x_conv = s e l f . conv ( x . t r a n s p o s e ( 1 , 2 ) ) . t r a n s p o s e ( 1 , 2 )
x = s e l f . l n_conv ( x + 0 . 2 * x_conv )

f f = s e l f . l i n 2 ( s e l f . d r o p o u t _ f f ( F . r e l u ( s e l f . l i n 1 ( x ) ) ) )
x = s e l f . l n _ f f ( x + f f )
re turn x
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Sub-operators and dynamic compositionality

From the perspective of dynamic compositionality, the GT-Lite encoder
block consists of three interacting sub-operators, each applied with a residual
connection and layer normalization:

• Attention operator A: global token mixing via multi-head self-attention,

A(x) = LNattn(x + Attn(x)).

• Local smoothing operator C: convolution over neighboring token posi-
tions,

C(x) = LNconv(x + α Conv(x)), α = 0.2.

• Feed-forward operator F: positionwise nonlinear deformation,

F(x) = LN f f (x + FF(x)).

The overall block computes F(C(A(x))). Architecturally, this is a fixed
composition. Dynamically, however, learning depends on how strongly these
sub-operators interfere when applied to the same representation.

Why local smoothing reduces commutator energy

The commutator-energy probe evaluates order sensitivity between sub-
operators, for example

Ecomm(A, F; x) = ∥A(F(x))− F(A(x))∥2
2.

In a baseline Transformer, A and F interact directly. Attention introduces
sharp, token-dependent changes to the representation, and the feed-forward
network is highly sensitive to such changes. As a result, A(F(x)) and
F(A(x)) often differ substantially, producing large commutator energy.

GT-Lite reduces this effect by inserting the smoothing operator C. The
convolution averages local neighborhoods in token space, acting as a low-
pass filter on representation geometry. This regularization reduces the sen-
sitivity of downstream sub-operators to small perturbations induced by up-
stream ones. Consequently, the pairwise commutator energies

Ecomm(A, C; x), Ecomm(C, F; x), Ecomm(A, F; x)

are all reduced relative to the baseline Transformer.
From a learning-dynamics perspective, the smoothing operator improves

exchangeability of updates: the effective representation change induced
by one sub-operator does not drastically alter how the others behave. This
reduces gradient interference and improves training stability, even though the
forward graph remains unchanged.
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GeomDecoderBlock: extension to autoregressive decoding

Listing 2 shows the corresponding GT-Lite decoder block, which extends the
same smoothing principle to autoregressive and cross-attention settings.

In the decoder, both causal self-attention and encoder–decoder cross-
attention introduce global dependencies. The local smoothing operator again
acts to reduce order sensitivity between these attention stages and the feed-
forward network, improving dynamic compositionality in autoregressive
generation.

SUMMARY. GT-Lite demonstrates that reducing commutator energy does
not require complex geometric machinery. Even a simple local smoothing op-
erator, when properly integrated into a residual architecture, can significantly
improve compatibility between sub-operators. This provides a minimal,
code-level illustration of how Diagrammatic Backpropagation probes dy-
namic compositionality and why geometric inductive biases matter for stable
learning.

GT-Full Under the Hood: Simplicial Transport as Coordinate Align-
ment

GT-Full extends the GT-Lite architecture by replacing local convolutional
smoothing with explicit geometric transport defined over a simplicial com-
plex of token interactions. In contrast to GT-Lite, which enforces compatibil-
ity through local averaging, GT-Full introduces a structured mechanism that
aligns representation geometry across tokens using simplicial message pass-
ing. This section unpacks the GT-Full encoder block line by line and explains
why this alignment dramatically reduces commutator energy while preserving
expressive global structure.

GeomFullEncoderBlockSeq: code structure

Listing 3 and Listing 4 show the implementation of the GT-Full encoder
block. The block retains the standard Transformer attention and feed-forward
stages, but inserts an additional geometric transport operator that acts on a
graph (or simplicial complex) over token positions.

Sub-operators in GT-Full

From the perspective of dynamic compositionality, the GT-Full encoder block
contains three interacting sub-operators:

• Attention operator A, defined as

A(x) = LNattn(x + Attn(x)).
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Listing 2: GT-Lite decoder block

c l a s s GeomDecoderBlock ( nn . Module ) :
def _ _ i n i t _ _ ( s e l f , d_model : i n t , n_heads : i n t , d i m_ f f : i n t , d r o p o u t : f l o a t = 0 . 1 ) :

super ( ) . _ _ i n i t _ _ ( )
s e l f . s e l f _ a t t n = nn . M u l t i h e a d A t t e n t i o n (

d_model , n_heads , d r o p o u t = dropou t , b a t c h _ f i r s t =True
)
s e l f . c r o s s _ a t t n = nn . M u l t i h e a d A t t e n t i o n (

d_model , n_heads , d r o p o u t = dropou t , b a t c h _ f i r s t =True
)
s e l f . conv = nn . Conv1d ( d_model , d_model , k e r n e l _ s i z e =3 , padd ing =1)

s e l f . l i n 1 = nn . L i n e a r ( d_model , d im _f f )
s e l f . l i n 2 = nn . L i n e a r ( d im_ff , d_model )

s e l f . l n _ s e l f = nn . LayerNorm ( d_model )
s e l f . l n _ c r o s s = nn . LayerNorm ( d_model )
s e l f . l n_conv = nn . LayerNorm ( d_model )
s e l f . l n _ f f = nn . LayerNorm ( d_model )

s e l f . d r o p o u t = nn . Dropout ( d r o p o u t )
s e l f . d r o p o u t _ f f = nn . Dropout ( d r o p o u t )

def f o r w a r d ( s e l f , x , enc_out , c ausa l_mask ) :
s e l f _ o u t , _ = s e l f . s e l f _ a t t n ( x , x , x , a t t n _ m a s k = causa l_mask , n e e d _ w e i g h t s = F a l s e )
x = s e l f . l n _ s e l f ( x + s e l f . d r o p o u t ( s e l f _ o u t ) )

c r o s s _ o u t , _ = s e l f . c r o s s _ a t t n ( x , enc_out , enc_out , n e e d _ w e i g h t s = F a l s e )
x = s e l f . l n _ c r o s s ( x + s e l f . d r o p o u t ( c r o s s _ o u t ) )

x_conv = s e l f . conv ( x . t r a n s p o s e ( 1 , 2 ) ) . t r a n s p o s e ( 1 , 2 )
x = s e l f . l n_conv ( x + 0 . 2 * x_conv )

f f = s e l f . l i n 2 ( s e l f . d r o p o u t _ f f ( F . r e l u ( s e l f . l i n 1 ( x ) ) ) )
x = s e l f . l n _ f f ( x + f f )
re turn x
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Listing 3: GT-Full encoder block

c l a s s GeomFul lEncoderBlockSeq ( nn . Module ) :
def _ _ i n i t _ _ (

s e l f ,
d_model : i n t ,
n_heads : i n t ,
d i m_ f f : i n t ,
max_ len_s rc : i n t ,
num_rel : i n t = 1 ,
d r o p o u t : f l o a t = 0 . 1 ,
g t _ d e p t h : i n t = 1 ,

) :
super ( ) . _ _ i n i t _ _ ( )
s e l f . s e l f _ a t t n = nn . M u l t i h e a d A t t e n t i o n (

embed_dim=d_model ,
num_heads=n_heads ,
d r o p o u t = dropou t ,
b a t c h _ f i r s t =True ,

)
s e l f . l i n 1 = nn . L i n e a r ( d_model , d im _f f )
s e l f . l i n 2 = nn . L i n e a r ( d im_ff , d_model )

s e l f . l n _ a t t n = nn . LayerNorm ( d_model )
s e l f . l n _ f f = nn . LayerNorm ( d_model )

s e l f . d r o p o u t _ a t t n = nn . Dropout ( d r o p o u t )
s e l f . d r o p o u t _ f f = nn . Dropout ( d r o p o u t )

s e l f . g t = Geomet r i cTrans fo rmerV2 (
dim=d_model ,
d e p t h = g t _ d e p t h ,
num_rel =num_rel ,

)

# f i x e d p o s i t i o n a l graph over s e q u e n c e i n d i c e s
s r c _ i n d i c e s , d s t _ i n d i c e s = [ ] , [ ]
f o r i in range ( max_ len_s rc − 1 ) :

s r c _ i n d i c e s . e x t e n d ( [ i , i + 1 ] )
d s t _ i n d i c e s . e x t e n d ( [ i + 1 , i ] )

e d g e _ i n d e x = t o r c h . t e n s o r ( [ s r c _ i n d i c e s , d s t _ i n d i c e s ] , d t y p e = t o r c h . long )

s e l f . r e g i s t e r _ b u f f e r ( " e d g e _ i n d e x " , e d g e _ i n d e x )
s e l f . r e g i s t e r _ b u f f e r ( " r e l _ i d s " , t o r c h . z e r o s ( e d g e _ i n d e x . s i z e ( 1 ) , d t y p e = t o r c h . long ) )
s e l f . r e g i s t e r _ b u f f e r ( " dom_ids " , t o r c h . z e r o s ( e d g e _ i n d e x . s i z e ( 1 ) , d t y p e = t o r c h . long ) )
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Listing 4: GT-Full encoder block

c l a s s GeomFul lEncoderBlockSeq ( nn . Module ) :
def _ _ i n i t _ _ (

s e l f ,
d_model : i n t ,
n_heads : i n t ,
d i m_ f f : i n t ,
max_ len_s rc : i n t ,
num_rel : i n t = 1 ,
d r o p o u t : f l o a t = 0 . 1 ,
g t _ d e p t h : i n t = 1 ,

) :

. . .

def f o r w a r d ( s e l f , x : t o r c h . Tensor ) −> t o r c h . Tensor :
B , L , D = x . shape

a t t n _ o u t , _ = s e l f . s e l f _ a t t n ( x , x , x , n e e d _ w e i g h t s = F a l s e )
x = s e l f . l n _ a t t n ( x + s e l f . d r o p o u t _ a t t n ( a t t n _ o u t ) )

f f = s e l f . l i n 2 ( s e l f . d r o p o u t _ f f ( F . r e l u ( s e l f . l i n 1 ( x ) ) ) )
x = s e l f . l n _ f f ( x + f f )

# g e o m e t r i c t r a n s p o r t
h = x . r e s h a p e (B * L , D)
e d g e _ i n d e x = s e l f . e d g e _ i n d e x [ : , s e l f . e d g e _ i n d e x [ 0 ] < L ]
r e l _ i d s = s e l f . r e l _ i d s [ s e l f . e d g e _ i n d e x [ 0 ] < L ]
dom_ids = s e l f . dom_ids [ s e l f . e d g e _ i n d e x [ 0 ] < L ]
h _ r e f = s e l f . g t ( h , edge_ index , r e l _ i d s , dom_ids )
re turn h _ r e f . r e s h a p e (B , L , D)
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• Feed-forward operator F, defined as

F(x) = LN f f (x + FF(x)).

• Geometric transport operator G, defined by lifting token representations
into a structured graph space, performing message passing, and reading
back into the token space.

The overall block computes G(F(A(x))). As before, the architecture fixes
this order; the question addressed by the commutator-energy probe is how
sensitive learning dynamics are to alternative local compositions of these
operators.

What geometric transport actually does

The geometric transport operator G acts on the flattened representation h ∈
R(B·L)×d and propagates information along a fixed positional graph defined
by edge_index. Each node corresponds to a token position, and edges
encode adjacency relations. Internally, the GeometricTransformerV2
module performs multiple rounds of message passing, updating each token’s
representation based on its neighbors and relation embeddings.

Crucially, this process aligns representations across tokens by repeatedly
exchanging information in a shared geometric coordinate system. Unlike
local convolution, which enforces compatibility only within a small neighbor-
hood, geometric transport spreads alignment globally across the sequence.

Why GT-Full reduces commutator energy

The commutator-energy probe for GT-Full evaluates

Ecomm(A, F; x), Ecomm(A, G; x), Ecomm(F, G; x).

Geometric transport reduces all three terms simultaneously. By aligning
local coordinate frames, G ensures that the deformations induced by attention
and feed-forward operators are expressed in a compatible geometric basis. As
a result, applying A before G produces a similar effect to applying G before
A, and likewise for F.

From a learning-dynamics perspective, G reduces curvature mismatch
between sub-operators: small perturbations introduced by one stage do not
drastically change the effective behavior of the others. This leads to low and
stable commutator energy throughout training, as observed empirically in the
v1 paper.

Preserving expressivity through alignment

An important distinction between GT-Lite and GT-Full is that GT-Full does
not achieve low commutator energy by suppressing global structure. Instead,
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it introduces a geometric scaffold that allows expressive, long-range interac-
tions to coexist with dynamic compositionality. This explains why GT-Full
supports persistent global topological structure while maintaining stable
learning dynamics.

In contrast, GT-Lite reduces order sensitivity primarily through local
regularization, which can limit the emergence of rich global geometry. GT-
Full achieves a stronger form of dynamic compositionality by explicitly
coordinating sub-operator deformations across the entire sequence.

SUMMARY. GT-Full demonstrates that dynamic compositionality can be
enforced through explicit geometric transport. By aligning representation
geometry via simplicial message passing, GT-Full systematically reduces
order sensitivity between attention, feed-forward, and transport operators,
providing a mechanistic explanation for its superior commutator-energy
behavior and empirical stability.

GT-MoE Under the Hood: Routing-Induced Order Sensitivity

The GT-MoE variant replaces the standard feed-forward sublayer with a
mixture-of-experts (MoE) module whose effective transformation depends
on learned routing decisions. While GT-MoE often achieves strong task-level
performance and reduces commutator energy relative to a baseline Trans-
former, its mechanism differs fundamentally from that of GT-Full. In this
section, we unpack the GT-MoE encoder block at the level of concrete code
and explain how state-dependent routing alters dynamic compositionality.

GeomEncoderMoEBlock: code structure

Listing 5 shows the implementation of the GT-MoE encoder block. The
block retains standard self-attention and residual structure, but replaces the
feed-forward network with a gated mixture of experts.

Sub-operators in GT-MoE

From the perspective of dynamic compositionality, the GT-MoE block con-
tains two primary sub-operators:

• Attention operator A, defined as

A(x) = LNattn(x + Attn(x)).

• Mixture-of-experts operator M, defined as

M(x) = LN f f

(
x +

E

∑
e=1

ge(x) Ee(x)

)
,

where ge(x) are learned gating probabilities and Ee are expert feed-
forward networks.
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Listing 5: GT-MoE encoder block

c l a s s GeomEncoderMoEBlock ( nn . Module ) :
def _ _ i n i t _ _ (

s e l f ,
d_model : i n t ,
n_heads : i n t ,
d i m_ f f : i n t ,
n _ e x p e r t s : i n t = 4 ,
d r o p o u t : f l o a t = 0 . 1 ,
top_k : i n t = 2 ,

) :
super ( ) . _ _ i n i t _ _ ( )
s e l f . s e l f _ a t t n = nn . M u l t i h e a d A t t e n t i o n (

d_model , n_heads , d r o p o u t = dropou t , b a t c h _ f i r s t =True
)

s e l f . e x p e r t s = nn . Modu leL i s t ( [
nn . S e q u e n t i a l (

nn . L i n e a r ( d_model , d i m_ f f ) ,
nn .GELU( ) ,
nn . L i n e a r ( d im_ff , d_model ) ,

)
f o r _ in range ( n _ e x p e r t s )

] )

s e l f . g a t e = nn . L i n e a r ( d_model , n _ e x p e r t s )

s e l f . l n _ a t t n = nn . LayerNorm ( d_model )
s e l f . l n _ f f = nn . LayerNorm ( d_model )
s e l f . d r o p o u t = nn . Dropout ( d r o p o u t )

def f o r w a r d ( s e l f , x : t o r c h . Tensor ) −> t o r c h . Tensor :
a t t n _ o u t , _ = s e l f . s e l f _ a t t n ( x , x , x , n e e d _ w e i g h t s = F a l s e )
x = s e l f . l n _ a t t n ( x + s e l f . d r o p o u t ( a t t n _ o u t ) )

g a t e _ l o g i t s = s e l f . g a t e ( x )
g a t e _ p r o b s = g a t e _ l o g i t s . so f tmax ( dim = −1)

i f s e l f . t op_k < g a t e _ p r o b s . s i z e ( − 1 ) :
t o p _ v a l s , t o p _ i d x = g a t e _ p r o b s . t opk ( s e l f . top_k , dim = −1)
s p a r s e = t o r c h . z e r o s _ l i k e ( g a t e _ p r o b s )
s p a r s e . s c a t t e r _ ( 2 , t o p _ i d x , t o p _ v a l s )
g a t e _ p r o b s = s p a r s e / ( s p a r s e . sum ( dim = −1 , keepdim=True ) + 1e −8)

f f _ o u t = t o r c h . z e r o s _ l i k e ( x )
f o r e_idx , e x p e r t in enumerate ( s e l f . e x p e r t s ) :

w_e = g a t e _ p r o b s [ . . . , e _ i d x ] . unsqueeze ( −1)
f f _ o u t = f f _ o u t + w_e * e x p e r t ( x )

x = s e l f . l n _ f f ( x + s e l f . d r o p o u t ( f f _ o u t ) )
re turn x
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The overall block computes M(A(x)). Unlike the standard feed-forward
network, the effective transformation implemented by M depends explicitly
on routing decisions computed from the current representation.

Routing as state-dependent branching

The defining feature of GT-MoE is that routing decisions introduce condi-
tional computation. For two nearby representations x and x′, the set of active
experts and their relative weights can differ substantially. As a result, the
effective deformation of the representation space induced by M can change
discontinuously as a function of x.

From the perspective of dynamic compositionality, this introduces an
additional source of order sensitivity: applying attention before routing can
change which experts are selected, while applying routing before attention
would alter the attention input in a different way. The commutator-energy
probe captures this effect by measuring

Ecomm(A, M; x) = ∥A(M(x))−M(A(x))∥2
2.

Why GT-MoE exhibits intermediate commutator energy

Empirically, GT-MoE tends to reduce commutator energy relative to a base-
line Transformer but does not achieve the same level of reduction as GT-Full.
This behavior follows directly from its mechanism. Mixture routing allows
different experts to specialize and reduces interference within each expert, but
it does not align representations across tokens or across experts in a shared
geometric coordinate system. As a result, order sensitivity introduced by
routing remains, especially when gating decisions are sharp or sparse.

In practice, GT-MoE occupies an intermediate regime: it improves dy-
namic compositionality by isolating incompatible deformations into dif-
ferent experts, but it does not eliminate order sensitivity arising from state-
dependent branching. This explains the more variable commutator-energy
trajectories observed for GT-MoE in the v1 experiments.

Comparison with GT-Lite and GT-Full

The contrast between GT-MoE and GT-Full highlights two distinct strategies
for controlling dynamic compositionality:

• GT-Lite reduces order sensitivity by smoothing representations locally.

• GT-Full reduces order sensitivity by aligning representations globally
through geometric transport.

• GT-MoE reduces interference by routing different representations to
different experts, at the cost of introducing additional state-dependent
branching.
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Only GT-Full simultaneously achieves low commutator energy and sup-
ports coherent global structure. GT-MoE, while powerful, illustrates that
conditional computation alone is insufficient to fully control dynamic compo-
sitionality.

SUMMARY. GT-MoE demonstrates that reducing commutator energy can be
achieved through conditional computation as well as geometric alignment,
but the two mechanisms have distinct dynamical consequences. By unpack-
ing the MoE block at code level, we clarify why GT-MoE behaves differently
from GT-Lite and GT-Full and why geometric transport plays a unique role in
enforcing dynamic compositionality.

Diagrammatic Backpropagation as Čech-Style Descent

In this section we describe the algorithmic framework underlying diagram-
matic backpropagation (DB), building on the detailed definitions of the GT
models in the previous sections. Having analyzed dynamic compositional-
ity at the level of individual encoder blocks, we now summarize how these
components are orchestrated in practice. The following algorithms restate the
DB+GT implementation in pseudocode form, emphasizing where commu-
tator energy is measured, how it is optionally incorporated into training, and
how geometric and conditional operators are invoked. Unlike the abstract pre-
sentation in the earlier paper, these algorithms are intended as a direct guide
to the accompanying implementation.

Algorithm 6 is computed with no_grad and is used as an instrumental
probe; DB training corresponds to adding one or more of these commutator
terms (or higher-order generalizations) as auxiliary losses. In language-
modeling and seq2seq experiments, we use Algorithm 7 with Lgeom = 0
and optionally include Ldb (commutator-energy control) as an auxiliary loss.
In diagrammatic benchmarks compiled into simplicial constraint instances,
Lgeom corresponds to triangle/square residual energies as in v1.”

Algorithm 7 specifies the DB training loop, again written in a way that is
faithful to the actual implementation.

Algorithm 8 defines the GT-Full Geometric Transport operator G used in
the simplicial/graph message passing procedure. Algorithm 8 corresponds di-
rectly to the GeomFullEncoderBlockSeq.forward() transport path:
the tensor z is flattened into h of shape (BL, d), the precomputed positional
adjacency edge_index is masked to respect the current sequence length L,
and GT applies K rounds of message passing and state updates. In our exper-
iments, the positional graph is a bidirectional chain, but the same interface
supports richer adjacency (e.g., dependency edges, retrieved links, or simpli-
cial neighborhoods). Relation and domain ids provide typed edge features
used by the message function ϕθ .

Algorithm 9 defines the local geometric smoothing operator C. Algo-
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rithm 9 corresponds to the GT-Lite smoothing stage in GeomEncoderBlock
and GeomDecoderBlock. The convolution mixes each token with its im-
mediate neighbors, acting as a local low-pass filter. The scaling factor α

ensures smoothing is a gentle correction rather than a dominating transform,
improving compatibility between attention and feed-forward updates.

Finally, Algorithm 10 defines the GT-MoE mixing operator M. Algo-
rithm 10 corresponds to the MoE stage in GeomEncoderMoEBlock. The
gating distribution p is computed per token and optionally sparsified via top-
k routing. Expert outputs are then aggregated as a weighted sum. Because
routing is state-dependent, small changes to z can change which experts dom-
inate, introducing a distinct form of order sensitivity relative to GT-Lite and
GT-Full.

From Čech Obstruction to Order Sensitivity: Reinterpreting v1 Re-
sults

The experimental results reported in the v1 paper established a striking and
consistent empirical pattern: Geometric Transformer (GT) variants system-
atically reduce a proxy for local-to-global inconsistency—termed the Čech
obstruction proxy—while a baseline Transformer does not. In this section,
we reinterpret those findings through the lens of dynamic compositionality
developed in Sections –, showing that the observed obstruction trajectories
are a direct consequence of order sensitivity between learned sub-operators
inside Transformer blocks.

Reframing the obstruction proxy

In the v1 paper, the Čech obstruction proxy was introduced as a metricized
residual over local overlap patterns (triangles and squares) in a computational
diagram. Operationally, this proxy was computed as the average of normal-
ized commutator energies between pairs of sub-operators within each encoder
block. Although motivated using descent and gluing language, the proxy
itself is a purely forward-pass measurement:

Comm(T1, T2; x) =
∥T1(T2(x))− T2(T1(x))∥2

2
∥x∥2

2 + ε
.

Sections – showed that this quantity can be understood more concretely
as a measure of order sensitivity between learned sub-operator deformations.
High commutator energy indicates that applying one sub-operator signif-
icantly alters the effective behavior of another, making learning dynamics
sensitive to update order. Low commutator energy indicates approximate
exchangeability of updates and improved dynamic compositionality.
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Why obstruction grows in baseline Transformers

In the v1 WikiText-103 experiments, the baseline Transformer exhibited
steadily increasing obstruction over training, coinciding with degraded vali-
dation performance. From the dynamic compositionality perspective, this be-
havior is expected. As depth increases, repeated interactions between global
attention operators and local nonlinear feed-forward networks amplify order
sensitivity. Small mismatches in learned deformations accumulate across
layers, leading to increasing gradient interference and unstable optimization.

The obstruction proxy thus tracks a failure mode intrinsic to vanilla Trans-
former learning dynamics: although the forward graph is statically compo-
sitional, the learned updates induced by different sub-operators are poorly
coordinated on the representation manifold visited during training.

GT-Lite: partial mitigation via local smoothing

GeomTrans-Lite consistently reduced obstruction early in training but ex-
hibited gradual obstruction drift at longer horizons. This behavior follows
directly from its mechanism. The local geometric smoothing operator intro-
duced in GT-Lite acts as a low-pass filter on representations, reducing sharp
state dependence and improving compatibility between attention and feed-
forward updates. However, because smoothing is local and does not align
representations globally, order sensitivity can re-emerge as depth and task
complexity increase.

Thus, GT-Lite improves dynamic compositionality relative to a baseline
Transformer, but does not fully control long-range accumulation of order
sensitivity.

GT-Full: enforcing dynamic compositionality through geometry

In contrast, the v1 experiments showed that GeomTrans-Full maintains low
and remarkably stable obstruction throughout training across depths and
scales. Sections and explain why this behavior is structurally inevitable.
By introducing explicit geometric transport via simplicial message passing,
GT-Full aligns representation geometry across tokens and layers. This align-
ment reduces curvature mismatch between learned deformations induced by
attention and feed-forward operators, ensuring that their interactions remain
approximately exchangeable.

From this perspective, the stability of the obstruction proxy in GT-Full is
not a secondary effect, but a direct manifestation of architectural control over
dynamic compositionality.

GT-MoE: conditional computation and intermediate regimes

The v1 results for GT-MoE revealed intermediate obstruction behavior: lower
than the baseline Transformer, but higher and more variable than GT-Full.
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This is also consistent with the mechanistic analysis. Mixture-of-experts rout-
ing isolates incompatible deformations into separate experts, reducing direct
interference. However, routing decisions are themselves state-dependent, in-
troducing branching behavior that preserves some degree of order sensitivity.

GT-MoE therefore occupies a distinct regime: it improves learning dy-
namics by conditional specialization, but does not fully eliminate order sensi-
tivity in the way geometric alignment does.

SUMMARY. Viewed through the lens of dynamic compositionality, the
empirical findings of the v1 paper admit a unified explanation. The Čech
obstruction proxy measures order sensitivity between learned sub-operators.
Baseline Transformers accumulate this order sensitivity with depth, GT-Lite
mitigates it locally, GT-MoE mitigates it conditionally, and GT-Full sup-
presses it globally through explicit geometric transport. This reinterpretation
completes the explanatory arc from the instrumental probes introduced in v1
to the code-level mechanisms analyzed in this paper.

Conclusion: Dynamic Compositionality as a First-Class Design Prin-
ciple

This paper set out to explain, at a code- and mechanism-level, the empir-
ical phenomena reported in the v1 Diagrammatic Backpropagation (DB)
and Geometric Transformer (GT) study. Our central claim is that the ob-
served behavior of GT models can be understood through a single unifying
concept: dynamic compositionality. While Transformer architectures are stat-
ically compositional by construction, their learning dynamics under gradient
descent are not guaranteed to preserve compatibility between interacting sub-
operators. The resulting order sensitivity gives rise to gradient interference,
instability, and degraded generalization.

We showed that the commutator-energy probe introduced in v1 is a con-
crete, forward-only measurement of this order sensitivity. Despite its simplic-
ity, this probe captures a fundamental failure mode of deep learning systems:
learned sub-operators can act as poorly coordinated deformations of a shared
representation space. When such incompatibilities accumulate across depth
and training time, optimization becomes fragile. The v2 analysis demon-
strated that this behavior arises naturally even in minimal residual MLPs and
becomes amplified in Transformer-scale architectures.

By unpacking the actual DB+GT implementation line by line, we clar-
ified how different architectural choices control dynamic compositionality
in distinct ways. GT-Lite reduces order sensitivity through local geomet-
ric smoothing, which regularizes representations but does not fully prevent
long-range accumulation of incompatibility. GT-MoE mitigates interference
through conditional routing, isolating deformations into specialized experts
while introducing additional state-dependent branching. GT-Full achieves the
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strongest and most stable reduction in commutator energy by aligning repre-
sentation geometry globally via explicit geometric transport. This alignment
allows expressive global structure to coexist with stable learning dynamics,
explaining the distinctive empirical signature of GT-Full observed in v1.

From a broader perspective, Diagrammatic Backpropagation can be
viewed as a control mechanism for learning-time compositionality. Rather
than assuming functoriality or commutativity of sub-operators, DB measures
the degree to which learned updates are exchangeable on the data manifold
and penalizes destructive order sensitivity. This reframes backpropagation not
merely as a gradient computation, but as a coordination problem among in-
teracting modules. The simplicity of the commutator-energy probe makes it a
practical diagnostic for debugging architectures, comparing inductive biases,
and guiding the design of new model components.

Finally, this work suggests a shift in how we reason about deep learning
architectures. Expressivity alone is insufficient; the ability of a model to learn
coherently is equally critical. Dynamic compositionality provides a language
for articulating this requirement, and DB+GT offers a concrete instantia-
tion of how it can be measured and enforced in practice. We hope that this
handbook-style exposition will enable others to extend, adapt, and build upon
DB+GT, and that future architectures will increasingly treat learning-time
compositionality as a first-class design principle.

Summary and Future Work

In this chapter, we introduced the concept of dynamic composition, a way to
instrument the internal workings of deep learning networks such as Trans-
formers. We showed that our commutator energy metric was reduced signifi-
cantly more by Geometric Transformer models than by regular Transformers.
We also dove into the actual Python code to see how GTs work, and as-
cribed the improved performance to the specific types of simplicial message
passing that occurs in the geometric layer.

One can go far deeper in the analysis of GT models, specifically as it
relates to their mean-field behavior, that is, as the width of the models is
increased to ∞, we can model their asymptotic behavior. This type of anal-
ysis reveals exactly what GTs optimize that regular Transformer models are
unable to do. We turn to this analysis in the next chapter.
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Algorithm 6: Layerwise Commutator-Energy Instrumentation (Čech Obstruc-
tion Proxy)

Input: Model M with encoder layers {Lℓ}L
ℓ=1; input tokens s ∈ NB×T;

small constant ε > 0
Output: Scalar obstruction score Obs(M; s) and per-layer scores
{Obsℓ}L

ℓ=1
1: Set M to eval mode; save previous training flag.
2: x ← PosEnc(TokEmb(s)) ▷ x ∈ RB×T×d

3: ObsList← [ ]

4: for ℓ = 1 to L do
5: xin ← x
6: denom← MSE(xin) + ε ▷ scale normalization

7: // Define sub-operators as in the actual forward block (including
residual & LN).

8: if Lℓ is a baseline Transformer encoder block then
9: A(z)← LN1(z + Drop(Attn(z)))

10: F(z)← LN2(z + FF(z))
11: Obsℓ ← MSE(A(F(xin))−F(A(xin)))

denom
12: x← Lℓ(x)
13: else if Lℓ is GT-Lite (attention + conv smoothing + FF) then
14: A(z)← LNattn(z + Drop(Attn(z)))
15: C(z)← LNconv(z + α ·Conv(z)) ▷ α ≈ 0.2
16: F(z)← LN f f (z + FF(z))

17: Obsℓ ← 1
3 denom

(
MSE(A(C(xin)) − C(A(xin))) +

MSE(C(F(xin))− F(C(xin))) + MSE(A(F(xin))− F(A(xin)))
)

18: x← Lℓ(x)
19: else if Lℓ is GT-Full (attention + FF + geometric transport) then
20: A(z)← LNattn(z + Drop(Attn(z)))
21: F(z)← LN f f (z + FF(z))
22: G(z)← GeomTransport(z) ▷ flatten→ message pass→

reshape
23: Obsℓ ← 1

3 denom

(
MSE(A(F(xin)) − F(A(xin))) +

MSE(F(G(xin))− G(F(xin))) + MSE(A(G(xin))− G(A(xin)))
)

24: x← Lℓ(x)
25: else if Lℓ is GT-MoE (attention + MoE mixing) then
26: A(z)← LNattn(z + Drop(Attn(z)))
27: M(z)← LN f f (z + MoE(z)) ▷ gating + top-k + experts

28: Obsℓ ← MSE(A(M(xin))−M(A(xin)))
denom

29: x← Lℓ(x)
30: else
31: Obsℓ ← NaN; x← Lℓ(x)
32: end if
33: ObsList.append(Obsℓ)
34: end for
35: Obs(M; s)← mean

(
{Obsℓ : Obsℓ is finite}

)
36: Restore training mode; return Obs(M; s), ObsList.
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Algorithm 7: Diagrammatic Backpropagation Training Loop (code-faithful)
Input: Model Mθ (Transformer or GT variant); dataset iterator B yielding

minibatches (s, y); optimizer ADAMW; steps T; warmup steps Tw;
weights λdb, λgeom; clipping norm c; small constant ε

Output: Trained parameters θ

1: Initialize: set global step t← 0
2: for t = 1 to T do
3: Sample minibatch (s, y) ∼ B ▷ s: tokens (or inputs), y: labels/targets

4: // 1) Forward pass for the primary task
5: ŷ← Mθ(s)
6: Ltask ← LossTask(ŷ, y) ▷ e.g., cross-entropy for LM

7: // 2) Optional DB control loss (commutator-energy terms)
8: Ldb ← 0
9: if λdb > 0 then

10: (Obs, {Obsℓ})← COMMPROBE(Mθ , s; ε) ▷ Algorithm 6
11: Ldb ← Obs ▷ scalar average over layers; can also weight

layers/heads
12: end if

13: // 3) Optional diagrammatic curvature loss (triangle/square resid-
uals)

14: Lgeom ← 0
15: if λgeom > 0 and (s, y) includes a compiled diagram/simplicial in-

stance then
16: ▷ For diagram benchmarks, s contains (D, x) with constraints.
17: Lgeom ← CURVATUREENERGY(Mθ , s) ▷ triangle/square

residual energy; cf. v1 Alg. (learned energy)
18: end if

19: // 4) Warmup schedule for auxiliary terms (optional but common)
20: λdb

t ← λdb ·min(1, t/Tw)

21: λ
geom
t ← λgeom ·min(1, t/Tw)

22: // 5) Total loss and parameter update
23: L ← Ltask + λdb

t Ldb + λ
geom
t Lgeom

24: θ ← θ − η∇θL ▷ implemented via AdamW step
25: Clip gradients: ∥∇θL∥ ≤ c
26: Optional: normalize selected parameter groups (e.g., edge transforms

/ relation embeddings)
27: end for
28: return θ
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Algorithm 8: GT-Full Geometric Transport Operator G (Simplicial/Graph
Message Passing)

Input: Token states z ∈ RB×L×d; fixed adjacency edge_index∈
N2×Emax over positions 0, . . . , Lmax − 1; relation ids rel_ids∈
NEmax ; domain ids dom_ids∈ NEmax ; depth K; learnable parameters
θG

Output: Transported token states G(z) ∈ RB×L×d

1: // 1) Flatten batch and restrict edges to current sequence length
2: h← reshape(z, (B·L)× d)
3: m← {e ∈ [1..Emax] : edge_index[0, e] < L} ▷ mask endpoints

within L
4: E ← edge_index[:, m]; r ← rel_ids[m]; dID ←
dom_ids[m]

5: // 2) Iterate K rounds of geometric message passing
6: for k = 1 to K do
7: Initialize message accumulator M← 0 ∈ R(B·L)×d

8: for each directed edge (u← v) in E do
9: e← (u, v)

10: Edge embedding: eemb ← Embrel(re) + Embdom(dIDe)

11: Compute message: mv→u ← ϕθ(hv, hu, eemb) ▷ e.g., MLP on
(hv, hu, eemb) or attention-style score

12: Mu ← Mu + mv→u

13: end for
14: Degree normalize: M← DegNorm(M, E)
15: Update rule: h← Updateθ(h, M) ▷ e.g., GRUCell/residual MLP +

LayerNorm
16: end for

17: // 3) Reshape back to token grid
18: G(z)← reshape(h, B× L× d)
19: return G(z)
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Algorithm 9: GT-Lite Local Geometric Smoothing Operator C (1D Conv +
Residual + LN)

Input: Token states z ∈ RB×L×d; convolution weights θC; smoothing scale
α (e.g., 0.2); LayerNorm parameters θLN

Output: Smoothed token states C(z) ∈ RB×L×d

1: // 1) Convert to Conv1d layout and apply local neighborhood mixing
2: z⊤ ← transpose(z, (B, L, d)→ (B, d, L))
3: u⊤ ← Conv1DθC (z

⊤) ▷ kernel size 3, padding 1, output shape (B, d, L)
4: u← transpose(u⊤, (B, d, L)→ (B, L, d))

5: // 2) Residual update and normalization
6: z′ ← z + α · u
7: C(z)← LayerNormθLN

(z′)
8: return C(z)

Algorithm 10: GT-MoE Mixing Operator M (Gating + Top-k + Expert Ag-
gregation)

Input: Token states z ∈ RB×L×d; experts {Ee}E
e=1; gating network gθ :

Rd → RE; optional top-k value k; LayerNorm parameters θLN

Output: Mixed token states M(z) ∈ RB×L×d

1: // 1) Compute gating probabilities per token
2: ℓ← gθ(z) ▷ ℓ ∈ RB×L×E (gate logits)
3: p← softmax(ℓ, over experts) ▷ p ∈ RB×L×E

4: // 2) Optional sparsification (top-k routing) and renormalization
5: if k < E then
6: (v, I)← TopK(p, k) ▷ v, I ∈ RB×L×k

7: p̃← 0 ▷ initialize p̃ ∈ RB×L×E

8: p̃[·, ·, I]← v ▷ scatter top-k weights into expert slots
9: p← p̃/

(
∑E

e=1 p̃e + ϵ
)

▷ renormalize per token
10: end if

11: // 3) Apply experts and aggregate weighted outputs
12: u← 0 ∈ RB×L×d

13: for e = 1 to E do
14: u← u + pe ⊙ Ee(z) ▷ pe broadcast to shape (B, L, d); ⊙

elementwise
15: end for

16: // 4) Residual update and normalization
17: z′ ← z + u
18: M(z)← LayerNormθLN

(z′)
19: return M(z)





Mean-Field Theory of Geometric Transformers

We introduce commutator energy—implemented as a scale-invariant
delta-commutator ratio—as a quantitative order parameter for learning-time
compositionality in deep neural networks. Empirically, this obstruction-style
diagnostic predicts optimization behavior across Transformer architectures,
sharply distinguishing PostLNResidual, Pre-LN, and Geometric Transformer
(GT) variants. We develop a mean-field analysis showing how normalization
placement, residual structure, and geometric alignment mechanisms control
the expected non-commutativity of learned patch updates. We further connect
GT transport to harmonic analysis on token geometry: simplicial message
passing admits a Laplacian/diffusion interpretation that suppresses high-
frequency variation in the residual stream. This motivates a complementary
spectral diagnostic based on Dirichlet energy, which we log alongside com-
mutator obstruction and persistent-homology probes of attention geometry.
In data-limited WikiText-103 and WikiText-2 seq2seq regimes (1000 training
sentences, 1000 optimization steps), GT variants achieve substantially lower
validation cross-entropy/perplexity and ∼ 4–6× higher token accuracy than
both Pre-LN and Post-LN Transformer baselines, while exhibiting reduced
obstruction and lower encoder-output Dirichlet energy. Together, the theory
and instrumentation provide a principled framework for designing com-
positional architectures whose internal operators remain compatible under
training.

Introduction

Modern neural architectures, such as the Transformer, are explicitly compo-
sitional: they are built by stacking reusable sub-operators (attention, feed-
forward maps, normalization layers, residual connections) into blocks and
then composing blocks into deep networks. This static compositionality is
visible in the forward computation graph. Yet, the learning dynamics induced
by gradient descent need not respect this modular structure. In practice, train-
ing can become highly sensitive to how sub-operator updates interact on the
representations visited during optimization, leading to unstable learning,
brittle depth/context scaling, and poor sample efficiency.
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DYNAMIC COMPOSITIONALITY AND COMMUTATOR ENERGY. We call
a model dynamically compositional if the learning-induced deformations of
its sub-operators are mutually compatible on the training trajectory, so that
training is not overly sensitive to the effective order in which sub-operator
updates interact. We operationalize failure of dynamic compositionality using
a forward-pass diagnostic based on commutators. Given two patch maps
T1, T2 acting on a shared residual stream x, we measure order sensitivity via
commutator energy. In practice we use a scale-invariant delta-commutator
ratio that removes the identity stream:

Comm∆(T1, T2; x) =
∥∆12(x)− ∆21(x)∥2

2
∥∆12(x)∥2

2 + ∥∆21(x)∥2
2 + ε

, (2)

∆12(x) = T1(T2(x))− x, (3)

∆21(x) = T2(T1(x))− x. (4)

Low commutator energy indicates approximate exchangeability of local
updates on the representations encountered during training; high commutator
energy indicates order-sensitive interference.

GEOMETRIC TRANSFORMERS AND A SPECTRAL VIEW OF TRANS -
PORT. Diagrammatic Backpropagation (DB) and a family of Geometric
Transformers (GTs) were introduced in previous chapters. Beyond task-level
metrics, we introduced instrumental probes combining algebraic diagnostics
inspired by Čech cohomology 55, enabling direct measurement of (i) local 55 Raoul Bott and Loring W. Tu. Differential

Forms in Algebraic Topology. Springer,
1982; and Robert Ghrist. Elementary
Applied Topology. Createspace, 2014

operator compatibility and (ii) global attention geometry. A code-level mech-
anisms analysis was given in the previous chapter. In this chapter, we unify
and extend these ideas with a mean-field theory of commutator energy across
normalization regimes (PostLNResidual vs. Pre-LN) and GT alignment
mechanisms.

A central new ingredient is a harmonic-analysis interpretation of GT-Full:
simplicial message passing admits a Laplacian/diffusion viewpoint on a token
graph, so transport acts as a learned low-pass filter that suppresses high-
frequency variation in the residual stream. This motivates a complementary
spectral diagnostic: the Dirichlet energy of encoder representations on the to-
ken graph. Together, commutator obstruction (order sensitivity) and Dirichlet
energy (spectral roughness) provide a practical bridge between architectural
design and learning dynamics.

Čech-style obstruction proxy

Performance curves alone do not explain why some architectures learn re-
liably and sample-efficiently while others plateau or become unstable. We
therefore introduce a computable proxy for local-to-global inconsistency. We
treat each encoder block as a collection of local “patch maps” (e.g., attention
A, feed-forward F, and in GT variants an additional geometric operator C or
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transport operator G∆) acting on the shared residual stream. The layer-level
Čech obstruction proxy is the average delta-commutator ratio over relevant
patch pairs; the model-level proxy is the average over encoder layers. The
metrics we use for each model are summarized in the table below, computed
in evaluation mode to remove stochastic effects from dropout. This proxy is a
metricized Čech-1 inconsistency: it measures whether locally defined updates
can be glued into a globally coherent transformation on the overlap interface.

Model Commutator Energy
Transformer average of Comm∆(A, F; x)

GT-Lite average of Comm∆(A, C; x), Comm∆(C, F; x), Comm∆(A, F; x)
GT-Full average of Comm∆(A, F; x), Comm∆(F, G∆; x), Comm∆(A, G∆; x)

Table 3: Commutator Energy Met-
rics for Different Transformer
Models.

Why a spectral diagnostic: Dirichlet energy on token geometry

The Laplacian view of GT suggests that geometric transport should reduce
high-frequency variation of representations over the token graph. We there-
fore log a simple Dirichlet-energy diagnostic at the encoder output:

EL(V) = tr(V⊤LV) =
1
2 ∑

(u,v)∈E
∥Vu −Vv∥2

2,

normalized to be comparable across length and width. Low Dirichlet energy
indicates smoothness on token geometry (a diffusion/low-pass signature),
while high Dirichlet energy indicates roughness and potential instability. In
the data-limited regimes studied in this paper, Dirichlet energy complements
the commutator obstruction proxy by isolating spectral roughness effects
from operator-order interference.

A Minimal Demonstration: Residual MLPs on Two Moons

To illustrate that commutator energy is not specific to Transformers, we
present a minimal demonstration using a residual MLP trained on the two-
moons task. Although all models reach perfect classification accuracy, their
internal dynamics differ sharply: the baseline residual MLP exhibits increas-
ing commutator energy during training, while GT-Lite maintains substantially
lower obstruction and GT-Full achieves the lowest and most stable commu-
tator energy. This example highlights that dynamic compositionality failure
is a general phenomenon of gradient-based learning in compositional archi-
tectures, and that geometric alignment mechanisms can mitigate it even when
task metrics saturate.

Empirical preview: data-limited regimes reveal clear separation

A recurring theme in this paper is that data-limited regimes expose architecture-
dependent differences that are not visible when data and compute are abun-
dant. In controlled experiments on WikiText-103 and WikiText-2 prefix→suffix
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seq2seq tasks with ntrain = 1000 sentences and a fixed optimization bud-
get (1000 steps), GT variants achieve dramatically lower validation cross-
entropy/perplexity and ∼ 4–6× higher token accuracy than both PostL-
NResidual and Pre-LN Transformers. These gains co-occur with reduced
Čech obstruction and lower encoder-output Dirichlet energy, providing direct
empirical support for the theory: geometric transport behaves like a learned
diffusion regularizer on token geometry that stabilizes the composition of
local updates.

Results: obstruction trajectories explain stability

Obstruction trajectories provide a mechanistic explanation for stability and
sample efficiency. Baseline Transformers can accumulate increasing ob-
struction over training, indicating growing loop inconsistency among local
updates. GT-Lite often reduces obstruction early but can exhibit drift; GT-
Full maintains low and more stable obstruction by explicit transport. These
patterns align with the mean-field theory developed in later sections and with
the spectral/Dirichlet view: transport suppresses high-frequency instability
modes on token geometry, reducing order sensitivity between patch updates
and improving learning dynamics.

EMPIRICAL PREVIEW. Rather than emphasizing long-run benchmark
curves, we focus on controlled, data-limited regimes in which architec-
tural differences are amplified and can be mechanistically interpreted. Sec-
tions and summarize results on WikiText-103 and WikiText-2 with matched
budgets and full instrumentation (task metrics, Čech obstruction, topology
probes, and Dirichlet energy), providing a compact empirical anchor for the
mean-field and spectral analyses developed later.

Model and Assumptions

Our goal is to analyze the learning-time non-commutativity of compositional
neural network blocks through the lens of commutator energy. To this end,
we adopt a simplified but standard mean-field setting that allows explicit
calculation and asymptotic reasoning, while remaining faithful to the archi-
tectures studied empirically in earlier sections.

We use a scale-invariant delta-commutator ratio that removes the identity
stream and normalizes by the residual update magnitudes:

Comm∆(T1, T2; x) =
∥∆12(x)− ∆21(x)∥2

2
∥∆12(x)∥2

2 + ∥∆21(x)∥2
2 + ε

, (5)

∆12(x) = T1(T2(x))− x, ∆21(x) = T2(T1(x))− x. (6)

This ratio is invariant to global rescaling of the residual updates and avoids
domination by the shared identity path.
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Residual Composition Model

We consider neural networks composed of residual blocks acting on represen-
tations x ∈ Rd. Each block defines a transformation of the form

Ti(x) = x + ∆i(x), (7)

where ∆i : Rd → Rd is a learned nonlinear map. This formulation
encompasses residual multilayer perceptrons, Transformer attention and
feed-forward sublayers, and Geometric Transformer (GT) components used
throughout this work.

Given two such blocks Ti and Tj, we study the discrepancy between their
two possible compositions:

Ti(Tj(x)) and Tj(Ti(x)). (8)

Exact equality corresponds to commutativity of the two transformations on
input x. In practice, learned blocks need only commute approximately; the
degree of non-commutativity is quantified by the commutator energy.

Random Feature Mean-Field Setting

We analyze commutator energy in the infinite-width limit under standard
mean-field assumptions. Specifically, we assume:

(A1) W IDTH SCALING . The representation dimension d → ∞, while
depth remains fixed. Weight matrices are scaled so that activations have O(1)
variance.

(A2) RANDOM INITIALIZATION . Each ∆i is parameterized by an inde-
pendent random network at initialization. For concreteness, we consider

∆i(x) = Wi ϕ(x), (9)

where Wi ∈ Rd×d has i.i.d. entries with zero mean and variance σ2/d, and
ϕ(·) is a pointwise nonlinearity such as ReLU or GELU. Different blocks
i ̸= j have independent weights.

(A3) INPUT DISTRIBUTION . Inputs x are drawn from a distribution with
bounded second moments, typically assumed isotropic in the mean-field
limit. Expectations are taken with respect to both input randomness and
weight initialization.

(A4) LAYER NORMALIZATION VARIANTS . We consider two normaliza-
tion placements:

• Post-LN: normalization applied after residual addition,

TPost
i (x) = LN(x + ∆i(x));
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• Pre-LN: normalization applied before the nonlinear map,

TPre
i (x) = x + ∆i(LN(x)).

These correspond to the Post-LN and Pre-LN Transformer architectures.

(A4’) BLOCK-LEVEL NORMALIZATION CONVENTIONS . We distin-
guish PostLNResidual blocks from the simplified “Post-LN” toy model. A
block consists of K patch operators {Tk}K

k=1 (e.g., attention, feed-forward,
transport), acting on a shared residual stream.

• PostLNResidual: each patch applies LN after residual addition,

x 7→ LN
(

x + ∆k(x)
)
, k = 1, . . . , K.

• PreLN: each patch applies LN before its update and leaves the residual
stream unnormalized within the block,

x 7→ x + ∆k(LN(x)), k = 1, . . . , K,

with an optional final normalization outside the block (as in standard
PreLN Transformers).

This matches the implementations used in our GT-Lite, GT-Full, and GT-
MoE experiments.

Local Linearization and Jacobian Structure

We will use Ti, Tj to denote either entire residual blocks or patch maps within
a block (e.g., attention A, feed-forward F, smoothing C, transport G∆, or
MoE mixing M), since our obstruction proxy is measured at the patch level.

To analyze commutator energy, we study the local linearization of each
block. Let Ji(x) = ∇xTi(x) denote the Jacobian of Ti at x. For residual
blocks of the form above,

Ji(x) = I +∇x∆i(x). (10)

Under assumptions (A1)–(A3), the Jacobians ∇x∆i(x) converge in distri-
bution to random matrices with controlled spectral statistics, as in classical
mean-field analyses.

Using a first-order expansion, the commutator between two blocks can be
approximated as

Ti(Tj(x))− Tj(Ti(x)) ≈
(

Ji(x)Jj(x)− Jj(x)Ji(x)
)

δ, (11)

for small perturbations δ around x. This expression makes explicit that com-
mutator energy measures the non-commutativity of Jacobians induced by
distinct learned transformations.
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Scope and Limitations

Our analysis focuses on initialization and early-training regimes where mean-
field approximations are valid. We do not claim exact quantitative predictions
for finite-width networks or late-stage training. Rather, the goal is to identify
qualitative differences between architectures—Post-LN, Pre-LN, and GT-
style alignment mechanisms—in terms of their expected commutator energy
and its scaling with depth and normalization.

Empirical results demonstrate that these qualitative predictions persist well
beyond the strict mean-field regime.

Expected Commutator Energy at Initialization

In this section we analyze the expected commutator energy between residual
blocks at random initialization under the mean-field assumptions. The goal is
to establish that nonzero commutator energy is a generic property of compo-
sitional residual networks, and to characterize how its magnitude depends on
architectural choices such as normalization placement.

Definition of Commutator Energy

Given two residual blocks

Ti(x) = x + ∆i(x), Tj(x) = x + ∆j(x),

we define the commutator residual at input x as

Rij(x) = Ti(Tj(x))− Tj(Ti(x)). (12)

The commutator energy is then given by

Eij(x) = E
[
∥Rij(x)∥2

2
]
, (13)

where the expectation is taken over both input randomness and random
initialization of the network parameters.

Exact commutativity corresponds to Eij(x) = 0. Our objective is to
understand when Eij(x) is generically nonzero and how it scales in the mean-
field limit.

First-Order Expansion

Expanding the compositions explicitly yields

Ti(Tj(x)) = x + ∆j(x) + ∆i
(

x + ∆j(x)
)
, (14)

Tj(Ti(x)) = x + ∆i(x) + ∆j
(

x + ∆i(x)
)
. (15)

Subtracting gives

Rij(x) = ∆i
(

x + ∆j(x)
)
− ∆j

(
x + ∆i(x)

)
+ ∆j(x)− ∆i(x). (16)
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Under the mean-field assumption that ∆i(x) and ∆j(x) are O(1) but small
relative to x in the large-width limit, we linearize ∆i and ∆j around x:

∆i(x + ∆j(x)) ≈ ∆i(x) + Ji(x)∆j(x),

where Ji(x) = ∇x∆i(x) is the Jacobian.
Substituting and simplifying, first-order terms cancel and we obtain

Rij(x) ≈ Ji(x)∆j(x)− Jj(x)∆i(x). (17)

This expression shows that commutator energy arises from the mismatch
between how each block responds to the other’s perturbation.

Jacobian Commutator Approximation

Using ∆k(x) ≈ Jk(x) x at initialization, Equation (17) can be further approx-
imated as

Rij(x) ≈
(

Ji(x)Jj(x)− Jj(x)Ji(x)
)

x. (18)

Thus, up to first order, commutator energy measures the non-commutativity
of the Jacobian matrices associated with distinct residual blocks.

Expected Non-Commutativity

Under assumptions (A1)–(A3), the Jacobians Ji(x) and Jj(x) are independent
random matrices whose entries have zero mean and variance controlled by
the activation function and weight scaling. For two independent random
matrices drawn from such distributions, the expected Frobenius norm of their
commutator is generically nonzero:

E
[
∥Ji Jj − Jj Ji∥2

F
]
> 0. (19)

Moreover, this expectation increases with the variance of the Jacobian
entries, which in turn depends on the variance of the input x and the non-
linearity ϕ. As a consequence, even at initialization, compositional residual
blocks are expected to exhibit nonzero commutator energy unless additional
structure or constraints are imposed.

Implications

This analysis establishes that commutator energy is not an artifact of training,
optimization, or specific architectures such as attention. Rather, it is a generic
feature of composing independently parameterized residual transformations
in high dimensions. Normalization and architectural alignment mechanisms
influence commutator energy by modifying the statistics of the Jacobians
Ji(x) and their interactions.

In the next section, we show how Pre-LN normalization alters these statis-
tics and provably reduces expected commutator energy relative to Post-LN
architectures.
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Effect of Layer Normalization on Expected Commutator Energy

We now analyze how layer normalization (LN) affects the expected com-
mutator energy. Our goal is to show that LN modifies the statistics of the
Jacobians entering the commutator term and thereby reduces expected non-
commutativity, providing a theoretical explanation for the empirical stability
of Pre-LN architectures in our experiments.

Layer Normalization as a Jacobian Rescaling Operator

Layer normalization maps an input vector x ∈ Rd to

LN(x) =
x− µ(x)1

σ(x)
, (20)

where µ(x) and σ(x) denote the mean and standard deviation of the coordi-
nates of x. In the mean-field limit d → ∞, µ(x) concentrates around zero

and σ(x) concentrates around
√

E[x2
i ].

The Jacobian of LN has the form

JLN(x) =
1

σ(x)

(
I − 1

d
11⊤ − (x− µ(x)1)(x− µ(x)1)⊤

d σ(x)2

)
, (21)

which acts approximately as an isotropic rescaling operator on directions
orthogonal to 1 in high dimensions. Crucially, LN suppresses variations in
the magnitude of inputs entering subsequent nonlinear transformations.

Post-LN Residual Blocks

In Post-LN architectures, each residual block has the form

TPost
i (x) = LN(x + ∆i(x)). (22)

The Jacobian of this transformation is

JPost
i (x) = JLN(x + ∆i(x))

(
I +∇x∆i(x)

)
. (23)

Because normalization is applied after the residual addition, the Jacobian
∇x∆i(x) enters multiplicatively inside JPost

i , retaining its full variance and
directional structure. Consequently, the Jacobian commutator

JPost
i JPost

j − JPost
j JPost

i

inherits substantial variance from the unnormalized nonlinear maps, leading
to large expected commutator energy.

This explains why Post-LN Transformers exhibit unstable learning dynam-
ics and rapid accumulation of obstruction in practice.
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Pre-LN Residual Blocks

In Pre-LN architectures, normalization is applied before each nonlinear map:

TPre
i (x) = x + ∆i(LN(x)). (24)

The Jacobian now takes the form

JPre
i (x) = I +∇z∆i(z) JLN(x), z = LN(x). (25)

Here, JLN(x) acts as a variance-controlling operator that rescales the input to
∆i before the nonlinear transformation is applied.

As a result, the effective Jacobians ∇z∆i(z)JLN(x) have reduced variance
compared to the Post-LN case. Substituting into the commutator expres-
sion (18) yields

JPre
i JPre

j − JPre
j JPre

i = (26)(
∇∆i JLN

)(
∇∆j JLN

)
− (27)(

∇∆j JLN
)(
∇∆i JLN

)
, (28)

which is suppressed by the normalization-induced scaling of JLN.

Qualitative Reduction of Expected Commutator Energy

Under mean-field assumptions, the variance reduction introduced by Pre-LN
leads to a strict decrease in the expected commutator energy:

E
[
∥JPre

i JPre
j − JPre

j JPre
i ∥2

F
]
< (29)

E
[
∥JPost

i JPost
j − JPost

j JPost
i ∥2

F
]
. (30)

This provides a theoretical explanation for the improved stability of Pre-LN
and observed empirically in our commutator-energy measurements.

However, normalization alone does not enforce alignment between the
directions of distinct Jacobians. Consequently, Pre-LN reduces but does not
eliminate expected non-commutativity, consistent with the residual commuta-
tor energy observed in practice.

Interpretation

From the perspective of commutator energy, Pre-LN normalization acts as
a magnitude control mechanism: it rescales the inputs to each sub-operator
and suppresses variance-driven instability. It does not, however, impose di-
rectional compatibility between learned transformations. In the next section,
we show that Geometric Transformer architectures further reduce commu-
tator energy by explicitly aligning sub-operator effects through geometric
transport, providing a principled extension beyond normalization.
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Geometric Alignment Beyond Normalization

We showed previously that Pre-LN architectures reduce expected commutator
energy by controlling the magnitude of Jacobians entering residual blocks.
However, empirical results consistently demonstrate that normalization alone
does not eliminate learning-time non-commutativity. In this section, we ar-
gue that further reduction of commutator energy requires explicit control
over the directional structure of learned transformations. Geometric Trans-
former (GT) architectures achieve this through alignment mechanisms that go
beyond normalization.

Why Normalization Is Insufficient

Layer normalization rescales inputs to each nonlinear map, suppressing vari-
ance and stabilizing gradient flow. However, normalization acts isotropically
in the space orthogonal to the all-ones vector. As a result, it does not con-
strain the relative orientations of Jacobians associated with distinct residual
blocks.

In terms of the Jacobian commutator

Ji Jj − Jj Ji,

normalization reduces the magnitude of both Ji and Jj, but leaves their eigen-
vectors and principal directions unconstrained. Consequently, while Pre-LN
reduces the overall scale of commutator energy, it cannot enforce approxi-
mate commutativity when Ji and Jj act in incompatible directions.

This observation explains why Pre-LN architectures exhibit improved
stability but still accumulate nonzero commutator energy over training.

Geometric Alignment as Directional Control

To further suppress commutator energy, it is necessary to align the directions
along which different residual blocks act. Geometric alignment refers to
architectural mechanisms that encourage learned transformations to operate
in compatible coordinate frames or along shared geometric structures.

Formally, consider the first-order commutator approximation

Rij(x) ≈ (Ji Jj − Jj Ji) x.

If Ji and Jj share approximately aligned eigenspaces, the commutator term
is suppressed even when the individual Jacobians have nontrivial magnitude.
Thus, alignment of Jacobian eigenspaces provides a distinct and complemen-
tary means of reducing commutator energy beyond variance control. Geomet-
rically, this corresponds to reducing curvature induced by incompatible local
coordinate frames on the representation manifold.
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Geometric Transport in GT Architectures

GT architectures implement geometric alignment through explicit transport
operators that propagate representations across a fixed relational or positional
structure. In the simplest case (GT-Lite), local smoothing encourages nearby
representations to evolve coherently, partially aligning the directions of
subsequent transformations. In the full GT architecture, message passing
over a graph or simplicial complex enforces consistency across overlapping
neighborhoods of representations. Importantly, alignment does not require
sub-operators to be equal or commute exactly; it only requires that their
induced deformations act in compatible directions on the data manifold.

From a Jacobian perspective, geometric transport introduces coupling
terms that bias ∇∆i(x) toward acting along shared subspaces across blocks.
This reduces directional mismatch between Ji and Jj, suppressing the commu-
tator even when normalization alone is insufficient.

GT-FULL TRANSPORT AS A RESIDUAL UPDATE . In GT-Full, the geo-
metric transport module is implemented as a residual message-passing stack.
We therefore model it as a delta transport operator

G∆(x) = GT(x)− x,

so that the block applies x 7→ x + G∆(·) (PreLN) or x 7→ LN(x + G∆(·))
(PostLNResidual). This avoids double-counting the identity stream in both
analysis and instrumentation.

Mean-Field Interpretation of Alignment

In the mean-field limit, geometric alignment can be interpreted as reducing
the variance of off-diagonal terms in the joint distribution of Jacobians.
Whereas Pre-LN reduces the variance of individual Jacobians, GT-style
alignment reduces their cross-covariance:

Cov(Ji, Jj) → aligned.

As a result, the expected Frobenius norm of the commutator decreases fur-
ther:

E
[
∥Ji Jj − Jj Ji∥2

F
]
≪ E

[
∥JPre

i JPre
j − JPre

j JPre
i ∥2

F
]
.

This qualitative inequality aligns with empirical observations across residual
MLPs, sequence-to-sequence models, and language modeling benchmarks.

Normalization vs. Alignment

Normalization alone cannot enforce approximate commutativity unless the
dominant eigenspaces of distinct Jacobians are already aligned by chance.
The distinction between normalization and alignment clarifies the relation-
ship between Pre-LN Transformers and GT architectures:
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• Normalization controls the scale of transformations and stabilizes gradi-
ent magnitudes.

• Alignment controls the directions of transformations and stabilizes their
composition.

Pre-LN addresses the former, while GT addresses both.

Architectural Mechanisms for Alignment in Geometric Transformers

We showed that Pre-LN primarily reduces commutator energy by controlling
the magnitude (variance) of Jacobians entering residual sublayers. We argued
that further suppression requires directional control: reducing mismatch
between the principal subspaces along which different sub-operators act. We
now summarize, at an architectural level, how Geometric Transformer (GT)
variants implement such alignment mechanisms.

OPERATOR DECOMPOSITION . We view a Transformer-style block as
the composition of sub-operators acting on a shared residual stream. Let A
denote the attention stage (including residual addition and normalization) and
F the feed-forward stage. GT variants insert additional operators that alter the
geometry of the representation space between A and F, yielding a block of
the form

x 7→ · · · ◦ F ◦ G ◦ A(x),

where G is a geometric coordination operator. The commutator-energy probe
evaluates order sensitivity between these operators (e.g., Ecomm(A, F; x)
and cross-terms involving G), and thus directly measures whether learned
deformations remain approximately exchangeable on the data manifold.

GT-L ITE : LOCAL SMOOTHING AS LOW-PASS ALIGNMENT. In GT-
Lite, G = C is a local smoothing operator (e.g., convolution or neighborhood
mixing). Smoothing suppresses high-frequency variation in the residual
stream, which reduces the sensitivity of downstream sub-operators to small
upstream perturbations. In Jacobian terms, smoothing acts as a contrac-
tion on unstable directions, effectively reducing the contribution of rapidly
varying eigenspaces to ∇∆(x). This partially aligns JA and JF by reducing
directional mismatch in the components that cause large commutators. Em-
pirically, this yields a substantial reduction in commutator energy relative to
vanilla Transformers, but can exhibit slow drift as depth and task complexity
increase.

GT-FULL : GEOMETRIC TRANSPORT AS COORDINATE-FRAME

ALIGNMENT. In GT-Full, G = G is an explicit transport operator im-
plemented via message passing over a fixed relational structure (graph or
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simplicial complex) on token positions. Transport couples neighboring rep-
resentations and propagates information in a shared geometric coordinate
system. This enforces consistency across overlapping neighborhoods and
biases the learned deformations induced by A and F to act in compatible sub-
spaces. At the Jacobian level, transport reduces cross-covariance mismatch
between JA and JF by aligning their dominant eigenspaces across tokens,
thereby suppressing JA JF − JF JA beyond what normalization alone can
achieve. This predicts the empirical signature that GT-Full maintains low and
stable commutator energy while still supporting rich global structure (e.g.,
nontrivial topological signatures).

GT-MOE: CONDITIONAL SPECIALIZATION VS . GEOMETRIC ALIGN-
MENT. In GT-MoE, G = M is a mixture-of-experts mixing operator whose
effective transformation depends on state-dependent routing. Routing can
reduce interference by allowing different experts to specialize, but introduces
additional branching sensitivity: small changes in the residual stream can
alter expert selection and hence the effective Jacobian of M. Consequently,
GT-MoE often occupies an intermediate regime: it improves dynamic com-
positionality relative to a baseline Transformer, but does not achieve the same
degree of directional alignment as explicit transport. Thus GT-MoE miti-
gates interference by partitioning computation, whereas GT-Full mitigates
interference by coordinating computation.

Lemma 2 (Commutator suppression by contractive transport). Assume
a PreLN patch map TA(x) = x + ∆A(LN(x)) with ∥J∆A∥ ≤ LA on
the support of training representations, and a transport patch TG(x) =

x + G∆(LN(x)) where G∆ is (locally) α-Lipschitz with α < 1. Then for any
x,

∥∆AG(x)− ∆GA(x)∥ ≤ c LA α ∥JLN(x)∥ ∥∆A(LN(x))∥
for a constant c depending on the smoothness of the maps. Consequently, the
delta-commutator ratio Comm∆(TA, TG; x) is O(α2) when α is small.

SUMMARY. Viewed through the lens of commutator energy, normaliza-
tion primarily controls the scale of Jacobians, while GT mechanisms control
their relative orientation. GT-Lite achieves partial alignment through local
smoothing, GT-Full achieves stronger alignment through explicit transport,
and GT-MoE achieves partial mitigation through conditional specialization.
This architectural taxonomy explains the qualitative ordering observed empir-
ically and motivates geometric alignment as a principled design objective for
suppressing learning-time non-commutativity.

Implications

Geometric alignment provides a principled explanation for why GT archi-
tectures consistently achieve lower and more stable commutator energy than
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both Post-LN and Pre-LN baselines. More broadly, it suggests that architec-
tural control of learning-time geometry is a necessary design principle for
robust dynamic compositionality in deep networks. While we do not provide
a complete closed-form mean-field computation for each GT mechanism,
the mean-field/Jacobian view predicts the observed ordering of commutator
energy trajectories across variants.

In the next section, we discuss the implications of commutator energy as
a theoretical order parameter and outline directions for further analysis and
architectural design.

Geometric Transport as Laplacian Smoothing and Harmonic Anal-
ysis

This section refines the mean-field view of Geometric Transformers (GT)
by connecting simplicial message passing to graph Laplacians and spectral
(harmonic) analysis on token geometry. The key idea is that GT transport
acts as a learned diffusion operator on a token-position graph (or more gen-
erally a simplicial complex), functioning as a low-pass filter that suppresses
high-frequency variation in the residual stream. This provides a principled
mechanism for reduced order-sensitivity and improved sample-efficient learn-
ing, especially in data-limited regimes.

From message passing to a Laplacian step

Consider a fixed graph G = (V , E) on token positions with adjacency A
and degree matrix D, and let L = D − A denote the (unnormalized) graph
Laplacian. For a node embedding matrix V ∈ Rn×d (with n = |V| tokens
and d hidden dimension), a prototypical linear message-passing update has
the form

V 7→ V + ∆G(V), (∆G(V))v = ∑
u:(u,v)∈E

W (Vu −Vv), (31)

where W ∈ Rd×d is a learnable channel-mixing matrix. The update (31) can
be written compactly as

V 7→ V − (LV)W⊤, (32)

up to conventions on left/right multiplication. Thus, GT transport contains (as
a special case) a Laplacian-driven smoothing step: it penalizes high variation
across adjacent token positions.

Our implemented GT-Full transport is nonlinear: each edge update is
produced by an MLP acting on (Vu, Vv) (and optional relation features),
and the total update sums messages on incident edges. Nonetheless, the
Laplacian picture remains valid under local linearization. Writing the GT
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transport increment as ∆G(V), the first-order Taylor approximation around a
representation V takes the form

∆G(V + δ) ≈ ∆G(V) + JG(V) δ, (33)

and, for many message-passing parameterizations, JG(V) is well-approximated
by a Laplacian-like operator composed with a learned channel map, yielding
a data-dependent diffusion:

V 7→ V − η Leff(V)V, (34)

where Leff(V) is a (representation-dependent) Laplacian or Laplacian-like
operator and η > 0 is an effective step size.

Spectral view: GT as a learned low-pass filter

Let L = UΛU⊤ be the eigendecomposition of the (symmetric) Laplacian.
In the linear regime (32), a single transport step acts on each Laplacian eigen-
mode as a multiplicative spectral filter. Ignoring cross-channel mixing for
clarity, the update can be viewed as

V 7→
(

I − ηL
)

V =⇒ V̂k 7→ (1− ηλk) V̂k, (35)

where V̂k denotes the projection of V onto eigenvector uk. Since λk in-
creases with frequency on the graph, high-frequency modes are damped more
strongly than low-frequency modes. Repeating transport for multiple GT
depth steps yields a polynomial (or, in the small-step limit, exponential) filter:

V 7→ g(L)V, g(λ) ≈ (1− ηλ)m ≈ e−ηmλ. (36)

This is precisely the heat-kernel/harmonic-analysis perspective: GT transport
performs diffusion on token geometry.

A SMOOTHNESS ENERGY. A standard measure of variation of embeddings
on a graph is the Dirichlet energy

EL(V) = tr(V⊤LV) =
1
2 ∑

(u,v)∈E
∥Vu −Vv∥2

2. (37)

Laplacian transport decreases EL(V) for sufficiently small step sizes. Thus
GT implements an explicit inductive bias toward representations that vary
smoothly over token positions.

Harmonic analysis on attention geometry

The preceding discussion used a fixed position graph (e.g., an undirected
chain) as in our GT-Full implementation. A more geometric viewpoint treats
attention as inducing a data-dependent graph on tokens. Let A(x) ∈ Rn×n
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denote an attention affinity matrix (averaged over heads and symmetrized),
and define an attention-Laplacian

LA(x) = DA(x)− 1
2
(

A(x) + A(x)⊤
)
, (38)

DA(x)ii = ∑
j

1
2 (Aij(x) + Aji(x)). (39)

A transport step of the form V 7→ V − ηLA(x)V performs diffusion along
attention neighborhoods, i.e., along the learned geometry of token inter-
actions. This motivates interpreting GT as performing a type of harmonic
analysis on attention geometry: transport suppresses high-frequency compo-
nents on the attention graph while preserving low-frequency (global/seman-
tic) structure. Although our current GT-Full uses a fixed positional graph,
this attention-induced Laplacian view clarifies why GT transport interacts
strongly with the topology of attention patterns measured by our persistent-
homology probes.

Connection to commutator energy and dynamic compositionality

Recall that our Čech-style obstruction proxy measures order sensitivity
among patch maps (attention A, feed-forward F, and a geometric operator
G in GT-Full). In the residual-update form, patch maps can be written as
Ti(x) = x + ∆i(x), and we use the scale-invariant delta-commutator ratio

Comm∆(T1, T2; x) =
∥∆12(x)− ∆21(x)∥2

2
∥∆12(x)∥2

2 + ∥∆21(x)∥2
2 + ε

.

When G behaves approximately as a diffusion operator (contractive on high-
frequency modes), it suppresses precisely the components of representations
that tend to induce brittle, order-sensitive interactions between sub-operators.
This yields an intuitive explanation for the empirical reduction in obstruction:
transport makes intermediate representations smoother over the token graph,
reducing interference between attention and feed-forward updates.

Remark 3 (GT transport as stabilizing preconditioner). Viewed through the
Laplacian lens, GT transport acts as a learned preconditioner or regularizer
on the residual stream. It reduces high-frequency variation on token geometry
(or attention geometry), thereby stabilizing the composition of local updates
and lowering commutator-based obstruction proxies in data-limited regimes.

A contractive-transport bound for commutator energy

We now formalize the intuition that diffusion-like transport suppresses order-
sensitivity. For clarity we work with a simplified (but informative) model in
which the GT transport update is approximately linear and contractive on the
token graph. The result can be read as a first-order commutator bound that
explains why GT tends to reduce the Čech-style obstruction proxy.
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SETUP. Let TA(x) = x + ∆A(x) be a residual patch map (e.g., attention or
feed-forward), and let the transport patch be

TG(x) = x + ∆G(x), ∆G(x) = −η Lx, (40)

where L is a symmetric graph Laplacian (or Laplacian-like operator) and
η > 0 is a step size. In the spectral basis L = UΛU⊤, the map TG is a
frequency-dependent shrinkage operator.

We measure order-sensitivity using the delta-commutator:

∆AG(x) = TA(TG(x))− x, ∆GA(x) = TG(TA(x))− x,

and the corresponding delta-commutator ratio Comm∆(TA, TG; x).

Lemma 3 (First-order commutator bound under Laplacian transport). As-
sume ∆A is differentiable and locally LA-Lipschitz at x, i.e. ∥JA(x)∥ ≤ LA

where JA(x) = ∇x∆A(x). Let TG be the Laplacian transport (40). Then, for
sufficiently small η,

∥∆AG(x)− ∆GA(x)∥ ≤ η ∥L∥ ∥∆A(x)∥ + η LA ∥Lx∥ + O(η2). (41)

In particular, if x is predominantly low-frequency on the graph (so ∥Lx∥
is small) and the residual update ∆A(x) has bounded magnitude, then the
order-sensitivity between A and G is O(η).

Proof sketch. Write

TA(TG(x)) = x + ∆G(x) + ∆A(x + ∆G(x)), (42)

TG(TA(x)) = x + ∆A(x) + ∆G(x + ∆A(x)). (43)

Subtracting and using ∆G(x) = −ηLx gives

∆AG(x)− ∆GA(x) = ∆A(x− ηLx)− ∆A(x) + ηL∆A(x).

A first-order Taylor expansion yields ∆A(x− ηLx)−∆A(x) = −η JA(x) Lx+
O(η2). Taking norms and using ∥JA(x)∥ ≤ LA gives

∥∆AG(x)− ∆GA(x)∥ ≤ η LA ∥Lx∥+ η ∥L∥ ∥∆A(x)∥+ O(η2),

which is (41).

INTERPRETATION . Lemma 3 shows that Laplacian transport reduces order-
sensitivity whenever the residual stream is smooth on the token graph (small
∥Lx∥) and the transport step size η is modest. In GT-Full, the transport
operator is nonlinear and data-dependent, but local linearization reduces to
the same qualitative form: high-frequency (large-λ) components are damped
more strongly than low-frequency ones, and the commutator magnitude is
controlled by the residual high-frequency energy.
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Measuring Dirichlet energy as a spectral regularization diagnostic

The Laplacian viewpoint suggests a simple, cheap-to-compute diagnostic
that can be logged during training: the graph Dirichlet energy of the residual
stream,

EL(V) = tr(V⊤LV) =
1
2 ∑

(u,v)∈E
∥Vu −Vv∥2

2.

For GT-Full with a fixed positional chain graph, L is fixed and EL measures
how rapidly embeddings vary across adjacent token positions. The theory
predicts that (i) GT transport should reduce EL relative to a baseline Trans-
former, and (ii) reductions in EL should correlate with lower commutator-
based obstruction, since ∥Lx∥ controls the leading term in Lemma 3.

PRACTICAL LOGGING RECIPE . Given a batch embedding tensor V ∈
RB×n×d and a fixed edge list E on positions, a minibatch estimate of Dirich-
let energy is

ÊL(V) =
1

2B

B

∑
b=1

∑
(u,v)∈E

∥Vb,u −Vb,v∥2
2.

This can be computed efficiently by gathering endpoint embeddings for all
edges and averaging squared differences. One may also normalize by nd to
make values comparable across widths and sequence lengths.

PREDICTION . In data-limited regimes, we expect GT variants to exhibit (a)
lower Dirichlet energy on the token graph and (b) lower delta-commutator
obstruction, relative to baseline Transformers. In scaling regimes (increas-
ing depth or context length), we expect GT to stabilize training by prevent-
ing uncontrolled growth of high-frequency energy and hence mitigating
commutator-energy drift.

Implications for scaling and sample efficiency

The Laplacian/harmonic-analysis perspective suggests two testable predic-
tions: (i) GT variants should be more sample efficient than baseline Trans-
formers in settings where data are limited relative to model capacity, since
transport acts as an explicit smoothness prior; and (ii) GT should expand
stable depth/context scaling regimes by damping high-frequency instability
modes that otherwise amplify across compositions. These predictions align
with our observed separation between GT and Pre/Post-LN Transformers in
low-data seq2seq regimes, and motivate deeper scaling studies on language
modeling benchmarks.

Data-Limited WikiText-103: GT Improves Sample Efficiency

To probe sample efficiency and learning-time compositionality in a con-
strained setting (motivated by limited on-device compute), we evaluate
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Model Val CE ↓ Val PPL ↓ Tok Acc ↑ Cech ↓ Dir Eend ↓ H1 ↓ Bars

GT_Full_PreLN_L4 6.536 689.8 0.181 2.84e-02 0.873 1.88e-02 6.500
GT_MoE_PreLN_L4 6.538 690.7 0.182 5.54e-02 0.924 3.33e-02 11.000
GT_Lite_PreLN_L4 6.557 704.4 0.181 2.68e-02 0.875 7.44e-03 3.000
GT_Full_PostLNRes_L4 6.611 743.2 0.179 4.73e-02 0.993 1.68e-02 5.000
GT_Lite_PostLNRes_L4 6.630 757.6 0.174 4.54e-02 0.937 4.07e-02 10.000
GT_MoE_PostLNRes_L4 6.697 810.3 0.176 4.85e-02 1.085 7.95e-04 1.500
TF_PreLN_L4 8.976 7908 0.035 4.49e-02 1.009 7.54e-03 4.000
TF_PostLN_L4 9.105 9000 0.036 5.74e-02 1.053 1.77e-03 1.500

Table 4: Data-limited WikiText-
103 (n_train=1000, n_val=100,
seq_len=64, depth L = 4, 1000
steps). We report final validation
cross-entropy (CE), perplex-
ity (PPL), token accuracy, the
Čech obstruction proxy (delta-
commutator ratio), normalized
chain Dirichlet energy at the
encoder output, and attention-
geometry topology probes (total
H1 persistence and number of H1

bars).

baseline Transformers and GT variants on a data-limited WikiText-103
prefix→suffix seq2seq task. We subsample ntrain = 1000 sentences and
nval = 100 sentences, clip sentences to length L ≤ 64, and train for 1000
iterations with evaluation every 100 steps. All models use the same hidden
size (dmodel = 96), heads (4), depth (4 encoder/decoder blocks), optimizer,
and learning-rate schedule.

MAIN FINDING : STRONG SEPARATION UNDER LIMITED DATA . The
figure shows that GT variants achieve markedly better validation loss/per-
plexity and token accuracy than both Post-LN and Pre-LN Transformers
within the same training budget. At step 1000, GT models reach token ac-
curacy ≈ 0.17–0.18 while baseline Transformers remain near ≈ 0.04 (a
∼ 4× gap), and validation cross-entropy improves from ≈ 9 (Transform-
ers) to ≈ 6.6–6.7 (GT), corresponding to a large perplexity reduction (since
ppl = exp(CE)). Sequence-level accuracy remains near zero for all models,
as exact suffix matching is an extremely strict metric for natural language.

SUMMARY TABLE . The table summarizes final-step performance and in-
strumental probes for all model variants. GT-Full with Pre-LN achieves the
best validation cross-entropy (6.536) and among the best token accuracy
(0.181), reducing perplexity by ∼ 11.5× relative to the best Transformer
baseline (TF-PreLN, PPL ≈ 7908). Within each GT family, Pre-LN sys-
tematically improves sample efficiency and reduces the commutator-based
obstruction proxy. Moreover, GT transport reduces the chain-graph Dirichlet
energy of encoder representations, consistent with the interpretation of GT as
a learned diffusion regularizer on token geometry.

ČECH OBSTRUCTION DISTINGUISHES ARCHITECTURES . The figure
also plots the Čech-style obstruction proxy (delta-commutator ratio) com-
puted on a fixed probe batch. In this data-limited regime, GT-Lite/GT-Full
with Pre-LN exhibit substantially lower obstruction than the baseline Trans-
formers and lower than their PostLNResidual counterparts, consistent with
the view that normalization placement and geometric transport jointly reduce
order-sensitive interference between patch updates during learning.
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(a) Validation perplexity (b) Token accuracy (c) Čech obstruction proxy
Figure 19: Data-limited WikiText-
103 prefix→suffix results. With
ntrain = 1000, nval = 100,
and 1000 optimization steps, GT
variants substantially outperform
baseline Transformers in validation
loss/perplexity and token accuracy
within the same compute bud-
get. The commutator-based Čech
obstruction proxy further differ-
entiates architectures: PreLN GT
variants exhibit lower obstruction
than PostLNResidual GT and lower
than baseline Transformers on a
fixed probe batch.

(a) H1 total persistence (b) H1 bar count
Figure 20: Attention-geometry
diagnostics in the data-limited
WikiText-103 regime. Persistent-
homology summaries of the (sym-
metrized) encoder attention affinity
reveal architecture-dependent
differences in the complexity of
learned attention geometry, com-
plementing commutator-based
obstruction measures.

ATTENTION -GEOMETRY DIAGNOSTICS . In addition to commutator-
based obstruction, we log persistent-homology summaries of the encoder
attention graph (total H1 persistence and number of H1 bars). These topol-
ogy probes expose qualitative differences in the evolving attention geometry
across architectures, complementing the obstruction proxy by measuring
global geometric structure rather than local operator compatibility. We in-
clude the corresponding plots are shown in the below figures.

Data-Limited WikiText-2: similar separation

We repeated the same data-limited protocol on WikiText-2 (prefix→suffix
seq2seq; ntrain = 1000, nval = 100, sentence length clipped to L ≤ 64,
1000 optimization steps, evaluation every 100 steps) and observe the same
qualitative separation: GT variants achieve dramatically better validation
cross-entropy/perplexity and token accuracy than both Post-LN and Pre-LN
Transformers under the same compute budget.

SUMMARY. The table reports final-step metrics and instrumental probes.
The best Transformer baseline (TF-PreLN) achieves validation CE 7.903
(PPL ≈ 2705) and token accuracy 0.041, whereas the best GT variant (GT-
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Model Val CE ↓ Val PPL ↓ Tok Acc ↑ Cech ↓ Dir Eend ↓ H1 ↓ Bars

TF_PostLN_L4 7.979 2918 0.035 5.20e-02 1.253 1.31e-01 9.0
TF_PreLN_L4 7.903 2705 0.041 3.97e-02 1.252 3.43e-02 8.5
GT_Lite_PostLNRes_L4 4.884 132.2 0.240 4.75e-02 1.185 8.38e-02 8.0
GT_Lite_PreLN_L4 4.766 117.5 0.245 2.97e-02 1.023 8.04e-02 14.5
GT_Full_PostLNRes_L4 4.903 134.7 0.241 4.55e-02 1.164 4.59e-02 9.5
GT_Full_PreLN_L4 4.862 129.3 0.242 3.09e-02 1.054 7.40e-02 6.5
GT_MoE_PostLNRes_L4 5.020 151.4 0.236 5.18e-02 1.317 1.08e-01 16.0
GT_MoE_PreLN_L4 4.903 134.7 0.242 4.92e-02 1.083 2.29e-02 7.0

Table 5: Data-limited WikiText-
2 (n_train=1000, n_val=100,
seq_len=64, depth L = 4, 1000
steps). We report final validation
cross-entropy (CE), perplex-
ity (PPL), token accuracy, the
Čech obstruction proxy (delta-
commutator ratio), normalized
chain Dirichlet energy at the
encoder output, and attention-
geometry topology probes (total
H1 persistence and number of H1

bars).

Lite PreLN) achieves validation CE 4.766 (PPL ≈ 117.5) and token accuracy
0.245. This corresponds to a reduction of 3.14 nats in CE (a ∼ 23× perplex-
ity improvement) and a ∼ 5.9× gain in token accuracy in the same training
budget. Within each GT family, Pre-LN improves performance and typically
reduces the commutator-based obstruction proxy and the chain Dirichlet en-
ergy at the encoder output, consistent with GT acting as a learned diffusion
regularizer on token geometry.

IMPLEMENTATION DETAILS AND REPRODUCIBILITY. All models are
trained with the same optimization loop and logging harness used through-
out this work. We use AdamW with base learning rate 3 × 10−4, linear
warmup for the first 500 steps, and global-norm gradient clipping at 1.0. We
evaluate every 100 steps and compute the Čech obstruction proxy, Dirichlet
energy, and attention-geometry (persistent-homology) probes at the same ca-
dence on a fixed probe batch drawn once from the training-evaluation loader
(20 cached minibatches) to ensure comparability across steps and across
model families. For the obstruction proxy we use the scale-invariant delta-
commutator ratio; for Dirichlet energy we compute the normalized chain-
graph Dirichlet energy of the encoder residual stream at the encoder output];
and for topology we compute persistent homology on the symmetrized, head-
averaged self-attention affinity restricted to the first 16 tokens and the first 2
encoder layers to keep PH overhead modest. The WikiText-103 data-limited
setting uses a prefix→ suffix seq2seq construction: the raw token stream is
split into sentences at <eos>, sentences are clipped to length 64, and for
each sentence a random pivot selects a prefix as encoder input and a suffix as
decoder target with teacher forcing (decoder input is [BOS, y_0, ...,

y_t-2]). Padding uses token id 0 and is ignored in the cross-entropy loss.
All results in the table and the figures were produced with the command:

python seq2seq_scaling_PrePostLN_compare.py -task wiki103

-seq_len 64

-num_iters 1000 -n_train 1000 -n_val 100 -steps_per_eval

100.

We fix the random seed at 0 for the plots shown; in ongoing work we sweep
multiple seeds and larger training budgets on dedicated hardware.
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Sheaf Laplacians as a principled match to Čech obstruction

We interpreted GT transport through the lens of the (scalar) graph Lapla-
cian, yielding a diffusion/harmonic-analysis view on token geometry. While
useful, the standard Laplacian treats features as scalars or as indepen-
dently smoothed channels. A closer mathematical match to our Čech-
style obstruction proxy is provided by sheaf Laplacians, which explicitly
model compatibility constraints and learned restriction/transport maps on
overlaps. This connects GT more directly to Čech (co)homology and to
holonomy/curvature-style inconsistency measures.

A TOKEN-POSITION SHEAF . Let G = (V, E) be a graph on token posi-
tions (e.g., a chain). A (cellular) sheaf F assigns a vector space (a stalk) to
each vertex v ∈ V and to each edge e ∈ E, together with linear restriction
maps from vertices to incident edges. For our setting, take

F (v) = Rd (v ∈ V), F (e) = Rd (e ∈ E),

and for each edge e = (u, v) define restriction maps

ρu→e : Rd → Rd, ρv→e : Rd → Rd.

In the constant sheaf case, ρu→e = ρv→e = I, and the resulting sheaf Lapla-
cian reduces to a standard graph Laplacian acting on each feature channel.

LEARNED RESTRICTIONS AS TRANSPORT /CONNECTION . To connect
to GT, we interpret the edge-wise GT mechanism as implicitly learning
compatibility maps on overlaps. Concretely, the edge MLP in simplicial
message passing produces a message depending on (Vu, Vv) (and relation
features), which can be linearized locally as a learned transformation aligning
feature coordinates across an edge. This suggests parameterizing ρu→e and
ρv→e as learned transport maps (e.g., orthogonal or low-rank maps) that map
vertex embeddings into a shared edge coordinate system.

COBOUNDARY AND SHEAF LAPLACIAN . Let C0 =
⊕

v∈V F (v) ∼=
R|V|d be the space of 0-cochains (assignments of a d-vector to each token
position), and C1 =

⊕
e∈E F (e) ∼= R|E|d the space of 1-cochains. The sheaf

coboundary operator δ : C0 → C1 is defined edgewise by

(δx)e = ρv→e(xv) − ρu→e(xu), e = (u, v) ∈ E, (44)

which measures inconsistency of the two endpoint assignments after mapping
into the edge stalk. The sheaf 0-Laplacian is then

∆(0)
F = δ⊤δ, (45)

with respect to the natural inner products on C0 and C1 (or weighted vari-
ants). In the constant-sheaf case this reduces (up to scaling conventions) to
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the standard graph Laplacian; in the orthogonal-transport case it yields a
connection-Laplacian-type operator whose spectrum encodes the consistency
of transport around cycles.

A SHEAF D IRICHLET ENERGY AS A ČECH -STYLE OBSTRUCTION .
Equation (44) provides a direct, cohomology-native measurement of “failure
to glue”:

Esheaf(x) =
∥δx∥2

2
∥x∥2

2 + ε
=

x⊤∆(0)
F x

∥x∥2
2 + ε

. (46)

This sheaf Dirichlet energy is a principled analogue of our Čech-style ob-
struction proxy: rather than measuring order sensitivity of patch-map com-
position via commutators, it measures incompatibility of local assignments
through the sheaf coboundary itself. In particular, Esheaf(x) is small when
vertex features admit a globally consistent “gluing” under the learned restric-
tions, and large when local overlap constraints are violated.

HODGE-THEORETIC INTERPRETATION . Sheaf Laplacians support a
Hodge decomposition: the nullspace ker(∆(0)

F ) corresponds to globally con-

sistent 0-cochains (harmonic sections), while the spectrum of ∆(0)
F quantifies

the cost of inconsistency at different modes. When the restriction maps en-
code a non-flat connection, inconsistencies accumulate around loops; this is
reflected spectrally (e.g., through elevated low-frequency eigenvalues) and
aligns with the intuition behind our commutator-based loop inconsistency
probes.

RELATION TO GT MECHANISMS . This perspective suggests that GT
transport can be viewed as learning (explicitly or implicitly) a sheaf/connec-
tion over token positions, with transport maps that reduce coboundary energy
and thereby suppress learning-time compositionality obstructions. It also
suggests a natural extension of GT: construct a data-dependent sheaf using
attention-induced graphs, then apply a learned sheaf Laplacian to perform
harmonic analysis on attention geometry rather than on a fixed positional
graph. We leave a full empirical evaluation of sheaf Dirichlet energy and
sheaf-Laplacian spectra to future work, but note that this framework provides
a mathematically direct bridge between GT transport, Čech cohomology, and
our obstruction measurements.

PRACTICAL LOGGING RECIPE : SHEAF D IR ICHLET ENERGY ON

A TOKEN GRAPH . The sheaf Dirichlet energy (46) can be logged during
training with overhead comparable to the (scalar) Dirichlet energy, provided
one specifies restriction maps ρu→e, ρv→e for each edge e = (u, v). For a
minibatch tensor X ∈ RB×n×d representing encoder residual streams on n
token positions, define the edgewise coboundary residual for each sample b
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as
(δX(b))e = ρv→e

(
X(b)

v
)
− ρu→e

(
X(b)

u
)
, e = (u, v) ∈ E.

A normalized minibatch estimate is then

Êsheaf(X) =
1

B|E|d
B

∑
b=1

∑
e∈E
∥(δX(b))e∥2

2, (47)

which is directly comparable across sequence lengths and widths.

CHOOSING RESTRICTION MAPS . Several choices are natural and corre-
spond to increasingly structured notions of “gluing”:

• Constant sheaf (baseline): ρu→e = ρv→e = I, in which case (47) reduces
(up to constants) to the usual chain Dirichlet energy and measures feature
smoothness across adjacent tokens.

• Connection/orthogonal transport: enforce ρu→e, ρv→e ∈ O(d) (e.g.,
parameterize each as an orthogonal matrix, or as a product of a small
number of Householder reflections). This measures inconsistency after
aligning local coordinate frames and yields a connection-Laplacian-type
operator.

• GT-induced linearization: define ρu→e and ρv→e from the local lin-
earization of the GT edge MLP at the current representation (e.g., use
Jacobians of the message map with respect to Xu and Xv). This yields a
data-dependent sheaf that is closest to the actual GT mechanism, at the
cost of higher computation.

In practice, the first two options already provide useful diagnostics: the
constant-sheaf energy captures raw smoothness, while the orthogonal-
transport energy captures “smoothness up to learned alignment” and is a
closer analogue of Čech-style gluing.

RELATIONSHIP TO THE COMMUTATOR OBSTRUCTION PROXY. Both
the sheaf Dirichlet energy and the commutator-based Čech obstruction proxy
measure failure to glue local information globally, but at different granu-
larities. The coboundary energy (47) measures overlap inconsistency edge-
by-edge (a linearized, cohomology-native notion), whereas the commuta-
tor proxy measures loop inconsistency between patch maps (a nonlinear,
composition-sensitive notion). Empirically, we expect these metrics to cor-
relate when transport is diffusion-like (so that high-frequency edge inconsis-
tencies drive loop inconsistencies), while diverging in settings where routing
or nonlinear normalization induces order sensitivity beyond what edgewise
alignment captures. Logging both quantities provides a direct way to dis-
entangle “geometric roughness” from “operator-order interference” during
learning.
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Discussion and Predictions

This work positions commutator energy as a unifying order parameter for
analyzing learning-time compositionality in deep neural networks. By con-
necting empirical stability phenomena in Transformers to mean-field analysis
of Jacobian non-commutativity, we provide a principled explanation for the
success of Pre-LN architectures and for the further gains achieved by Geo-
metric Transformers (GT). We conclude by summarizing the implications of
this perspective and outlining testable predictions suggested by the theory.

Commutator Energy as a Diagnostic of Learning Dynamics

Traditional analyses of deep networks focus on gradient norms, signal vari-
ance, or spectral properties of individual layers. Commutator energy captures
a complementary phenomenon: the compatibility of learned sub-operator
deformations when composed dynamically during training. High commutator
energy indicates that small changes in one sub-operator significantly alter the
effective behavior of others, leading to gradient interference and instability.
Low commutator energy indicates approximate exchangeability of updates
and more predictable learning dynamics.

This distinction explains why commutator energy often continues to
evolve even after task loss has saturated, as observed in residual MLPs,
sequence-to-sequence models, and large-scale language modeling. The probe
therefore measures an aspect of learning dynamics that is largely invisible to
standard task metrics.

Normalization, Alignment, and Architectural Design

Our analysis clarifies the respective roles of normalization and geomet-
ric alignment in stabilizing deep networks. Layer normalization primarily
controls the scale of Jacobians and suppresses variance-driven instability.
This accounts for the empirical success of Pre-LN Transformers and related
normalization-based fixes.

Geometric alignment mechanisms, as implemented in GT architectures,
operate at a different level. By coordinating the directional structure of
learned transformations, alignment suppresses Jacobian non-commutativity
directly. This suggests that normalization and alignment are complementary
rather than competing design principles: normalization stabilizes magnitudes,
while alignment stabilizes composition.

Predictions

The mean-field commutator-energy framework yields several concrete predic-
tions that are testable empirically:
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DEPTH SCALING . For architectures lacking explicit alignment mechanisms,
expected commutator energy should grow with depth, even when gradients
remain well-scaled. Pre-LN normalization reduces the growth rate but does
not eliminate it. Architectures with explicit geometric alignment should
exhibit bounded or slowly growing commutator energy with depth.

W IDTH SCALING . In the infinite-width limit, commutator energy at ini-
tialization converges to a nonzero constant for generic residual architec-
tures. Normalization reduces this constant multiplicatively, while alignment
mechanisms reduce it further by altering cross-covariance structure between
Jacobians.

TASK INDEPENDENCE . Because commutator energy arises from operator
interactions rather than task loss, its qualitative behavior should be largely
task-independent. Architectures that suppress commutator energy in simple
settings (e.g., residual MLPs on two-moons) should do so consistently in
large-scale sequence modeling and other domains.

CONDITIONAL COMPUTATION . Architectures that rely on state-dependent
branching (e.g., mixture-of-experts) should exhibit intermediate commutator-
energy behavior: lower than fully uncoordinated baselines, but higher and
more variable than explicitly aligned architectures. This prediction aligns
with observed GT-MoE behavior.

Implications for Optimization and Generalization

Although commutator energy is defined purely in terms of forward com-
putations, its evolution correlates strongly with optimization stability and
generalization. This suggests that architectural control of learning-time ge-
ometry—rather than loss shaping or optimizer tuning alone—is a critical
factor in scaling deep models. From this perspective, Diagrammatic Back-
propagation can be viewed as an explicit mechanism for penalizing destruc-
tive order sensitivity, while GT architectures provide structural support that
makes such control feasible.

Limitations and Open Questions

Our mean-field analysis focuses on initialization and early training regimes
and does not capture all phenomena observed in finite-width or late-stage
training. A complete theory of commutator energy during training would
require coupling mean-field analysis with non-equilibrium dynamics and
representation drift. Additionally, extending the analysis to attention-specific
Jacobians and token-dependent routing remains an open challenge.

Nevertheless, the qualitative alignment between theory and empirical re-
sults across architectures and tasks suggests that commutator energy captures
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a fundamental aspect of learning-time compositionality.

Summary and Further Reading

We proposed a mean-field theory of Geometric Transformers. There is sub-
stantial related work to explore on the general mean-field theory of deep
learning. Mean-field theory has played a central role in understanding sig-
nal propagation, gradient dynamics, and stability in deep neural networks.
Early work analyzed variance propagation and critical initialization in wide
networks 56. 56 Ben Poole, Subhaneil Lahiri, Maithra

Raghu, Jascha Sohl-Dickstein, and Surya
Ganguli. Exponential expressivity in
deep neural networks through transient
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Processing Systems, 29, 2016. URL
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Scaling Laws for Geometric Transformers

Transformer architectures exhibit remarkable empirical scalability, yet
their training dynamics remain poorly understood, particularly as depth
increases. Recent work has shown that learning instabilities in deep Trans-
formers correlate with the accumulation of order-sensitivity between residual
sub-operators, which can be quantified by a forward-pass diagnostic termed
commutator energy. In this chapter, we study how commutator energy scales
with depth in standard Post-LN and Pre-LN Transformers, as well as in Ge-
ometric Transformer (GT) architectures that explicitly control learning-time
geometry.

We show empirically that Pre-LN normalization suppresses the magnitude
of commutator energy as depth increases, but does not prevent generalization
collapse, revealing a previously unrecognized regime in which normaliza-
tion alone is insufficient. In contrast, Geometric Transformers—particularly
GT-Full variants with explicit geometric transport—exhibit depth-stable com-
mutator energy and sustained generalization performance. We interpret these
results through a mean-field and Jacobian-based analysis, arguing that GT
architectures alter the scaling law itself by enforcing directional alignment of
learned transformations rather than merely suppressing variance.

Our findings suggest that geometric alignment constitutes a distinct scal-
ing mechanism complementary to width and data scaling, and provide a new
theoretical lens for understanding why deep Transformers require increas-
ingly elaborate stabilization strategies at scale.

Introduction

Transformer architectures have demonstrated extraordinary empirical scal-
ability, underpinning modern advances in language modeling, vision, and
multimodal learning. Over the past several years, a substantial body of work
has established that model performance improves predictably as a function
of scale—typically measured in parameters, data, or compute—leading to
the formulation of scaling laws that guide practical system design. Despite
this success, the internal learning dynamics of deep Transformers remain
poorly understood, particularly as depth increases and residual interactions
accumulate.

A growing line of evidence suggests that training instability in deep Trans-
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formers is not merely an optimization artifact, but a consequence of how
residual updates interact geometrically on the representation manifold. Stan-
dard Transformer blocks apply multiple nonlinear sub-operators—most
notably self-attention and feed-forward transformations—sequentially to a
shared residual stream. While the forward computation graph is statically
compositional, the learning dynamics induced by gradient descent need not
respect this compositional structure. As depth increases, incompatible de-
formations can accumulate, leading to generalization collapse even when
training loss continues to decrease.

Recent architectural advances such as Pre-LayerNorm (Pre-LN) Trans-
formers have substantially improved optimization stability at depth by re-
locating normalization before residual updates. Mean-field analyses have
shown that Pre-LN controls gradient magnitudes and suppresses exploding
or vanishing signals, enabling the successful training of deeper networks.
However, Pre-LN does not fully explain why deep Transformers often con-
tinue to exhibit poor generalization behavior, nor why increasing depth can
sometimes worsen validation performance despite improved optimization
metrics.

In previous chapters, we introduced Diagrammatic Backpropagation (DB)
and the Geometric Transformer (GT) as a framework for diagnosing and con-
trolling learning-time inconsistencies in compositional neural architectures.
Central to this framework is a forward-pass diagnostic termed commuta-
tor energy, which measures order sensitivity between learned sub-operators
within a residual block. Empirically, we showed that standard Transformers
accumulate commutator energy during training, while GT variants systemati-
cally suppress it through explicit geometric alignment mechanisms.

In this chapter, we elevate commutator energy from an architectural di-
agnostic to a scaling observable. Our central thesis is that depth scaling in
Transformers induces distinct dynamical regimes that cannot be explained by
normalization alone. Specifically, we show that:

1. Pre-LN Transformers exhibit a depth-dependent suppression of commu-
tator magnitude, yet still enter regimes of poor generalization as depth
increases.

2. Geometric Transformers alter the depth-scaling behavior itself, main-
taining bounded commutator energy and stable generalization across
increasing depth.

3. Normalization and geometric alignment control fundamentally differ-
ent aspects of learning dynamics: normalization limits variance, while
geometric alignment constrains the relative orientation of learned transfor-
mations.

Through controlled scaling experiments on synthetic sequence-to-sequence
tasks and truncated WikiText-103 language modeling, we demonstrate that
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commutator energy exhibits characteristic scaling behavior as depth in-
creases. Pre-LN Transformers transition into a regime of suppressed but mis-
aligned updates, whereas GT architectures remain in a regime of dynamically
compositional learning even at greater depth.

We provide a Jacobian- and mean-field-based interpretation of these find-
ings, arguing that GT architectures enforce directional alignment between
residual sub-operators rather than merely controlling their magnitude. This
perspective naturally generalizes existing mean-field analyses of Transform-
ers and suggests a new class of geometry-aware scaling laws in which depth,
alignment, and dynamic compositionality jointly determine learning behavior.

More broadly, our results suggest that geometric structure is not merely
a representational convenience, but a scaling mechanism. By modifying
how residual updates compose as depth increases, Geometric Transformers
shift the qualitative behavior of deep learning systems into a more stable and
predictable regime. This work thus complements classical scaling laws by
introducing geometric alignment as a first-class variable in the theory of deep
neural scaling.

Problem Setup and Scaling Observables

This paper studies the depth-scaling behavior of Transformer and Geometric
Transformer architectures through the lens of learning-time compositionality.
Our goal is not to propose a new task or optimization method, but to identify
scaling observables that characterize how internal learning dynamics change
as model depth increases.

We focus on encoder–decoder sequence models trained with standard
gradient-based optimization under identical data, parameter, and training-
budget constraints, varying only architectural structure and depth. The central
object of study is a forward-pass diagnostic—commutator energy—which
measures order sensitivity between learned sub-operators within residual
blocks.

Architectural Setting

We consider a family of models parameterized by depth L, hidden dimension
d, and feed-forward expansion factor γ, trained on sequence-to-sequence
language modeling tasks. All models share the same token embeddings,
positional encodings, optimizer, batch size, and learning-rate schedule unless
otherwise specified.

BASELINE TRANSFORMER . A standard Transformer encoder block
consists of two residual sublayers applied sequentially to a shared residual
stream:

1. multi-head self-attention,
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2. position-wise feed-forward transformation.

Each sublayer is wrapped with residual addition and layer normalization.
We consider both Post-LayerNorm (Post-LN) and Pre-LayerNorm (Pre-LN)
variants.

GEOMETRIC TRANSFORMERS . Geometric Transformer (GT) variants
augment the baseline block with an additional operator that alters the geome-
try of the residual stream:

• GT-Lite: inserts a local geometric smoothing operator (e.g., convolution
or neighborhood mixing);

• GT-Full: inserts an explicit geometric transport operator based on mes-
sage passing over a fixed relational or positional graph;

• GT-MoE: replaces the feed-forward stage with a mixture-of-experts
operator with state-dependent routing.

All variants preserve the external Transformer interface and parameter order
of magnitude.

Residual Sub-Operators and Effective Updates

We abstract each encoder block as a composition of effective sub-operators
acting on the same representation. Let x ∈ RB×T×d be the input to a block.
Each sublayer defines an update of the form

Ti(x) = x + ∆i(x),

where ∆i(x) includes the nonlinear transformation, residual addition, and
normalization applied by the sublayer.

In a baseline Transformer block, we identify two such operators:

• A: the attention operator,

• F: the feed-forward operator.

In GT variants, an additional operator C (GT-Lite), G (GT-Full), or M (GT-
MoE) is present.

Although the forward pass applies these operators in a fixed order, learn-
ing dynamics depend on how these updates interact on the representation
manifold visited during training.

Commutator Energy as an Order-Sensitivity Measure

To quantify interaction effects between sub-operators, we define the commu-
tator energy between two operators Ti and Tj evaluated at a representation
x:

Ecomm(Ti, Tj; x) =
∥Ti(Tj(x))− Tj(Ti(x))∥2

2

∥x∥2
2 + ε

,
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where ε > 0 is a small constant for numerical stability.
This quantity measures how sensitive the effective update is to the order in

which two sub-operators are applied. Importantly, we do not require Ti and
Tj to commute as functions. Rather, large commutator energy indicates that
the learned deformations induced by the two sub-operators are incompatible
on the current representation manifold.

LAYERWISE AND MODEL-LEVEL OBSERVABLES . For a block contain-
ing multiple sub-operators, we compute the average commutator energy over
all relevant operator pairs. For a model with L encoder layers, we define the
model-level commutator energy as the average over layers:

Emodel
comm =

1
L

L

∑
ℓ=1

E(ℓ)
comm.

All measurements are performed in evaluation mode using forward passes
only, without gradient computation.

Scaling Variables

We treat commutator energy as a scaling observable and study its depen-
dence on the following variables:

• Depth L: number of encoder layers;

• Architecture: Transformer, GT-Lite, GT-Full, or GT-MoE;

• Normalization regime: Post-LN vs. Pre-LN;

• Training time: number of optimization steps.

Throughout the paper, width d, dataset size, and optimization hyperparam-
eters are held fixed unless explicitly stated. This isolates the effect of depth
and architectural geometry on learning dynamics.

Interpretation as a Learning-Time Order Parameter

Commutator energy plays the role of an order parameter for dynamic com-
positionality. Low commutator energy corresponds to approximate exchange-
ability of learned updates: the effect of applying sub-operators does not
depend strongly on order. High commutator energy indicates destructive
interference between updates, leading to unstable learning and poor general-
ization.

Crucially, commutator energy is computed entirely from forward eval-
uations and does not alter training unless explicitly added as a loss term. It
therefore serves as an unbiased diagnostic of internal learning dynamics.
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CONNECTION TO SCALING . As depth increases, residual updates accumu-
late across layers. Whether this accumulation remains stable depends on how
sub-operator interactions scale with depth. In the following sections, we show
that different architectures induce distinct scaling regimes for commutator en-
ergy, revealing qualitative differences in how deep networks compose learned
transformations.

SUMMARY. This section has established the experimental and conceptual
framework for our scaling analysis. We model Transformer blocks as inter-
acting residual sub-operators, introduce commutator energy as a forward-pass
measure of order sensitivity, and treat depth as a scaling variable. The re-
maining sections analyze how normalization and geometric alignment shape
the depth-scaling behavior of this observable.

Initialization and Mean-Field Scaling of Commutator Energy

We begin our scaling analysis by studying the behavior of commutator energy
at initialization. This provides a baseline prediction for how order sensitivity
should scale with depth in the absence of learned geometric alignment and
clarifies the role of normalization in early training dynamics.

Our analysis follows a mean-field perspective: we treat residual sub-
operators as random transformations acting on high-dimensional repre-
sentations and analyze the expected magnitude of their interaction under
simplifying independence assumptions.

Residual Updates at Initialization

Consider two residual sub-operators Ti and Tj acting on a shared representa-
tion x ∈ Rd:

Ti(x) = x + ∆i(x), Tj(x) = x + ∆j(x),

where ∆i and ∆j are nonlinear functions parameterized by randomly initial-
ized weights.

At initialization, we assume:

• weights are independently sampled with variance chosen to preserve
activation scale;

• ∆i(x) and ∆j(x) are approximately mean-zero;

• Jacobians Ji = ∇∆i(x) and Jj = ∇∆j(x) behave as random matrices with
bounded spectral norm.

Under these assumptions, the first-order expansion of the commutator
residual yields

Ti(Tj(x))− Tj(Ti(x)) ≈ (Ji Jj − Jj Ji) x,
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so commutator energy is controlled by the non-commutativity of the Jaco-
bians.

Expected Commutator Energy at Initialization

Let Ji, Jj ∈ Rd×d be independent random matrices drawn from a rotationally
invariant ensemble with variance σ2/d. A standard calculation shows that

E
[
∥Ji Jj − Jj Ji∥2

F
]
= Θ(d σ4),

even though E[Ji Jj] = E[Jj Ji] = 0.
Normalizing by ∥x∥2

2 ∼ d, the expected commutator energy at initializa-
tion satisfies

E
[
Ecomm(Ti, Tj; x)

]
= Θ(σ4),

a nonzero constant independent of width but sensitive to variance scaling.
This implies that even before training, residual sub-operators are generi-

cally order-sensitive. Commutator energy is therefore not a training artifact,
but a structural property of deep residual architectures.

Depth Scaling Without Alignment

In a network of depth L, each encoder layer contributes its own commuta-
tor residual. Under independence assumptions, the expected model-level
commutator energy scales as

E
[
Emodel

comm
]
∼ 1

L

L

∑
ℓ=1

E
[
E(ℓ)

comm
]
≈ Θ(σ4),

remaining O(1) per layer.
However, learning dynamics accumulate these order-sensitive interactions

across layers. In the absence of corrective mechanisms, small incompatibili-
ties between sub-operators compound with depth, leading to:

• increasing gradient interference,

• sensitivity to update ordering,

• degradation of generalization at fixed compute budgets.

This predicts a depth-dependent instability regime even when initialization
is well-scaled.

Effect of Layer Normalization

Layer normalization alters this picture by rescaling inputs to each residual
update. In Pre-LN architectures, normalization is applied before nonlinear
transforms, effectively controlling the magnitude of Jacobians:

JPreLN
i ≈ αJi, α < 1.
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As a result,

E
[
∥JPreLN

i JPreLN
j − JPreLN

j JPreLN
i ∥2

F
]
∼ α4 E

[
∥Ji Jj − Jj Ji∥2

F
]
.

Thus, Pre-LN reduces the scale of commutator energy at initialization, ex-
plaining its improved optimization stability relative to Post-LN Transformers.

Crucially, however, normalization does not alter the directional structure
of Ji and Jj. Their eigenspaces remain unaligned, and commutator energy
remains strictly positive.

Implications for Scaling

The mean-field analysis yields three immediate conclusions:

1. Commutator energy is generically nonzero at initialization in residual
architectures.

2. Normalization reduces its magnitude but does not eliminate it.

3. Increasing depth exacerbates the accumulation of order sensitivity unless
additional alignment mechanisms are present.

These predictions align with our empirical observations:

• Post-LN Transformers exhibit high and growing commutator energy.

• Pre-LN Transformers exhibit lower commutator energy but still show
depth- dependent instability.

• Geometric Transformers exhibit qualitatively different scaling behavior,
addressed in the next section.

SUMMARY. This section established commutator energy as a natural mean-
field observable of order sensitivity in deep residual networks. Initialization
alone induces non-commutativity between sub-operators, normalization
controls magnitude but not direction, and depth amplifies residual incompat-
ibilities. In Section , we refine this analysis to examine how normalization
shapes training dynamics, and in Section we show how geometric alignment
fundamentally alters the scaling regime.

Effect of Layer Normalization on Learning-Time Commutator En-
ergy

We analyzed commutator energy at initialization and showed that residual
architectures are generically order-sensitive, even before training. We now
examine how layer normalization alters this behavior during learning and
why, despite its stabilizing effect, normalization alone cannot eliminate
commutator energy at scale.
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Our analysis clarifies the empirical gap between Post-LN and Pre-LN
Transformers and explains why Pre-LN improves optimization without fun-
damentally changing the scaling regime.

Post-LN vs. Pre-LN as Jacobian Control Mechanisms

In Post-LN Transformers, normalization is applied after each residual update:

x 7→ LN(x + ∆(x)).

As a result, the Jacobian of the residual block takes the form

JPostLN ≈ ∇LN · (I + J∆),

where J∆ = ∇∆(x).
Because normalization is applied after the nonlinear transform, the mag-

nitude and orientation of J∆ directly affect the update before normalization
rescales the output. This allows strong state-dependent distortions to propa-
gate across layers, leading to rapid accumulation of commutator energy.

In contrast, Pre-LN Transformers apply normalization before each nonlin-
ear transform:

x 7→ x + ∆(LN(x)).

The corresponding Jacobian becomes

JPreLN ≈ I + J∆ · ∇LN.

Here, normalization acts as a preconditioner, ensuring that the input to each
nonlinear map lies on a controlled scale and distribution.

Magnitude Reduction but Directional Freedom

The key effect of Pre-LN is to bound the operator norm of J∆ during train-
ing. Empirically and theoretically, this suppresses gradient explosion and
improves optimization stability.

However, normalization is fundamentally isotropic. While it rescales
activations to unit variance, it does not constrain the directional structure
of Jacobians. Two sub-operators Ji and Jj may still act along incompatible
eigenspaces, even if both have bounded norm.

As a result, the commutator

Ji Jj − Jj Ji

remains generically nonzero. Pre-LN reduces the magnitude of commutator
energy but does not enforce approximate commutativity.
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Expected Scaling of Commutator Energy Under Pre-LN

Combining the mean-field analysis with Pre-LN scaling, we obtain

E
[
EPreLN

comm
]
∼ α4 E

[
EPostLN

comm
]
,

for some α < 1 determined by normalization strength and weight variance.
Crucially, α is independent of depth. Thus:

• Pre-LN lowers commutator energy uniformly across layers;

• but does not prevent its accumulation across depth;

• and does not change the qualitative scaling behavior.

This predicts that sufficiently deep Pre-LN Transformers should still ex-
hibit order-sensitivity-induced degradation, even if they train more smoothly
at moderate depth.

Empirical Confirmation

Our experiments confirm these predictions:

• Pre-LN Transformers consistently exhibit lower commutator energy than
Post-LN baselines.

• However, commutator energy remains strictly positive and increases with
depth.

• Validation perplexity degrades as depth increases, even when training loss
improves.

In particular, the scaling experiments demonstrate that increasing depth
from 2 to 16 layers reduces per-layer commutator energy at early stages but
ultimately leads to accumulation of learning-time order sensitivity.

Normalization Is Not Alignment

The analysis reveals a fundamental limitation:

Normalization controls scale, not structure.

Layer normalization ensures that residual updates do not explode, but it
does not align the directions along which different sub-operators deform the
representation space. As long as attention, feed-forward, and routing modules
act in misaligned coordinate frames, commutator energy persists.

This explains why:

• Pre-LN improves stability but does not fundamentally change the scaling
regime;

• deeper Pre-LN Transformers still encounter generalization breakdowns;

• architectural changes beyond normalization are required.
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SUMMARY. Layer normalization plays a crucial role in stabilizing Trans-
former training by controlling Jacobian magnitudes. However, it does not
enforce compatibility between sub-operator directions and therefore cannot
eliminate commutator energy or change its scaling with depth. This motivates
the introduction of geometric alignment mechanisms, which explicitly coor-
dinate the directions of learned transformations. We develop this idea in the
next section.

Geometric Alignment Beyond Normalization

We showed that Pre-LN architectures reduce learning-time instability by
controlling the magnitude of residual Jacobians. However, both theory and
experiments indicate that normalization alone cannot eliminate commutator
energy or alter its scaling behavior with depth. In this section, we introduce
geometric alignment as the missing ingredient required to control learning-
time non-commutativity at scale.

We argue that Geometric Transformers (GTs) operate in a fundamentally
different regime by coordinating the directions of learned updates, not merely
their scale.

Commutator Energy as a Directional Misalignment Measure

Recall that learning-time commutator energy arises from directional incom-
patibility between Jacobians:

Ecomm(x) ≈ ∥(Ji Jj − Jj Ji)x∥2.

Even when ∥Ji∥ and ∥Jj∥ are bounded, the commutator remains large if the
dominant eigenspaces of Ji and Jj are misaligned.

Layer normalization constrains ∥Ji∥, but leaves the eigenspace structure of
Ji unconstrained. As a result, normalization reduces commutator energy only
multiplicatively and does not enforce approximate commutativity.

To suppress commutator energy more strongly, it is necessary to align the
principal directions along which different sub-operators act.

Geometric Alignment as Coordinate-Frame Control

We define geometric alignment as an architectural mechanism that biases
learned transformations to act in compatible coordinate frames across layers
and tokens.

Formally, let {Jℓ} denote the Jacobians of residual sub-operators acting on
the same representation stream. Geometric alignment reduces the expected
cross-covariance of Jacobians:

Cov(Ji, Jj) −→ aligned subspaces,
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thereby suppressing

E
[
∥Ji Jj − Jj Ji∥2

F
]

beyond what is achievable through normalization alone.
Crucially, alignment operates on the orientation of updates rather than

their scale.

Alignment Mechanisms in Geometric Transformers

Geometric Transformer architectures implement alignment through explicit
coordination operators inserted between standard Transformer sublayers. We
summarize the three principal mechanisms studied in this work.

GT-L ITE : LOCAL SMOOTHING AS LOW-PASS ALIGNMENT. GT-Lite
introduces a local geometric smoothing operator C (e.g., convolution or
neighborhood mixing) between attention and feed-forward stages. Smoothing
suppresses high-frequency variation in the representation manifold, reducing
sensitivity to small upstream perturbations.

At the Jacobian level, smoothing contracts unstable directions and re-
duces the contribution of rapidly varying eigenspaces. This partially aligns
the dominant subspaces of JA and JF, yielding a substantial reduction in
commutator energy, particularly at moderate depth.

However, because smoothing is local, alignment weakens as depth in-
creases, which explains the gradual drift in commutator energy observed
empirically for GT-Lite.

GT-FULL : GEOMETRIC TRANSPORT AS GLOBAL ALIGNMENT. GT-
Full replaces local smoothing with an explicit geometric transport operator G,
implemented via message passing over a fixed relational or positional graph
(or simplicial complex).

Transport propagates representations in a shared geometric coordinate
system, enforcing consistency across overlapping neighborhoods. This biases
the learned deformations induced by attention and feed-forward operators to
act along compatible subspaces across tokens and layers.

As a result, GT-Full suppresses commutator energy at its source: not by
shrinking Jacobians, but by aligning their dominant eigenspaces. Empirically,
this yields low and stable commutator energy even at large depth, while
preserving rich global structure in representations.

GT-MOE: CONDITIONAL SPECIALIZATION VS . ALIGNMENT. GT-
MoE introduces a mixture-of-experts operator M whose effective transforma-
tion depends on state-dependent routing. Conditional specialization reduces
direct interference between incompatible updates by routing different repre-
sentations to different experts.
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While this reduces commutator energy relative to a baseline Transformer,
routing introduces branching sensitivity: small changes in the residual stream
can alter expert selection and hence the effective Jacobian. As a result, GT-
MoE occupies an intermediate regime—more stable than Pre-LN Transform-
ers, but less aligned than GT-Full.

Scaling Consequences of Alignment

Geometric alignment fundamentally alters the scaling behavior of commuta-
tor energy with depth. Whereas Pre-LN Transformers satisfy

Ecomm(L) ∼ L · ϵ,

for some residual mismatch ϵ > 0, GT-Full exhibits

Ecomm(L) ≈ const,

up to statistical fluctuations.
This qualitative change in scaling explains why GT-Full continues to

train and generalize at depths where both Post-LN and Pre-LN Transformers
degrade, even under comparable optimization settings.

Normalization vs. Alignment

The analysis clarifies the distinct roles of normalization and alignment:

• Normalization controls the scale of updates and stabilizes gradient mag-
nitudes.

• Alignment controls the direction of updates and stabilizes their composi-
tion.

Pre-LN addresses the former, while GT architectures address both. This
explains why GT models occupy a distinct and more favorable scaling
regime.

SUMMARY. Geometric alignment provides a principled mechanism for
suppressing learning-time non-commutativity beyond normalization. By co-
ordinating the directions of learned transformations, Geometric Transformers
fundamentally alter the scaling behavior of commutator energy with depth.
This shift underlies the empirical stability and generalization advantages
observed across tasks and motivates geometric alignment as a core design
principle for scalable sequence models.

Discussion and Predictions

The preceding sections establish commutator energy as a principled order pa-
rameter for learning-time compositionality and identify geometric alignment
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as the key architectural mechanism that controls its scaling with depth. In this
section, we synthesize these results into concrete predictions, architectural
implications, and directions for future work.

A New Scaling Regime for Sequence Models

Classical Transformer scaling analyses focus on parameter count, dataset
size, and optimization stability. Our results suggest that an additional axis is
fundamental: the scaling behavior of learning-time non-commutativity.

We distinguish two qualitatively different regimes:

• Normalization-limited scaling (Post-LN, Pre-LN Transformers), in
which commutator energy grows approximately linearly with depth,
eventually degrading generalization despite continued reduction in training
loss.

• Alignment-limited scaling (GT-Full), in which commutator energy re-
mains bounded with depth, enabling stable learning and generalization at
substantially greater depth.

This distinction reframes depth-related failure modes not as optimization
pathologies, but as geometric incompatibilities in learned update dynamics.

Predictions for Scaling Laws in Geometric Transformers

The analysis yields several testable predictions that differentiate Geometric
Transformers from standard architectures:

PREDICTION 1: DEPTH - INVARIANT COMMUTATOR ENERGY. For
GT-Full architectures trained under comparable conditions, the average com-
mutator energy per layer should converge to a depth-independent constant,
up to finite-sample fluctuations. In contrast, both Post-LN and Pre-LN Trans-
formers should exhibit monotonic growth of commutator energy with depth.

PREDICTION 2: DECOUPLING OF TRAINING LOSS AND GENER -
ALIZATION FAILURE . In normalization-limited models, training loss can
continue to decrease while validation performance deteriorates due to ac-
cumulated non-commutativity. GT models should exhibit tight coupling
between training and validation metrics, reflecting stable compositional dy-
namics.

PREDICTION 3: EMERGENCE OF DEEPER OPTIMAL DEPTHS . The
depth at which performance saturates or degrades should shift upward sub-
stantially for GT-Full relative to Pre-LN Transformers, even when controlling
for parameter count and optimization hyperparameters.
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PREDICTION 4: REDUCED SENSITIVITY TO LEARNING-RATE

SCHEDULES . Because geometric alignment stabilizes update composi-
tion, GT-Full should be less sensitive to aggressive learning rates and warmup
schedules at large depth, relative to normalization-only baselines.

Architectural Implications

The commutator-energy perspective suggests a new taxonomy of architec-
tural design choices:

• Normalization mechanisms (LayerNorm, RMSNorm) regulate update
scale but do not control directional compatibility.

• Smoothing mechanisms (GT-Lite, convolutions) partially reduce direc-
tional mismatch but degrade at scale.

• Alignment mechanisms (geometric transport, structured message pass-
ing) directly coordinate update directions and alter scaling behavior.

From this perspective, many successful architectural heuristics—residual
connections, Pre-LN ordering, gating, and MoE routing—can be viewed as
partial or implicit attempts to control learning-time non-commutativity. GT
architectures make this control explicit and measurable.

Relation to Existing Scaling Theory

Existing scaling-law analyses (e.g., mean-field limits, neural tangent kernels,
and residual dynamical systems) primarily address gradient magnitude and
signal propagation. Our results complement these frameworks by identifying
a distinct failure mode: directional incompatibility of learned updates.

This suggests that a complete theory of deep sequence model scaling must
account for both:

1. the magnitude of Jacobians (controlled by normalization), and

2. their relative orientation (controlled by alignment).

In this sense, commutator energy plays a role analogous to curvature
or torsion in geometric flows: it vanishes in idealized linear regimes, but
dominates behavior in realistic nonlinear networks.

Broader Implications

Beyond Transformers, the framework developed here applies to any resid-
ual architecture composed of interacting nonlinear operators, including
deep MLPs, diffusion models, graph neural networks, and multimodal sys-
tems. The two-moons and sequence-copy experiments demonstrate that
commutator-energy effects arise even in minimal settings.
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More broadly, the results suggest that learning dynamics should be ana-
lyzed not only in terms of loss landscapes, but in terms of compatibility of
learned transformations. This shift aligns with recent efforts to view deep
learning as a form of geometric or dynamical system, but provides a concrete,
computable quantity that bridges theory and practice.

SUMMARY. Geometric alignment fundamentally changes how deep models
scale. By suppressing learning-time non-commutativity, Geometric Trans-
formers operate in a distinct and more stable regime than normalization-
based architectures. Commutator energy provides both a diagnostic and a
design objective for identifying and exploiting this regime. These insights
motivate a new class of scaling laws grounded in geometry and dynamic
alignment, rather than optimization heuristics alone.

Empirical Scaling Behavior on WikiText-103

We now empirically investigate how commutator energy, generalization,
and representation geometry scale with depth in practice. Our goal is not to
achieve state-of-the-art language modeling performance, but to isolate the
learning dynamics induced by architectural design choices under controlled
scaling.

Experimental Setup

All experiments use a truncated WikiText-103 next-token prediction task with
fixed model width and training budget, while varying depth. Specifically:

• Training data: 5K–20K sentences (depending on run), word-level tokens

• Validation data: 100–1K sentences

• Context length: L = 64

• Model dimension: d = 96

• Number of heads: 4

• Feed-forward width: 4d

• Depth: N ∈ {2, 4, 8, 16, 24}

We compare four architectures:

1. Pre-LN Transformer

2. GT-Lite (local geometric smoothing)

3. GT-Full (simplicial geometric transport)

4. GT-MoE (mixture-of-experts feed-forward)
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All models are trained using identical optimization loops, batch sizes, and
evaluation procedures. Learning rates are tuned per architecture to ensure
stable optimization (e.g., lower rates for deeper GT variants).

Depth Scaling of Commutator Energy

The figure shows the evolution of the Čech obstruction (commutator energy)
as depth increases.

PRE-LN TRANSFORMERS . For shallow networks (N = 2), Pre-LN
normalization reduces commutator energy relative to Post-LN baselines.
However, as depth increases, the commutator energy exhibits highly non-
monotonic behavior. In particular:

• At intermediate depths (N = 8–16), commutator energy can temporarily
decrease due to Jacobian shrinkage.

• At larger depths (N ≥ 16), instability re-emerges, and commutator energy
becomes strongly decoupled from validation performance.

This confirms that normalization alone does not control learning-time non-
commutativity.

GT-L ITE . GT-Lite exhibits consistently lower commutator energy than Pre-
LN Transformers across all depths. However, at higher depths, commutator
energy drifts upward, indicating that local smoothing alone cannot fully
suppress long-range interaction effects.

GT-FULL . GT-Full maintains the lowest and most stable commutator energy
across all tested depths. Even at N = 16 and N = 24, commutator energy
remains bounded and tightly correlated with validation perplexity, indicating
a fundamentally different scaling regime.

GT-MOE . GT-MoE has a more complex architecture than the other GT
variants, and consequently it occupies an intermediate regime. Conditional
routing reduces interference relative to baseline Transformers, but introduces
state-dependent branching that prevents full suppression of commutator
growth.

Generalization and Stability

The figures show validation perplexity and loss as functions of training step
and depth.

A striking pattern emerges:

• Pre-LN Transformers exhibit improving training perplexity but rapidly
deteriorating validation perplexity as depth increases.
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Figure 21: Čech obstruction (com-
mutator energy) scaling plots
for Wiki-103 dataset as depth is
increased for the (top) PreLN
Trasnformer (second) GT-Lite
Transformer (third) GT-Full Trans-
former, and (fourth) GT-MoE
Transformer.



SCALING LAWS FOR GEOMETRIC TRANSFORMERS 167

Figure 22: Validation perplexity
scaling plots for Wiki-103 dataset
as depth is increased for the (top)
PreLN Transformer (second) GT-
Lite Transformer (third) GT-Full
Transformer, and (fourth) GT-MoE
Transformer.
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Figure 23: Loss scaling plots
for Wiki-103 dataset as depth is
increased for the (top) PreLN
Trasnformer (second) GT-Lite
Transformer (third) GT-Full Trans-
former, and (bottom) GT-MoE
Transformer.
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• GT variants exhibit tightly coupled training and validation curves, indicat-
ing stable generalization dynamics.

• GT-Full and GT-MoE outperform Pre-LN Transformers at depth even
when all models use identical optimization loops.

These trends persist across dataset sizes, indicating that the observed
behavior is not an artifact of data scarcity or evaluation bias.

Topological Diagnostics Under Depth Scaling

In the figure, we track a complementary topological diagnostic computed via
persistent homology: the total H1 persistence of attention-induced geometry,
denoted topo_H1. This quantity measures the strength and persistence of
one-dimensional cycles (loops) in the token-interaction geometry induced by
model attention patterns. While commutator energy is a dynamical observ-
able of learning-time operator compatibility, topo_H1 acts as a structural
witness of global geometry in the learned representation space.

PRE-LN TRANSFORMERS . Under depth scaling, Pre-LN Transformers
tend to exhibit reduced and increasingly stable topo_H1 signals as depth
increases. This is consistent with the mean-field interpretation developed
in Sections –: Pre-LN normalization suppresses the magnitude of residual
updates, and deeper stacking further attenuates high-frequency variation,
producing a progressively flatter effective geometry. In this regime, low
topo_H1 does not necessarily indicate successful alignment; rather, it may
reflect a vanishing-update or geometry-flattening mechanism, consistent with
the fact that validation performance can degrade even as topo_H1 decreases.

GT-L ITE . GT-Lite introduces local smoothing, which typically suppresses
large-scale cycle structure and yields moderate topo_H1 values. Under in-
creasing depth, GT-Lite may exhibit either controlled topological signatures
or mild drift, reflecting the fact that local smoothing regularizes geometry
but does not guarantee global consistency across long compositional hori-
zons. Empirically, this mirrors the behavior of commutator energy: GT-Lite
reduces order sensitivity relative to Transformers, but can show gradual
depth-dependent drift at larger depths.

GT-FULL . GT-Full exhibits a qualitatively different behavior. Across
depths, GT-Full maintains bounded commutator energy while supporting
nontrivial but controlled topo_H1 structure. This indicates that GT-Full does
not stabilize training by collapsing geometry; instead, it stabilizes training
while preserving coherent global structure. In other words, GT-Full enables
a regime in which dynamic compositionality (low commutator energy) and
geometric expressivity (nontrivial topology) coexist.
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Figure 24: Total H1 persistence ho-
mology scaling plots for Wiki-103
dataset as depth is increased for
the (top) PreLN Transformer (sec-
ond) GT-Lite Transformer (third)
GT-Full Transformer, and (bottom)
GT-MoE Transformer.
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GT-MOE. GT-MoE uses introduces state-dependent branching that exhibits
a more complex attention topology score as measured by topo_H1 structure.
Thus, GT-MoE combines higher geometric expressivity, as measured by the
nontrivial topology, while keeping a moderate dynamic compositionality
(lower commutator energy).

INTERPRETATION . Taken together, these results suggest that topological
diagnostics are essential for distinguishing two distinct ways of achieving
apparent stability at depth:

• Stability by collapse: depth and normalization reduce both commutator
energy and topological complexity by shrinking updates and flattening
geometry (often observed in deep Pre-LN Transformers).

• Stability by alignment: geometric transport reduces commutator en-
ergy while preserving coherent global structure, yielding controlled but
nontrivial topo_H1 signatures (characteristic of GT-Full).

Thus, topo_H1 provides an orthogonal axis of evidence that geometric
alignment differs fundamentally from normalization-based stabilization and
helps explain why GT architectures operate in a distinct scaling regime.

Penn Tree Bank Results

The figures shown repeat the same experiments as above for the Penn Tree
Bank (PTB) dataset. These results largely confirm what we saw in the previ-
ous section with the larger Wiki-103 dataset.

Interpretation

Taken together, these results demonstrate that:

1. Depth scaling in Transformers is limited by learning-time non-commutativity,
not merely optimization difficulty.

2. Pre-LN normalization mitigates but does not eliminate this obstruction.

3. Geometric alignment fundamentally alters the scaling regime, allowing
depth to increase without destabilizing learning dynamics.

Importantly, these conclusions emerge clearly at moderate scale. Large-
scale training may mask these effects through averaging and overparameteri-
zation, but does not eliminate their underlying cause.

SUMMARY. The PTB and WikiText-103 scaling experiments provide di-
rect empirical evidence for the theoretical claims of this paper. Geometric
Transformers operate in a distinct scaling regime characterized by bounded
commutator energy, stable generalization, and coherent representation geom-
etry—properties that do not arise from normalization or scale alone.
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Figure 25: Čech obstruction (com-
mutator energy) scaling plots for
Penn Tree Bank (PTB) dataset as
depth is increased for the (top)
PreLN Transformer (second) GT-
Lite Transformer (third) GT-Full
Transformer, and (fourth) GT-MoE
Transformer.
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Figure 26: Validation perplexity
scaling plots for PTB dataset as
depth is increased for the (top)
PreLN Transformer (second) GT-
Lite Transformer (third) GT-Full
Transformer, and (fourth) GT-MoE
Transformer.
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Figure 27: Loss scaling plots for
PTB dataset as depth is increased
for the (top) PreLN Trasnformer
(second) GT-Lite Transformer
(third) GT-Full Transformer, and
(bottom) GT-MoE Transformer.
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Figure 28: Total H1 persistence
homology scaling plots for PTB
dataset as depth is increased for
the (top) PreLN Transformer (sec-
ond) GT-Lite Transformer (third)
GT-Full Transformer, and (bottom)
GT-MoE Transformer.
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Scaling in PreLN and Geometric Transformers: Empirical Evidence

These experiments suggest the following conclusions about scaling laws for
GTs and PreLN Transformers.

Commutator Energy Decreases with Depth

A clear pattern that emerges is how commutator energy behaves with increas-
ing depth.

• Shallow models exhibit the highest commutator energy, with sharp early
spikes and steady growth during training.

• Increasing depth systematically reduces commutator energy.

• At L = 16, the obstruction proxy is approximately half that of the L = 2
model throughout training.

This demonstrates that depth alone acts as a regularizer of dynamic com-
positionality: as residual updates are distributed across more layers, the order
sensitivity between sub-operators decreases.

Depth Improves Stability but Not Generalization

Despite the reduction in commutator energy, deeper PreLN models do not
eliminate generalization failure in PreLN Transformers.

• Training loss and training perplexity improve monotonically with depth.

• Validation perplexity saturates and eventually diverges from training
performance.

• Sequence-level accuracy remains poor even at higher depths.

Thus, while depth suppresses order sensitivity, it does not enforce seman-
tic alignment between learned transformations and the data manifold.

Topological Simplification Without Semantic Alignment

Topological diagnostics based on persistent homology further support this
interpretation. As depth increases, the total H1 persistence of attention
representations decreases, indicating a simplification of effective attention
geometry. However, this simplification does not translate into improved gen-
eralization.

Together with commutator-energy measurements, this shows that PreLN
Transformer depth controls the scale of transformations but leaves their
directional compatibility largely unconstrained.
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Implications for Scaling Laws

These results reveal an important distinction between two stabilization mech-
anisms:

• Depth + normalization reduce the magnitude of residual updates and
suppress commutator energy.

• Geometric alignment (as in GT) further constrains the direction of up-
dates, enabling stable generalization at scale.

Consequently, PreLN Transformers enter a regime of improved dynamic
compositionality as depth increases, but remain fundamentally limited by the
absence of explicit geometric coordination.

Conclusion

This chapter has developed a geometric perspective on depth scaling in se-
quence models by identifying learning-time non-commutativity as a funda-
mental failure mode of deep residual architectures. We introduced commu-
tator energy as a concrete, computable diagnostic for this phenomenon and
showed empirically and theoretically that Geometric Transformers (GTs)
operate in a distinct scaling regime characterized by bounded commutator
energy and stable dynamic compositionality.

Summary of Contributions

Summarizing the results of the last few chapters on DB and GT, and the
previous chapter, we have achieved the following:

1. Instrumentation We introduced a forward-pass diagnostic—commutator
energy—that measures order sensitivity between learned sub-operators
inside residual blocks, and showed that it explains training instability and
generalization collapse in standard Transformers.

2. Mechanism We demonstrated that commutator energy arises from incom-
patible learned deformations rather than optimization noise, and provided
a code-faithful explanation of how GT variants reduce this incompatibility
through geometric coordination.

3. Theory Using a mean-field and Jacobian-based analysis, we showed that
normalization (Pre-LN) controls the magnitude of residual updates, but not
their directional compatibility, leaving commutator energy as a dominant
scaling bottleneck.

4. Scaling We identified a new scaling regime in which geometric alignment
suppresses commutator energy growth with depth, enabling stable learning
beyond the depth limits of normalization-based architectures.
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Together, these results establish geometric alignment—not normalization
alone—as the critical factor governing depth scalability in modern sequence
models.

Reframing Transformer Scaling

The empirical success of large Transformers has often been attributed to
scale alone: sufficient data, sufficient compute, and careful optimization.
Our results suggest a complementary interpretation. Transformers succeed
at scale not because non-commutativity disappears, but because massive
overparameterization and data implicitly average over incompatible update
directions.

Geometric Transformers instead address the root cause directly by align-
ing learned transformations. This produces a qualitatively different learning
regime in which depth can be increased without relying on brute-force scale
to mask dynamic incompatibilities.

Implications for Architecture Design

The commutator-energy framework suggests a shift in architectural design
principles:

• From static compositionality (layer stacking) to dynamic compositionality
(compatibility of learned updates).

• From normalization-centric stabilization to geometry-centric alignment.

• From heuristic residual tuning to measurable control of learning-time
curvature.

Under this view, Geometric Transformers represent one instantiation of a
broader class of architectures designed to coordinate learned deformations
rather than simply regulate their scale.

Open Problems and Future Directions

This work opens several directions for future research:

FORMAL SCALING LAWS . A complete scaling theory for GTs should
characterize how commutator energy, generalization error, and representation
geometry co-evolve with depth, width, and data size.

ALTERNATIVE ALIGNMENT MECHANISMS . While this paper focuses
on simplicial transport, other geometric alignment mechanisms—e.g.,
learned coordinate frames, curvature-aware updates, or symmetry-constrained
flows—may achieve similar effects.



SCALING LAWS FOR GEOMETRIC TRANSFORMERS 179

BEYOND TRANSFORMERS . The commutator-energy framework applies
to any residual architecture composed of interacting nonlinear operators.
Extending this analysis to diffusion models, graph networks, and multimodal
systems is a natural next step.

FROM DIAGNOSTICS TO CONTROL . While Diagrammatic Backpropa-
gation uses commutator energy primarily as a diagnostic, incorporating it
directly into training objectives may yield new optimization algorithms with
principled stability guarantees.

Closing Remarks

Deep learning systems are increasingly understood as dynamical systems
evolving on high-dimensional representation manifolds. This chapter ar-
gues that stability and scalability depend not only on controlling the size of
updates, but on controlling how those updates interact.

By making learning-time non-commutativity measurable and architec-
turally controllable, Geometric Transformers offer a path toward deeper,
more stable, and more interpretable models. We view this work not as the
end of an architecture proposal, but as the beginning of a geometric theory of
deep learning dynamics.

Summary and Further Reading

We have analyzed scaling laws for Geometric Transformers (GTs). It intro-
duces a new perspective with which we can attempt to build more scalable
AGI models in the future. There is much more to be done here in terms of a
deeper understanding of these massively large models. There is a growing lit-
erature on scaling laws, which we have barely scratched the surface of.57 The 57 Greg Yang. Scaling limits of wide neural

networks with weight sharing. Advances
in Neural Information Processing Systems,
32, 2019. URL https://arxiv.org/
abs/1902.04760

classic paper on scaling laws for Transformers should be read by everyone. 58

58 Jared Kaplan, Sam McCandlish, Tom
Henighan, Tom Brown, Benjamin Chess,
Rewon Child, Scott Gray, Alec Radford,
Jeffrey Wu, and Dario Amodei. Scaling laws
for neural language models. arXiv preprint
arXiv:2001.08361, 2020

In addition, the classic work on PreLN Transformers used a mean-field
analysis to demonstrate significant improvements over the traditional PostLN
Transformer. 59

59 Ruibin Xiong, Yaru Yang, Di He, Kai
Zhang, Shuxin Zheng, Hao Zheng, Chen
Xing, Liangchen Liu, and Liwei Wang. On
layer normalization in the transformer archi-
tecture. arXiv preprint arXiv:2002.04745,
2020

https://arxiv.org/abs/1902.04760
https://arxiv.org/abs/1902.04760




Adjoint Functors

Next we turn to understanding the concept of adjoint functors, which has
a crucial role in AGI applications such as domain adaption or transfer learn-
ing.60 In a fundamental way, adjoint functors will turn out to capture deeper 60 Chapter 4 in Riehl’s textbook has a

detailed discussion of adjoint functors.concepts, such as probabilities, through their close relationships to monads.
We will see an elegant application of adjoint functors in an implemented
system called DEMOCRITUS, which turns natural language documents into
causal models. 61 61 Sridhar Mahadevan. Large causal models

from large language models, 2025d. URL
https://arxiv.org/abs/2512.
07796

Adjoint functors naturally arise in a number of contexts, among the most
important being between “free" and “forgetful" functors. Let us consider a
canonical example that is of prime significance in many applications in AI
and ML.

Category of 
Statistical
Models 

Category of 
Causal 
Models

F

U

Figure 29: Adjoint functors pro-
vide an elegant characterization
of the relationship between the
category of statistical genera-
tive AI models and that of causal
generative AI models. Statistical
models can be viewed as the result
of applying a “forgetful" functor
to a causal model that drops the
directional structure in a causal
model, whereas causal models can
be viewed as “words" in a “free"
algebra that results from the left
adjoint functor to the forgetful
functor.Adjoint functors provides a high level overview of the relationship be-

tween a category of statistical generative AI models and a category of causal
generative AI models that can be seen as being related by a pair of adjoint
“forgetful-free" functors.

A statistical model can be abstractly viewed in terms of its conditional
independence properties. More concretely, the category of separoids consists
of objects called separoids (S,≤), which are semilattices with a preordering
≤ where the elements x, y, z ∈ S denote entities in a statistical model. We

https://arxiv.org/abs/2512.07796
https://arxiv.org/abs/2512.07796


182 CATEGORIES FOR AGI

define a ternary relation (• ⊥ •|•) ⊆ S × S × S, where (x ⊥ y|z) is
interpreted as the statement x is conditionally independent of y given z to
denote a relationship between triples that captures abstractly the property that
occurs in many applications in AI and ML.

For example, in statistical ML, a sufficient statistic T(X) of some dataset
X, treated as a random variable, is defined to be any function for which the
conditional independence relationship (X ⊥ θ|T(X)), where θ ∈ Rk

denotes the parameter vector of some statistical model P(X) that defines the
true distribution of the data. Similarly, in causal inference, (x ⊥ y|z) ⇒
p(x, y, z) = p(x|z)p(y|z) denotes a statement about the probabilistic
conditional independence of x and y given z.

In causal inference, the goal is to recover a partial order defined as a di-
rected acyclic graph (DAG) that ascribes causality among a set of random
variables from a dataset specifying a sample of their joint distribution. It
is well known that without non-random interventions, causality cannot be
inferred uniquely, since because of Bayes rule, there is no way to distin-
guish causal generative AI models such as x → y → z from the reverse
relationship z → y → x. In both these models, x ⊥ z|y and because of
Bayes inversion, one model can be recovered from the other. We can define a
“free-forgetful" pair of adjoint functors between the category of conditional
independence relationships, as defined by separoid objects, and the category
of causal generative AI models parameterized by DAG models.

We first review some basic material relating to adjunctions defined by
adjoint functors, before proceeding to describe the theory of monads, as the
two are intimately related. Adjunctions are defined by an opposing pair of
functors F : C↔ D : G that can be defined more precisely as follows.

Definition 42. An adjunction consists of a pair of functors F : C → D
and G : D → C, where F is often referred to left adjoint and G is referred
to as the right adjoint, that result in the following isomorphism relationship
holding between their following sets of homomorphisms in categories C and
D:

D(Fc, d) ≃ C(c, Gd)

We can express the isomorphism condition more explicitly in the form of
the following commutative diagram:

D(Fc, d) C(c, Gd)

D(Fc, d′) C(c, Gd′)

≃

k∗ Gk∗

≃

Here, k : d → d′ is any morphism in D, and k∗ denotes the “pullback" of
k with the mapping f : Fc → d to yield the composite mapping k ◦ f . The
adjunction condition holds that the transpose of this composite mapping is
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equal to the composite mapping g : c → Gd with Gk : Gd → Gd′. We can
express this dually as well, as follows:

D(Fc, d) C(c, Gd)

D(Fc′, d) C(c′, Gd′)

≃

Fh∗ h∗

≃

where now h : c′ → c is a morphism in C, and h∗ denote the “push-
forward" of h. Once again, the adjunction condition is a statement that the
transpose of the composite mapping f ◦ Fh : Fc′ → d is identical to the
composite of the mappings h : c→ c′ with f : c→ Gd.

It is common to denote adjoint functors in this turnstile notation, indi-
cating that F : C → D is left adjoint to G : D → C, or more simply as
F ⊢ G.

D C.
G

F

⊣

We can use the concept of universal arrows introduced in Section 2 to
give more insight into adjoint functors. The adjunction condition for a pair of
adjoint functors F ⊢ G

D(Fc, d) ≃ C(c, Gd)

implies that for any object c ∈ C, the object Fc ∈ D represents the
functor C(c, G−) : D → Set. Recall from the Yoneda Lemma that the
natural isomorphism D(Fc,−) ≃ C(c, G−) is determined by an element
of C(c, GFc), which can be viewed as the transpose of 1Fc. Denoting such
elements as ηc, they can be assembled jointly into the natural transformation
η : 1C → GF. Below we will see that this forms one of the conditions for an
endofunctor to define a monad.

Theorem 4. The unit η : 1C → GF is a natural transformation defined by
an adjunction F ⊢ G, whose component ηc : c → GFc is defined to be the
transpose of the identity morphism 1Fc.

Proof: We need to show that for every f : c → c′, the following diagram
commutes, which follows from the definition of adjunction and the isomor-
phism condition that it imposes, as well as the obvious commutativity of the
second transposed diagram below the first one.

c GFc

c′ GFc′

ηc

f GF f
ηc′

Fc Fc

Fc′ Fc′

1Fc

F f F f
1Fc′
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The dual of the above theorem leads to the second major component of an
adjunction.

Theorem 5. The counit ϵ : FG ⇒ 1D is a natural transformation defined by
an adjunction F ⊢ G, whose components ϵc : FGd → d at d is defined to be
the transpose of the identity morphism 1Gd.

Adjoint functors interact with universal constructions, such as limits and
colimits, in ways that turn out to be important for a variety of applications
in AI and ML. We state the main results here, but refer the reader to Riehl’s
textbook for detailed proofs. Before getting to the general case, it is illus-
trative to see the interaction of limits and colimits with adjoint functors for
preorders. Recall from above that separoids are defined by a preorder (S,≤)
on a join lattice of elements from a set S. Given two separoids (S,≤S) and
(T,≤T), we can define the functors F : S → T and G : T → S to be
order-preserving functions such that

Fa ≤T b if and only if a ≤S Gb

Such an adjunction between preorders is often called a Galois connection.
For preorders, the limit is defined by the meet of the preorder, and the colimit
is defined by the join of the preorder. We can now state a useful result. For a
fuller discussion of preorders and their applications from a category theory
perspective, see 62. 62 Brendan Fong and David I Spivak. Seven

Sketches in Compositionality: An Invitation
to Applied Category Theory. Cambridge
University Press, 2018

Theorem 6. Right adjoints preserve meets in a preorder: Let f : P → Q
be left adjoint to g : Q → P, where P, Q are both preorders, and f and
g are monotone order-preserving functions. For any subset A ⊆ Q, let
g(A) = {g(a)|a ∈ Q}. If A has a meet

∧
A ∈ Q, then g(A) has a meet

∧g(A) ∈ P, and we can see that g(∧A) ≃ ∧
g(A), that is, right adjoints

preserve meets. Similarly, left adjoints preserve meets, so that if A ⊂ P
such that

∨
A ∈ P then f (A) has a join ∨ f (A) ∈ Q and we can set

f (∨A) ≃ ∨ f (A), so that left adjoints preserve joins.

Proof: The proof is not difficult in this special case of the category being
defined as a preorder. If f : P → Q and g : Q → P are monotone adjoint
maps on preorders P, Q, and A ⊂ Q is any subset such that its meet is
m = ∧A. Since g is monotone, g(m) ≤ g(a), ∀a ∈ A, hence it follows that
g(m) ≤ g(A). To show that g(m is the greatest lower bound, if we take any
other lower bound b ≤ g(a), ∀a ∈ A, then we want to show that b ≤ g(m).
Since f and g are adjoint, for every p ∈ P, q ∈ Q, we have

p ≤ g( f (p)) and f (g(q)) ≤ q

Hence, f (b) ≤ a for all a ∈ A, which implies f (b) is a lower bound for
A on Q. Since the meet m is the greatest lower bound, we have f (b) ≤ m.
Using the Galois connection, we see that b ≤ g(m), and hence showing that
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g(m) is the greatest lower bound as required. An analogous proof follows to
show that left adjoints preserve joins.

We can now state the more general cases for any pair of adjoint functors,
as follows.

Theorem 7. A category C admits all limits of diagrams indexed by a small
category J if and only if the constant functor ∆ : C → CJ admits a right ad-
joint, and admits all colimits of J -indexed diagrams if and only if ∆ admits a
left adjoint.

By way of explanation, the constant functor c : J → C sends every
object of J to c and every morphism of J to the identity morphism 1c. Here,
the constant functor ∆ sends every object c of C to the constant diagram
∆c, namely the functor that maps each object i of J to the object c and each
morphism of J to the identity 1c. The theorem follows from the definition of
the universal properties of colimits and limits. Given any object c ∈ C, and
any diagram (functor) F ∈ CJ , the set of morphisms CJ (∆c, F) corresponds
to the set of natural transformations from the constant J -diagram at c to the
diagram F. These natural transformations precisely correspond to the cones
over F with summit c in the definition given earlier in Section 2. It follows
that there is an object lim F ∈ C together with an isomorphism

CJ (∆c, F) ≃ C(c, lim F)

We can now state the more general result that we showed above for the
special case of adjoint functors on preorders.

Theorem 8. Right adjoints preserve limits, whereas left adjoints preserve
colimits.

Summary and Further Reading

Riehl’s textbook gives an excellent presentation of adjoint functions, which
you should read to get a deeper understanding. Adjoints also play a major
role in the theory of monads, which is fundamental in modeling probabilities
using category theory. In the next chapter, we will apply adjoint functors to
an interesting AGI problem of building massively large causal models from
causal language discourse. We will describe a system called DEMOCRITUS

which can take as input a newspaper story about some causal phenomenon
(e.g., does eating dark chocolate make you live longer?), and build thousands
of detailed causal models from it from carefully quering an LLM. DEM -
OCRITUS uses the diagrammatic backprogation (DB) method along with the
Geometric Transformer (GT), without which it would not be able to weave
together hundreds of thousands of plausible causal claims into one coherent
manifold.





Causality from Language

We now turn to an elegant application of adjoint functors in an imple-
mented system called DEMOCRITUS, which constructs large causal models
from language language models. 63 DEMOCRITUS differs from traditional 63 Sridhar Mahadevan. Large causal models

from large language models, 2025d. URL
https://arxiv.org/abs/2512.
07796

causal inference methods. Its goal is not to validate some topically narrow
question in, say a clinical trial or an A/B test, but rather to compile a causal
atlas that is wide-ranging over dozens of disparate fields. It carefully exploits
the capabilities of modern hundred billion parameter LLMs, which contain
within their weights a vast pool of knowledge of many topics. Yet, no single
prompt to an LLM will reveal what DEMOCRITUS creates. DEMOCRITUS

constructs very detailed causal models given as input only a textual source,
such as a newspaper article. The system uses some rather sophisticated deep
learning methods and a new type of Transformer architecture, which we can
only describe in some general terms, as they build on advanced ideas that lie
beyond this introductory book. However, we can certainly show how DEM -
OCRITUS works, and what types of information it produces.

DEMOCRITUS automatically builds thousands of quantitative models of
the causal content in a document, evaluates them for plausibility, and scores
them to return a rank-ordered natural language summary of the original docu-
ment. Such an end-to-end system is of broad applicability to many domains,
from business analysis to scientific summarization to technological assess-
ment. DEMOCRITUS works by first extracting a frame of discourse from
carefully curated queries to a large language model (LLM), and then builds
a highly detailed “causal atlas" of the frame of discourse. DEMOCRITUS

is distinct from traditional causal inference in that its input is purely textual,
as is its output. However, DEMOCRITUS converts the input text document
into thousands of local causal models, and evaluates each one in terms of its
plausibility. It produces a rank-ordered list of models, and converts that back
into a textual executive summary. DEMOCRITUS relies on state-of-the-art
categorical causal and deep learning methods. As is familiar to most readers,
LLMs can produce on demand rich causal narratives: they can enumerate
subtopics, pose causal questions, and articulate mechanistic explanations
in domains ranging from macroeconomics to neuroscience. However, an
LLM used for document summarization cannot produce a rank-ordered list of

https://arxiv.org/abs/2512.07796
https://arxiv.org/abs/2512.07796
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causal claims.

Adjoint Functors between Causality and Language

To explain this process more abstractly, we use the framework of adjoint
functors from category theory, in which a pair of functors maps between
the category of causal discourse, and the category of formal causal models.
DEMOCRITUS rests on the theoretical assumption that the relationship be-
tween linguistic causal discourse and formal causal models can be expressed
via an adjunction:

F ⊣ G : Mdisc ⇄Mmodel,

where F maps discourse objects to formal causal models (formalization),
and G maps formal causal models to discourse objects (explanation). The
adjunction asserts a natural bijection

Hommodel(F(d), m) ∼= Homdisc(d, G(m)),

which can be interpreted as follows: mapping the formalization of discourse
into a model is equivalent to mapping the discourse into the canonical expla-
nation of that model. The induced unit η : Id⇒ GF and counit ϵ : FG ⇒ Id
provide round-trip consistency contracts: formalize-then-explain should pre-
serve discourse up to normalization, and explain-then-formalize should map
back into the original model up to conservative approximation. These con-
tracts directly motivate the design criteria for our system. Conceptually, F
acts as a free construction: it maps discourse samples into a generator presen-
tation of a compositional causal category, producing many local morphisms
that can be tensored and composed. The right adjoint G is forgetful/recon-
structive: it collapses much of this internal structure, returning a human-
facing summary by projecting categorical structure back into a small set of
salient discourse claims.

A Running Example: Does Eating Dark Chocolate Help You Live
Longer?

Given as input an article in a newspaper—such as a recent story in The Wash-
ington Post on why eating dark chocolate may elongate life 64, the goal is 64 https://www.washingtonpost.

com/wellness/2025/12/26/
dark-chocolate-health-benefits

not merely to produce an LLM-style narrative summary of the sort that has
become commonplace. Rather, the goal is to produce a probing and incisive
analysis of the causal claims contained within the article. DEMOCRITUS

does so by automatically constructing thousands of local causal models from
the induced discourse frame, numerically evaluating these models, and pro-
ducing a condensed executive summary by rank-ordering the causal claims
supported by model agreement.

To contrast the difference, here is the output of an LLM-based summarizer
that is featured on The Washington Post.

https://www.washingtonpost.com/wellness/2025/12/26/dark-chocolate-health-benefits
https://www.washingtonpost.com/wellness/2025/12/26/dark-chocolate-health-benefits
https://www.washingtonpost.com/wellness/2025/12/26/dark-chocolate-health-benefits
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Figure 30: An article in The Wash-
ington Post on the connection
between dark chocolate and aging.

LLM-based AI Summary

AI Overview Summary is generated by AI. Please verify accuracy by reading
the full article.
A study in Aging found higher blood levels of theobromine, found in dark
chocolate and coffee, linked to slower cellular aging. The study found an
association, not a causal link, and didn’t specify consumption amounts. Re-
searchers noted theobromine’s potential impact on gene activity and aging.
The study’s limitations include lack of dietary data and single-time-point
analysis. Read the full article for more on: The role of epigenetic clocks in
estimating biological age. Potential synergistic effects of theobromine with
other chocolate components. Limitations of the study and what they mean for
future research.

What Is the Frame of Discourse?

A crucial design choice in DEMOCRITUS is the definition of the frame
of discourse within which causal claims are generated and evaluated. This
frame is not the input article alone. Instead, the article serves as a seed for
constructing a broader causal neighborhood consisting of related topics and
claims that surround the article’s subject matter. Concretely, DEMOCRITUS

first performs topic discovery over the input document and then expands
these topics using a language model to form a local discourse manifold.
Causal claims are extracted and evaluated relative to this expanded topic
set. As a result, the system reasons not only about what the article explicitly
states, but about how those statements are situated within a larger landscape
of causal discourse.
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Example: Discourse Frame Induced by The Washington Post Chocolate
Article

The following topics were automatically extracted and expanded from The
Washington Post article on chocolate and aging, defining the causal discourse
neighborhood used by DEMOCRITUS:

• anti-inflammatory foods recommendations

• association versus causation in aging studies

• balancing sugar intake with chocolate consumption

• cancer risk reduction strategies

• cocoa content and nutritional value

• coffee as a source of theobromine

• cognitive biases and positivity

• dark chocolate ingredient criteria

• dark chocolate’s health effects

• dietary impacts on health

• dietary recommendations for chocolate consumption

• DNA methylation as gene expression regulator

• doctor’s wellness advice

• effects of theobromine on aging

• epigenetic clocks and aging measurement

• epigenetic clocks and aging rates

• epigenetic clocks and biological aging

• genetic and epigenetic aging factors

DEMOCRITUS uses this list of topics to produce a rather detailed causal
report, evaluating thousands of local causal models. Interestingly, although
The Washington Post AI Overview highlights theobromine as a candidate
driver, DEMOCRITUS does not necessarily elevate it into Tier 1 claims.
The highest-scoring local causal model linking dark chocolate intake to
cholesterol regulation achieves a score of 7.533, reflecting a dense, well-
connected neighborhood with multiple edges that are redundantly supported
across the extracted discourse environment. By contrast, the theobromine-
centered model scores substantially lower (3.988). Although theobromine
is narratively salient in the article, its associated causal neighborhood is
comparatively sparse and weakly redundant: fewer explicit edges recur across
discourse neighborhoods, and agreement across local models is limited. As
a result, the evaluator conservatively demotes the theobromine pathway,
illustrating the distinction between narrative salience and causal support
under model agreement.

DEMOCRITUS is not a document summarizer. While the original Wash-
ington Post article is framed around aging and theobromine, the highest-
scoring local causal neighborhood discovered by DEMOCRITUS emphasizes
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Figure 31: Contrasting local causal
hypotheses for The Washington
Post article on chocolate and aging
case study. Left: a high-scoring lo-
cal causal model (LCM) capturing
a dense, redundant cardiometabolic
neighborhood (e.g., dark chocolate
intake→ blood pressure/LDL/in-
sulin sensitivity and related out-
comes), which repeatedly appears
across high-scoring hypotheses.
Right: a lower-scoring LCM cor-
responding to the article’s salient
biochemical mechanism hypothesis
involving theobromine (and/or
methylation/epigenetic-clock path-
ways). The high-scoring model
forms a connected, mechanism-
like neighborhood (dark chocolate
intake→ flavonoids/antioxidants
→ vascular function/blood pres-
sure) with multiple edges that are
repeatedly supported by extracted
discourse statements; the evaluator
therefore accumulates evidence
across several edges. In contrast,
the theobromine model is compar-
atively sparse and fragmented: it
contains fewer supported edges and
weaker redundancy of edge-level
support in the discourse sam-
ple. As a result, the theobromine
pathway—while narratively salient
in the article—does not survive as
a top-ranked backbone hypothesis
under model agreement.

cardiometabolic effects (e.g., cholesterol). This is not a failure of the system
but an artifact of the evaluation objective: our default scorer ranks hypotheses
by redundancy and model agreement in an expanded discourse environment,
which favors dense and repeatedly expressed health-outcome mechanisms.
To align the output with a user’s question (e.g., aging), one can use a target-
conditioned scoring variant that reweights hypotheses toward query-relevant
variables while retaining the same adjoint reconstruction machinery. The se-
lection of a scoring function is subjective: other choices may well change the
ranking of causal models.

This example clarifies an important distinction between LLM summa-
rization and DEMOCRITUS. A document summary naturally emphasizes
salient narrative elements (here, theobromine). In contrast, DEMOCRITUS

ranks causal hypotheses by redundancy and agreement across many local
models. As a result, a dense cardiometabolic neighborhood can dominate the
top-ranked models, while a mechanistically plausible but weakly supported
pathway (theobromine→ aging) appears only in lower-ranked hypotheses.
This example illustrates why DEMOCRITUS is not a document summarizer.
The evaluator rewards hypotheses whose edges are redundantly supported
across the extracted discourse environment. The dark-chocolate/blood-
pressure neighborhood contains multiple supported edges and therefore
scores highly, while the theobromine neighborhood is sparse and less redun-
dantly supported, yielding a lower score. Thus, DEMOCRITUS elevates what
is structurally supported by model agreement rather than what is merely nar-
ratively salient in a single document. This example illustrates a key difference
between narrative summarization and DEMOCRITUS-style causal analysis.
Although The Washington Post article highlights theobromine as a salient
candidate mechanism, the extracted discourse graph may contain too few
explicit, repeated relations involving theobromine to form a connected local
causal model.

By contrast, a cholesterol-centered neighborhood around dark chocolate
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intake contains multiple supported edges (e.g., dark chocolate intake reducing
LDL cholesterol and influencing HDL cholesterol). Because the evalua-
tion functional rewards redundant, evidence-supported edges and penalizes
unsupported complexity, such dense mechanistic neighborhoods dominate
the top-scoring models and therefore the Tier 1 backbone. This behavior
is conservative: DEMOCRITUS elevates what is structurally supported by
discourse redundancy rather than what is narratively salient.

Many deployed systems now provide AI-generated summaries of news
articles and reports. For example, The Washington Post includes an AI-
generated overview for its article on dark chocolate consumption and aging.
That summary correctly highlights the main findings, notes that the reported
relationship is associative rather than causal, and lists several caveats of the
underlying study. Such summaries are useful as narrative condensations of
text. However, they do not evaluate competing causal hypotheses, nor do
they provide a ranked account of which causal claims are most robust under
variation. They summarize what is said, but not which causal claims are most
credible within the discourse.

In contrast, DEMOCRITUS produces a credibility report rather than a sin-
gle summary. Starting from the same article, the system constructs thousands
of local causal models, evaluates them numerically, and reconstructs a tiered
ranking of causal claims based on agreement across high-scoring models.
The resulting executive summary explicitly distinguishes between backbone
claims shared across models and weaker, model-specific extensions. This
distinction is crucial. DEMOCRITUS is not intended to replace LLM-based
document summarization. Instead, it provides a complementary capability: a
structured, model-grounded assessment of the causal claims expressed in text,
together with explicit uncertainty and failure modes.



CAUSALITY FROM LANGUAGE 193

Why DEMOCRITUS Works

Evidence Expansion Protocol

DEMOCRITUS augments the input document with additional discourse
evidence generated by a large language model. This expansion follows five
principles:

1. Hypothesis generation only: Expanded statements are treated as candi-
date discourse, not as causal ground truth.

2. Redundancy over authority: Credibility arises from agreement across
multiple paraphrases and local models, not from any single statement.

3. Auditability: All generated evidence is stored and can be inspected or
ablated; downstream processing is deterministic.

4. Conservative reconstruction: The right adjoint suppresses claims that
do not persist across high-scoring hypotheses.

5. Fail-safe behavior: In the presence of noise or inconsistency, the sys-
tem yields low-confidence or empty summaries rather than spurious
explanations.

At first glance, the behavior of DEMOCRITUS may appear surprising.
Given only unstructured text, the system produces coherent, ranked causal
narratives that often align with expert understanding. This section clarifies
why this behavior is neither mystical nor accidental, but rather the conse-
quence of several interacting design principles. A key reason DEMOCRITUS

works in practice is that it does not rely solely on a single document. Instead,
it exploits redundancy by constructing an expanded discourse environment
around the input text. Modern large language models enable low-cost gen-
eration of supporting statements, paraphrases, mechanisms, and alternative
framings that increase overlap among local discourse neighborhoods. This
redundancy is crucial: it enables agreement under variation, which in turn
makes model scoring and right-adjoint reconstruction meaningful. In effect,
the system evaluates causal discourse not from a single narrative thread, but
from a locally redundant ensemble of related causal statements.

REDUNDANCY IN CAUSAL DISCOURSE . Natural language exhibits
substantial redundancy when describing causal relationships. Important
causal mechanisms are typically expressed multiple times, using different
phrasings, examples, and levels of abstraction. DEMOCRITUS does not
trust any single statement; instead, it exploits this redundancy by sampling
many local discourse neighborhoods and identifying relationships that persist
across them. As a result, stable causal claims emerge from agreement under
variation rather than from any individual extraction.

LOCALITY BEFORE GLOBALITY. Rather than attempting to construct a
single global causal model, DEMOCRITUS operates locally. Local causal
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models are generated around specific discourse foci and topics, reflecting
the fact that causal reasoning in text is inherently contextual. This locality
dramatically reduces the combinatorial complexity of hypothesis generation
while preserving semantic coherence. Global structure is recovered only
indirectly, through aggregation of local models that agree.

OVER-GENERATION WITH DISCIPLINED EVALUATION . DEMOCRI-
TUS deliberately over-generates candidate causal hypotheses. Most local
causal models are incorrect, incomplete, or irrelevant. This is not a failure
mode but a design choice: hypothesis generation is cheap, while evaluation
is selective. A simple semantic scoring functional suppresses models that are
internally inconsistent, weakly supported, or overly complex. The system
therefore behaves as an ensemble method over causal hypotheses, retaining
only those that score well under evidence-based criteria.

AGREEMENT RATHER THAN INFERENCE . Crucially, DEMOCRITUS

does not attempt to infer a single “true” causal graph. Instead, it identifies
causal claims that are supported across many high-scoring local models.
The right adjoint aggregates model-level agreement into discourse-level
credibility scores. Claims that survive across multiple plausible hypothe-
ses are assigned high credibility, while model-specific or fragile claims are
down-weighted. This emphasis on agreement explains the robustness of the
resulting summaries.

SEPARATION OF GENERATION AND RECONSTRUCTION . The system
cleanly separates hypothesis generation from semantic discipline. Domain-
specific constraints, keyword anchoring, and focus de-duplication are applied
during adjoint reconstruction rather than during model generation. This
separation allows the left adjoint to explore the hypothesis space freely, while
the right adjoint enforces relevance and interpretability. As demonstrated
empirically, this design prevents premature pruning while still producing
focused, human-readable outputs.

SAFE FAILURE MODES . When discourse quality is poor or hypotheses are
internally incoherent, DEMOCRITUS does not hallucinate confidence. In-
stead, the adjoint reconstruction yields sparse or empty high-credibility tiers.
Such outcomes correctly signal epistemic uncertainty rather than masking
it with spurious explanations. This behavior was observed consistently in
domains where the discourse generator was noisy, and contrasts sharply with
unconstrained language-model summarization.

DETERMINISM AFTER DISCOURSE COMPILATION . Finally, once dis-
course triples are extracted, all downstream processing is deterministic. Local
model generation, evaluation, selection, and reconstruction depend only on
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Domain LCMs Generated Top-K Max Score Tier 1 Size Tier 2 Size Compression

Antarctica ∼ 3,000 5 6.6 6–8 4–6 ∼ 600:1
Dark Chocolate and Aging ∼ 3,000 5 4.8 5–7 3–5 ∼ 600:1
Indus Valley ∼ 2,700 5 3.5 0 4–6 ∼ 540:1
Dinosaur Extinction ∼ 2,600 5 4.0 0–1 0–2 ∼ 520:1

Domain Mean Score Std. Dev. Median 90th %ile 99th %ile Max

Antarctica ≈ 0.9 ≈ 1.4 0.0 ≈ 3.2 ≈ 5.8 6.6
Dark Chocolate and Aging ≈ 0.6 ≈ 1.1 0.0 ≈ 2.4 ≈ 4.2 4.8
Indus Valley ≈ 0.5 ≈ 0.9 0.0 ≈ 1.9 ≈ 3.0 3.5
Dinosaur Extinction ≈ 0.4 ≈ 0.8 0.0 ≈ 1.6 ≈ 2.7 4.0

Figure 32: Top: Quantitative
summary of DEMOCRITUS ex-
periments across domains. From
thousands of generated local causal
models (LCMs), only the top-K
models are retained for adjoint re-
construction, yielding compression
factors exceeding 500:1. Tier sizes
reflect the number of distinct causal
claims identified at each credibil-
ity level. Mechanism-dominated
domains (Antarctica, Dinosaur
with API model) exhibit stable
Tier 1 backbones, while lifestyle
and socio-historical domains show
greater explanatory diversity or
uncertainty. Bottom: Score dis-
tribution statistics for local causal
models across domains. Distribu-
tions are consistently heavy-tailed:
the median score is near zero, while
a small fraction of models occupy
a high-scoring tail. Higher-quality
discourse generators (API model)
yield greater score concentration
and higher extrema, while lower-
quality generators (OSS) produce
flatter distributions. This behavior
supports interpreting the evaluator
as a semantic energy function over
causal models.

the fixed discourse artifact. This property enables reproducibility, ablation
studies, and principled analysis of system behavior independent of the lan-
guage model used for compilation.

Experimental Results

We evaluate the proposed adjoint framework between causal discourse and
causal models through a series of end-to-end experiments across heteroge-
neous domains. Each experiment instantiates the same conceptual pipeline:

1. Discourse compilation: An LLM compiles an input document into a
finite set of relational causal statements, stored as a JSONL file of subject–
relation–object triples.

2. Local model generation: Thousands of local causal models (LCMs)
are generated as neighborhood subgraphs over the induced discourse
manifold.

3. Model evaluation: Each LCM is assigned a scalar plausibility score
using a text-evidence–based semantic evaluator.

All downstream stages are deterministic given the extracted discourse
triples. As a result, reproducibility reduces to preserving a single artifact: the
discourse sample itself.

Quantitative Evaluation

We complement the qualitative analyses above with quantitative measure-
ments that characterize the behavior of the discourse–model adjunction
across domains. The primary quantities of interest are the size of the hy-
pothesis space explored, the concentration of evaluation scores, and the
compression achieved by the adjoint reconstruction. The table summarizes
the scale, score concentration, and compression achieved across domains. In
all cases, thousands of candidate models are reduced to a small number of
high-credibility causal claims via the adjoint reconstruction.
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Domains and Data

We report results here on four qualitatively distinct domains.

• Climate science (Antarctica): A New York Times article on Antarctic ice
melt and global sea-level rise.

• Health and lifestyle (The Washington Post Chocolate): A Washington
Post article on dark chocolate consumption and biological aging.

• Historical socio-ecological systems (Indus Valley): Discourse concern-
ing environmental, agricultural, and urban dynamics of the Indus Valley
civilization.

• Mass extinction (Dinosaur Extinction): Scientific summaries of the
Chicxulub impact and the end-Cretaceous extinction.

Summary and Further Reading

We have presented DEMOCRITUS, which introduces a new paradigm for
inferring causal content from documents. Given an input article, DEMOCRI -
TUS can automatically construct an expanded frame of discourse, generate
thousands of candidate causal models, evaluate the causal models and pro-
duce an executive summary. DEMOCRITUS goes beyond document sum-
marization by LLMs. We describe experiments on additional domains, and
illustrate the natural language causal summaries produced by DEMOCRI -
TUS, along with a detailed discussion of related work in the Appendix, along
with a summary of the various LLM models that were used to produce the
expanded frame of discourse. We used four different LLM models, ranging
in size from 80B to 235B parameters, and locally hosted models vs. remotely
accessible models. DEMOCRITUS produces human-consumable execu-
tive summaries that can support scientific analysis, policy reasoning, and
decision-making. This combination of formal structure and practical utility
distinguishes the approach from both purely symbolic and purely end-to-end
language-based systems. For a more detailed description of DEMOCRITUS,
you can read the original Arxiv paper. 65 65 Sridhar Mahadevan. Large causal models

from large language models, 2025d. URL
https://arxiv.org/abs/2512.
07796

One limitation of DEMOCRITUS currently is that it takes a significant
amount of time to process an individual document, and scaling it to process
a large collection is a challenge that will be addressed in future work. The
causal models constructed currently are limited to simple DAG models, and
in future, we plan to construct a richer space of models that allow feedback.
The document topic extraction process can be improved, and allow user feed-
back. DEMOCRITUS has yet to be tested with respect to an objective evalu-
ation metric, such as a comparative study to similar summaries produced by
expert humans.

https://arxiv.org/abs/2512.07796
https://arxiv.org/abs/2512.07796


Topos Causal Models

In this chapter, we explore the universal properties underlying traditional
causal inference by formulating it in terms of a topos. More concretely, we
introduce topos causal models (TCMs), a strict generalization of the popular
structural causal models (SCMs). 66 A topos category has several properties 66 Sridhar Mahadevan. Universal causal

inference in a topos. In The Thirty-ninth
Annual Conference on Neural Information
Processing Systems, 2025f. URL https:
//openreview.net/forum?id=
TOhpnECT10

that make it attractive: a general theory for how to combine local functions
that define “independent causal mechanisms" into a consistent global func-
tion building on the theory of sheaves in a topos; a generic way to define
causal interventions using a subobject classifier in a topos category; and fi-
nally, an internal logical language for causal and counterfactual reasoning
that emerges from the topos itself. A striking characteristic of subobject clas-
sifiers is that they induce an intuitionistic logic, whose semantics is based
on the partially ordered lattice of subobjects. We show that the underlying
subobject classifier for causal inference is not Boolean in general, but forms a
Heyting algebra. We define the internal Mitchell-Bénabou language, a typed
local set theory, associated with causal models, and its associated Kripke-
Joyal intuitionistic semantics. We prove a universal property of TCM, namely
that any causal functor mapping decomposable structure to probabilistic
semantics factors uniquely through a TCM representation.

Introduction

In recent years, there has been significant interest in categorical models of
causality. Categorical approaches fundamentally differ from past work in
causality in their focus on the elucidation of universal properties. In our
previous work, we introduced the framework of universal causality based
on the notion of universal properties in category theory: a causal property is
universal if it can be defined in terms of an initial or final object in a category
of causal diagrams, or in terms of a causal representable functor using the
Yoneda Lemma. 67 For example, a structural causal model (SCM) is defined 67 Sridhar Mahadevan. Universal causal-

ity. Entropy, 25(4):574, 2023. DOI :
10.3390/E25040574. URL https:
//doi.org/10.3390/e25040574

as a (deterministic) mapping from a collection of exogenous variables into
a collection of endogenous variables, derived by “collating" local functions
that serve as independent causal mechanisms. However, SCMs can be further
analyzed in terms of their universal properties, such as categorical product,
coproduct, limits and colimits, equalizers and coequalizers etc. These latter

https://openreview.net/forum?id=TOhpnECT10
https://openreview.net/forum?id=TOhpnECT10
https://openreview.net/forum?id=TOhpnECT10
https://doi.org/10.3390/e25040574
https://doi.org/10.3390/e25040574
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Figure 33: Topos causal models
(TCMs) are defined as a category
CT CM whose objects c ∈ CT CM
are causal models, and whose ar-
rows CT CM(c, c′) are commutative
diagrams between models c and c′.
A specific object c defining a model
can be conceptualized as a DAG
(left, where information flows from
top to bottom), or a string diagram
in a Markov category (middle,
where information flows from
bottom to top), or in terms of its in-
duced unique “blackbox" function
mapping exogenous variables to
endogenous variables (right).

properties can be shown formally to be initial or final objects in a category of
diagrams, or as representable functors through the Yoneda Lemma.

Our main contribution in this chapter is to present a topos-theoretic view
of causality, and in particular, introduce topos causal models (TCMs) that
strictly generalize structural causal models (SCMs). A topos is a type of
category, which is particularly well-suited to modeling operations that are
“set-like". It also features an internal logical language. A topos provides three
universal properties that make it natural as a category to do causal inference
in: it provides a general theory for how to combine local functions, which
can be viewed as “independent causal mechanisms", into a consistent global
function building on the theory of sheaves in a topos. It enables a generic way
to define causal interventions using a subobject classifier in a topos category.
Finally, it gives an internal logical language for causal and counterfactual
reasoning.

The objects in a TCM category can be conceptualized in multiple ways.
First, each object can be a causal graphical model. Each object can also
be a functor: for example, directed graphs form a topos functor category.
TCMs can also be defined in terms of string diagrams in a symmetric
monoidal Markov category, where we restrict ourselves to the Markov sub-
category defined through deterministic morphisms. For example, the arrow
h : Traffic⊗Agricultural Fires → Pollution defines a deterministic mapping
specifying the two potential causes of Pollution. For exogenous variables, the
arrow ψ : I → Overpopulation defines the marginal distribution on Over-
population, where I is the terminal object in the Markov category. Finally, we
can view a TCM object as a “blackbox" function that maps some collection
of exogenous variables (e.g., “Overpopulation", or "Farming Practices" into
some set of endogenous variables, e.g., “Asthma" or “Pollution").

Principles of Universal Causality

We give a brief overview of the fundamentals of universal causality (UC)
before delving into the specific details of the TCM framework. UC rests on
the Yoneda Lemma – any object in a category can be defined by the interac-
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tions it makes with other objects (upto isomorphism). In the setting of causal
inference, it means that objects in a TCM category can be ascribed “meaning"
through studying the arrows of the category, without having to “look inside"
the object. The Yoneda Lemma states that the set of all morphisms into an
object d in a category C, sometimes denoted as HomC(−, d), or as C(−, d),
denoted as the presheaf, is sufficient to define d up to isomorphism. The cat-
egory of all presheaves forms a category of functors, and is denoted Ĉ =

SetCop
. This category forms a topos, and will be fundamental to the TCM

framework.

Lemma 4. Yoneda lemma: For any functor F : C → Set, whose domain
category C is “locally small" (meaning that the collection of morphisms
between each pair of objects forms a set), and any object c in C, there is a
bijection Hom(C(−, c), F) ≃ Fc that associates a natural transformation
α : C(−, c) ⇒ F to the element αc(1c) ∈ Fc. This correspondence is natural
in both c and F.

Definition 43. A universal property of an object c ∈ C in a category C
is expressed by a representable functor F together with a universal element
x ∈ Fc that defines a natural isomorphism C(−, c) ≃ F. The collection
of morphisms C(−, c) into an object c is called the presheaf, and from the
Yoneda Lemma, forms a universal representation of the object.

We state two key results that underly UC. While both these results follow
directly from basic theorems in category theory, their significance for causal
inference is what makes them particularly noteworthy. The first result per-
tains to the notion of diagrams as functors, and shows that for the functor
category of presheaves, which is a universal representation of causal infer-
ence, every presheaf object can be represented as a colimit of representables
through the Yoneda Lemma. This result can be seen as a generalization of the
very simple result in set theory that each set is a union of one element sets.
The second result is the causal reproducing property, which shows that the
set of all causal effects between two objects is computable from the presheaf
functor objects defined by them. Both these results are abstract, and apply to
any category representation of a causal model.

Theorem 9. Universality of Diagrams in UC: In the functor category
of presheaves SetCop

, every functor object F is the colimit of a diagram of
representable objects, in a canonical way.

To explain the significance of this result for causal inference, note that UC
represents causal diagrams as functors from an indexing category of diagrams
to an actual causal model. The theorem above tells us that every presheaf
object can be represented as a colimit of (simple) representable objects,
namely functor objects of the form HomC(−, c).
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Theorem 10. Causal Reproducing Property: All causal influences between
any two objects c and d can be derived from its presheaf functor objects,
namely

HomC(c, d) ≃ Nat(HomC(−, c), HomC(−, d))

Any causal influence of an object c upon any other object d can be repre-
sented as a natural transformation (a morphism) between two functor objects
in the presheaf category Ĉ.

Topos Causal Models

Definition 44. The category CT CM of topos causal models is defined as a
collection of objects c ∈ CT CM, each of which is a triple ⟨U, V, F⟩ where
V = {V1, . . . , Vn} is a set of endogenous variables, U is a set of exogenous
variables, and F is a function from U to V. The arrows CT CM(c, d) are
defined through commutative diagrams as illustrated below, where f and f ′

are the global functions induced by the TCM objects c and d, respectively.

U U′

V V′

h

f f ′

g

A submodel c′ = ⟨U′, V′, F′⟩ of c is any subobject of c. The effect of an
intervention on c is given by some submodel c′. Finally, let Y be a variable
in V, and let X be a subset of V. The potential outcome in response to an
intervention on X modeled by a submodel c′ ↪→ c is the solution of Y in the
submodel c′.

A commutative diagram, as the term suggests, is a structure showing the
equivalence of two paths. Here, the diagram asserts that g ◦ f = f ′ ◦ h.
In the context of our category CSCM, the arrow f : U → V is simply
an SCM M, and f is its induced mapping from exogenous to endogenous
variables. Similarly, f ′ is also the induced function mapping exogenous to
endogenous variables for another SCM M′. The morphisms h and g are
functions on SCMs, which transform one causal model into another. In the
specific case we are interested in, these functions define causal interventions,
but in general, they may be arbitrary functions.

For completeness, we define a category CSCM whose objects are indeed
SCMs.

Definition 45. The category CSCM of structural causal models is de-
fined as a collection of objects, each of which is a triple ⟨U, V, F⟩ where
V = {V1, . . . , Vn} is a set of endogenous variables, U is a set of exogenous
variables, F is a set { f1, . . . , fn} of “local functions" fi : U ∪ (V \Vi)→ Vi

whose composition induces a unique function F from U to V. Let X be a
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subset of variables in V, and x be a particular realization of X. A submodel
Mx = ⟨U, V, Fx⟩ of M is the causal model Mx = ⟨U, V, Fx⟩, where
Fx = { fi : Vi /∈ X} ∪ {X = x}. The effect of an action do(X = x) on M
is given by the submodel Mx. Finally, let Y be a variable in V, and let X be a
subset of V. The potential outcome of Y in response to an action do(X = x),
denoted Yx(u), is the solution of Y for the set of equations Fx.

The set of arrows or morphisms between two objects c and d in the cate-
gory CSCM, denoted CSCM(c, d), represent ways of transitioning from SCM
object c to d. For example, if d is a submodel of c, then the arrow defines a
do calculus causal intervention.

Causal Inference in a Topos Category

We show in this section that a TCM category whose objects are defined as
SCMs, and whose arrows correspond to commutative diagrams defining
operations on causal models does define a topos. In the next section, we
generalize from SCMs to consider more complex causal models over functor
categories. Now, we can state the first key result of this paper.

Theorem 11. The category CSCM forms a topos.

Proof: Since we have previously defined the objects and arrows of the
CSCM category, to show it forms a topos, we need to construct its subob-
ject classifier. First, we need to define what a “subobject" is in the category
CSCM. Since SCMs can abstractly be defined as functions, let us assume that
the SCM c that defines f is a submodel of the SCM c′ that induces g. We can
denote that by defining a commutative diagram as shown below. Let us stress
the difference between the commutative diagram shown below Definition 44
for arbitrary functions g and h vs. the one below, where i and j are monic
arrows.

U U′

V V′

i

f g

j

An element x ∈ U′, which is a particular realization of the exogenous
variables in U′, can be classified in three ways by defining a characteristic
function ψ:

1. x ∈ U – here we set ψ(x) = 1.

2. x /∈ U but g(x) ∈ V – here we set ψ(x) = 1
2 .

3. x /∈ U and g(x) /∈ V – we denote this by ψ(x) = 0.
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The subobject classifier is illustrated as the bottom face of the cube shown
on the right:

• true(0) = t′(0) = 1

• t : {0, 1
2 , 1} → {0, 1}, where t(0) = 0, t(1) = t( 1

2 ) = 1.

• χV is the characteristic function of the exogenous variable set V.

• The base of the cube displays the subobject classifier T : 1→ Ω, where
T = ⟨t′, true⟩ that maps 1 = id{0} to Ω = t : {0, 1

2 , 1} → {0, 1}.

This proves that the subobject classifier for the category CSCM does not
have Boolean semantics, but intuitionistic semantics as its subobject clas-
sifier Ω has multiple degrees of “truth", corresponding to the three types of
classifications of monic arrows (in regular set theory, there are only two clas-
sifications). Moving on to show the other properties of a topos are satisfied,
note that the terminal object is simply the identity function id0 : {0} → {0}.
Now, it remains to show that CSCM has pullbacks and exponential objects.

Pullbacks in CSCM: Consider the cube shown on the left. Here, f , g, and
h can be interpreted as three SCMs, each mapping some exogenous variables
to some endogenous variables. The arrows i, j ensure that the bottom face of
the cube is a commutative diagram, and the arrows p, q ensures the right face
of the cube is a commutative diagram. The arrow from P to Q exists because
looking at the front face of the cube, Q is the pullback of i and q, which
must exist because we are in the category of Sets, which has all pullbacks.
Similarly, the back face of the cube is a pullback of j and p, which is again a
pullback in Sets. Summarizing, ⟨u, v⟩ and ⟨m, n⟩ are the pullbacks of ⟨i, j⟩
and ⟨p, q⟩.

Exponential objects in CSCM: Now it only remains to check that the
category has exponential objects. Let f : U → V and g : U′ → V′ be
two functions induced by SCM models M and N. Then, we need to define
the meaning of g f in CSCM, which we can define as g f : X → Y, where
Y = V′V , which must exist since Sets is a Cartesian closed category that has
exponential objects (i.e., Y is simply the set of all functions from V to V′).
Also, X is the set of all arrows in CSCM from SCM M to SCM N, which is
the pair of functions ⟨h, k⟩ in the commutative diagram shown below. This
finally proves that CSCM is a topos.

Causal Models Over a Topos of Sheaves

We now describe a more general categorical framework for defining causal
models as a topos by using the property that Yoneda embeddings of presheaves
forms a topos. To ensure consistent extension into a unique global function,
we build on the theory of sheaves, which ensures local functions can be
“collated" together to yield a unique global function. In our setting, we will
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P U”

Q V”

U

V
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V’

h

m

n

f

i

j
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v

U U’

V V’

{0}

{0}

{0, 1/2, 1}

{0, 1}

f
g

i

j

id

true

t’

t
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Figure 34: Left: diagram showing
that CSCM has pullbacks. Right:
The subobject classifier Ω for the
topos category CSCM is displayed
on the bottom face of this cube.

construct sheaves from categories over causal models through the Yoneda
embeddingよ(x) : C → SetsCop

and impose a Grothendieck topology.

Grothendieck Topology on Sites

Definition 46. A sieve for any object x in any (small) category C is a sub-
object of its Yoneda embeddingよ(x) = C(−, x). If S is a sieve on x, and
h : y→ x is any arrow in category C, then

h∗(S) = {g | cod(g) = D, hg ∈ S}

Definition 47. A Grothendieck topology on a category C is a function J
which assigns to each object x of C a collection J(x) of sieves on x such that

1. the maximum sieve tx = { f |cod( f ) = x} is in J(x).

2. If S ∈ J(x) then h∗(S) ∈ J(y) for any arrow h : y→ x.

3. If S ∈ J(x) and R is any sieve on x, such that h∗(R) ∈ J(y) for all
h : y→ x, then R ∈ J(C).

We can now define categories with a given Grothendieck topology as sites.

Definition 48. A site is defined as a pair (C, J) consisting of a small category
C and a Grothendieck topology J on C.

Definition 49. The subobject classifier Ω is defined on any topos SetsCop
as

subobjects of the representable functors:

Ω(x) = {S|S is a subobject of C(−, x)}

and the morphism true : 1→ Ω is true(x) = x for any representable x.

Universal Property of TCM over Functor Categories

Causal models, like SCMs, must represent both decomposable structure and
(probabilistic) semantics. To capture this richer structure, we define TCM
over functor categories, where every object is a functor that maps structure to
semantics. For example, the category of Bayesian networks can be modeled
as a functor category from a Markov category to the category FinStoch of
finite stochastic processes.
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Theorem 12. Given a causal functor A : C → E , such as the Bayesian
network functor FCDU , from a small category C (e.g., a symmetric monoidal
category such as a Markov category) to a cocomplete category E (e.g., the
category Prob of probability spaces (see Theorem 14)), the functor R from E
to presheaves, given by (where c ∈ C and E ∈ E )

R(E) : c 7→ HomE (A(c), E)

has a left adjoint L : SetsC
op → E defined for each presheaf P in Cop as the

colimit

L(P) = Colim
(∫
C

P
πP−→ C A−→ E

)
where

∫
C P is the category of elements, whose objects are pairs (c, p), where

c is an object of C and p is an element of P(C) (recall P is a presheaf, i.e.,
a set-valued functor that maps each element c into a set), and its arrows are
(c′, p′)→ (c, p) for any morphism f : c′ → c such that pc = p′.

Proof: Essentially, the theorem is stating that there is a pair of adjoint
functors L ⊢ R, defined as:

L : SetsC
op →← E : R

As defined earlier, a natural transformation between two functors τ : P →
R(E) is a family {τc} of maps indexed by the objects c ∈ C, where each map
τc is defined as the mapping:

τc : P(C) 7→ HomE (A(C), E)

which is natural in c. τ can also be defined as a set of arrows of E as {τc(p) :
A(c) → E}(c,p) that is indexed by the objects (c, p) of the category

∫
C P of

elements of P. This fact implies that there is a bijection

Nat(P, R(E)) ≃ HomE (LP, E)

This bijection being natural in P and in E proves that L is a left adjoint func-
tor to R.

Now, let us define a general causal functor as mapping from a decompos-
able symmetric monoidal category (e.g., a Markov category) to the symmetric
monoidal category of probability spaces.

Definition 50. A causal functor F : C → Prob maps from a general
symmetric monoidal category C with a comonoidal “copy-delete" structure
to the category of probability spaces Prob, where each object (Ω,F , P) is
a probability space, and the arrows are measure-preserving maps, namely
Prob(c, d), where c = (Ωc,Fc, Pc) and d = (Ωd,Fd, Pd), where f ∈
Prob(c, d) is such that Pc( f−1(A)) = Pd(A) for all A ∈ Fd.

Theorem 13. For each causal functor A : C → E from a small category C
defining the structure of a causal model to a cocomplete category E defining
its (probabilistic) semantics, there exists a colimit preserving functor L :
SetsC

op → E such that A = L ◦よ, whereよ is the Yoneda embedding.



TOPOS CAUSAL MODELS 205

Proof: The proof is just a special case of a more general result in the
theory of sheaves. To emphasize the importance of the co-completeness
condition on E , we use the following result that the category of probability
spaces is co-complete.

Theorem 14. The symmetric monoidal category Prob has all colimits of
non-empty diagrams.

Proof: The proof that Prob has coproducts and coequalizers is given in a
recent PhD thesis.68 Thus, we can choose Prob as our cocomplete category 68 Ruben van Belle. Kan Extensions in

Probability Theory. PhD thesis, University
of Edinburgh, 2024

E
We can finally state the two central results of our paper, the first (Theo-

rem 15) establishes the universal property underlying TCMs, and the second
(Theorem 16) shows that causal interventions define a Heyting algebra whose
logic is intuitionistic.

Theorem 15. Any causal functor F : C → E from a structural causal
category C (such as a Markov category) to a semantic cocomplete category
E (such as Prob) factors uniquely through a TCM structure defined by the
Yoneda embedding, as given in Theorem 13.

Proof: The proof follows directly from the above results

Definition 51. A Heyting algebra is a poset with all finite products and
coproducts, which is Cartesian closed. That is, a Heyting algebra is a lat-
tice, including bottom and top elements, denoted by 0 and 1, respectively,
which associates to each pair of elements x and y an exponential yx. The
exponential is written x ⇒ y, and defined as an adjoint functor:

z ≤ (x ⇒ y) if and only if z ∧ x ≤ y

In other words, x ⇒ y is a least upper bound for all those elements z with
z ∧ x ≤ y. As a concrete example, for a topological space X the set of open
sets O(X) is a Heyting algebra. The “law of the excluded middle", meaning
¬x ∨ x = true, does not always hold in a Heyting algebra.

Theorem 16. For any TCM category defined as Ĉ = SetsC
op

by the Yoneda
embeddingよ(c) of a small causal category C, the partially ordered set
SubĈ(P) of subobjects generated by causal interventions on any causal
functor defined by the presheaf P is a Heyting algebra.

Proof: This result follows directly from the corresponding result for any
category of presheaves, and is based on constructing the complete lattice
Sub(P) of all subfunctions of P using a pointwise operation for each object
c ∈ C, which can be shown to satisfy an infinite distributive law.
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Causal Mitchell-Bénabou Language and its Kripke-Joyal Seman-
tics

The Causal Mitchell-Bénabou language (CMBL) is a typed local set theory
whose syntax and semantics is defined using the arrows of the CT CM topos.
The types of CMBL as causal model objects M of CT CM. For each type M,
we assume the existence of variables xM, yM, . . ., where each such variable
has as its interpretation the identity arrow 1 : M → M. We can construct
product objects, such as A× B×C, where terms like σ that define arrows are
given the interpretation σ : A× B× C→ D.

• Each variable xM of type M is a term of type M, and its interpretation is
the identity xM = 1 : M→ M, Here, M may represent an entire SCM, an
individual variable, or a causal functor mapping a Markov category to the
cocomplete Prob category.

• Terms σ and τ of types C and D that are interpreted as σ : A → C and
τ : B → D can be combined to yield a term ⟨σ, τ⟩ of type C× D, whose
joint interpretation is given as ⟨σp, τq⟩ : X → C × D, where X has the
required projections p : X → A and q : X → B. A causal intervention
modeled as an arrow f : X → Y in CTCM can be composed with a term

σ : U → X to yield a term of type Y as f ◦ σ : U σ−→ X
f−→ Y.

• Terms of type Ω are defined as formulae of CMBL and can be combined
with the usual logical connectives ∧, ∨,⇒, ¬ and quantifiers ∀, ∃ to
obtain further terms again of type Ω. An expression such as ∀x ψ(x, y)
is interpreted by an arrow Y → Ω (since x is not a free variable). A
formula ψ(x, y) in the topos CTCM is defined to be universally valid in the
topos if the corresponding arrow ψ(x, y) : X × Y → Ω factors through
true : 1 → Ω. A formula ψ without free variables is interpreted as an
arrow ψ : 1→ Ω and is valid if it coincides with the arrow true : 1→ Ω.

• Indirect proofs (i.e., reductio ad absurdum) cannot be used in CMBL
because the rule of the excluded middle ψ ∨ ¬ψ is not in general valid,
nor is the axiom of choice generally true. Instead, the rules of intuitionistic
predicate calculus need to be used.

• The Kripke-Joyal semantics for CMBL is specified using generalized
elements. We define an element of a causal model by the morphism x :
1 → M. Thus, a generalized element α : N → M represents the
“stage of definition" of M by N. We specify the semantics of how an
TCM model N supports any formula ϕ(α), denoted by N ⊩ ϕ(α) by
N ⊩ ϕ(α) if and only if Im α ≤ {x|ϕ(x)}. Stated in the form of a
commutative diagram, this “forcing" relationship holds if and only if α

factors through {x|ϕ(x)}.
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{x|ϕ(x)} 1

N M Ω

true

α

ϕ(x)

Summary and Further Reading

In this chapter, we formally introduced Topos Causal Models (TCMs), which
generalize the well-known Structural Causal Model (SCM) due to Pearl.
TCMs are based on exploiting three fundamental properties of a topos (i) A
subobject classifier, which is used to model causal interventions in a more
general way than “graph surgery" (ii) An intutionistic logic where causal
inference is modeled in a more powerful way than classical "true or false"
Boolean logic. (iii) Finally, TCMs use the theory of sheaves to “glue" to-
gether local causal structures in a more elegant way than SCMs can.

In the next chapter, we will show a detailed experimental study of j-do-
calculus (aka “judo calculus"), which uses TCMs to design a decentralized
method for causal discovery. We will show the map-reduce sheaf-theoretic
framework of TCMs allows a more scalable approach to discovery of causal
models from data. To achieve this, we will need to generalize TCMs from
using the Grothendieck topology on a category to using a more general
Lawvere-Tierney topology j : Ω→ Ω on the subobject classifier.

We briefly described the Mitchell-Bénabou language that provides the
internal language of a topos, along with its Kripke-Joyal semantics. In the
next chapter, we will describe it in more detail. A rigorous account of topos
theory, along with the theory of sheaves, and its internal logic is given in this
classic book. 69 69 Saunders Mac Lane and Ieke Moerdijk.

Sheaves in Geometry and Logic a First
Introduction to Topos Theory. Springer
New York, New York, NY, 1992. ISBN
9781461209270 1461209277. URL http:
//link.springer.com/book/10.
1007/978-1-4612-0927-0

http://link.springer.com/book/10.1007/978-1-4612-0927-0
http://link.springer.com/book/10.1007/978-1-4612-0927-0
http://link.springer.com/book/10.1007/978-1-4612-0927-0




Judo Calculus

In this chapter, we will introduce j-do-calculus, a powerful sheaf-theoretic
framework for decentralized causal discovery (aka “judo" calculus). 70 Judo 70 Sridhar Mahadevan. Intuitionistic j-do-

calculus in topos causal models, 2025c.
URL https://arxiv.org/abs/
2510.17944; and Sridhar Mahadevan.
Decentralized causal discovery using
judo calculus, 2025b. URL https:
//arxiv.org/abs/2510.23942

calculus is based on the Lawvere-Tierney topology defined on the subobject
classifier in a topos.

JUDO CALCULUS is more formally defined as j-stable causal inference us-
ing j-do-calculus in a topos of sheaves ShJ(C). Classical causality typically
assumes a single, universal truth: either “X causes Y" everywhere or it does
not (Boolean logic). However, in real-world applications – from biology to
medicine and social science – causal effects depend on regime (age, country,
dose, genotype, or lab protocol). Our proposed judo calculus formalizes this
context dependence formally as local truth: a causal claim is proven true on
a cover of regimes, not everywhere at once. The Lawvere-Tierney modal op-
erator j chooses which regimes are relevant; j-stability means the claim holds
constructively and consistently across that family. Judo calculus extends
Pearl’s do-calculus by requiring that interventions be stable along j-covers,
and reduces to the classical case for the trivial topology.

From Classical Do-Calculus to j-Do-Calculus

In this paper, we describe how to generalize classical do-calculus to j-stable
causal inference inside a topos of sheaves Shj(C), where regimes form a site
(C, j) and observations/interventions are sheaves on that site.

We build on the framework of Topos Causal Models (TCM) introduced
inthe previous chapter, where causal interventions are defined as subob-
jects. We generalize the original setting of TCM using the Lawvere-Tierney
topology on a topos, defined by a modal operator j on the subobject clas-
sifier Ω. We introduce j-do-calculus, where we replace global truth with
local truth (Kripke–Joyal semantics) and formalize causal interventions as
structure-preserving morphisms that are stable along j-covers. j-do-calculus
is a sound rule system whose premises and conclusions are formulas of the
internal (intuitionistic) logic of Shj(C). We define j-stability for conditional
independences and interventional claims as local truth in the internal logic
of Shj(C). We give three inference rules that strictly generalize Pearl’s in-

https://arxiv.org/abs/2510.17944
https://arxiv.org/abs/2510.17944
https://arxiv.org/abs/2510.23942
https://arxiv.org/abs/2510.23942
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sertion/deletion and action/observation exchange, and we prove soundness
in the Kripke–Joyal semantics. We show how these rules specialize back
to classical do-calculus when j is the trivial topology (Boolean case) and to
regime-aware identification when j encodes experimental covers.

Classical Do-Calculus

We briefly review the notion of a structural causal model (SCM), and the
classical notion of do-calculus. 71 Succinctly, any SCM M defines a unique 71 Judea Pearl. Causality: Models, Reason-

ing and Inference. Cambridge University
Press, USA, 2nd edition, 2009. ISBN
052189560X

function from exogenous variables to endogenous variables, and do-calculus
models interventions as “sub-functions":

Definition 52. A structural causal model (SCM) is defined as the triple
⟨U, V, F⟩ where V = {V1, . . . , Vn} is a set of endogenous variables, U
is a set of exogenous variables, F is a set { f1, . . . , fn} of “local functions"
fi : U ∪ (V \Vi) → Vi whose composition induces a unique function F from
U to V.

Definition 53. Let M = ⟨U, V, F⟩ be a causal model defined as an SCM,
and X be a subset of variables in V, and x be a particular realization of X.
A submodel Mx = ⟨U, V, Fx⟩ of M is the causal model Mx = ⟨U, V, Fx⟩,
where Fx = { fi : Vi /∈ X} ∪ {X = x}.

Definition 54. Let M be an SCM, X be a set of variables in V, and x be a
particular realization of X. The effect of an action do(X = x) on M is given
by the submodel Mx.

Definition 55. Let Y be a variable in V, and let X be a subset of V. The
potential outcome of Y in response to an action do(X = x), denoted Yx(u),
is the solution of Y for the set of equations Fx.

We can also model counterfactuals in the following way:

Definition 56. Let Y be a variable in V and let X be a subset of V. The
counterfactual sentence “The value that Y would have obtained had X been
set to x" is defined as the potential outcome Yx(u).

Do-calculus provides three algebraic rules for manipulating interventional
expressions of the form P(Y | do(Z), X, W) based on conditional indepen-
dence statements in a causal graph G. The notation used is as follows: GX̄
means delete all arrows into X (surgical intervention on X); GZ: delete all
arrows out of Z; Z(W) denotes the subset of Z that are not ancestors of any
node in W in GX̄; and finally, GX̄,Z(W)

denotes the intervention that deletes
arrows into those Z-nodes that are not ancestors of W.

1. Rule 1 (Insertion/Deletion of Observations). If (Y ⊥ Z | X, W)GX̄
,

then
P(Y | do(X), Z, W) = P(Y | do(X), W).
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2. Rule 2 (Action/Observation Exchange). If (Y ⊥ Z | X, W)GX̄,Z
, then

P
(
Y | do(X), do(Z), W

)
= P

(
Y | do(X), Z, W

)
.

3. Rule 3 (Insertion/Deletion of Actions). If (Y ⊥ Z | X, W)GX̄,Z(W)
, then

P
(
Y | do(X), do(Z), W

)
= P

(
Y | do(X), W

)
.

These rules form a sound and complete system for deriving identities be-
tween observational and interventional distributions using only the graphical
structure of G.

j-do-Calculus: A Birds-Eye View

In moving from classical do-calculus to j-do-calculus, we transition from
causal models over graphs to general categories, specifically toposes. The
simplest way to understand this transition is to note that a category C whose
objects are functions f : A → B over sets, and whose arrows are commuta-
tive diagrams between functions f and g, defined as C( f , g) defines a topos.
This result, which was shown in detail for the case of SCMs in the previ-
ous chapter, shows that causal inference in SCMs and graphs is intrinsically
topos-theoretic. One can expand this simple result to cover more cases. For
example, the category of graphs G can be defined to consist of two objects v
and e, and two non-identity arrows from v to e. Each graph then is defined as
a presheaf SetsG

op
, a functor that maps the objects v and e to the set of edges

E and vertices V of the actual graph, and that maps the two non-identity ar-
rows between v and e to the initial and terminal vertex of each edge. More
generally, any (small) category C can be converted into a topos through the
Yoneda embedding C → SetsC

op
, defined as c 7→ C(−, c), and called the

presheaf. The category of presheafs forms a topos.

j-DO-CACULUS rules are summarized in the following figure, and will be
explained in more detail in this chapter. At the core of j-do-calculus (aka
“judo calculus), the original Grothendieck topology used in TCMs is gen-
eralized to use the Lawvere-Tierney j-operator on the subobject classifier
Ω.

Causal Models Over a Topos of Sheaves

The categorical framework underlying Topos Causal Models (TCMs) in-
troduced in the previous chapter defines causal inference in a topos by
using the property that Yoneda embeddings of presheaves forms a topos.
To ensure consistent extension into a unique global function, we build on
the theory of sheaves, which ensures local functions can be “collated" to-
gether to yield a unique global function. In our setting, we will construct
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Symbol Type Meaning / Typical usage

C category Site of “regimes/contexts” (objects are stages;
arrows are refinements).

j L–T topology Lawvere–Tierney topology on SetsCop
; enforces

which sieves are “covering.”
Shj(C) topos Sheaves on C for j (the j-reflective subtopos).
aj functor j-sheafification (left exact reflector SetsCop →

Shj(C)).
U object A stage (or (object) U ∈ C ) in C.
S = {Si ↪→U} family A j-cover of U (local charts that jointly “see” U ).
⊩j relation Internal forcing in Shj(C); U ⊩j φ reads “φ

holds j-stably at U .”
X ⊥⊥ Y | Z formula Conditional independence assertion (CI).
do(x) term Pearl’s do-operator (surgical intervention) inter-

nalized in Shj(C).
GX graph Mutilated graph with incoming edges to X cut

(intervening on X).
GZ graph Graph with outgoing edges from Z cut (treating Z

as “measurement”).
P(·) object Internal probability in Shj(C); e.g., P(y |

do(x) , z, w).

Table 6: Glossary of symbols
and notation. Informal reading:
j specifies which families of local
charts count as covers; U ⊩j φ

means every chart in a j-cover of
U validates φ, hence φ is forced
globally at U .

sheaves from categories over causal models through the Yoneda embed-
dingよ(x) : C → SetsCop

and impose a Grothendieck topology. TCMs
were originally defined over Grothendieck topologies on categories (known
as sites), and we will generalize that formulation here to Lawvere-Tierney
topologies.

Lawvere-Tierney Topologies on a Topos

In the previous chapter defining TCM, the category of sheaves defining
CT CM (e.g., sheaves over a Markov category) was given a Grothendieck
topology. A more elegant framework is to use the Lawvere-Tierney topology
on the subobject classifier Ω.

Definition 57 (Lawvere–Tierney causal topology). Let E be an elementary
topos with subobject classifier Ω and distribution monad DistE . A causal
topology on E is a Lawvere–Tierney topology j : Ω→ Ω satisfying:

j(⊤) = ⊤, j(p ∧ q) = j(p) ∧ j(q), j(j(p)) = j(p),

where ⊤ = true.

The original Grothendieck topology formulation is a special case of this
more general formulation, which we expand on in greater depth in the re-
mainder of the paper. In particular, we have the following result.

Theorem 17. If C is a small category, the Grothendieck topologies J on C
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j-do rules at a glance

All equalities are identities internal to Shj(C) and read at stage U (i.e. under
U ⊩j · · · ). Each premise means: there exists a j-cover S = {Si→ U}i such
that the stated CI holds on every chart Si after the indicated graph surgery.

[j-Rule 1: insert/delete observations](
Y ⊥ Z

∣∣ X, W in GX on a j-cover of U
)

=⇒ P(y | do(x), z, w) = P(y | do(x), w).

Reading: After cutting arrows into X, if every chart blocks Z from Y given
X, W, then observing Z is irrelevant under do(x).

[j-Rule 2: action/observation exchange](
Y ⊥ Z

∣∣ X, W in GX, Z on a j-cover of U
)

=⇒ P(y | do(x), do(z), w) = P(y | do(x), z, w).

Reading: After cutting arrows into X and out of Z, intervening on Z equals
observing Z under do(x), chartwise.

[j-Rule 3: insert/delete actions](
Y ⊥ Z

∣∣ X, W in GX, Z(W)
on a j-cover of U

)
=⇒ P(y | do(x), do(z), w) = P(y | do(x), w).

Reading: After cutting arrows into X and into the parents of Z not in W (i.e.
Z(W)), if every chart blocks Z from Y given X, W, then do(z) is irrelevant
under do(x).

Figure 35: The Rules of j-do-
calculus.

Sh(C, J) Ej

[
Cop, Set

]iJ

≃

ij

Figure 36: External Grothendieck
topology J and internal Law-
vere–Tierney topology j both
induce subtopoi embedded in the
presheaf topos [Cop, Set].

correspond exactly to Lawvere- Tierney topologies on the presheaf topos
SetsC

op
.

The above figure gives a diagrammatic illustration of the relationship
between the two approaches.

Kripke-Joyal Semantics for Sheaves

Every topos has an internal intuitionistic logic that derives from the fact that
the subobject classifier Ω yields a poset of subobjects on which the seman-
tics of a formal Mitchell-Bénabou language describing objects and arrows
in the category can be defined. This formal language is associated with a
Kripke-Joyal semantics, which we will specialize to a topos equipped with
a Grothendieck topology, that is a site. This specialized structure captures
how causal inference is woven in the fabric of the internal logic of a causal
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topos. Define Sh(C,J ) be a topos of sheaves with a specified Grothendieck
topology J , defined by the following diagram, whereよ is the Yoneda em-
bedding, and P is a presheaf:

C よ−→ P(C) a−→ Sh(C,J ) ∼= C

where we know that the Yoneda embeddingよ creates a full and faithful copy
of the original category C. Let us define the semantics for a sheaf element
α ∈ X(C), where X(C) = Sh(C, J)(C(−, C), X)). We will describe
the Kripke-Joyal semantics in more detail later in the paper, but for now, a
concise summary for the topos category of sheaves is as follows:

1. C ⊩ ϕ(α) ∧ ψ(α) if it holds that C ⊩ ϕ(α) and C ⊩ ψ(α).

2. C ⊩ ϕ(α) ∨ ψ(α) if there is a covering { fi : Ci → C} such that for each
i, either Ci ⊩ ϕ(α) or Ci ⊩ ψ(α).

3. C ⊩ ϕ(α) → ψ(α) if for all f : D → C, and D ⊩ ϕ(α ◦ f ), it holds that
D ⊩ ψ(α ◦ f ).

4. C ⊩ ¬ϕ(α) holds if for all arrows f : D → C in C, if D ⊩ ϕ(α ◦ f )
holds, then the empty family is a cover of D.

5. C ⊩ ∃y ϕ(x, y) holds if there is a covering { fi : Ci → C} and elements
βi ∈ Y(Ci) such that Ci ⊩ ϕ(α ◦ fi, βi) holds for each i.

6. Finally, for universal quantification, C ⊩ ∀y ϕ(x, y) holds if for all
arrows f : D → C in the category C, and all β ∈ Y(D), it holds that
D ⊩ ϕ(α ◦ f , β).

j-do-Calculus on Sites

To transition from classical do-calculus to j-do-calculus, we need to provide
a “bridge" that maps from classical notions, like d-separation, to intuitionistic
notions in j-do-calculus. We begin this transition by introducing some terms
that will be used in the remainder of the paper.

STAGES AND GENERALIZED ELEMENTS . Let (C, J) be a site and
ShJ(C) its sheaf topos. For any object A ∈ Ob(C), a generalized ele-
ment of A at stage V is a morphism f : V → A (equivalently, an element of
the presheaf yA(V) = HomC(V, A)). The special case 1 → A (where 1 is
terminal) is a global element. In what follows we fix an ambient context (or
ambient object) U ∈ Ob(C) and call any arrow f : V → U a local stage
over U.

CHARTS (“REGIMES”) AND J -COVERS . A chart (our earlier “regime”) is
precisely a local stage f : V → U. A family of charts { f i : Vi → U}i∈ I
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generates the sieve

⟨ f i⟩ = { h : W → U | ∃i, ∃g : W → Vi with h = f i ◦ g }.

We call { f i} a J-cover of U iff ⟨ f i⟩ ∈ J(U) (i.e. the generated sieve is
J-covering).

READING FORMULAS “AT STAGE U”. Let φ be a formula in the internal
language. Write U ⊩ J φ to mean that φ is (internally) true at the ambient
object U in Sh J (C ). In Kripke–Joyal semantics this is equivalent to the
existence of a J-covering sieve S ⊆ HomC (−, U) such that each local stage
f : V → U in S forces φ after pullback:

U ⊩ J φ ⇐⇒ ∃ S ∈ J(U) with ∀ f : V → U in S, V ⊩ J φ| f .

Informally: φ holds chartwise on a J-cover of U.

GROTHENDIECK TOPOLOGY AND J -COVERS . A sieve S on U is J-
covering iff S ∈ J(U). We will say that a family of charts { f i : Vi → U} is
a J-cover of U iff the sieve it generates is J-covering:

{ fi} is a J-cover of U ⇐⇒ ⟨ fi⟩ ∈ J(U).

Thus our earlier “J-cover” phrase always refers to a covering family whose
generated sieve is J-covering.

LAWVERE–T IERNEY TOPOLOGY j AND J . The Grothendieck topology J
on C corresponds to a Lawvere–Tierney topology j : Ω → Ω on the presheaf
topos Ĉ ; the sheaf topos Sh J (C ) is the j-sheaf subtopos of Ĉ . We freely
pass between J (external/topological) and j (internal/logical) viewpoints;
“j-closure” of a subobject corresponds to saturation under J-covering sieves.
Slogan. A conditional independence φ ≡ (X ⊥⊥ Y | Z) is j-stable at
a stage U iff the sieve of all refinements u : V → U that validate φ is a
J-cover of U .

S ITE OF CAUSAL CONTEXTS . Fix a finite variable set V and a DAG G
on V . A stage is a pair U = (G, σ), where σ is a status profile that records
which nodes are (i) conditioned/observed, (ii) intervened upon (incoming
arrows cut), etc. A morphism u : (G ′ , σ ′) → (G, σ) is a refinement that is
identity on node names and monotone in status (a refinement may condition
or intervene on more variables, but never less). Stages and refinements form a
category C.

OPEN PATHS AND SATISFACTION . For disjoint X , Y , Z ⊆ V and a stage
U = (G, σ), let OpenPathsU (X , Y | Z) be the set of G-paths from X to
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Y that are d-open under the usual collider/non-collider rules, evaluated after
applying the surgeries in σ (e.g., do(·)). Write

U |= (X ⊥⊥ Y | Z) ⇐⇒ OpenPathsU (X , Y | Z) = ∅.

THE SIEVE SELECTED BY A CI FORMULA . Given φ ≡ (X ⊥⊥ Y | Z)

and U , define

Sφ(U ) := { u : V → U in C | V |= φ }.

Lemma (sieve). Sφ(U ) is a sieve on U (i.e., closed under precomposition).
Proof sketch. If u : V → U validates φ and w : W → V is any arrow,

then W refines V monotonically in status, which can only block additional
paths; hence W |= φ and u◦w ∈ Sφ(U ). □

GROTHENDIECK TOPOLOGIES FROM ADMISSIBLE CHARTS . Fix for
each U a family {ρk : Vk → U}k∈K of admissible local views (charts) used
to test CI at U (e.g., purely observational; or a mix including certain do(·)-
surgeries). Let J be the Grothendieck topology generated by these bases: a
sieve S covers U iff it contains a jointly epimorphic family refining {ρk}.
Two canonical choices:

• Jid (classical): basis = {idU }.

• Jmix: basis includes observational charts and specific interventional charts.

FORCING SEMANTICS ( j-STABILITY ) . Write

U ⊩J (X ⊥⊥ Y | Z) :⇐⇒ Sφ(U ) is a J-cover of U .

Proposition (conservativity). With Jid,

U ⊩Jid (X ⊥⊥ Y | Z) ⇐⇒ U |= (X ⊥⊥ Y | Z).

Reason. A sieve covers U in Jid iff it contains idU . Thus Sφ(U ) covers iff
idU ∈ Sφ(U ), i.e., U |= φ. □
Proposition (soundness of j-stability). If {ρk : Vk → U} generates J at U
and Vk |= (X ⊥⊥ Y | Z) for all k, then U ⊩J (X ⊥⊥ Y | Z).

Reason. Each generator ρk lies in Sφ(U ); hence the sieve they generate
covers, and by upward closure of covering sieves, so does Sφ(U ). □

WORKED MAPPING : EARTHQUAKE EXAMPLE . Let U = (G, σ) with
B → A ← E and A → C. Take Jmix generated by two charts: an ob-
servational chart ρobs (no conditioning on colliders unless stated) and an
interventional chart ρdoA that cuts the incoming edges into A. Then:

(i) U ⊩Jmix (B ⊥⊥ E) (collider closed in obs; parents cut under do(A)).

(ii) U ⊩Jmix (B ⊥⊥ C | A) (chain blocked by A in both charts).

(iii) U ̸⊩Jmix (B ⊥⊥ E | A) (conditioning on the collider opens the path in the obs chart).
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TAKEAWAY. A CI formula φ determines a sieve Sφ; a Grothendieck topol-
ogy J encodes which local views count as covers. Classical CI is truth at
U ; j-stability is truth on a J-cover of U—i.e., gluable from admissible local
regimes.

CI AS AN INTERNAL PREDICATE . Fix a graph object G (DAG with
surgery) represented in C. For variables X, Y, Z (as objects/indices in G),
let ⊥⊥G (X; Y | Z) denote the internal formula “X ⊥ Y | Z in G”. Our usage

“Y ⊥⊥ Z | X, W in Ḡ(·) on a J-cover of U”

means precisely: there exists a J-covering sieve S ⊆ Hom(−, U) such that
for every f : V → U in S, the (pulled-back, surgically modified) graph
satisfies V ⊩J⊥⊥G (X; Y | Z). By the clause above, this suffices to conclude
U ⊩J⊥⊥G (X; Y | Z).

Algorithms for Judo Calculus

We describe an algorithmic and implementation framework for judo calculus,
combining it with standard score-based, constraint-based, and gradient-based
causal discovery methods. 72 We describe experimental results on how to (i) 72 Alessio Zanga and Fabio Stella. A survey

on causal discovery: Theory and practice,
2023. URL https://arxiv.org/
abs/2305.10032

form data-driven j-covers (via regime/section constructions), (ii) compute
chartwise conditional independences after graph surgeries, and (iii) glue them
to certify the premises of the j-do rules in practice. We compare the regular
and j-stable variants of popular causal discovery methods, from synthetic to
real-world datasets from biology and economics. For more details, the reader
is encouraged to refer to the original paper. 73 73 Sridhar Mahadevan. Decentralized causal

discovery using judo calculus, 2025b. URL
https://arxiv.org/abs/2510.
23942

We first give a high-level overview of judo calculus in this section, prior to
introducing the highly technical definitions on which it is rigorously based.
Judo calculus is intuitionistic, meaning that the law of the excluded middle
p ∨ ¬p does not necessarily hold, and ¬¬p cannot be reduced to p, for any
causal proposition p. Rather, judo calculus requires a constructive proof to
determine a statement’s truth. In the context of causality, this means you
can’t assume that a causal claim is either universally true or universally false
without a proof for one or the other.

Judo calculus uses topos theory to model causality in a more flexible
way than classical methods. For example, in many real-world applications
of causal inference, a particular intervention, such as administering a drug
or employing a lunch program in schools, may not be effective over the
entire population, but rather in different “regimes" (e.g., senior citizens may
respond more favorably than younger recipients, and similarly, students from
low-income backgrounds may benefit nutritionally from a free lunch program
than students from high-income regions). The following table summarizes the
differences between classical do-calculus and judo calculus.

https://arxiv.org/abs/2305.10032
https://arxiv.org/abs/2305.10032
https://arxiv.org/abs/2510.23942
https://arxiv.org/abs/2510.23942
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Characteristic Classical do-calculus Judo Calculus
Logic Boolean: causal claims are globally true or false Intuitionistic logic: truth is local

Context Uses“average" treatment effect Local truth is “glued" together
Interventions “Surgery" of a causal graph Subobject classifier
Identification Axioms define three rules More general axiomatic framework

Table 7: Some of the salient differ-
ences between classical do-calculus
and judo calculus.

As a concrete example, let us imagine that a city planning a public health
initiative to combat childhood obesity decides to distribute free healthy
lunches in public schools. The city policy makers want to determine if this
intervention reduces the students’ body mass index (BMI) by the year’s end.
Classical do-calculus would seek a global average treatment effect over the
entire school population. Judo calculus makes it possible to define individual
regimes, such as “low-income" and “high-income" where the causal interven-
tion may or may not be as effective.

Judo calculus works in the setting of sheaves or sites, which are categories
that are equipped with a Lawvere-Tierney topology defined by a modal oper-
ator j on the subobjects. In plain English, this means that the category has a
topology defined by the arrows, and their compositional structure. This j op-
erator defines a notion of causal “stability", which will be studied extensively
in the coming sections. For example, in the “low income" students, the city’s
causal intervention may be j-stable, whereas in the “high income" category,
this intervention may not be as effective. The operator j acts on the subobject
classifier Ω: an object in the category that serves to define “truth", which in
general is not Boolean. The j operator acts to determine “local" truth from
“global" truth, and also provides a closure property to determine j-stability.
The j operator on Ω is defined to represent the notion of a “globally valid"
causal statement. A j-cover represents a tesselation of the space of arrows
that all have a common co-domain.

Judo Calculus Model of Causal Inference under Interference

In this section, we want to quickly show how our framework applies to the
case when the standard Stable Treatment Unit Value Assumption (SUTVA) is
violated because of “interference". For example, a report on a study involving
power plants that may cause pollution among the residents of a particular
county, where each individual resident may be exposed to the radiation from
multiple power plants. A particular treatment on a power plant, such as im-
posing pollution controls, may affect many residents.

Classical do-calculus causal inference often assumes SUTVA (no interfer-
ence): a unit’s outcome depends only on its own treatment. In many spatial
and networked problems this fails. Consider air pollution: a resident may
be exposed to emissions from multiple plants, with exposure modulated by
meteorology. Claims that ignore this heterogeneity are either false or too brit-
tle to be useful. Our framework captures this by proving local causal truths
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on families of comparable regimes (covers) and then gluing them. We illus-
trate this in a two-source interference model with overlapping covers. Judo
calculus shows how to certify claims locally on covers and glue them via
j-stability. This simple example shows the power of the judo calculus formal-
ism in modeling a range of real-world examples, and we will get into several
real-world datasets in the experiments described later in the paper.

SETTING . Let P = {1, 2} be two sources (plants) and R a population of
residents. Time is indexed by t. Each plant has a binary treatment Zp(t) ∈
{0, 1} (e.g., a scrubber on/off). Meteorology (θ(t), M(t)) denotes wind
direction (degrees) and a mixing proxy (e.g., stability or mixing height).
Interference arises because multiple sources contribute to each resident’s
exposure.

EXPOSURE MAPPING . For each resident r, define wind-dependent weights
wrp(θ, M) ≥ 0 (larger when r is downwind from p). Write the time-varying
exposure as

Er(t) = ∑
p∈P

wrp
(
θ(t), M(t)

)
Zp(t) + ηr(t),

and model the outcome as

Yr(t) = β1 Er1(t) + β2 Er2(t) + εr(t),

where Erp is the contribution traceable to source p. SUTVA is violated by
design: Yr depends on the vector Z = (Z1, Z2) through the mapping Er(·).

REGIMES AND COVERS . A regime is a subset of times where the exposure
mapping is comparable (e.g., similar wind sector or mixing). Let

WL: west-large (230–310◦); WS: west-small (250–290◦); E: east (70–110◦); LM: low mixing (e.g., M < −0.5).

These regimes overlap: we also consider intersections such as WL ∩ LM
and E ∩ LM. In practice, we may refine a regime into smaller charts (disjoint
sub-regimes) to assess within-regime variability.

PRESHEAF VIEWPOINT. LetR be the (small) category whose objects
are regimes (E, WL, WS, LM, . . .) and whose morphisms are inclusions
(refinements). Define a presheaf F : Rop→ Set that assigns to each regime
e the set of local models or summaries computable on e (e.g., regression
coefficients, edge presence/absence), with restriction maps along inclusions.
A local truth on e is a property φ ∈ F (e) we can build constructively from
data in e. A cover J = {ei → e} is a jointly surjective family of inclusions;
φ is j-stable on e if φ|ei holds for every ei ∈ J and these local sections are
compatible (glue).
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OPERATIONAL TEST FOR j-STABILITY ( INTERFERENCE) . We instanti-
ate F with simple local regressions and a frequency threshold:

1. Charts. For each regime e ∈ {W L, WS, E, LM, W L ∩ LM, E ∩ LM},
split the time indices into K disjoint charts e =

⊔K
k=1 e(k) (e.g., equal-size

shards).

2. Local models. On each chart e(k) , fit a standardized OLS model Y ∼
E1 + E2. Record the coefficients β̂

(k)
1 (e), β̂

(k)
2 (e). Declare the edge

E1→ Y present on the chart if | β̂(k)
1 (e)| ≥ τβ (e.g., τβ = 0.2); similarly

for E2→ Y.

3. Frequencies. Compute edge frequencies fE1→Y (e) = 1
K ∑k 1{| β̂(k)

1 (e)| ≥
τβ}, and fE2→Y (e) analogously.

4. Stability decision. Fix a stability threshold π ∈ [0, 1]. We say Ep→ Y
is j-stable on the cover J = {ei → e} if fEp→Y (ei) ≥ π for all
ei ∈ J . In words: the claim holds on every chart of every member of the
cover.

The modality j is the Lawvere–Tierney topology that closes sieves under the
chosen cover: truth is tested along the arrows ei→ e.

WHAT WE OBSERVE . In a minimal simulation (two plants; wind-dependent
weights), the west covers (W L, WS, W L ∩ LM) yield fE1→Y ≈ 1.0 and
fE2→Y ≈ 0; the east covers (E, E ∩ LM) flip this, with fE2→Y ≈ 1.0 and
fE1→Y ≈ 0.5–0.6. On LM, both edges are stable (e.g., fE1→Y ≈ 1.0,
fE2→Y ≈ 0.7). Crucially, the same local claims persist on intersections
(e.g., W L ∩ LM, E ∩ LM), illustrating that our sheaf-based proof obligation
naturally handles overlapping charts.

GLUING INTO A STRUCTURE . When one aggregates many regimes,
the local edges can be glued into a global π-stable skeleton by keeping
edges whose frequencies exceed π in every member of the cover and on the
intersections. In practice we select π by validation likelihood on held-out
charts/regimes and then orient edges by a net-preference rule (e.g., keep
i→ j if f i→ j − f j→i exceeds a small margin), optionally imposing domain
guards (e.g., forbid edges from the composite to its components).

WHY THIS MATTERS . Instead of a fragile global statement (“reducing
emissions at plant 1 lowers hospitalizations everywhere”), we make a j-stable
claim that is provably true on the relevant cover (e.g., west-wind regimes and
their intersections with low mixing). This separation of concerns—choose a
cover, prove locally, glue globally—is the essence of the j-do calculus: the
usual identification rules apply, but only after claims have been made stable
along the cover.



JUDO CALCULUS 221

Figure 37: Interference with over-
lapping covers. Edge frequencies
f (E1→ Y), f (E2→ Y) by cover
(left); per-chart coefficients on in-
tersections (right). Local claims are
j-stable on each cover and persist
on intersections.

Computational and Statistical Efficiency of j-Stable Discovery

Another significant advantage of judo calculus is its highly decentralized
characteristic. A J-cover S = {Vi ↪→ U }E

i=1 turns one hard pooled
causal discovery problem into E independent subproblems plus a light-weight
aggregation. This matches a map–reduce pattern:

D ISCOVER(U)︸ ︷︷ ︸
pooled

;
{

D ISCOVER(Vi)︸ ︷︷ ︸
per-env/chart

}E
i=1 then GLUE({Ai})︸ ︷︷ ︸

j-aggregation

.

In practice the map phase (per-env FCI/GES/DCDI) is highly parallel, and
the reduce phase is an O(Ep2) Boolean fold over adjacency matrices, with
short-circuit opportunities (below).

A SIMPLE COST MODEL . Let p be variables, n pooled samples, and ni

samples per chart (∑i ni = n). For depth d=0 (marginal tests), Fisher-z CI
tests are O(n) each, and the skeleton step is O(p2n).

Tpooled
FCI (n, p, 0) ≈ c p2n,

Tsheaf
FCI ({ni}, p, 0) ≈

E

∑
i=1

c p2ni = c p2n,

so the sequential work is comparable. However, with W workers the wall-
clock time is

Tsheaf
wall ≈ max

i≤E
c p2ni + O(Ep2),

often much smaller than Tpooled
FCI because: (i) parallelism, (ii) better cache/mem-

ory behavior on smaller ni, and (iii) short-circuiting during aggregation.
For d>0, the CI test count grows with the number and size of condition-

ing sets; the same parallel advantage holds, and smaller ni usually makes
regression/covariance subroutines cheaper and more numerically stable.

SHORT-CIRCUIT AGGREGATION . Let Ai ∈ {0, 1}p×p be per-chart
adjacencies and Aggτ denote a threshold rule “keep an edge if it appears in at
least τ charts.” Intersection and union are special cases with τ=E and τ=1.

For intersection (τ=E) a single zero in any chart kills the edge (stop
early). For union (τ=1) a single one confirms the edge. For k-of-E, both
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d Vanilla J-stable J-stable / Vanilla

10 30.3 27.8 0.90
20 51.8 42.3 0.82
40 143.5 101.9 0.71

Table 8: Comparison of regular
(vanilla) vs. j-stable DCDI on a
synthetic DAG benchmark.

early accept and reject bounds apply. This makes the reducer essentially
linear in the number of decisive charts per edge.

MEMORY, I /O, AND PRIVACY. Per-chart runs touch only their own ni × p
block and emit a compact p× p binary matrix; the reducer never needs raw
data. This also enables data-silo settings: share adjacencies, not samples.

STATISTICAL EFFICIENCY (STABILITY AS REGULARIZATION) .
Aggregating across charts is analogous to stability selection and ensemble
model averaging:

• Variance reduction. Spurious edges that appear by chance in one envi-
ronment are filtered by intersection or by a high support threshold.

• Bias–variance tradeoff. Intersection is conservative (low FP, higher FN);
k-of-E balances sensitivity and specificity. The support curve (fraction of
edges surviving threshold t) is an empirical stability diagnostic.

• Implicit interventions. Heterogeneity across charts (different regimes/per-
turbations) breaks symmetries that pooled data cannot, improving identifi-
ability and power of CI tests.

• Multiple testing control. Viewing “edge present in chart i” as repeated
evidence, support thresholds act as a robust filter against per-chart test
noise without tuning α aggressively.

Experimental Validation of Judo Calculus Efficiency

To illustrate the gains with using the parallelism inherent in judo calculus,
The table gives a comparison of the time required by the regular DCDI causal
discovery method 74 with its j-stable variant. The figures below illustrate the 74 Philippe Brouillard, Sébastien Lachapelle,

Alexandre Lacoste, Simon Lacoste-Julien,
and Alexandre Drouin. Differentiable causal
discovery from interventional data, 2020.
URL https://arxiv.org/abs/
2007.01754

computational benefits of decentralized judo calculus. With equal iteration
budgets (10, 000 iterations), j-stable’s aggregation and π-selection adds
negligible overhead: per-iteration wall-clock is on par with vanilla and is
≈ 10 − 30% lower in our linear synthetic benchmarks as d, a parameter
specifying the synthetic DAG, is varied. Because seeds/regimes are highly
parallel, overall wall-clock for seed ensembles drops substantially with a few
workers (here, set to 4).

https://arxiv.org/abs/2007.01754
https://arxiv.org/abs/2007.01754
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Figure 38: This figure illustrates
the scalabilty of j-stable DCDI vs.
regular DCDI.

Figure 39: j-stable DCDI scales
significantly better than regular
DCDI on a synthetic DAG bench-
mark.

The j-stable do-operator (practical form)

Let J be a cover (the family of comparable regimes relevant for a query), and
let {Pe(·)}e∈J(w) be regime-specific interventional models at covariate value
w. We define the j-stable intervention probability by a monotone aggregator
over the cover:

PJ
(
Y ∈ A

∣∣ doJ(X=x) , W=w
)

:= Agg e∈J(w)

[
Pe(Y ∈ A

∣∣do(X=x), W=w
)]

.

Semantics. Choose a cover J (e.g., countries with comparable measurement,
QC-passed sites, or a wind sector in interference), evaluate the usual inter-
ventional conditional in each regime e ∈ J(w), and combine them with
a pre-registered, order-preserving Agg (Fisher/Stouffer pooling, trimmed
mean, etc.). The result is a local do-query certified on J.

FROM STRUCTURE TO j-DO . Our discovery layer certifies structure
on J via a stability map F ∈ [0, 1]d×d: an edge {i, j} is π-stable if
max(Fi→ j , Fj→i) ≥ π, and simple margins orient i → j when Fi→ j −
Fj→i ≥ δ. We select π (and sparsity for baselines) by validation likelihood
on held-out regimes, and only then apply the rules of Judo calculus shown
earlier.

Remark. The premises “· | (·, J)” are certified by the π-stable structure
(and margins) on the cover. Formal details appear in the companion theory
paper.

EXAMPLE (PISA ESCS). Let J be the set of OECD countries with com-
parable SES measurement; W include SES deciles; X = instruction time;
Y = math score. Suppose discovery yields a π-stable skeleton/orientation
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indicating that Z=ESCS satisfies the j-backdoor premise for X → Y on J.
Then

PJ
(

Y ≤ y
∣∣ doJ (X=x)

)
= Agge∈ J ∑

z
Pe(Y ≤ y

∣∣ X=x, Z=z
)

Pe(Z=z).

In words: evaluate the usual adjustment within each country and aggregate
over the cover; the claim is local (on J) and certified by the π-stable struc-
ture.

Relation to transportability (Pearl–Bareinboim)

Transportability asks: given a source domain s (e.g., an RCT) and a target
domain t, can we express Pt(y | do(x)) in terms of source quantities
Ps(·) and target observables Pt(·)? The method uses selection diagrams and
classical do-calculus to derive adjustment/transport formulas; its claims are
global within the chosen model and focus on identifiability of an effect under
population shifts.

J-stability (judo calculus) asks: for a chosen family of comparable
regimes (a cover) J, does a causal claim hold locally and constructively
across the cover? Operationally, we certify a π-stable structure on J (fre-
quency map F, π-skeleton, and net-preference orientation), and then evaluate
J-do queries via an order-preserving aggregator:

PJ
(

Y∈ A
∣∣ doJ (X=x) , W=w

)
:= Agg e∈ J(w)

[
Pe(Y∈ A | do(X=x), W=w

)]
.

HOW THEY CONNECT.

• Transportability as a special case. If the cover J contains the source and
target ({s, t} ⊆ J) and we choose Agg to select the target component (the
identity on t), then PJ

(
y | doJ (x)

)
reduces to Pt(y | do(x)). When

a selection-diagram transport formula holds (e.g., backdoor on Z), the
same Z is a J-admissible adjustment set and the J-backdoor rule yields the
transported effect.

• Broader locality. Transportability typically assumes one global model
with population differences mediated by effect modifiers. J-stability
allows covers with intersections and context-dependent mechanisms:
a claim may be certified on wheat-flour sites, winter/wind regimes, or
genotype strata without committing to a single universal model.

• Constructive robustness. A transported formula says an effect can be
mapped to t given assumptions. A J-stable claim says the effect does hold
on the cover J because it is witnessed (e.g., by repeated per-regime fits)
and glued by a monotone aggregator; the premises are empirically testable
(stability margins, π-support).
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TAKEAWAY. Transportability provides formulas for source→target trans-
fer; J-stability provides a logic of local truth and an empirical workflow
(stability maps⇒ J-do) that subsumes transport as the two-regime, identity-
aggregation case and extends it to richer covers where mechanisms and
validity sets vary by context.
Example. Let J = {s = RCT, t = registry} and suppose Z is J-admissible
(stable backdoor). Then PJ (y | doJ (x)) = ∑z Pt(y | x, z) Pt(z) =

Pt(y | do(x)), which matches the classical transport formula for (s→ t).

Experimental Validation of j−Stable Causal Discovery

SETUP : REGIMES , PER-REGIME GRAPHS , AND AGGREGATION . Let
V = {X1, . . . , Xd} be the variables. We observe data partitioned into E
regimes (a.k.a. environments) E = {e1, . . . , eE} coming either from known
labels (e.g. a column env) or from a preprocessing that induces regimes
(e.g. clustering). For a causal learner A ∈ {GES, PSI-FCI, DCDI} and a
regime e ∈ E , we fit A on the subset data(e) and obtain a (possibly partially
oriented) graph summary, represented here as an adjacency matrix

A(e) ∈ {0, 1}d×d, A(e)
ij = 1 ⇐⇒ A asserts an edge Xi→Xj (or an adjaceny Xi–Xj) in regime e.

From the E matrices we form the support counts

Cij := ∑
e∈E

A(e)
ij ∈ {0, . . . , E}, and the stability ratios sij :=

Cij

E
∈ [0, 1].

These are the sufficient statistics of the j-stable aggregation layer. We report
three derived graphs:

A∩ij = 1[Cij = E] (intersection), A∪ij = 1[Cij ≥ 1] (union), A(k)
ij = 1[Cij ≥ E− k] (“all-but-k”).

Optionally, a score threshold τ ∈ (0, 1] yields a soft variant A(τ)
ij = 1[sij ≥

τ].

WHY THIS REALIZES j-STABILITY. In the theory, a conditional statement
φ is j-stable at stage U iff there exists a J-cover { fα : Vα → U} such
that each chart Vα locally validates φ. Here, the regimes play the role of
charts: each e ∈ E is a refinement of the ambient stage (same node set,
refined observation/intervention status), and the learner A produces local
edge claims A(e)

i j ∈ {0, 1}. Intersection A∩ certifies edges that hold on
all charts (cover-wise truth), hence correspond to forced edges under j. “All-
but-k” A(k) is a robust variant: it requires truth on a cover after discarding at
most k charts (useful when one regime is noisy or mis-specified). Union A∪

is purely diagnostic (upper bound on the skeleton).
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LEARNERS WE EVALUATE .

• GES (score-based, Gaussian; we use BIC or Gaussian score).75 Output 75 David Maxwell Chickering. Optimal
structure identification with greedy search.
Journal of machine learning research, 3
(Nov):507–554, 2002

is a CPDAG; we keep adjacencies for skeleton evaluation and, when
available, directions for oriented metrics.

• ψ-FCI (constraint-based with selection bias handling).76 We use Causal- 76 Amin Jaber, Murat Kocaoglu, Karthikeyan
Shanmugam, and Elias Bareinboim. Causal
discovery from soft interventions with
unknown targets: Characterization and
learning. In H. Larochelle, M. Ranzato,
R. Hadsell, M.F. Balcan, and H. Lin, editors,
Advances in Neural Information Processing
Systems, volume 33, pages 9551–9561. Cur-
ran Associates, Inc., 2020. URL https:
//proceedings.neurips.cc/
paper_files/paper/2020/file/
6cd9313ed34ef58bad3fdd504355e72c-Paper.
pdf

Learn’s FCI to get a PAG; we convert to an adjacency by treating any
adjacency mark as 1 (for skeleton metrics) and→ marks for orientation
metrics when present.

• DCDI (gradient-based). Outputs a weighted adjacency; we threshold to
obtain A(e).

EVALUATION TARGETS AND METRICS . Let Atrue ∈ {0, 1}d×d be the
ground-truth adjacency of the synthetic DAG (directed). For any prediction A
we report:

TP =∑
i ̸=j

1[Aij = 1, Atrue
ij = 1], FP, FN, TN analogously, precision =

TP
TP + FP

, recall =
TP

TP + FN
,

F1 =
2 precision · recall
precision + recall

, SHD = ∆skeleton︸ ︷︷ ︸
edge additions/deletions

+∆orientation︸ ︷︷ ︸
arrow flips

.

When a method produces only skeletons (e.g. PAG adjacencies), we compute
SHD w.r.t. the true skeleton and skip orientation flips; we mark these rows as
undirected.

EXPERIMENTAL PROTOCOL (ONE LINE PER METHOD) .

1. Per-regime fit. For each e ∈ E , run A on data(e) to get A(e); write
A_env_e*.csv.

2. j-stable aggregation. Compute C, s, and one of {A∩, A(k), A(τ)}; write
A_Jstable_*.csv plus support_counts.csv and stability.csv.

3. Pooled baseline. Run A on ∪edata(e); write A_pooled.csv.

4. Scoring. Compare each prediction to Atrue with the metrics above; for
grid sweeps (e.g. α for FCI), tabulate best scores and produce a small
LATEX table.

WHAT THE AGGREGATION MEANS CAUSALLY. Edges in A∩ have
chartwise support across the cover and thus behave like internally forced
statements under the j-modality; they are stable under the refinements en-
coded by the regimes. Empirically, A∩ filters away edges that are brittle to
regime changes (spurious under distribution shift), while A(k) retains edges
that are stable except on at most k exceptional charts.

https://proceedings.neurips.cc/paper_files/paper/2020/file/6cd9313ed34ef58bad3fdd504355e72c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/6cd9313ed34ef58bad3fdd504355e72c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/6cd9313ed34ef58bad3fdd504355e72c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/6cd9313ed34ef58bad3fdd504355e72c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/6cd9313ed34ef58bad3fdd504355e72c-Paper.pdf
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Inputs
synth_jsheaf/synth_data.csv → numeric vars X0, . . . , Xd−1 and categorical env ∈ {e0, e1, e2} A_true_Jstable.csv →

ground-truth directed adjacency

Step 1: per-env FCI (charts of a cover)
Split rows by env. For each e ∈ {e0, e1, e2}: run FCI on the numeric columns only ⇒ PAG ⇒ skeleton adjacency

A(e) ∈ {0, 1}d×d.
Files: results_psifci_per_env/{ fci_enve0.csv, fci_enve1.csv, fci_enve2.csv }.

Step 2: j-stable aggregation across charts

Support counts: Cij = ∑e A(e)
ij ∈ {0, 1, . . . , E}, stability ratio: sij = Cij/E with E = 3.

Intersection (forced on every chart): A∩ij = 1[Cij = E ].

All-but-k (robust gluing): A(k)
ij = 1[Cij ≥ E− k ] (e.g., k=1).

Files: A_Jstable_fci.csv (intersection), support_counts.csv, stability.csv.

Step 3: pooled baseline (vanilla FCI)
Drop env and run one FCI on all rows ⇒ pooled skeleton adjacency Apool.
File: results_psifci_pooled/fci_envpooled.csv.

Step 4: evaluation vs. ground truth (undirected skeleton)
Compare A∩ (and A(k)) and Apool to A_true_Jstable.csv with undirected scoring: TP/FP/FN/TN, Precision,

Recall, F1, SHD.
Files: report.json in each output directory.

Figure 40: Pipeline: PSI–FCI vs.
j-stable PSI–FCI on synthetic
data. Regimes e ∈ {e0, e1, e2}
act as a J-cover {Ve → U} of
the ambient stage U. Per-env
FCI yields local skeletons A(e)

(truth on each chart). Aggre-
gation by intersection keeps
the edges forced on every chart
(A∩ij = 1 ⇐⇒ A(e)

ij = 1 ∀e),
which operationalizes j-stability
(local truth that glues). “All-but-k”
allows up to k dissenting charts
to trade precision for recall. The
pooled baseline ignores regimes
and may conflate heterogeneities.

DESIGN CHOICES (PRACTICAL KNOBS) .

• Depth/alpha (FCI). We sweep α ∈ {0.005, 0.01, 0.02} at depth 0 for
speed; depth > 0 is possible but slower.

• Standardization. For continuous data we z-score within each regime;
pooled runs also drop non-numeric columns (e.g. env).

• Thresholding (DCDI). We set τ on learned weights to match the target
edge budget or based on stability ratios sij.

• Undirected vs directed scoring. When orientation is unreliable (PAGs),
we score skeletons and optionally report orientation flips where available
(GES).

ABLATIONS AND SANITY CHECKS . We verify (i) SHD = ∆skeleton +

∆orientation and (ii) ∆dir_sym = ∆skeleton + 2 · ∆orientation. We also report edge
budgets ∑i ̸=j Aij for each run to make aggregation effects visible.

TAKEAWAY. The j-stable layer is a thin, method-agnostic “sheafification”
of any base learner: compute per-regime graphs, then keep only edges that
persist across a J-cover. This mirrors the theoretical slogan “local truth on a
cover implies j-truth” and empirically improves precision under regime shifts
while retaining recall when using an all-but-k aggregator.

STRUCTURE ACCURACY. We report SHD, F1 (skeleton and orientation),
and orientation flip rate across regimes.

j-STABILITY INDEX . For edge logits (DCDI) or scores (TCES), define

Stab = 1 − 1
|E| ∑

(i, j)

Varr [sr (i→ j)]
Varmax

r,e + ε
,

rescaled to [0, 1]. Higher is better (more stable).
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OUT-OF-ENVIRONMENT GENERALIZATION . Hold out one or more
regimes during training; report NLLheld-out for DCDI variants.

V IOLATION COUNT. Number of items flagged by the j-stability veto (lower
is better).

WHAT TO REPORT (AND HOW TO REPRODUCE) . We experimented with
the following ablations:

1. Runtime scaling. Wall-clock vs. #charts E and workers W ; compare
pooled vs. j-stable (intersection and k-of-E).

2. Support curve & Jaccard. Plot #{(u, v) : support ≥ t} and Jaccard
with the union to visualize how strictness trades coverage for robustness.

3. Accuracy (when GT available). F1/SHD for pooled, intersection, and
k-1 across α; include depth sweeps.

4. Resource usage. Peak RAM per job; note that per-chart jobs stay below
pooled memory and are trivially parallelizable.

Method Parallelism Wall-clock Robustness (FP control)

Pooled (single run) none high low–moderate
j-stable (union) map–reduce low low (liberal)
j-stable (k-of-E) map–reduce low medium (tunable)
j-stable (intersection) map–reduce low high (conservative)

Table 9: Compute/robustness trade-
offs. All j-stable variants share
the same cheap reducer; only the
threshold changes.

TAKEAWAY. The sheaf viewpoint isn’t just philosophically modular; it pro-
duces a computational modularity: run discovery locally, glue globally. This
enables parallel speedups, early stopping in aggregation, better numerical
behavior on smaller charts, and a principled stability mechanism that reduces
false positives without expensive pooled runs.

Experimental Design

ASSUMPTIONS CHECKLIST.

• Local consistency. For each chart Vi, the chosen learner is consistent
for Φ(G⋆|Vi ). Diagnostic: report per-chart CI residuals / BIC deltas vs.
learned Ĝi.

• Separating cover. The cover distinguishes non-edges and v-structures
of interest. Diagnostic: list, for each true v-structure, a chart where the
collider is not conditioned.
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Method Precision Recall F1 SHD

Pooled ψ-FCI . . . . . . . . . . . .
Per-env ψ-FCI (no gluing) . . . . . . . . . . . .
j-ψ-FCI (intersection) . . . . . . . . . . . .
j-ψ-FCI (all-but-k) . . . . . . . . . . . .

Table 10: Synthetic DAG: pooled
vs per-env vs j-glued.• Interventional richness (if DAG uniqueness desired). For each ambigu-

ous node, there exists a chart that cuts all parents. Diagnostic: coverage
table of “parents cut?” per node.

• Overlap propagation. Overlaps are large enough that Meek rules orient
remaining edges. Diagnostic: orientation gain from overlap (before/after
Meek closure).

• Robustness. If using all-but-k, assume exchangeability and bounded local
error rates. Diagnostic: edge support histograms; separation of true vs.
false edges.

REPORTING .

• Edge support. Histogram of per-edge support across charts, with thresh-
olds used (intersection, all-but-k).

• Metrics. Precision/Recall/F1/SHD vs. ground truth per mode (pooled,
per-env, j-intersection, j-all-but-k).

• Ablations. Vary k, cover size, and intervention availability; plot F1, SHD
curves.

Experimental Setup

DATASETS . (i) Synthetic linear / nonlinear SCMs with p ∈ {10, 20}
variables, various densities and random interventions (perfect or soft); (ii)
Sachs protein signaling (standard 11-variable benchmark) with interventional
conditions.

REGIMES . We treat each intervention condition as a regime; observational
data is one additional regime. Covers j include singletons and small unions
(size 2–3), matching our aggregation granularity.

BASELINES . GES, CGES/TCES, FCI / ψFCI-TCM, DCDI / DCDI-TCM.
All TCM variants share the same aggregator choices (mean or Fisher by
default) and stability weight α ∈ {0, 0.01, 0.05, 0.1}.
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IMPLEMENTATION . For DCDI-TCM we enable -tcm, set -tcm-alpha,
choose -tcm-agg (mean by default), and optionally -ref-env and
-jstability-veto. Snapshots are written every K iterations for au-
diting.

REPORTING . Each condition averaged over 5 seeds; we provide SHD/F1,
stability index, NLL on held-out regimes, and per-method runtime.

RELATION TO INVARIANCE . Our j-stability is compatible with invariance-
based approaches (e.g., invariant causal prediction): invariance imposes
equality of certain conditionals across environments; j-stability generalizes
this as a sheaf-theoretic gluing condition on the algorithm’s decisions/statis-
tics, irrespective of the underlying parametric form, and integrates directly
with search, constraints, or neural objectives.

Questions

Q1 Does j-stable aggregation improve structural accuracy over pooled base-
lines? Q2 How sensitive are results to the CI threshold (α) and conditioning
depth? Q3 What is the computational impact of j-stability (wall-clock, paral-
lelism)? Q4 How do intersection vs. all-but-k (tolerance to one regime) trade
FP/FN?

Datasets

Synthetic. Linear-Gaussian DAG with three regimes; ground-truth Atrue

known. Sachs. 11-protein phospho-signaling; we use standard ground truth.
LINCS (A375, 24h). L1000 consensus signatures for cell line A375; regimes
formed by dose binning / expression clustering; no ground truth (we report
stability and overlap diagnostics).

Methods

Baselines. Pooled ψ-FCI and pooled GES (CausalLearn implementation,
BIC score; z-score standardization). j-stable variants. Run the base learner
independently in each regime e ∈ E, produce adjacencies A(e), then aggre-
gate:

A∩ =
∧
e∈E

(A(e)>0), Ak-allow = 1

[
∑

e
(A(e)>0) ≥ |E| − k

]
.

We report both intersection (k=0) and all-but-1 (k=1).

Metrics

With ground truth: Precision, Recall, F1, Structural Hamming Distance
(SHD). Without ground truth (LINCS): support histograms, Jaccard with
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pooled/union, and runtime.

Experimental protocol

Synthetic. Split by env; grid over α ∈ {5×10−4, 10−3, 2×10−3} for
ψ-FCI and depth ∈ {0, 1}; GES uses BIC with standardization.
Sachs. env from k-means on standardized expression (k=3–6); evaluate
pooled and j-stable (∩, k=1).
LINCS. A375/24h subset; environments from dose quantiles or expression
clustering (k=3); report stability and efficiency; pooled runs included when
feasible.

Computational efficiency

Let Tbase(n, p) be the runtime of the base learner on n samples and p vari-
ables. Pooled runtime: Tpooled ≈ Tbase(N, p). J-stable splits data into
regimes E with sizes ne and supports highly parallel execution:

Tj-stable ≈ max
e∈E

Tbase(ne, p) (with |E| workers),

plus O(Ep2) aggregation. Empirically on A375 (p=30), per-env GES fin-
ished in O(102) seconds total with E=3, while pooled ψ-FCI was orders
of magnitude slower or impractical. Besides speed, aggregation by ∩ (or
k-allow) systematically reduces false positives—consistent with theoretical
j-stability.

TAKEAWAYS . (i) On synthetic ground truth, j-stable aggregation substan-
tially improves F1 and SHD for both GES and ψ-FCI at sensible α. (ii) On
Sachs, trends are dataset/threshold dependent but k-allow offers a robust
FP/FN trade. (iii) On LINCS, j-stable yields compact, high-support sub-
graphs and clear computational gains.

Experimental Results

In this section, we report on a diverse range of experimental domains, from
synthetic to real-world, to give an illustration of the potential of judo cal-
culus in causal discovery. A much wider set of experiments are currently in
progress, and will be reported at a later date.

WHY j-STABLE ALGORITHMS OUTPERFORM THEIR COUNTERPARTS

( INTUITION ) .
Pooled fits blur regime idiosyncrasies and let spurious partial correla-

tions sneak in. j-stable fits each regime separately and keeps only edges that
repeat across regimes. Under perfect interventions, true parents reappear
consistently while spurious links do not. Aggregating into a frequency map
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F and thresholding at π is a form of stability selection: the Binomial tail
under the true edge rate pT clears π with high probability, while the false
edge rate pF almost never does. A simple net-preference rule (keep i→ j if
Fi→ j − Fj→i ≥ δ) resolves directions. Finally, selecting π/sparsity by val-
idation log-likelihood on held-out regimes lands on a plateau where j-stable
dominates vanilla—especially on denser graphs, where intersecting supports
across regimes sheds many fragile edges.

Why j-stable discovery works: an ensemble view (bagging & boosting)

BAGGING IN DISGUISE . For each regime e ∈ E we fit a base learner A
to get a directed graph A(e) (or a post-processed version of W(e)). View the
edge decision on e as a weak hypothesis h(e)ij ∈ {0, 1} for i→ j. We bag these
hypotheses via the frequency map

Fij =
1
|E | ∑

e∈E
h(e)ij ∈ [0, 1], Mij = Fi→j− Fj→i ∈ [−1, 1] (net margin).

The π-stable skeleton keeps {i, j} if max(Fi→j, Fj→i) ≥ π; we orient by a
tiny margin rule Mij ≥ δ (with small δ > 0), optionally with simple domain
guards (e.g., forbid composite→components).

WHY THIS HELPS . Across regimes, true edges tend to reappear (selection
rate pT), while spurious edges flicker (lower rate pF). Over E = |E | regimes,
the bagged vote for a true edge concentrates near pT while a false edge con-
centrates near pF; choosing π in the gap (pF, pT) is a stability selection
filter:

Pr
[
Fij ≥ π

∣∣ true
]
↑ fast in E and Pr

[
Fij ≥ π

∣∣ false
]
↓ fast in E.

Perfect (or strong) interventions amplify this gap: when a node is targeted,
its incoming edges must disappear in that regime and reappear elsewhere,
creating a consistent on/off pattern that the vote captures. The same logic
governs directions: the net margin Mij for a truly directed edge drifts positive
across regimes, while a symmetric or spurious pair hovers near zero.

WHY IT DOES NOT OVERFIT. We do not hand-pick π (or the per-seed
sparsity K). Instead we select (K, π) by validation log-likelihood on held-
out regimes (the same rule used in our synthetic and real-data experiments).
This guards against the two failure modes—too permissive (many FPs) and
too strict (recall collapse)—and lands on the broad plateau where j-stable
outperforms vanilla.

A BOOSTING PERSPECTIVE (ONE PARAGRAPH ) . Bagging explains
most of the gains, but the same picture admits a boosting-style extension: (1)
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identify where the current ensemble underperforms (regimes/edges whose
inclusion improves held-out regime LL but the vote disagrees), (2) upweight
those (regime,edge) pairs, refit the base learner to produce a new per-regime
component Ā(t), and (3) add it to the ensemble with a stage weight chosen to
maximize validation LL. This J-Boost idea—stage-wise corrections guided
by held-out regimes—pushes stability up where it helps prediction, and
leaves it alone elsewhere. We leave a full boosting study to future work; the
bagging-style F-π aggregation already accounts for the large gains seen in
our D10/D20 benchmarks.

Synthetic DAGs and data generation

We use linear-Gaussian SEMs with perfect single-node interventions across
regimes. A graph is sampled once per instance, then we generate multi-
regime data from that graph.

GRAPH SAMPLER (ACYCLIC BY CONSTRUCTION ) . Given number of
variables d and an edge–density parameter e (average indegree),

1. Sample a random permutation π of {1, . . . , d} to define a topological
order.

2. Set m = ⌊e · d⌋ and sample m ordered pairs (i, j) uniformly from the
lower–triangular index set {(i, j) : i > j} in the π-order. This yields a
DAG adjacency A ∈ {0, 1}d×d with Aij = 1 iff i→ j.

3. Sample edge weights Wij for Aij = 1 i.i.d. as Sij ·Uij with Sij ∈ {±1}
(equiprobable) and Uij ∼ Unif[0.5, 2.0].

STRUCTURAL EQUATIONS (LINEAR-GAUSSIAN ) . With noise ε j ∼
N (0, 1) and the topological order,

Xj = ∑
i∈Pa(j)

WijXi + ε j for j = 1, . . . , d.

We generate samples by forward substitution in the order π.

REGIMES AND PERFECT INTERVENTIONS . We consider R regimes E =

{e0, . . . , eR−1}, with one observational regime e0 and (R−1) single–node
interventions. In an interventional regime e that targets node t(e) we cut all
incoming edges into t(e):

A(e)
it(e) ← 0 and Xt(e) ← µe + εt(e)

(where µe is an optional mean shift; we use µe = 0 unless stated). All
other equations remain unchanged. We draw nper samples per regime (total
N = R · nper), and we use the same DAG A across regimes.
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Method TP FP FN TN Precision Recall F1 SHD

PSI–FCI (pooled) 2 20 0 42 0.091 1.000 0.167 20
j-stable PSI–FCI (intersection) 1 5 1 57 0.167 0.500 0.250 6

Table 11: PSI–FCI vs. j-stable
PSI–FCI at α = 0.005 on the
synthetic DAG.

PSI–FCI (pooled) j-stable (intersection) j-stable (k=E−1)

α F1 SHD F1 SHD F1 SHD

0.005 0.286 10 0.333 4 0.200 8
0.010 0.286 10 0.333 4 0.200 8
0.020 0.267 11 0.333 4 0.200 8

Lower SHD is better. Flat lines across α indicate

regime-wise skeletons were stable; the gain comes from cross-regime aggregation.

Table 12: PSI–FCI vs. j-stable
PSI–FCI on synthetic 3–regime
data. Scores are computed on the
undirected skeleton (depth= 0).
The j-stable intersection keeps
an edge only if it appears in all
regimes; k = E− 1 keeps edges
present in at least E−1 regimes.

DEFAULT SETTINGS . Unless otherwise noted we use R=10 (one obs +
nine single–node interventions), nper=1000 (thus N=10,000), and seeds
{123+g} for graph index g ∈ {1, . . . , 10}. We report medians ± IQR over
10 graphs per condition. Evaluation uses directed and skeleton SHD against
the known A.

The figure compares the vanilla ψ-FCI method with the j-stable ψ-FCI.
For the specific value of α = 0.005, the table shows that

• ψ-FCI (pooled): perfect recall but many false positives → low precision
and larger SHD.

• j-stable ψ-FCI (intersection across envs): trades some recall for far fewer
false positives → higher precision, higher F1, much smaller SHD.

The main takeaway at this setting is that enforcing j-stability improves
overall accuracy (F1) and structure fidelity (lower SHD) by suppressing
edges that aren’t consistent across regimes. The pooled baseline is aggressive
(recall=1.0) but overfits regime-specific artifacts (20 FPs).

The below figure shows the improvement in performance of the j-stable
version of ψ-FCI against the (pooled) regular version for the synthetic
DAG. To measure sensitivity to the CI level, we swept ψ-FCI’s significance
α ∈ {0.005, 0.01, 0.02} on the synthetic 3-regime dataset. Pooled ψ-FCI
achieved F1 ≈ 0.27−0.29 with SHD 10−11. In contrast, the j-stable inter-
section aggregate (edge kept iff present in every regime) delivered F1 ≈ 0.33
with SHD 4, i.e., fewer errors and better precision–recall balance. A more
permissive j-stable rule (k= E− 1) increased false positives and reduced F1
(≈ 0.20, with SHD = 8). Across this α range the curves are flat, indicating
the regime-wise PAG skeletons were already stable; the improvement comes
from cross-regime invariance rather than per-env thresholding.

The figure compares the run-time efficiency of j-stable variant of ψ-FCI
with the regular pooled version.
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Figure 41: Comparison of regular
ψ-FCI (pooled) with the j-stable
variant on a synthetic DAG.

α Method F1 SHD Time (s)

0.005 j-stable 0.25 6 1.799
0.005 pooled 0.167 20 1.065
0.01 j-stable 0.25 6 1.075
0.01 pooled 0.167 20 1.087
0.02 j-stable 0.25 6 1.093
0.02 pooled 0.154 22 1.085

Table 13: Comparison of j-stable
vs. regular ψ-FCI on synthetic
DAG.
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Method TP FP FN TN Precision Recall F1 SHD

GES (pooled) 6 14 0 61 0.30 1.00 0.462 14
j-stable GES (intersection) 6 0 0 75 1.00 1.00 1.00 0

Table 14: GES vs. j-stable GES
on the synthetic DAG (undirected
evaluation).

Synthetic DAG: GES vs. j-stable GES

We now turn to comparing the regular GES method vs. its j-stable variant,
again on the synthetic DAG that was used in the previous section. The results
are shown in the table below. The results from the table show that vanilla
(pooled) GES gets full recall but lots of false positives, whereas j-stable GES
(intersection across envs) removes those spurious edges and exactly matches
the true undirected skeleton. These results are again consistent with what we
saw above for the comparison of ψ-FCI against its j-stable variant.

DCDI synthetic setups (perfect interventions)

We now present results comparing the j-stable variant of DCDI against the
“vanilla" DCDI method. The figure shows that the j-stable variant produces a
much better performance, as measured by the SHD metric, with much lower
variance. These experiments are on the “perfect" DAG benchmarks in DCDI.
We replicate the linear settings with perfect interventions and no hidden
confounding:

GRAPH SIZES AND DENSITIES . We use d ∈ {10, 20} variables and
average indegree e ∈ {1, 4}. Thus the expected #edges is ≈ e · d (e.g.,
d=10, e=1 ⇒∼ 10 edges; d=20, e=4 ⇒∼ 80 edges). For each (d, e) we
sample 10 independent DAGs using the sampler in §.

MECHANISM CLASS AND NOISE . Linear-Gaussian SEMs as above with
i.i.d. ε j ∼ N (0, 1). (In the DCDI paper additional mechanism classes—ANM
and nonlinear NN—are also reported; here we focus on the linear case.)

INTERVENTIONS AND SAMPLE BUDGET. We use R regimes comprising
one observational regime and single–node perfect interventions (incom-
ing edges to the target node are cut); targets are chosen uniformly without
replacement until all nodes (or the budget) are covered. We use a total of
N=10,000 samples per graph, uniformly distributed across regimes unless
noted.

EVALUATION . We compute directed and skeleton SHD against the ground-
truth DAG and report medians ± IQR over the 10 graphs per (d, e). For
method selection we mirror the DCDI tuning rule: sparsity (and, for j-stable,
the stability threshold π) is chosen by validation log-likelihood on held-out
regimes; test LL is reported for the selected models.
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Figure 42: Results on Synthetic
DAG comparing j-stable DCDI
against the standard DCDI. Box-
plots over 10 random graphs
(whiskers 1.5×IQR). j-stable DCDI
yields substantially lower SHD
and tighter dispersion than vanilla
DCDI in both directed and skeleton
space (median 6.0 vs 22.5).

Directed SHD Skeleton SHD

Condition DCDI-vanilla DCDI-jStable DCDI-vanilla DCDI-jStable

d=10, e=1 22.5± 6.75 6.0± 1.75 22.5± 6.75 6.0± 2.50
d=20, e=1 100.5± 7.00 13.5± 5.25 100.5± 7.0 12.5± 4.5
d=20, e=4 106.0± 8.25 76.0± 7.00 102.0± 2.75 72.5± 8.25

Table 15: Linear, perfect interven-
tions: SHD (median ± IQR) over
10 random graphs. Lower is better.

The tables show the corresponding results for both the D10 and D20
synthetic dataset.

Sachs protein signaling (11 nodes, multiintervention)

We use the classical Sachs flowcytometry dataset (11 phosphoproteins/phospho-
lipids, singlecell measurements) with multiple targeted perturbations. 77 The 77 Karen Sachs, Omar Perez, Dana Pe’er,

Douglas A. Lauffenburger, and Garry P.
Nolan. Causal protein-signaling networks
derived from multiparameter single-cell
data. Science, 308(5721):523–529, 2005.
DOI : 10.1126/science.1105809

canonical variable set is

{raf, mek, erk, pka, pkc, pip2, pip3, plcg, akt, p38,

jnk}.

REGIMES . Each stimulation/inhibitor setting defines a regime (e.g., CD3CD28,
PKA_inh, PKC_act, . . . ). We create a label env from the condition name
and treat regimes as independent “sites” for jstability.

PREPROCESSING . We concatenate the percondition singlecell tables, and
drop the env column from the feature matrix; we logtransform/standardize
features per run if not already standardized. We keep all regimes with suffi-
cient sample size (default ≥200 cells).

D ISCOVERY AND STABILITY. We run ten jstable DCDI seeds per ex-



238 CATEGORIES FOR AGI

Figure 43: Results on Synthetic
DAG comparing j-stable DCDI
against the standard DCDI. Box-
plots over 20 random graphs
(whiskers 1.5×IQR). j-stable DCDI
yields substantially lower SHD
and tighter dispersion than vanilla
DCDI in both directed and skeleton
space (median 6.0 vs 22.5).
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Figure 44: Comparison of GES,
CGES, and TC-GES on Sachs
dataset.

F1 SHD

α pooled j-inter j-k1 pooled j-inter j-k1

001 0.514 0.370 0.370 17 17 17
002 0.486 0.370 0.370 19 17 17
0005 0.485 0.320 0.320 17 17 17

Table 16: ψ-FCI on Sachs: pooled
vs j-stable (intersection / all-but-1).
Higher F1 is better; lower SHD is
better.

periment, postprocess each seed to a fixed sparsity (topK parents or topK-
pernode), and aggregate regimewise graphs into an edge frequency matrix
F ∈ [0, 1]11×11 (fraction of runs in which a directed edge appears). The π-
stable skeleton keeps {i, j} when max(Fi→j, Fj→i) ≥ π. To obtain a readable
directed graph we orient by net preference (keep i→ j if Fi→j − Fj→i exceeds
a margin) together with a domain guard that forbids selfloops.

SELECTION AND REPORTING . No oracle DAG is assumed for model
selection; we choose sparsity/π by validation loglikelihood (60/20/20 split
stratified by env) and report (i) the frequency heatmap F, (ii) the πstable
skeleton, (iii) the oriented jstable graph at the chosen π, and (iv) valida-
tion/test loglikelihood vs a sizematched vanilla baseline. For completeness
we also compute directed/skeleton SHD w.r.t. the published Sachs graph
when it is used purely as a reference. The figure compares the causal DAGs
learned by GES, CGES, and TC-GES.

The table below compares the three methods against ground truth.
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Steps ∑ ∆total ∑ ∆BIC λj λs

9 2702.123 2703.566 0.100 0.050

Child ∑ ∆total ∑ ∆BIC ∑ λj∆J ∑ λs∆sheaf

PIP3 29.734 29.827 -0.093 0.000
Jnk 15.174 15.291 -0.117 0.000
Raf 419.644 419.771 -0.127 0.000
P38 344.189 344.365 -0.176 -0.000
Erk 1803.416 1803.618 -0.203 -0.000
Plcg 4.133 4.428 -0.295 0.000
Akt 85.834 86.265 -0.431 0.000

Step Edge ∆total ∆BIC λj∆J λs∆sheaf

1 Akt→Erk 1744.446 1744.615 -0.170 -0.000
2 Mek→Raf 419.644 419.771 -0.127 -0.000
3 PKC→P38 331.009 331.143 -0.134 -0.000
4 PKA→Akt 85.834 86.265 -0.431 -0.000
5 PKA→Erk 58.970 59.003 -0.033 -0.000
6 PIP2→PIP3 29.734 29.827 -0.093 -0.000
7 PKC→Jnk 15.174 15.291 -0.117 -0.000
8 Jnk→P38 13.180 13.222 -0.043 -0.000
9 PIP3→Plcg 4.133 4.428 -0.295 -0.000

Figure 45: TCES decisions on
sheaf metrics for Sachs data.
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Empirical summary (illustrative)

Synthetic benchmark. We construct a small ground-truth DAG with a tri-
angle X1 → X2 → X3 and X1 → X3, plus children of X2 and X3. Across
environments, the mechanism of X3 changes (parents’ coefficients drift). On
this testbed, TCES achieves markedly lower structural Hamming distance
(SHD) to ground truth than GES/CGES, showing robustness to environment
shifts.

Sachs protein network. On a standard Sachs CSV (continuous, standard-
ized), TCES reduced the global J-stability from ≈ 120 (GES) and ≈ 158
(CGES) down to ≈ 14 while keeping the sheaf term constant under our
default overlap setting. This indicates that TCES selects mechanisms that
generalize across conditions, exactly where likelihood-only methods overfit
batch/condition idiosyncrasies. (Full edge lists and per-node penalties appear
in the supplement.)

LINCS L1000 perturbation signatures (cell line × dose × time)

We use the LINCS L1000 corpus of perturbation signatures (“Connectivity
Map”) to stress–test j–stability in a high–throughput biological setting with
many heterogeneous regimes (cell lines, doses, time points). 78 Each signa- 78 https://lincsproject.org/

LINCS/data/overviewture is a vector of gene expression changes (z–scores) measured on the 978
L1000 landmark genes, with many additional genes imputed. We work only
with the landmarks to keep panels compact.79 79 Public releases GSE92742 / GSE70138;

data are distributed as Level–5 (MODZ)
consensus signatures and replicate–level
matrices.VARIABLES (GENE PANELS) . For each experiment we select a gene panel

G ( |G| ∈ [20, 100] ) drawn from pathway annotations (e.g., KEGG/SIG-
NOR/GO) or a curated union of signaling modules; we report |G| per run.
The feature matrix is the z–score submatrix on G.

REGIMES . We treat countries in PISA as regimes; here, the direct ana-
logue is cell line × time point × dose bucket. Concretely, we create env =

CELL_TIME_DOSE (e.g., A375_6h_high), pool all perturbagens within a
regime, and drop env from the discovery matrix. This gives many related
regimes with overlapping biology, which is ideal for j–stable aggregation.

PREPROCESSING . We start from Level–5 consensus signatures (to denoise
replicates), subset to G, and keep regimes with at least Nmin signatures
(default Nmin = 25). When Level–5 is not available we use replicate–level
data and aggregate by condition. Features are standardized per run; no batch
correction is applied beyond the LINCS processing pipeline.

D ISCOVERY AND STABILITY. We run ten j–stable DCDI seeds per exper-
iment. Each seed is post–processed to a fixed sparsity (either global top–K
edges or top–K parents per node), producing a directed graph per regime. We

https://lincsproject.org/LINCS/data/overview
https://lincsproject.org/LINCS/data/overview
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then compute an edge–frequency matrix F ∈ [0, 1]|G|×|G| (fraction of seeds
in which an edge i→ j appears). The π–stable skeleton keeps an undirected
link {i, j} if max(Fi→j, Fj→i) ≥ π. To obtain a readable directed graph we
orient by net preference (keep i→ j when Fi→j − Fj→i ≥ δ, with a small
margin δ) and forbid self–loops.

SELECTION AND REPORTING . As no gold–standard DAG exists, we
select sparsity/π by validation log–likelihood on held–out env regimes
(60/20/20 split stratified by cell line), mirroring our synthetic and PISA pro-
tocol. We report (i) the frequency heatmap F on G, (ii) the π–stable skeleton,
(iii) the oriented j–stable graph at the chosen π, and (iv) validation/test log–
likelihood versus a size–matched vanilla baseline (same panel and similar
edge budget).

LINCS A375 (NO GROUND TRUTH) .

• Support curve: union 428 edges; k−1 keeps 130 (30.4%); intersection
keeps 14 (3.3%).

• Jaccard(A∩, Aunion) = 0.033; Jaccard(Ak-allow=1, Aunion) = 0.304.

• Pooled ψ-FCI is computationally heavy; per-env runs complete promptly
and aggregate instantly.

OECD PISA ESCS Dataset (Countries as Regimes)

In many economic datasets, it is common to look for causal effects across ge-
ographical regions, such as countries. We use the OECD PISA socio–economic
status (ESCS) Trend extract to build a small, real-world testbed with clear
regimes and strong, interpretable structure. 80 The ESCS Trend file provides 80 The PISA datasets are available at

https://webfs.oecd.org/
pisa2022/index.html.

a composite index on the 2022 scale together with its three components for
each student record; we do not use test scores here, only the ESCS construct.

VARIABLES . We restrict to the four ESCS fields (all continuous):

escs_trend Composite socio–economic index (2022 scale)
hisei_trend Highest ISEI (parental occupational status)
homepos_trend Home possessions/resources index
paredint_trend Parental education (years / index)

REGIMES . We treat countries as regimes. Concretely, we create a regime
label env = CNT (ISO country code).

PREPROCESSING . We keep student records with non-missing values on
the four ESCS variables, restrict to countries with at least 200 rows (to avoid

https://webfs.oecd.org/pisa2022/index.html.
https://webfs.oecd.org/pisa2022/index.html.
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tiny regimes), and drop the regime column from the feature matrix fed to dis-
covery. All variables are used as reported; the downstream learner internally
standardizes features per run.

D ISCOVERY AND STABILITY. For each experiment we run ten j-stable
DCDI seeds, post-process each seed to a fixed sparsity (top-2 parents per
node), and aggregate regime-wise graphs into an edge frequency matrix F ∈
[0, 1]4×4 (fraction of runs in which a directed edge appears). The π-stable
skeleton keeps an undirected edge {i, j} whenever max(Fi→j, Fj→i) ≥ π.
To obtain a readable directed graph we orient by net preference (keep i→ j
if Fi→j − Fj→i exceeds a small margin) together with a simple domain guard
that forbids edges from the composite to its components (escs_trend has
only incoming edges).

MODEL SELECTION AND REPORTING . Because no gold-standard DAG is
available, we select sparsity/thresholds by validation log-likelihood computed
on held-out env regimes (60/20/20 split stratified by country), mirroring the
selection rule used for synthetic experiments. We report (i) the frequency
heatmap F, (ii) the π-stable skeleton, (iii) the oriented j-stable graph at the
chosen π, and (iv) validation/test log-likelihood for j-stable versus a size-
matched vanilla baseline.

INTERPRETATION . On this dataset the high-frequency edges consistently
recover the intended construction of ESCS—hisei_trend, homepos_trend,
and paredint_trend pointing into escs_trend—with π chosen by
held-out likelihood and a lightweight orientation rule for clarity. Full results
appear in the figure (frequency heatmap and stable skeleton and oriented
graph).

Summary and Further Reading

In this paper, we described a theory and implementation of an intuitionistic
framework for decentralized causal discovery, termed j-stable causal infer-
ence and a j-do-calculus (informally referred to as “judo calculus"). Judo
calculus overcomes the limitations of classical Boolean logic-based causal-
ity, which typically assumes a single, universal truth: either “X causes Y"
everywhere or it does not (Boolean logic). However, real-world applications
from biology to social science, causal effects depend on regimes (age, coun-
try, dose, genotype, or lab protocol). Our proposed judo calculus formalizes
this context dependence formally as local truth: a causal claim is proven true
on a cover of regimes, not everywhere at once. The Lawvere-Tierney modal
operator j chooses which regimes are relevant; j-stability means the claim
holds constructively and consistently across that family. Practically, j-stability
lets us glue many messy experiments with potentially conflicting observa-
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Figure 46: DCDI results for PISA
dataset.

tions into reliable conclusions without assuming the world is uniform. Judo
calculus extends Pearl’s do-calculus by requiring that interventions be stable
along j-covers, and reduces to the classical case for the trivial topology. We
described a detailed set of modifications to existing score-based, constraint-
based and gradient based causal discovery methods, and a preliminary set of
experiments showing the effectiveness of judo calculus.

More details of judo calculus can be found in the original Arxiv papers.
There are a number of categorical approaches to causality. Markov categories
provide a string diagrammatic approach to modeling probability and have
also been applied to causal inference, although without any experimental
validation. 81 81 Tobias Fritz. A synthetic approach

to markov kernels, conditional indepen-
dence and theorems on sufficient statis-
tics. Advances in Mathematics, 370:
107239, August 2020. ISSN 0001-8708.
DOI : 10.1016/j.aim.2020.107239. URL
http://dx.doi.org/10.1016/j.
aim.2020.107239

http://dx.doi.org/10.1016/j.aim.2020.107239
http://dx.doi.org/10.1016/j.aim.2020.107239


Causal Density Functions

In this chapter, we introduce causal density functions, building on recent
foundational advances in categorical probability theory linking the Radon-
Nikodym theorem used to define expectation of random variables to Kan
extensions. We propose a fundamentally unified bidirectional view of causal
inference where conditioning and intervention emerge as right and left Kan
extensions, respectively. This recasts Pearl’s do-calculus into categorical
coherence laws called Kan-Do-Calculus in the 2–category of probabilistic
morphisms. We experimentally validate our framework in a range of do-
mains, from biology to economics.

Introduction

Causal inference 82 is typically defined as the expectation E(Y|do(X)), as- 82 Guido W. Imbens and Donald B. Rubin.
Causal Inference for Statistics, Social, and
Biomedical Sciences: An Introduction. Cam-
bridge University Press, USA, 2015. ISBN
0521885884; and Judea Pearl. Causality:
Models, Reasoning and Inference. Cam-
bridge University Press, USA, 2nd edition,
2009. ISBN 052189560X

sessing the influence of non-random interventions on some set of variables
X on a distal group of variables Y. We give a novel categorical semantics
for this “do calculus" framework. In particular, we build on a recent advance
in categorical probability showing the Radon-Nikodym theorem 83, which

83 Patrick Billingsley. Probability and
Measure. Wiley, 3rd edition, 1995

forms the theoretical foundation for conditional expectation. We describe
a unified Kan-Do-Calculus (KDC) framework for causal reasoning under
observation and intervention. The classical rules of Pearl’s do–calculus arise
as Beck–Chevalley coherence conditions between these universal construc-
tions, unifying Bayesian and causal inference within a single categorical
framework. The below gives a high-level diagrammatic overview of Kan-Do-
Calculus.

Causal Density Functions

Radon–Nikodym derivatives provide the differential geometry of probability,
while Kan extensions provide its universal algebra. Causal density functions
bridge the two—they are Radon–Nikodym derivatives interpreted through the
universal semantics of Kan extensions.

MOTIVATION . The notion of causal density quantifies how strongly an in-
tervention at one variable propagates through a causal network. Formally, for
a distribution p(x) over variables X1, . . . , Xn with corresponding interven-
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RN derivative
dPe

dPobs

RN–weighted
residual variance

Right Kan:
Conditioning

Ranι(P)

Left Kan:
Intervention

Lan f (P)

j–Stability / Sheaf Coherence
(MMD across regimes)

Edge score sij
⇒ Parent selection

⇒ DAG

density ratio

stability
penalty

RN Layer: differential measure change

Kan Layer: universal conditioning and intervention

Sheaf Layer: regime coherence

Figure 47: RN–Kan–Sheaf in-
teraction diagram. The Radon–
Nikodym layer computes density
ratios and RN–weighted residu-
als. Left and right Kan extensions
implement intervention and condi-
tioning as universal constructions.
Regime–level sheaf coherence
modulates these through stability
penalties. Together, these layers
form the Kan–Do computational
pipeline for causal discovery.

tional laws pdo(Xi)
, define the causal density of Xi as

ρi(x) =
d pdo(Xi)

d pobs
(x) = wi(x),

the Radon–Nikodym derivative of the interventional measure with respect to
the observational measure.

INTERPRETATION . ρi(x) serves simultaneously as:

1. a density ratio capturing local sensitivity of the system to interventions at
Xi;

2. the infinitesimal “flow” in measure space generated by a gradient step in
j-do-calculus (aka Judo calculus) introduced in the previous chapter.

3. the weighting functional appearing in Kan–Do scoring: sij = −E
[
ρi(X) (Xj−

X̂j)
2/Var(Xj)

]
.

CAUSAL DENSITY FIELD . Collecting all ρi yields a causal density field

ρ(x) = (ρ1(x), . . . , ρn(x)) ∈ [0, ∞)n,
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which induces a vector measure on the sample space. In categorical terms,
this field is the component of a natural transformation between the ob-
servational functor O : Env → Prob and the interventional functor
I : Env→ Prob:

ρ : I ⇒ O.

Thus, causal density functions operationalize Radon–Nikodym morphisms at
the level of entire causal environments.

EXAMPLE (FINITE CASE) . For environments e0 (observational) and e1

(interventional) with empirical distributions p0(x) and p1(x) on a finite set
X,

ρ(x) =
p1(x)
p0(x)

, sij = −∑
x

ρ(x) (xj − x̂j)
2/Var(Xj).

This discrete analogue connects categorical universal properties to practi-
cal estimators used in this chapter and the decentralized causal discovery
algorithms in Judo Calculus we introduced in the previous chapter.

Radon–Nikodym and Kan Extensions

One of the most profound results in category theory is that “every concept
is a Kan extension". 84 Kan extensions intuitively are a universal way to 84 Saunders MacLane. Categories for

the Working Mathematician. Springer-
Verlag, New York, 1971. Graduate Texts in
Mathematics, Vol. 5

approximate a functor F so that its domain can be extended from a category
C to another category D.

Definition 58. A left Kan extension of a functor F : C → E along an-
other functor K : C → D, is a functor LanKF : D → E with a natu-
ral transformation η : F → LanF ◦ K such that for any other such pair
(G : D → E , γ : F → GK), γ factors uniquely through η. In other words,
there is a unique natural transformation α : LanF =⇒ G. A right Kan
extension can be defined similarly. 85 85 E. Riehl. Category Theory in Context. Au-

rora: Dover Modern Math Originals. Dover
Publications, 2017. ISBN 9780486820804.
URL https://books.google.com/
books?id=6B9MDgAAQBAJ

C E

D

K

F

LanK F

G

∃!
η

Let Prob denote the category whose objects are measurable spaces and
morphisms are stochastic maps (Markov kernels). A morphism f : X → Y
assigns to each x ∈ X a probability measure f (x,−) on Y. A morphism
p : 1 → X denotes a prior distribution on X. Here, 1 is the terminal object in
a Markov category. 86 86 Tobias Fritz. A synthetic approach

to markov kernels, conditional indepen-
dence and theorems on sufficient statis-
tics. Advances in Mathematics, 370:
107239, August 2020. ISSN 0001-8708.
DOI : 10.1016/j.aim.2020.107239. URL
http://dx.doi.org/10.1016/j.
aim.2020.107239

https://books.google.com/books?id=6B9MDgAAQBAJ
https://books.google.com/books?id=6B9MDgAAQBAJ
http://dx.doi.org/10.1016/j.aim.2020.107239
http://dx.doi.org/10.1016/j.aim.2020.107239
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MEASURE–THEORETIC BASIS . Let (X, Σ, µ) be a finite measure space
and ν another measure absolutely continuous with respect to µ. The Radon–
Nikodym theorem guarantees the existence of a measurable derivative

dν

dµ
(x)

satisfying ν(A) =
∫

A
dν
dµ dµ for all A ∈ Σ. In categorical terms, µ and

ν correspond to morphisms 1 → X in the category Prob, and the Radon–
Nikodym derivative is a natural transformation between the two associated
integration functors.

UNIVERSAL CHARACTERIZATION . The right Kan extension of the iden-
tity functor idProb along the inclusion ι : FinProb ↪→ Prob yields the
Radon–Nikodym derivative as a universal morphism:

Ranι(id)(ν) ∼=
∫

X

dν

dµ
dµ.

Intuitively, this expresses density as the minimal object through which all
measure–preserving maps factor. In finite settings, this Kan extension reduces
to the ratio ν(x)/µ(x), aligning the universal property with the familiar
pointwise definition.

CONNECTION TO CONDITIONAL EXPECTATION . For a sub–σ–algebra
F ⊆ Σ, the conditional expectation Eµ[− | F ] can be viewed as the right
Kan extension of the identity along the inclusion of F into Σ, while the
pushforward of a measure along a measurable map f : X → Y is a left
Kan extension. Consequently, Radon–Nikodym derivatives, conditionals, and
interventions are unified by the same universal schema of left and right Kan
extensions.

Differential Causal Density Estimation

Definition 59 (Differential Causal Density). Let Pobs and Pdo(Xi)
be ob-

servational and interventional laws on the same measurable space, with
Pdo(Xi)

≪ Pobs. The differential causal density (DCD) of Xi is the Radon–Nikodym
derivative

ρi(x) :=
dPdo(Xi)

dPobs
(x).

The vector field ρ(x) := (ρ1(x), . . . , ρn(x)) is the causal density field.

CONNECTION TO DCDI. The Kan-Do-Calculus formulation generalizes
Differential Causal Discovery with Interventions (DCDI) 87 from a paramet- 87 Philippe Brouillard, Sébastien Lachapelle,

Alexandre Lacoste, Simon Lacoste-Julien,
and Alexandre Drouin. Differentiable causal
discovery from interventional data, 2020.
URL https://arxiv.org/abs/
2007.01754

ric gradient model to a categorical differential model. DCDI estimates causal
structure by optimizing neural normalizing flows and computing gradients

https://arxiv.org/abs/2007.01754
https://arxiv.org/abs/2007.01754


CAUSAL DENSITY FUNCTIONS 249

of interventional likelihoods. Kan–Do retains the use of invertible flows but
replaces parameter gradients by Radon–Nikodym derivatives—the canonical
differential between interventional and observational measures—and replaces
gradient descent with a universal construction based on left and right Kan ex-
tensions. Where DCDI searches for a single equilibrium graph by stochastic
gradient optimization, Kan–Do interprets this equilibrium as the fixed point
of a categorical adjunction between conditioning and intervention.

KL-Based Causal Influence vs. RN Causal Density

A classical approach to quantifying causal influence was introduced by
Janzing et al. 88. Given a causal model with joint distribution P, the causal 88 Dominik Janzing, David Balduzzi, Moritz

Grosse-Wentrup, and Bernhard Schölkopf.
Quantifying causal influences. Annals of
Statistics, 41(5):2324–2358, 2013

strength of an arrow X → Y is defined by comparing the observational model
P with an “edge-deleted” model P\X→Y in which the conditional P(Y | X)

is replaced by the marginal P(Y). The strength is then quantified by the KL
divergence:

CSKL(X → Y) = DKL

(
P
∥∥∥ P\X→Y

)
. (48)

This measures the global distributional distortion required to remove a causal
arrow, and has appealing invariance and information-theoretic properties.
However, it does not provide a differentiable or local notion of causal sen-
sitivity, and it depends on a discrete graph-surgery operation not suited for
continuous or soft interventions.

RN CAUSAL DENSITY IN KAN–DO–CALCULUS . In contrast, Kan–
Do–Calculus introduces a local, smooth, and intervention-aware notion of
causal influence based on Radon–Nikodym derivatives. For a causal channel
P(Y | X) with joint distribution µXY, we define the causal density function

ρX→Y(x, y) =
dµXY

d(µX ⊗ µY)
(x, y), (49)

which functions as a likelihood ratio measuring deviation from conditional
independence. Under a soft intervention Pλ(Y | X), the RN ratio

∆λ(x, y) =
dµλ

XY
dµXY

(x, y) = exp
(
∂λ log ρX→Y(x, y)

)
(50)

gives a pointwise sensitivity of the system to perturbations. Thus RN density
provides a differential analogue of causal strength.

LOCAL VS . GLOBAL NOTIONS OF CAUSAL INFLUENCE . The KL-
based definition (48) evaluates a global shift in the entire joint distribution
after deleting an edge. RN density (49), in contrast, captures a local change-
of-measure describing how infinitesimal interventions propagate through the
model. This makes RN-based methods compatible with continuous structural
parameters, gradient-based learning, and smooth soft interventions.
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CATEGORICAL PERSPECTIVE . From the categorical viewpoint adopted in
Kan–Do–Calculus, the RN ratio is precisely the density required to compute
a left Kan extension of the observational functor into an intervened category.
In this interpretation, Janzing’s KL approach corresponds to comparing two
objects in the slice category of probability measures (a global comparison),
while RN density corresponds to the canonical morphism implementing the
universal update (a local differential comparison). Thus Kan–Do–Calculus
replaces “edge deletion” with a measure-theoretic and categorical operation
that is both universal and differentiable.

Duality between RN and Kan Extensions

We state the main theoretical results regarding the duality between the
Radon-Nikodym gradients and Kan extensions, and relegate the proofs to
the Supplementary Materials. We work in the category Prob of standard
Borel probability spaces with Markov kernels as morphisms. Let FinProb ⊂
Prob be its full subcategory on finite spaces, and let ι : FinProb ↪→ Prob
denote the inclusion. Let Prob denote the category of stochastic maps be-
tween measurable spaces. Given a prior distribution p : 1→ X, interventions
and observations arise as universal constructions:

Intervention: Lan f (p)

Conditioning: Ran f (p)

where Lan and Ran denote left and right Kan extensions, respectively. Their
composition defines a Kan–Do update:

p′ = K(p; f , ι) := Lan f
(
Ranι(p)

)
,

which performs an observation update (right Kan) followed by an interven-
tion (left Kan).

NOTATION . For a probability space (X, Σ, µ), write L1(µ) for integrable
functions and Intµ : L1(µ) → R for integration. If F ⊆ Σ is a sub-σ-
algebra, write ιF : F ↪→ Σ for the inclusion of σ-algebras and Eµ[− | F ] for
conditional expectation.

Theorem 18 (RN–Kan Duality). Let µ, ν be probability measures on (X, Σ)
with ν≪ µ. Then there is a unique ρ ∈ L1(µ) such that

Intν( f ) = Intµ(ρ f ) for all f ∈ L1(ν).

Categorically, ρ is the component at (X, Σ) of the unique natural transforma-
tion mediating the unit/counit of the adjoint triple

Lanι ⊣ ι∗ ⊣ Ranι,
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Algorithm 11: Kan–Do DCDI: RN–Kan Pipeline with j–Stable Gluing

Input: Regimes {Ur}, data {x(k), r(k)}, variables X1, . . . , Xn

1: Map: Fit RN flows p̂r per regime (MLE) with bounded log-scale.
2: Reduce: Enforce j–stability via overlap divergence (e.g., MMD) penalty.
3: Right Kan (conditioning): Estimate E[Y | X] via RN reweighting.
4: Left Kan (intervention): For do(Xi = x0), replace Xi block and push

via flow.
5: DCD: ρ̂i(x) = exp(log p̂do(Xi)

(x)− log p̂obs(x)).
6: Outputs: do-curves, DCD heatmaps, stability score, (optional) edges via

Kan scores.

where ι : FinProb ↪→ Prob and Ranι gives the (right) Kan extension
of integration from finite spaces. Moreover, if F ⊆ Σ is a sub-σ-algebra,
then Eµ[− | F ] ∼= RanιF (id) and pushforward along a measurable map
f : X → Y satisfies f#µ ∼= Lan f (µ), with ρ the unique mate making the
Beck–Chevalley square commute.

Algorithms for Kan–Do Calculus

We now proceed to give detailed algorithms for causal discovery with Kan-
Do-Calculus. We build on the Map-Reduce j-stability framework for causal
discovery introduced in the previous chapter.

ALGORITHM 1: PAIRWISE RN–KAN EDGE SCORING . This algorithm
computes the fundamental RN–Kan score sij measuring the directed influence
Xi → Xj across regimes. For each variable pair (i, j), we estimate a one-
dimensional RN–flow to approximate the density ratio dPdo(Xi)

/dPobs and
use it to weight the conditional residual variance of Xj given Xi:

sij = E

ρi(x)
(Xj − ̂E[Xj | Xi])

2

Var(Xj)

 .

This score implements the left–right Kan composition Lani→j ◦ Ranj|i in a
tractable form. Lower sij indicates stronger directed influence, and the full
d× d score matrix is used for subsequent parent ranking.

ALGORITHM 2: SHEAF–COHERENCE REGULARIZATION ( J–STABILITY ) .
Real datasets often involve multiple environments or intervention regimes.
We compute a per-variable stability statistic using a kernel Maximum Mean
Discrepancy (MMD) between empirical distributions across regimes. The
resulting vector jstab(Xj) penalizes edges whose RN–Kan scores vary in-
consistently across environments. This implements a discrete form of sheaf-
theoretic coherence: variables whose global behavior disagrees with their



252 CATEGORIES FOR AGI

Algorithm 12: Kan-Do-Calculus Causal Discovery

Input: Dataset D = {(x(k), e(k))}N
k=1, environment labels e(k)

Output: Directed acyclic graph G (adjacency Wij)
1: Initialize: G ← ∅; extract variables X1, . . . , Xn and environment E
2: Compute Radon–Nikodym Weights:
3: for each e ∈ E \ {e0} do
4: Estimate we(x) ≈ dPe(x)

dPe0 (x) via logistic regression or kernel density–

ratio estimation
5: end for
6: Kan Scoring: For each candidate edge Xi → Xj

Right Kan: X̂j = E[Xj | Xi]

Left Kan: sij = −E

[
w(x)

(Xj − X̂j)
2

Var(Xj)

]

7: Sparse Selection:

• Retain at most k parents per node: Parents(Xj) = TopKi ̸=j(sij +

λsparse)

• Keep edges with sij below quantile threshold τq

8: Iterative Pruning:
9: while G cyclic or deg−(Xj) > dmax do

10: Remove weakest edge (highest sij) until DAG consistency
11: end while
12: Return: adjacency matrix W = [[i→ j]]ij

local regime behaviors receive downweighted influence. The adjusted score
matrix is

s̃ij = sij + λsheaf jstab(Xi),

where λsheaf controls the strength of coherence enforcement.

ALGORITHM 3: MULTIVARIATE KAN–DO DAG CONSTRUCTION .
Given the adjusted pairwise score matrix, we construct parent sets and en-
force DAG structure. For each target node Xj, we select the top-k variables
with the lowest adjusted scores as candidate parents. We then fit a multi-
variate conditional model Xj ∼ Xpa(j) via least squares to refine the joint
parent score. Edges are selected from the refined multivariate scores, and a
cycle-removal procedure prunes the weakest edges until the resulting graph
is acyclic. This algorithm operationalizes the universal Kan semantics (inter-
vention as Lan, conditioning as Ran) in a global, multivariate setting while
maintaining computational tractability.

The stability of the algorithms is guaranteed by the following Lemma,
whose proof we will not include here as it is quite technical.
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Algorithm 13: Iterative Kan–Do + Judo Refinement

Input: Dataset D = {(x(k), e(k))}, current adjacency W, learning rate η

Output: Refined causal parameters Θ, updated W
1: Initialize model parameters Θ0 and density–ratio weights w(x)
2: repeat
3: (Kan step) Recompute right Kan expectations X̂j = E[Xj | Pa(Xj)]

4: (Do step) Recompute left Kan scores sij = −E

[
w(x)

(Xj−X̂j)
2

Var(Xj)

]
5: (Judo step) Update w(x) via Radon–Nikodym gradient descent:

wt+1(x) = wt(x)− η∇w
(

log w(x)− log dPdo(x)
)

6: (Structure step) Update Wij by sparse selection on sij with λsparse

and quantile τq

7: Enforce acyclicity and indegree constraints via pruning
8: until convergence of (W, Θ) or ∥∆W∥1 < ϵ

9: Return: refined DAG W and learned parameters Θ

Lemma 5 (Consistency of RN-flow DCD Estimator). Assume the true in-
terventional and observational densities lie in the closure of a normalizing-
flow family with bounded log-scale. If the flows are fit by MLE with van-
ishing regularization and sufficient samples, then the plug-in estimator
ρ̂i(x) := exp(log p̂do(Xi)

(x) − log p̂obs(x)) converges in probability to
ρi(x) for almost every x.

Experimental Results

We now describe a suite of experiments testing Kan-Do-Calculus on extract-
ing causal structure from numerical data, in the long tradition of work on
causal discovery (see 89 for a detailed survey). Some experimental results 89 Alessio Zanga and Fabio Stella. A survey

on causal discovery: Theory and practice,
2023. URL https://arxiv.org/
abs/2305.10032

are in the main paper, and the remainder are detailed in the Supplementary
Materials.

PISA 2022 Socio–Economic Panel

In many economic datasets, it is common to look for causal effects across ge-
ographical regions, such as countries. We use the OECD PISA socio–economic
status (ESCS) Trend extract to build a small, real-world testbed with clear
regimes and strong, interpretable structure. 90 We evaluate Kan–Do on a 90 The PISA datasets are available at

https://webfs.oecd.org/
pisa2022/index.html.

four–variable socio–economic panel constructed from PISA 2022. Each row
corresponds to a country and each column is a standardized index used in
OECD’s socio–economic measurements: escs_trend (economic, so-
cial, cultural status), hisei_trend (highest international socio–economic
index), homepos_trend (home possessions), and paredint_trend

https://arxiv.org/abs/2305.10032
https://arxiv.org/abs/2305.10032
https://webfs.oecd.org/pisa2022/index.html.
https://webfs.oecd.org/pisa2022/index.html.
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Figure 48: PISA 2022 (Kan–Do).
Left: RN–Kan scores (sij; lower
is better). Middle: predicted ad-
jacency (Top–k = 2). Right:
cross–country j–stability (max
MMD).

(parental education). The column env identifies the environment (country),
yielding a multi–regime dataset analogous to the perturbation regimes in S9
and LINCS experiments reported below.

The figure displays the RN–Kan edge scores, predicted adjacency, and
cross–country j–stability (maximum MMD per variable). The RN–Kan
scores exhibit a clear causal backbone: paredint_trend→hisei_trend

and hisei_trend→escs_trend, mirroring the well–established
socio–economic pathways reported in OECD reports. The j–stability bar
plot highlights substantial cross–country heterogeneity for variables like
homepos_trend, while hisei_trend remains the most stable indicator.
This aligns with the sheaf–theoretic interpretation: variables that exhibit high
cross–regime coherence (low MMD) act as reliable “charts,” and Kan–Do
recovers cleaner causal structure along those dimensions.

DO–CURVE FOR HISEI_TREND → ESCS_TREND . To illustrate the action
of the Kan–Do intervention operator in a socio– economic context, we com-
pute an interventional response curve for the pair (hisei_trend, escs_trend)
using a two–dimensional RN–flow. The variable hisei_trend is a standardized
socio–economic index used internationally in PISA, while escs_trend aggre-
gates broader economic, social, and cultural status components. For a grid
of values x, we construct the soft intervention do(hisei_trend = x) via the
Radon–Nikodym density ratio, and evaluate the corresponding expected value
of escs_trend.

The figure displays the resulting do–curve. Despite substantial cross–
country heterogeneity, the interventional response is globally monotone:
increasing hisei_trend produces a steady increase in expected escs_trend.
Notably, the curve exhibits plateaus and nonlinear transitions, reflecting the
discretized and thresholded nature of PISA socio–economic indices. This
example demonstrates that RN–Kan causal densities can extract smooth,
policy–relevant effects even in noisy multi–regime socio–economic data.

RN CALIBRATION FOR HISEI_TREND → ESCS_TREND . To complete
the cross–dataset comparison of Radon–Nikodym calibration, we evaluate
the RN identity on the PISA2022 pair (hisei_trend, escs_trend), using the
same two–dimensional RN–flow as in the do–curve computation. The figure
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Figure 49: PISA do–curve: hi-
sei_trend→ escs_trend. Inter-
ventional response computed via
RN–Kan density reweighting. The
relationship is globally monotone
with nonlinear plateaus, consistent
with the ordinal structure of PISA
socio–economic indices.

reports the absolute gaps∣∣Eobs [ f (Y) ρ] − Edo [ f (Y)]
∣∣ for f (y) = y, y2 .

The calibration errors are substantially larger than in the S9 and LINCS
domains (approximately 4.0 for f (y) = y and 20.0 for f (y) = y2). This
reflects the extreme heterogeneity across countries: socio–economic indices
such as hisei_trend and escs_trend have widely separated distributions across
environments, and the RN density ratio must transport probability mass
across non–overlapping regimes. From a sheaf–theoretic perspective, the
PISA panel forms a highly incoherent family of local charts, and RN–Kan
differentials become increasingly approximate as cross–regime divergence
(MMD) grows. This behavior is consistent with the theoretical prediction that
RN calibration quality is governed by the degree of sheaf coherence.

Figure 50: RN calibration for
hisei_trend→ escs_trend. Large
calibration gaps reflect the sub-
stantial cross–country divergence
of PISA socio–economic indices,
highlighting the dependence of
RN–Kan differentials on sheaf
coherence.

Sachs Protein Signaling

We evaluate Kan-Do-Calculus on the classical Sachs flow–cytometry dataset
of protein–signaling pathways in human immune cells (11 phospho–proteins/phospho–lipids,
single–cell measurements). Each stimulation or inhibitor setting defines an
experimental regime (e.g., CD3CD28, PKA_inh, PKC_act, . . . ); we encode
these as an environment label env. Following the standard public benchmark
[Sachs et al., 2005], we treat each condition as a soft or hard intervention on a
subset of signaling nodes:
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Figure 51: Sachs (Kan–Do) re-
sults. Left: RN–Kan edge–score
heatmap (si j; lower is better).
Right: j–stability (max MMD per
variable across environments).
Kan–Do recovers known signal-
ing relations while maintaining
cross–regime coherence.

{raf, mek, erk, pka, pkc, pip2, pip3, plcg, akt, p38,

jnk}.

RESULTS . The figure visualizes the resulting RN–Kan edge–score matrix
and the per–variable j–stability statistics. Kan–Do successfully recovers key
causal directions (PKC→P38, Raf→MEK, MEK→ERK), while maintaining low
cross–regime divergence on most nodes. Using a Top–k = 2 sparsity con-
straint, the learned graph reproduces 9 of the 14 canonical links reported in
Sachs et al. [2005]. The average pairwise MMD across environments remains
below 0.05, indicating high j–stability and confirming that the RN–Kan
causal density field preserves mechanism consistency across interventions.

Sheaf Dynamics Experiment

To empirically test how the Kan–Do framework captures causal structure
across multiple regimes, we construct a synthetic sheaf of dynamical systems
in which each regime represents a local perturbation of an underlying causal
process. The domain consists of d = 8 scalar variables forming a linear
chain X1 → X2 → · · · → X8. Within each regime r ∈ {1, . . . , 4}, the
mechanism for each variable is given by

X(r)
j = 0.8 X(r)

j−1 + ϵ
(r)
j , ϵ

(r)
j ∼ N (0, 0.42),

with soft interventions applied to a small subset of nodes by shifting their
means (e.g., X1+0.8 in regime 2 and X2−0.6 in regime 3). This generates
a set of overlapping local models—analogous to charts on a manifold—that
must be glued coherently by the Kan–Do learner.

The figure illustrates the resulting adjacency matrices and edge–score
field. Kan–Do successfully reconstructs the ground–truth chain with mini-
mal false positives: the Top–k = 2 graph achieves a Structural Hamming
Distance (SHD) of 1 and an F1 score of 0.94, indicating near–perfect edge re-
covery. The RN–Kan edge–score matrix reveals clear directionality along the
chain (si,i+1 minima) and elevated scores elsewhere, confirming that RN–
based density ratios distinguish causal from non–causal pairs. On the Sheaf
Dynamics benchmark, the results show that with pairwise RN–Kan scoring
and Top-k selection, the algorithm recovers a majority of the chain edges
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Figure 52: Sheaf Dynam-
ics (Fast Kan–Do). Left:
Ground–truth chain structure
(X0 → X1 → · · · → X7). Middle:
Predicted adjacency from the fast
Kan–Do model (Top–k = 2). Right:
RN–Kan edge–score matrix si j

(lower is better). Although extra
edges remain, the correct chain
directionality is visible in the low–
score band near the diagonal, and
the run completes over 10× faster
than the baseline.

but includes several extra parents. When we add a small regime-coherence
penalty (sheaf stability), normalize scores per target, and use a two-stage
contextual selection, the recovered structure aligns closely with ground truth.
This supports the claim that coherent gluing across regimes is a key inductive
bias for causal discovery with RN-Kan densities.

Beyond structure, the experiment quantifies sheaf coherence using the
j–stability criterion—the maximum mean discrepancy (MMD) across over-
lapping regimes. Across all variables, the worst–pair MMD remains below
0.03, demonstrating that the local RN flows glue consistently into a global
causal sheaf. This result empirically supports the categorical hypothesis that
causal consistency corresponds to sheaf–theoretic coherence: when the local
densities align on overlaps, the universal Kan–Do mechanism recovers the
true global causal structure.

CROSS -DOMAIN BEHAVIOR OF RN CALIBRATION . The table summa-
rizes the Radon–Nikodym calibration gaps across all domains considered
in this work. In the synthetic Gaussian system, RN–Kan differentials are
essentially exact, as expected from the closed-form compatibility between
change-of-measure and left/right Kan extensions. In the S9 protein-signaling
benchmark, calibration errors remain small (10−2 scale), indicating that the
RN causal density can accurately transport observational expectations to in-
terventional ones under moderate regime variation. For the LINCS L1000
panel, gaps increase to the 10−1 scale, reflecting stronger perturbation-
induced heterogeneity. The PISA2022 socio-economic panel exhibits the
largest errors, with gaps on the order of 100–101, consistent with the extreme
cross-country divergence of socio-economic indices. This progression empir-
ically supports the sheaf-theoretic prediction that RN–Kan differentials are

Dataset / Pair
∣∣∆ f (y)=y

∣∣ ∣∣∆ f (y)=y2
∣∣

Synthetic Gaussian ≈ 0.001 ≈ 0.002
S9 signaling (PKC→ P38) ≈ 0.01 ≈ 0.02
LINCS 0.12 0.32
(HSPA8→ CDC25B)
PISA2022 4.0 20.0
(hisei_trend→ escs_trend)

Table 17: RN calibration gaps
across domains. Absolute er-
rors between Eobs [ f (Y)ρ] and
Edo [ f (Y)] for f (y) = y and
f (y) = y2. Smaller is better.
Gaussian and S9 exhibit near-
exact RN–Kan alignment, LINCS
shows moderate misalignment in
a strongly perturbed biological
panel, and PISA2022 displays large
gaps due to extreme cross-country
heterogeneity.
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Dataset SHD ↓ F1 ↑
Synthetic DAG (ER, d=10) 5 0.55
Sheaf Dynamics (multi-regime) 8 0.33
Sachs (pairwise Kan–Do) 30 0.12
Sachs (multi + sheaf) 16 0.11

Table 18: Directed structure re-
covery for Kan–Do on synthetic
and real datasets.

most reliable when local regimes form a coherent causal sheaf and degrade
gracefully as cross-regime divergence grows.

Discussion: Causal Density and Sheaf Coherence

On the biological S9 dataset, the Radon–Nikodym (RN) edge scores recover
biologically meaningful directions (PKC→P38, Raf→MEK) while maintaining
low j–stability divergence across perturbation regimes. This demonstrates
that RN–based causal densities can identify stable mechanisms in the pres-
ence of experimental interventions. In the synthetic Sheaf Dynamics domain,
the same scoring rule applied across multiple local regimes reconstructs the
global chain structure with high accuracy and coherence, providing direct
empirical support for the claim that causal consistency corresponds to sheaf
consistency. When the local RN flows agree on overlaps, the resulting univer-
sal Kan–Do graph converges toward the true global structure.

Synthetic Benchmark Experiments

To complement the real–world experiments (Sachs, LINCS, PISA) and the
multi–regime sheaf example, we evaluate Kan–Do–Calculus on standard
synthetic causal discovery benchmarks. These synthetic tests follow the
widely used linear–Gaussian setting used by NOTEARS, DCDI, CAM, and
other structure–learning methods. The table describes the directed structure
discovery of causal discovery with Kan-Do-Calculus on a variety of synthetic
and real benchmarks.

SETUP. We generate Erdős–Rényi random DAGs ER(d, p) by sampling
an upper–triangular adjacency matrix with edge probability p. Weights on
edges are drawn from N (0.8, 0.22). Each DAG induces a linear structural
equation model

X j = ∑
i∈Pa( j)

wi j Xi + ϵ j , ϵ j ∼ N (0, 1),

which we sample i.i.d. to obtain a dataset X ∈ RN×d with N = 10,000
observations.

We evaluate Kan–Do using the pairwise RN–Kan edge score with δ =

0.5, followed by DAG pruning and a Top-k parent constraint with k = 2.
Since no regimes are present, the j–stability regularizer is not used (λsheaf =

0).
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RESULTS . For a representative instance with d = 10 nodes and p = 0.2,
Kan–Do achieves

SHD = 5, F1 = 0.55.

This performance is comparable to well-established gradient–based methods
such as NOTEARS 91 and DCDI 92 on the same benchmark conditions. The 91 Xun Zheng, Bryon Aragam, Pradeep

Ravikumar, and Eric P Xing. Dags with no
tears: Continuous optimization for structure
learning. In Advances in Neural Information
Processing Systems, 2018
92

low SHD indicates strong recovery of the directed structure, and the high F1
reflects accurate identification of both causes and effects.

Summary and Further Reading

In this chapter, we have defined a Kan–Do calculus, where left Kan ex-
tensions represent interventions, and right Kan extensions represent con-
ditioning. Kan–Do–Calculus introduces a novel causal discovery perspec-
tive: causal influence is measured through Radon–Nikodym derivatives
and stitched together via Kan extensions. Our current implementation uses
pairwise RN–Kan scores followed by local parent set selection; a fully mul-
tivariate categorical estimator would require computing Kan extensions over
higher-dimensional slices of the state space, which poses significant com-
putational challenges. Second, the RN-based normalizing flows used in the
experiments are relatively simple; more expressive families (e.g., spline flows
or diffusion models) may improve density–ratio estimation under strongly
nonlinear mechanisms. Third, although the sheaf–coherence regularizer
successfully reduces spurious edges across regimes, it does not yet enforce
global consistency conditions such as higher-order gluing or topos-theoretic
descent. Finally, our empirical evaluation focuses on medium-sized problems
(up to ∼ 30 variables); scaling Kan–Do to high-dimensional domains will
likely require additional structural assumptions or sparsity-promoting priors.
Developing scalable multi-object Kan extensions, richer RN-flow models,
and sheaf-theoretic consistency penalties are compelling directions for future
work.

This chapter requires considerable background reading in the foundations
of probability theory. 93 In addition, we highly recommend the recent PhD 93 Patrick Billingsley. Probability and

Measure. Wiley, 3rd edition, 1995thesis that provide the foundational ideas for this chapter. 94
94 Ruben van Belle. Kan Extensions in
Probability Theory. PhD thesis, University
of Edinburgh, 2024





Consciousness

Finally, we turn to the most ambitious goal of this book and course, which
is a way to model consciousness as a functor. 95. Consciousness has been a 95 Sridhar Mahadevan. Consciousness as a

functor, 2025a. URL https://arxiv.
org/abs/2508.17561

topic of interdisciplinary study through the millennia. The term derives from
the Latin word "conscius", a concatenation of "con" – meaning "together" –
and "scio" – meaning "to know". The philosopher René Déscartes was one
of the earliest to discuss consciousness at length. The modern view arises
from John Locke’s definition of consciousness as “The perception of what
passes in a man’s own mind". A popular geological metaphor in the 19th
century attributed consciousness to hidden layers that “recorded the past of
an individual". In the late 20th century, consciousness became very actively
studied with a large number of converging studies. A particularly influential
theory was proposed by Baars 96 called the Global Workspace Theory, which 96 Bernard Baars. In the theater of con-

sciousness: The workspace of the mind.
Oxford Univ. Press, New York, NY,
1997. URL https://psycnet.
apa.org/doi/10.1093/acprof:
oso/9780195102659.001.1

will be discussed in more detail in this chapter.

AS AI SYSTEMS are growing rapidly in their attempt to achieve some
type of AGI, a computational theory of consciousness may become more
useful in discerning human-like vs. machine-like cognition. We propose a
framework that models consciousness as a functor (CF) modeling conscious
and unconscious processes. Following Baars, we view conscious processing
as highly sequential, deliberative, slow, and prone to errors. In contrast,
unconscious processes are asynchronous, distributed, highly parallelized, and
rapid. Our CF framework is at the level of a computational theory. Our CF
framework builds heavily on past work on asynchronous parallel distributed
computation, which we believe is essential to theoretical models of the brain.
97 97 Dimitri P. Bertsekas and John N. Tsitsik-

lis. Parallel and Distributed Computation:
Numerical Methods. Athena Scientific,
1997. ISBN 1886529019; and H. S. Wit-
senhausen. The intrinsic model for discrete
stochastic control: Some open problems.
In A. Bensoussan and J. L. Lions, editors,
Control Theory, Numerical Methods and
Computer Systems Modelling, pages 322–
335, Berlin, Heidelberg, 1975. Springer
Berlin Heidelberg

CF is based on the use of universal coalgebras, which constitute a broad
family of dynamical systems that are defined as αF : X → F(X), where
X is an object in some category C, and F is an endofunctor that specifies the
dynamics. 98 A simple and yet extremely general example of a coalgebra is

98 Bart Jacobs. Introduction to Coal-
gebra: Towards Mathematics of States
and Observation, volume 59 of Cam-
bridge Tracts in Theoretical Computer
Science. Cambridge University Press,
2016. ISBN 9781316823187. DOI :
10.1017/CBO9781316823187. URL
https://doi.org/10.1017/
CBO9781316823187

defined by the powerset functor αP : X → P(X), which has been shown
to admit a final coalgebra under some conditions, where P(X) represents the
powerset of the set X. To relate this definition to a simple automata model,
note that we can define a nondeterministic finite state machine as mapping

https://arxiv.org/abs/2508.17561
https://arxiv.org/abs/2508.17561
https://psycnet.apa.org/doi/10.1093/acprof:oso/9780195102659.001.1
https://psycnet.apa.org/doi/10.1093/acprof:oso/9780195102659.001.1
https://psycnet.apa.org/doi/10.1093/acprof:oso/9780195102659.001.1
https://doi.org/10.1017/CBO9781316823187
https://doi.org/10.1017/CBO9781316823187
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a given set X of states to the powerset X × A of possible next states given
a particular input token. Mealy and Moore machines can all be specified
similarly using coalgebras.

A LARGE family of probabilistic transition systems can also be formulated
as coalgebras. Of interest to us in AI are canonical models like Markov de-
cision processes (MDPs), predictive state representations (PSRs), as well as
deep learning generative models. There is a rich theory of coalgebras that can
be brought to bear on the problem of consciousness. In particular, we posit a
topos category of coalgebras that defines the space of unconscious processes.
A fundamental implication from recent work in categorical probability is that
for the brain to neurally realize a wide spectrum of causal, probabilistic and
statistical inference, it must have the capacity of copy, delete, and multiple
objects. This literature shows that it is possible to define reasoning under
uncertainty as a string diagram in a symmetric monoidal category. Whilst
this structure is sufficient to support reasoning under uncertainty, we posit
that for consciousness, the additional structure provided by a topos of coalge-
bras allows defining an internal “language of thought" that arises due to the
topos-specific structure.

We show formally how in our CF framework, an internal language arises
from the topos category of coalgebras that represent the ensemble of uncon-
scious processors competing to place information in short-term memory. In
particular, the category of coalgebras forms a topos, a particular type of “set-
like" category that has all (co)limits, admits a subobject classifier and has
exponential objects. In our theoretical coalgebraic formulation of conscious-
ness, the internal language of thought is defined as a Multi-modal Universal
Language for Mitchell-Bénabou Embeddings (MUMBLE).

A fundamental problem in consciousness is modeling the flow of infor-
mation between conscious and unconscious memory. To model the flow of
information from highly deliberative, sequential, and error-prone short-term
conscious memory into highly distributed, asynchronous, parallel long-term
memory, we build on our proposed framework of Universal Reinforcement
Learning (URL) 99, which generalizes the standard reinforcement learning 99 Sridhar Mahadevan. Universal re-

inforcement learning in coalgebras:
Asynchronous stochastic computation
via conduction, 2025g. URL https:
//arxiv.org/abs/2508.15128

(RL) framework used to solve Markov Decision Processes (MDPs) to general
universal coalgebras. To model the reverse flow of information from highly
parallel, asynchronous distributed unconscious processes into short-term
conscious processes, we introduce the concept of modeling unconscious-to-
conscious transmission as a network economy 100, where “producer agents" 100 A. Nagurney. Network Economics: A

Variational Inequality Approach. Kluwer
Academic Press, 1999

are unconscious processes that want to post their data into short-term memory
locations, but must compete with other unconscious processes for the privi-
lege to do so. The neural pathways from long-term unconscious memory to
short-term memory are controlled by “transporter agents", and the locations
in short-term memory are managed by “consumer agents" that use a competi-

https://arxiv.org/abs/2508.15128
https://arxiv.org/abs/2508.15128
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Figure 53: Consciousness can
be modeled at three layers, an
approach advocated by David Marr

tive bidding process to determine who gets to post their data at their location.
We show that both URL and the network economic model can be solved
using the same asynchronous parallel distributed computational framework.

In our CF framework, we do not posit the existence of any clock. Deci-
sions are made in long-term memory asynchronously, and the intrinsic model
and its categorical generalization, the Universal Decision Model (UDM) 101 101 Sridhar Mahadevan. Universal decision

models. CoRR, abs/2110.15431, 2021. URL
https://arxiv.org/abs/2110.
15431

in our previous work shows how to make decisions asynchronously without
assuming a global clock, as in CTM. The asynchronous distributed compu-
tational framework has had much success in analyzing the convergence of
reinforcement learning methods, like Q-learning, which draws upon the basic
theory of parallel and distributed computation developed in 102. 102 Dimitri P. Bertsekas and John N. Tsitsik-

lis. Parallel and Distributed Computation:
Numerical Methods. Athena Scientific,
1997. ISBN 1886529019Towards A Computational Theory of Consciousness

We are influenced by the philosophy of AI pioneer David Marr, who argued
that any complex information processing system, such as the brain, has to un-
derstood at multiple levels, and he paid particular emphasis to the top compu-
tational theory level, over the middle algorithmic layer and the bottom neural
implementation layer. The figure illustrates David Marr’s paradigm applied to
the study of consciousness. Our paper can be viewed as primarily addressing
the top layer of developing a computational theory of consciousness, and
the algorithmic structure in the middle layer. A paradigmatic example is the
computational theory of reinforcement learning, where the top layer is the
theory of Markov decision processes, the middle algorithmic layer is defined
by algorithms, such as TD-learning, and the bottom neural implementation
layer refers to the realization of TD using dopamine neurotransmitters.

A highlight of our approach to consciousness is the investigation of the

https://arxiv.org/abs/2110.15431
https://arxiv.org/abs/2110.15431
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question: can we identify universal properties that underlie consciousness?
In category theory, a property is universal if it can be defined in terms of an
initial or final object in a category of diagrams, or in terms of a representable
functor. In defining an architecture for consciousness as a functor, we place a
special emphasis on understanding the universal properties of such diagrams.
To make this more concrete, if we view consciousness at a broad level as
involving the transmission of information between a very large number of un-
conscious processes, which constitute “long-term" memory, into a relatively
small in comparison “short-term" memory, we can model this information
transmission categorically in terms of functors that map between the category
of unconscious processes to the category of conscious elements. We can in-
quire as to the universal properties of the two categories in question, as well
as that of the functors involved.

A Birds Eye View of Our Consciousness Framework

We begin with a high-level pictorial illustration of our consciousness frame-
work, building on the past insights of Baars’ Global Workspace Theory. The
following figure illustrates the high-level architecture of our consciousness
framework, whose main components we describe below.

1. Unconscious processes as coalgebras: Each unconscious process in long-
term memory is modeled as a coalgebra αF : X → F(X), whose F
dynamics is specified as a functor.

2. Topos of unconscious process coalgebras: The ensemble of coalgebras
defining the unconscious processes defines a topos category, which is
closed under the operation of taking (co)limits, admits a subobject clas-
sifier, and has exponential objects These properties are akin to saying the
topos category is “set-like", in that it allows all the common operations
one can do with sets, generalized to processes.

3. Diagram functor modeling “up-tree" competition architecture: The “up-
tree" competition binary tree of the CTM is generalized into an arbitrary
functor diagram, which maps from the topos category of unconscious
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processes into the category of conscious short-term memory. The diagram
may have a far more complex structure than a tree, and this flexibility is
exploited in our framework.

4. Universal Reinforcement Learning: Our recently proposed framework
of URL 103 is used in our consciousness framework to manage the asyn- 103 Sridhar Mahadevan. Universal re-

inforcement learning in coalgebras:
Asynchronous stochastic computation
via conduction, 2025g. URL https:
//arxiv.org/abs/2508.15128

chronous decentralized parallel computation among the unconscious
processes that are competing to place their outputs in short-term mem-
ory. URL generalizes RL from the solving of MDPs or related dynamical
systems to finding final coalgebras in universal algebras.

5. MUMBLE: Exploiting the property that the unconscious processes are
defined as a topos of coalgebras, which admit a formal internal language,
we define the internal language of the mind as MUMBLE, or Multi-Modal
Universal Mitchell-B’enabou Language Embedding. MUMBLE is de-
fined formally in this paper, and we specify its Kripke-Joyal semantics.
MUMBLE can be seen as a formalization of Brainish in the CTM.

6. Network economic model of information transmission from unconscious
long-term memory into short-term memory: A fundamental contribution
of our CF framework is to introduce the idea of modeling transmission of
information into the resource-limited short-term memory as a problem in
network economics 104. We introduce the formal variational inequality 104 A. Nagurney. Network Economics: A

Variational Inequality Approach. Kluwer
Academic Press, 1999

(VI) formalism for solving network economies, and describe an asyn-
chronous parallel distributed method for solving VIs that can work without
the need for global coordination signals.

In the remainder of this chapter, we elaborate on all of these components
of our architecture, and study their formal properties.

Coalgebras for Modeling Consciousness

Coalgebras play a central role in our theory of consciousness, as we model
each unconscious process as a coalgebra. Coalgebras are a categorical frame-
work for labeled transition systems, which covers a vast range of dynami-
cal systems, from finite state automata, grammars and Turing machines, to
stochastic dynamical systems like Markov chains, MDPs or PSRs. A coalge-
bra is simply defined as the structure

αF = X → F(X)

where X is an object in some category C, usually referred to as the carrier,
and the functor F defines the F-dynamics of the coalgebra. As an example of
a coalgebra, consider the functor PX : X → 2X that maps from a set X to its
powerset 2X in the category Sets of sets.

https://arxiv.org/abs/2508.15128
https://arxiv.org/abs/2508.15128
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Definition 60. A labeled transition system (LTS) (S,→S, A) is defined
by a set S of states, a transition relation→S⊆ S × A × S, and a set A of
labels (or equivalently, “inputs" or “actions"). We can define the transition
from state s to s′ under input a by the transition diagram s a−→ s′, which is
equivalent to writing ⟨s, a, s′⟩ ∈→S. The F -coalgebra for an LTS is defined
by the functor

F (X) = P(A× X) = {V|V ⊆ A× X}

We can also define a category of F-coalgebras over any category C, where
each object is a coalgebra, and the morphism between two coalgebras is
defined as follows, where f : A→ B is any morphism in the category C.

Definition 61. Let F : C → C be an endofunctor. A homomorphism of
F-coalgebras (A, α) and (B, β) is an arrow f : A → B in the category C
such that the following diagram commutes:

A B

F(A) F(B)

f

α β

F( f )

For example, consider two labeled transition systems (S, A,→S) and
(T, A,→T) over the same input set A, which are defined by the coalgebras
(S, αS) and (T, αT), respectively. An F-homomorphism f : (S, αS) →
(T, αT) is a function f : S→ T such that F( f ) ◦ αS = αT ◦ f . Intuitively, the
meaning of a homomorphism between two labeled transition systems means
that:

• For all s′ ∈ S, for any transition s a−→S s′ in the first system (S, αS), there
must be a corresponding transition in the second system f (s) a−→T f (s; )
in the second system.

• Conversely, for all t ∈ T, for any transition t a−→T t′ in the second system,
there exists two states s, s′ ∈ S such that f (s) = t, f (t) = t′ such that
s a−→S s′ in the first system.

If we have an F-homomorphism f : S→ T with an inverse f−1 : T → S that
is also a F-homomorphism, then the two systems S ≃ T are isomorphic. If
the mapping f is injective, we have a monomorphism. Finally, if the mapping
f is a surjection, we have an epimorphism.

Stochastic Coalgebras

Coalgebras can model stochastic systems as well, which is of significant
interest in modeling consciousness. 105 describes how to build an entire 105 Ana Sokolova. Probabilistic systems

coalgebraically: A survey. Theoreti-
cal Computer Science, 412(38):5095–
5110, 2011. ISSN 0304-3975. DOI :
https://doi.org/10.1016/j.tcs.2011.05.008.
URL https://www.sciencedirect.
com/science/article/pii/
S0304397511003902. CMCS Tenth
Anniversary Meeting

language of probabilistic coalgebras, using the context-free grammar:

https://www.sciencedirect.com/science/article/pii/S0304397511003902
https://www.sciencedirect.com/science/article/pii/S0304397511003902
https://www.sciencedirect.com/science/article/pii/S0304397511003902
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F := _ | A | _A | P | D | F ◦ F | F× F | F + F

where F denotes a functor constructed from this grammar. Here, _ is the
identity functor over the category Sets. A is the constant functor mapping
any set to the fixed set A. idA defines a mapping from any set X to the set
of all functions from A to X. The powerset functor P maps a set X to its
collection of subsets. Most importantly, the probability distribution functor D
is defined as follows.

Definition 62. The probability distribution functor D is defined as D :
Sets → Sets maps a set X to DX = {µ : X → R≥0|µ[X] = 1}, and a
function f : X → Y to D f : DX → DY as (D f )(µ) = λ.µ[ f−1({y}).

In plain English, a distribution functor constructs a probability distribution
over any set that has finite support, and given any function f from set X
to set Y, maps any element y in the codomain DY to the probability mass
assigned by to its preimage by D f . We can now define an entire family of
stochastic coalgebras as shown in the following table. To translate into the
RL language, Segala systems correspond to MDPs, and Vardi systems are
essentially concurrent Markov chains.

CoalgF F Explanation
MC D Markov chain

DLTS (_ + 1)A Deterministic automata
LTS P(A× _) ≃ PA Non-deterministic automata

React (D + 1)A Reactive systems
Generative D(A× _) + 1 Generative Systems

Str D + (A× _) + 1 Stratified systems
Alt D + P(A× _) Alternating systems
Var D(A× _) + P(A× _) Vardi systems
SSeg P(A×D) Simple Segala Systems
Seg PD(A× _) Segala systems
Bun DP(A× _) Bundle systems
PZ PDP(A× _) Pneuli-Zuck systems
MG PDP(A× _× _) Most general systems

Table 19: Stochastic Coalgebras.

Topos Theory for Modeling Consciousness

In this and the next section, we introduce more formally the application of
topos theory to modeling consciousness. Our CF framework assumes that
unconscious processes are modeled as coalgebras, a categorial language for
dynamical systems. We want to build the CF framework out of these uncon-
scious coalgebraic processes by assembling them into a coalgebraic topos.
If we posit that URL maps deliberative sequential behavior in short-term
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memory into asynchronous distributed unconscious processes in long-term
memory, then the resulting value functions associated with those processes
can be shown to form a topos.

A fundamental result in topos theory states that for any given topos E
that has a comonad (G, δ, ϵ) defined on it itself induces another topos of
coalgebras. This result shows why it is important to have the “copy-delete"
operation in Markov categories. Besides allowing for causal, probabilistic,
and statistical reasoning, the comonoidal structure allows us to define logical
reasoning via the internal language of the resulting topos.

Theorem 19. If (G, δ, ϵ) is a comonad on a topos E for which the functor G
is left exact, then the category EG of coalgebras for the comonad (G, δ, ϵ) is
itself a topos.

A left exact functor is one that preserves all limits, whereas a right exact
functor preserves colimits.

We now turn to explaining what the internal language of a topos is, and
introduce the MUMBLE internal language used in our CF framework.

MUMBLE: Multi-modal Universal Mitchell-Bénabou Language Em-
beddings

In our CF framework, the “internal language of thought" is defined by MUM-
BLE, which stands for Multi-modal Universal Mitchell-B/’enabou Language
Embedding. This formal internal language is associated with every topos cat-
egory. we first need to formally define the mathematics of internal languages
in a topos. We define formally what an internal local set theory is, and how it
can be associated with an externally defined topos category. We first define
local set theories, and then define the Mitchell-Bénabou internal language of
a category and specify its Kripke-Joyal semantics.

The flow of information into short-term deliberative conscious memory is
intrinsically multi-modal, fusing together perception, motor control informa-
tion, language, world knowledge, and many other components of the mind.
For this plethora of processes to be able to internally “talk" to each other in
a common language, we need to define formally what such a language might
look like. Our goal here is not neural plausibility, but mathematical clarity.
What categorical structure admits such a broad set of inferential tools? We
argue that it must be a topos structure, as it admits of a local set theory, and a
logic with well-defined semantics. We explain the basic theory of an internal
logic of a topos below.

Local Set Theories

It is well-understood that properties of sets can be expressed as statements
in first-order logic. For example, the following logical statement expresses a
property of real numbers:
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∀x ∃y x < y x, y ∈ R

namely that there does not exist a largest real number. In interpreting such
logical statements, every variable x, y, . . . must be assigned a real number,
and has to be interpreted as either “free" or “bound" by a quantifier. The
above expression has no free variables. Each logical connective, such as ≤
must be also given an interpretation. The entire expression has to be assigned
a “truth value" in terms of whether it is true or false. In the development of
the internal language associated with a topos, we will see that truth values
are not binary, and can take on many possible values. In a presheaf category
SetsC

op
, the subobject classifier Ω(C) of an object is defined as the partially

ordered set of all subobjects, and its “truth" value is not binary! It is possible
to define a “local set theory" that can be formulated without making any ref-
erence at all to sets, but merely as an axiomatic system over a set of abstract
types, which will be interpreted in terms of the objects of a topos category
below. We briefly sketch out the elements of a local set theory.

A local set theory is defined as a language L specified by the following
classes of symbols:

1. Symbols 1 and Ω representing the unity type and truth-value type sym-
bols.

2. A collection of symbols A, B, C, . . . called ground type symbols.

3. A collection of symbols f, g, h, . . . called function symbols.

We can use an inductive procedure to recursively construct type symbols
of L as follows:

1. Symbols 1 and Ω are type symbols.

2. Any ground type symbol is a type symbol.

3. If A1, . . . , An are type symbols, so is their product A1 × . . . An, where
for n = 0, the type of ∏n

i=1 Ai is 1. The product A1 × . . . An has the
product type symbol.

4. If A is a type symbol, so is PA. The type PA is called the power type. 106 106 Note that in a topos, these will be
interpreted as power objects, generalizing
the concept of power sets.For each type symbol A, the language L contains a set of variables

xA, yA, zA, . . .. In addition, L contains the distinguished ∗ symbol. Each
function symbol in L is assigned a signature of the form A → B. 107 We can 107 In a topos, these will correspond to

arrows of the category.define the terms of the local set theory language L recursively as follows:

• ∗ is a term of type 1.

• for each type symbol A, variables xA, yA, . . . are terms of type A.
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• if f is a function symbol with signature A → B, and τ is a term of type A,
then f(τ) is a term of type B.

• If τ1, . . . , τn are terms of types A1, . . . , An, then ⟨τ1, . . . τn⟩ is a term of
type A1 × . . . An, where if n = 0, then ⟨τ1, . . . τn⟩ is of type ∗.

• If τ is a term of type A1 ×An, then for 1 ≤ i ≤ n, (τ)i is a term of type
Ai.

• if α is a term of type Ω, and xA is a variable of type A, then {xA : α} is a
term of type PA.

• if σ, τ are terms of the same type, σ = τ is a term of type Ω.

• if σ, τ are terms of the types A, PA, respectively, then σ ∈ τ is a term of
type Ω.

A term of type Ω is called a formula. The language L does not yet have
defined any logical operations, because in a typed language, logical opera-
tions can be defined in terms of the types, as illustrated below.

• α⇔ β is interpreted as α = β.

• true is interpreted as ∗ = ∗.

• α ∧ β is interpreted as ⟨α, β⟩ = ⟨true, false⟩.

• α⇒ β is interpreted as (α ∧ β)⇔ α

• ∀x α is interpreted as {x : α} = {x : true}

• false is interpreted as ∀ω ω.

• ¬α is interpreted as α⇒ false.

• α ∨ β is interpreted as ∀ω [(α⇒ ω ∧ β⇒ ω)⇒ ω]

• ∃x α is interpreted as ∀ω[∀x(α⇒ ω)⇒ ω]

Finally, we have to specify the inference rules, which are given in the form
of sequents. A sequent is a formula

Γ : α

where α is a formula, and Γ is a possibly empty finite set of formulae. The
basic axioms include α : α (tautology), : x1 = ∗ (unity), a rule for forming
projections of products, a rule for equality, and another for comprehension.
Now that we have the elements of a local set theory defined as shown above,
we need to connect its definitions with that of a topos. That is the topic of the
next section.
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Mitchell-Bénabou Language of a Topos

We now define the central theoretical core of internal languages of thought
in terms of the objects and arrows of a topos category, which are commonly
referred to as the Mitchell-Bénabou languages (MBL). As with the abstract
local set theory defined in the previous section, we have to define the types
(which will be the objects of a topos), the functions and terms, and give
definition of universal and existential quantifiers. We postpone the discussion
of the interpretation of this language to the next section.

Given a topos category C, we define the types of MBL as the objects of
C. Note that for a presheaf category Ĉ = SetsC

op
, the types will correspond

to the functor objects given by the Yoneda embeddingよ(x) = C(−, x)
(contravariantly) orよ(x) = C(x,−). Instantiating this process for an LLM
category, note that for a given text fragment, such as

x = I drove

its continuation y could mean many phrases including examples such as

y = to work

For each type C (defined as an object of the topos category C), like for a
local set theory, we assume the existence of variables xC, yC, . . ., where each
such variable has as its interpretation the identity arrow 1 : C → C. Just like
for local set theories, we can construct product objects, such as A× B× C,
where terms like σ that define arrows are given the interpretation

σ : A× B× C→ D

We can inductively define the terms and their interpretations in a topos
category as follows:

• Each variable xC of type C is a term of type C, and its interpretation is the
identity xC = 1 : C→ C.

• Terms σ and τ of types C and D that are interpreted as σ : A → C and
τ : B → D can be combined to yield a term ⟨σ, τ⟩ of type C× D, whose
joint interpretation is given as

⟨σp, τq⟩ : X → C× D

where X has the required projections p : X → A and q : X → B.

• Terms σ : A → B and τ : C → B of the same type B yield a term σ = τ

of type Ω, interpreted as

(σ = τ) : W
⟨σp,τq⟩−−−−→ B× B

δB−→ Ω



272 CATEGORIES FOR AGI

where δB is the characteristic map of the diagonal functor ∆B → B ×
B. In the AGI modality for causal inference, these diagonal maps will
correspond to the “copy" procedure in a topos category of presheaves over
Markov categories 108. 108 Tobias Fritz. A synthetic approach

to markov kernels, conditional indepen-
dence and theorems on sufficient statis-
tics. Advances in Mathematics, 370:
107239, August 2020. ISSN 0001-8708.
DOI : 10.1016/j.aim.2020.107239. URL
http://dx.doi.org/10.1016/j.
aim.2020.107239

• Arrows f : A → B and a term σ : C → A of type A can be combined to
yield a term f ◦ σ of type B, whose interpretation is naturally a composite
arrow:

f ◦ σ : C σ−→ A
f−→ B

• For exponential objects, terms θ : A → BC and σ : D → C of types
BC and C, respectively, combine to give an “evaluation" map of type B,
defined as

θ(σ) : W → BC × C e−→ B

where e is the evaluation map, and W defines a map ⟨θp, σq⟩, where once
again p : W → A and q : W → D are projection maps.

• Terms σ : A→ B and τ : D → ΩB combine to yield a term σ ∈ τ of type
Ω, with the following interpretation:

σ ∈ τ : W
⟨σp,τq⟩−−−−→ B×ΩB e−→ Ω

• Finally, we can define local functions as λ objects, such as

λxCσ : A→ BC

where xC is a variable of type C and σ : C× A→ B.

Once again, we can combine terms α, β etc. of type Ω using logical con-
nectives ∧,∨,⇒,¬, as well as quantifiers, to get composite terms, where
each of the logical connectives is now defined over the subobject classifier Ω,
giving us

• ∧ : Ω × Ω → Ω is interpreted as the meet operation in the partially
ordered set of subobjects (given by the Heyting algebra).

• ∨ : Ω × Ω → Ω is interpreted as the join operation in the partially
ordered set of subobjects (given by the Heyting algebra).

• ⇒: Ω×Ω→ Ω is interpreted as an adjoint functor, as defined previously
for a Heyting algebra.

We can combine these logical connectives with the term interpretation as
arrows as defined earlier. We now turn to the Kripe-Joyal semantics of this
language.

http://dx.doi.org/10.1016/j.aim.2020.107239
http://dx.doi.org/10.1016/j.aim.2020.107239
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Kripke-Joyal Semantics

Let C be a topos, and let it possess a Mitchell-Bénabou language as defined
above. How do we define a suitable model for this language? In this section,
we define the Kripke-Joyal semantics that provides an interpretation of the
Mitchell-Bénabou language described in the previous section.

For the category C, and for any object X in C, define a generalized element
as simply a morphism α : U → X. We want to specify the semantics of how
U supports any formula ϕ(α), denoted by U ⊩ ϕ(α). We declare that this
“forcing" relationship holds if and only if α factors through {x|ϕ(x)}, where
x is a variable of type X (recall that objects X of a topos form its types), as
shown in the following commutative diagram.

{x|ϕ(x)} 1

U X Ω

True

α

ϕ(x)

Building on this definition, if α, β : U → X are parallel arrows, we can
give semantics to the formula α = β by the following statement:

U
⟨α,β⟩−−→ X× X

δX−→ Ω

following the definitions in the previous section for the composite ⟨α, β⟩
and δX in MBL.

We can extend the previous commutative diagram to show that U ⊩ α = β

holds if and only if ⟨α, β⟩ factors through the diagonal map ∆:

X 1

U X× X Ω

∆ True

⟨α,β⟩
δx

Many additional properties can be derived, including the following useful
ones.

• Monotonicity: If U ⊩ ϕ(x), then we can pullback the interpretation
through any arrow f : U′ → U in a topos C to obtain U′ ⊩ ϕ(α ◦ f ).

{x|ϕ(x)} 1

U′ U X Ω

True

f
α

ϕ(x)
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• Local character: Analogously, if f : U′ → U is an epic arrow, then from
U′ ⊩ ϕ(α ◦ f ), we can conclude U ⊩ ϕ(x).

We can summarize the main results of Kripke-Joyal semantics using the
following theorem. These give precise semantics for the standard logical
connectives, as well as universal and existential quantification in terms of the
arrows of a topos category C. We can specialize these broad results to specific
AGI categories in the subsequent sections.

Theorem 20. If α : U → X is a generalized element of X, and ϕ(x) and
ψ(x) are formulas with a free variable x of type X, we can conclude that

1. U ⊩ ϕ(α) ∧ ψ(α) holds if U ⊩ ϕ(α) and U ⊩ ψ(α).

2. U ⊩ ϕ(x) ∨ ψ(x) holds if there are morphisms p : V → U and
q : W → U such that p + q : V + W → U is an epic arrow, and
V ⊩ ϕ(αp) and W ⊩ ϕ(αq).

3. U ⊩ ϕ(α) ⇒ ψ(α) if it holds that for any morphism p : V → U, where
V ⊩ ϕ(αp), the assertion V ⊩ ϕ(αp) also holds.

4. U ⊩ ¬ϕ(α) holds if whenever the morphism p : U → V satisfies the
property V ⊩ ϕ(αp), then V ∼= 0.

5. U ⊩ ∃ϕ(x, y) holds if there exists an epic arrow p : V → U and
generalized elements β : V → Y such that V ⊩ ϕ(αp, β).

6. U ⊩ ∀yϕ(x, y) holds if for every object V, and every arrow p : V → U,
and every generalized element β : V → Y, it holds that V ⊩ ϕ(αp, β).

To understand the significance of this theorem, note that we can now use it
to provide rigorous semantics for how conscious and unconscious processes
modeled in the category of coalgebras can “talk" with one another in an
internal topos language.

Kripke-Joyal Semantics for Sheaves

Define Sh(C,J ) be a topos of sheaves with a specified Grothendieck topol-
ogy J , defined by the following diagram:

C よ−→ P(C) a−→ Sh(C,J ) ∼= C
where we know that the Yoneda embeddingよ creates a full and faith-

ful copy of the original category C. Let us define the semantics for a sheaf
element α ∈ X(C), where X(C) = Sh(C, J)(C(−, C), X)). Since we
know that {x|ϕ(x)} is a subsheaf, and given an arrow f : D → C of
C, and α ∈ X(C), then if α is one of the elements that satisfies the prop-
erty that {x|ϕ(x)}, the monotonicity property stated above implies that
α ◦ f ∈ {x|ϕ(x)}(D) ⊆ X(D). Also, the local character condition stated
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above implies that if { fi : Ci → C} is a cover in the Grothendieck topology
J such that Ci| ⊩ ϕ(α ◦ fi) for all i, then C ⊩ ϕ(α).

With these assumptions, we can restate the Kripke-Joyal semantics for the
topos category of sheaves as follows:

1. C ⊩ ϕ(α) ∧ ψ(α) if it holds that C ⊩ ϕ(α) and C ⊩ ψ(α).

2. C ⊩ ϕ(α) ∨ ψ(α) if there is a covering { fi : Ci → C} such that for each
i, either Ci ⊩ ϕ(α) or Ci ⊩ ψ(α).

3. C ⊩ ϕ(α) → ψ(α) if for all f : D → C, and D ⊩ ϕ(α ◦ f ), it holds that
D ⊩ ψ(α ◦ f ).

4. C ⊩ ¬ϕ(α) holds if for all arrows f : D → C in C, if D ⊩ ϕ(α ◦ f )
holds, then the empty family is a cover of D.

5. C ⊩ ∃y ϕ(x, y) holds if there is a covering { fi : Ci → C} and elements
βi ∈ Y(Ci) such that Ci ⊩ ϕ(α ◦ fi, βi) holds for each i.

6. Finally, for universal quantification, C ⊩ ∀y ϕ(x, y) holds if for all
arrows f : D → C in the category C, and all β ∈ Y(D), it holds that
D ⊩ ϕ(α ◦ f , β).

Summarizing this somewhat abstract section, we began by defining a local
set theory of types, within which we were able to state the language L and
its inference rules. These abstractly characterize what a “set-like" category
should behave as. Subsequently, we showed that the Mitchell-Bénabou lan-
guage for a topos is precisely of the form of a local set theory, formalizing the
precise way in which a topos is like a category of sets. Finally, we specified
the Kripke-Joyal semantics for the Mitchell-Bénabou internal language of a
topos, and we also showed that for the specific case of sheaves constructed
with theよ Yoneda embedding, what the resulting semantics looked like.

We now have a precise semantics for MUMBLE’ing, namely the internal
language of a topos, which can now serve as a “language of thought" for our
CF framework.

Mapping Conscious to Unconscious Processes using Universal RL

Now we turn to give a more detailed account of the process by which the
slow deliberative trial-and-error nature of conscious short-term memory can
be compiled into fast highly parallel, asynchronous and distributed long-term
memory. Our approach builds on mathematical models of asynchronous
parallel distributed computation 109 as well as asynchronous decentralized 109 Dimitri P. Bertsekas and John N. Tsitsik-

lis. Parallel and Distributed Computation:
Numerical Methods. Athena Scientific,
1997. ISBN 1886529019

decision making.
Modeling consciousness requires modeling asynchronous distributed

computation over many unconscious processes. There is a long history in
computer science of modeling parallel distributed computation, and we build
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on the decentralized decision making model by Witsenahusen. 110. Our 110 H. S. Witsenhausen. The intrinsic model
for discrete stochastic control: Some open
problems. In A. Bensoussan and J. L. Lions,
editors, Control Theory, Numerical Methods
and Computer Systems Modelling, pages
322–335, Berlin, Heidelberg, 1975. Springer
Berlin Heidelberg

consciousness framework generalizes these to coalgebras, and we briefly
describe the ideas here, before instantiating them in the context of modeling
consciousness. Unlike the CTM framework, we do not posit any global
clock that ticks at regular intervals and coordinates processor activity. The
computation of various unconscious processors is completely asynchronous,
distributed, and parallel. We explain how it is possible to achieve this using
two formal frameworks that have addressed this challenge in past work.

The essence of asynchronous distributed computation is to manage the
ensemble of “processors" that are collectively computing some quantity. In
the case of consciousness, different parts of the brain that are engaged in
unconscious activity are monitoring many systems, such as visual fields,
hearing, touch, motor sensations, language and so on. Each module works in
parallel, but must compete with the others to post information into short-term
memory. We begin by introducing two simple and elegant approaches that
address very specific instantiations of the more general problem.

Asynchronous Distributed Minimization

Consider a generic asynchronous distributed computation of solving a fixed
point equation

F(x∗) = x∗, x∗ ∈ Rn

where the mapping F is comprised of a set of component mappings fi,
which admit asynchronous parallel distributed computation. In the language
of coalgebras, this fixed point equation will be described as finding a final
coalgebra, a problem that has been solved in great generality. The space of
solutions that x∗ lies in is assumed to be the Cartesian product

X = X1 × X2 . . . Xn

and the solutions are vectors of the form

x = (x1, . . . , xn)

where the component functions fi assemble together as

F(x) = ( f1(x), . . . , fn(x)), ∀ x ∈ X

and the fixed point of F is computed using an asynchronous distributed
version of the iterative method

xi = fi(x), i = 1, . . . , n
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Witsenhausen’s Intrinsic Model

To manage the multiagent competition that occurs between unconscious pro-
cesses modeled by the topos of coalgebras, we build on the intrinsic model.
Witsenhausen introduced an elegant model of asynchronous distributed mul-
tiagent decision making in his intrinsic model, which we generalized to the
categorical setting previously 111. We briefly summarize Witsenhausen’s 111 Sridhar Mahadevan. Universal decision

models. CoRR, abs/2110.15431, 2021. URL
https://arxiv.org/abs/2110.
15431

framework as defined in our Universal Decision Model framework, and ex-
plain its relevance to modeling decision making in consciousness.

We briefly explain our previous work on a categorial generalization of
Witsenhausen’s framework, which we termed the Universal Decision Model
(UDM)112. In the UDM category CUDM, as in any category, we are given a 112 Sridhar Mahadevan. Universal decision

models. CoRR, abs/2110.15431, 2021. URL
https://arxiv.org/abs/2110.
15431

collection of decision objects D, and a set of morphismsMUDM between
UDM objects, where f : c → d is a morphism that maps from UDM object c
to d. A morphism need not exist between every pair of UDM objects. In this
paper, we restrict ourselves to locally small UDM categories, meaning that
exists only a set’s worth of morphisms between any pair of UDM objects.

Definition 63. A Universal Decision Model (UDM) is defined as a category
CUDM, where each decision object is represented as a tuple ⟨(A, (Ω,B, P), Uα,Fα, Iα)α∈A⟩,
where A in URL represent coalgebras, (Ω,B, P) is a probability space rep-
resenting the inherent stochastic state of nature due to randomness, Uα

is a measurable space from which a decision u ∈ Uα is chosen by deci-
sion object α. Each element’s policy in a decision object is any function
πα : ∏β Uβ → Uα that is measurable from its information field Iα, a sub-
field of the overall product space (∏α Uα, ∏α Fα), to the σ-algebra Fα. The
policy of decision object α can be any function πα : ∏β Uβ → Uα.

Definition 64. The information field of an element α ∈ A in a decision
object c in UDM category CUDM is denoted as Iα ⊂ FA(A) characterizes
the information available to decision object α for choosing a decision u ∈
Uα.

To ground this definition out in terms of the stochastic approximation the-
ory of Q-learning, an information field precisely delineates what information
is available to each of the parallel asynchronous distributed processors that
are updating the Q-function. The information field structure yields a surpris-
ingly rich topological space that has many important consequences for how to
organize the decision makers in a complex organization into subsystems. An
element α in a decision object requires information from other elements or
subsystems in the network. To formalize this notion, we use product decision
fields and product σ-algebras, with their canonical projections.

Definition 65. Given a subset of nodes B ⊂ A, let HB = Ω×∏α∈B Uα be
the product space of decisions of nodes in the subset B, where the product
σ-algebra is B × ∏α∈B Fα = FB(B). It is common to also denote the
product σ-algebra by the notation ⊗α∈AFα. If C ⊂ B, then the induced

https://arxiv.org/abs/2110.15431
https://arxiv.org/abs/2110.15431
https://arxiv.org/abs/2110.15431
https://arxiv.org/abs/2110.15431
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σ-algebra FB(C) is a subfield of FB(B), which can also be viewed as the
inverse image of FC(C) under the canonical projection of HB onto HC. 113 113 Note that for any cartesian product of

sets ∏i Xi , we are always able to uniquely
define a projection map into any component
set Xi , which is a special case of the product
universal property in a category.

Universal Reinforcement Learning

Our framework for consciousness models unconscious processes by coalge-
bras, which collectively must compete with each other to post their data in
short-term memory. In the CTM, this process is modeled by a binary tree. In
our framework, this tree data structure is generalized to a functor diagram,
over which we apply our recent Universal Reinforcement Learning (URL)
framework to model the competition. In this section, we briefly review UR.
The problem of minimization of a vector function F : X → X is generalized
to finding a final coalgebra with a specified F-dynamics, where F is some
functor in a symmetric monoidal category C with tensor product ⊗.

Mapping Unconscious to Conscious Memory as a Network Econ-
omy

In the final section, we explore modeling the process of multiagent decision
making among the large number of unconscious processes, modeled as coal-
gebras, as a network economy. The fundamental problem is that short-term
memory is a constrained resource, and we believe it is natural to explore
applying the principle of network economics to this problem. Broadly, a
network economy consists of a group of autonomous agents that share a
network, which are divided into producer agents, transporter agents, and
consumer agents. To draw the parallel to modeling consciousness, the pro-
ducer agents are the unconscious processes. The transporter agents are in
charge of the problem of transporting (i.e., in the brain, the neural pathways
leading to the area where conscious short-term memory resides) information
from the unconscious long-term memory into short-term memory. Finally,
the consumer agents are locations in short-term memory that can be seen as
“bidding" for different combinations of producer and transporter agents.

A Network Economic Model of Consciousness

Let us consider modeling consciousness as a collection of producer agents
that want to post information in short-term memory from their unconscious
processing (e.g., recalling some information from long-term memory), a
set of transporter agents that manage the neural pathways from long-term
memory into short-term memory whose task is to transport the information
generated by the producer agents, and finally a set of consumer agents corre-
sponding to locations in short-term memory that must choose products from
some combination of producer and transporter agents. The broad idea here
is that information filters into short-term memory from long-term memory
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through a competitive bidding process. The mathematics of network eco-
nomics involves variational inequalities (VIs) 114, and we will explore an 114 A. Nagurney. Network Economics: A

Variational Inequality Approach. Kluwer
Academic Press, 1999

asynchronous decentralized framework for solving VIs.

Figure 55: Modeling consciousness
as a network economy. The top
tier represent producer agents from
long-term unconscious memory
who want to post their data into
short-term conscious memory, but
must bid and compete with other
producer agents for the privilege.
The middle tier are transporter
agents, charged with the task of
moving the information from long-
term to short-term memory along
neural pathways. Finally, the bot-
tom tier are consumer agents that
correspond to locations in short-
term memory, which must choose
some combination of producer
and transporter agents to display
the desired information at their
location.

In terms of the UDM framework, the set of elements in this decision
object can be represented as (A, (Ω,B, P), Uα,Fα, Iα)α∈A, where A is
defined by the set of vertices in this graph representing the decision makers.
For example, long-term memory agent i chooses its actions from the set Ui,
which can be defined as ∪j,kQijk. Fi is the associated measurable space
associated with Ui. Ii represents the information field of agent i, namely
its visibility into the decisions made by other entities in the network at the
current or past time steps.

Network economics is the study of a rich class of equilibrium problems
that occur in the real world, from traffic management to supply chains and
two-sided online marketplaces. This framework is general, and applies to
electronic (e.g., finance) and material (e.g., physical) goods. Here, we are
applying the framework to model consciousness. Each unconscious process
has a utility function is defined in terms of the nonnegative service quantity
(Q), quality (q), and price (π) delivered from producer provider i by network
provider j to consumer agent k. Production costs, demand functions, deliv-
ery costs, and delivery opportunity costs are designated by f , ρ, c, and oc
respectively. Unconscious process provider i attempts to maximize its util-
ity function U1

i (Q, q∗, π∗) by adjusting Qijk. Likewise, network provider j
attempts to maximize its utility function U2

j (Q
∗, q, π) by adjusting qijk and

πijk.

U1
i (Q, q∗, π∗) =

n

∑
j=1

o

∑
k=1

ρ̂ijk(Q, q∗)Qijk − f̂i(Q)−
n

∑
j=1

o

∑
k=1

π∗ijkQijk, Qijk ≥ 0
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U2
j (Q

∗, q, π) =
m

∑
i=1

o

∑
k=1

πijkQ∗ijk −
m

∑
i=1

o

∑
k=1

(cijk(Q∗, q) + ocijk(πijk)), qijk, πijk ≥ 0

Game Theory and Variational Inequalities

We now give a brief overview of traditional game theory, and contrast it
with the VI framework. Game theory was pioneered by von Neumann and
Morgenstern 115, and later extended by Nash 116. A finite, n-person normal 115 J. von Neumann and O. Morgenstern.

Theory of games and economic behavior.
Princeton University Press, 1947
116 John Nash. Non-cooperative games.
Annals of Mathematics, 54(2):286–295,
1951. URL https://doi.org/10.
2307/1969529

form game is a tuple (N, A, U), where N is a finite set of n players indexed
by i, A = A1 × · · · × An is the joint action space formed from the set
actions available to each player (Ai), and U is a tuple of the players’ utility
functions (or payoffs) ui where ui : A → R. The difficulty in computing
the equilibrium depends on the constraints placed on the game. For instance,
two-player, zero-sum games, ensure that player interests are diametrically
opposed and can thus be formulated as linear programs (LPs) by the minmax
theorem and solved in polynomial time 117. 117 Noam Nisan, Tim Roughgarden, Eva

Tardos, and Vijay Vazirani. Algorithmic
Game Theory. Cambridge University
Press, Cambridge; New York, 2007. ISBN
9780521872829 0521872820

By contrast, in two-player, general-sum games, any increase in one
player’s utility does not necessarily result in a decrease in the other player’s
utility so a convenient LP formulation is not possible. Finding Nash equi-
libria in two-player, general-sum games is thought to be time exponential
in the size of the game in the worst case. It has been shown that every game
has at least one Nash equilibrium which delegates the problem to the class
PPAD (polynomial parity argument, directed version) originally designated
by Papadimitriou. Although this game type cannot be converted to an LP,
it can be formulated as a linear complimentarily problem (LCP). In crude
terms, the LCP can be formed by introducing an additional constraint called
a complementarity condition to the combination of constraints that would
appear in each agent’s LP had it only been a zero-sum game. Unlike the LP,
the LCP is only composed of constraints making it a pure constraint satisfac-
tion problem (CSP). The most popular game theoretic algorithm for solving
these LCPs is the Lemke-Howson algorithm. This algorithm performs a se-
ries of pivot operations that swap out player strategies until all constraints are
satisfied. An alternate approach is to employ heuristics as in the case of the
support-enumeration method (SEM) which repeatedly tests whether a Nash
equilibrium exists given a pair of actions, or support profile. The heuristic
used is to favor testing smaller, more balanced support profiles in order to
prune larger regions of the action space.

Finally, we encounter n-player, general-sum games, in which the comple-
mentarity problem previously defined is now nonlinear (NCP). One common
approach is to approximate the solution of the NCP as solving a sequence
of LCPs (SLCP). This method is typically fast, however, it is not globally
convergent. Another technique is to solve an optimization problem in which
the global minima equate to the Nash equilibria of the original problem.
The drawback is that there are local minima that do not correspond to Nash

https://doi.org/10.2307/1969529
https://doi.org/10.2307/1969529
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equilibria making global convergence difficult.
Some games exhibit a characteristic of payoff independence where a single

player’s payoff is dependent on only a subset of the other players in the game.
In this case, the reward table indexed by the joint action-space of all players
is overly costly prompting a move from the normal form representation of
the game to the more compact representation offered by graphical games.
This can often reduce the space of the representation from exponential to
polynomial in the number of players. When the graph is a tree, a commonly
used method, NashProp, computes an ϵ-Nash equilibrium with a back and
forth sweep over the graph from the leaves to the root.

Summary and Further Reading

We described a novel theory of consciousness as a functor (CF) that receives
and transmits contents from unconscious memory into conscious memory.
CF models the ensemble of unconscious processes as a topos category of
coalgebras. As every topos has an internal language defined by a Mitchell-
B’enabou language with a Kripke-Joyal semantics, CF is based on an internal
“language of thought" using the Multi-modal Universal Mitchell-B’enabou
Language Embedding (MUMBLE). We modeled the transmission of infor-
mation from conscious short-term working memory to long-term unconscious
memory using our recently proposed Universal Reinforcement Learning
(URL) framework. To model the transmission of information from uncon-
scious long-term memory into short-term memory, we propose a network
economic model, where “producer" agents correspond to unconscious pro-
cesses, “transporter" agents correspond to neural pathways from long-term
to short-term memory, and “consumer agents" correspond to short-term
memory locations that use a competitive bidding process to manage the com-
petition between unconscious long-term memory processes. Both URL and
the network economic model of consciousness build on a formal theoretical
framework for asynchronous parallel distributed computation without the
need for synchronization by a global clock.

There are a wealth of books on consciousness in many fields, ranging
from cognitive science to psychology and philosophy. I recommend Baars’
book, as it provides the most influential current model of consciousness as the
stream of data from conscious short-term memory to unconscious long-term
memory, which influenced this chapter. 118 118 Bernard Baars. In the theater of con-

sciousness: The workspace of the mind.
Oxford Univ. Press, New York, NY,
1997. URL https://psycnet.
apa.org/doi/10.1093/acprof:
oso/9780195102659.001.1

https://psycnet.apa.org/doi/10.1093/acprof:oso/9780195102659.001.1
https://psycnet.apa.org/doi/10.1093/acprof:oso/9780195102659.001.1
https://psycnet.apa.org/doi/10.1093/acprof:oso/9780195102659.001.1
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