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Summary

Abstract

Calibration transfer (CT) is the process of transferring a calibration curve from one in-

strument to another or from one set of conditions to another. Direct standardization (DS)

of the spectra from a source to a target representation is a popular method of CT, but the

multivariate objective function is often significantly underdetermined. Piecewise direct

standardization regularizes DS by assuming only local di↵erences between source and tar-

get spectra, but requires the same wavelength sampling between instruments. In this work

a regularization framework from the field of convex optimization, proximal regularizers,

is introduced to standardize instruments that sample at di↵erent wavelength ranges and

where the di↵erences may have global e↵ects on the spectra. In this framework, penalty

terms are appended to the DS objective function to enforce certain behaviors in the trans-

fer matrix and the resulting transferred spectra, including sparsity and smoothness. This

framework is shown to be e↵ective at transferring spectra from a source NIR instrument

with a narrow wavelength range to a target instrument with a much wider wavelength

range. This is demonstrated using two publicly available NIR datasets.

KEYWORDS: calibration transfer, direct standardization, regularizers, proximal methods
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Abstract

A regularization framework for the calibration transfer method direct standardization

(DS) is presented, proximal DS. In this framework, penalty terms are appended to the DS

objective function to enforce certain behaviors in the transfer matrix and the resulting

transferred spectra, including sparsity and smoothness. This framework is shown to be

e↵ective at transferring spectra from a source NIR instrument with a narrow wavelength

range to a target instrument with a much wider wavelength range, where piecewise DS

methods fail.
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1 Introduction

In all spectroscopic applications, there is a need to ensure that possible di↵erences in instru-

mentation, environment, or experimental conditions are mitigated. Calibration transfer (CT)

is a technique for transferring a calibration curve from one instrument to another or from

one set of environmental conditions to a di↵ering set of conditions. CT can be performed

by standardizing the model coe�cients, the predicted values, or the spectral responses [1].

This work focuses on the latter, directly transferring spectra from one instrument’s (or con-

dition’s) representation to another using a transfer function calculated from a small subset

of standards recorded on both instruments. This method is known as direct standardization

(DS) [2]. There are other CT methods that also operate directly with the spectral responses,

but they function by transferring both instruments to a joint space [3] or to an instrument

agnostic representation [4].

Perhaps the most popular alternative to DS is piecewise direct standardization (PDS) [2].

In this method, a series of piecewise functions are defined over windowed wavelength ranges

to calculate a CT transfer map. When performing multivariate CT, the number of wavelength

channels is often much larger than the number of standards. In this case, the DS problem

benefits from regularization. PDS regularizes the DS problem by constraining the feature

space to local wavelength neighborhoods. It performs well when transferring spectra with

local di↵erences and matching wavelength ranges [3].

In this work, we introduce a new regularization framework for DS based on recent ad-

vancements in the field of convex optimization, proximal regularization. In this approach, a

single convex loss function is optimized that contains a series of penalty terms that encourage

specific behaviors in the transfer function and in the resultant transferred spectra. By adding

and removing penalty terms, a customized loss function is designed specifically for the data

and task. Unlike PDS that optimizes many local loss functions, by optimizing a single loss

function, proximal DS globally regularizes the transfer function and is able to correct for

di↵erences that span large wavelength regions, which can be caused in the spectra by matrix

e↵ects.
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Some related work on regularization has been done in the field of calibration maintenance

(CM). CM is a calibration transfer approach that modifies the calibration objective function

instead of transferring the spectra. Regularized calibration maintenance has been discussed

for l1 and l2 penalties [5, 6]. However, multiple algorithms were needed to optimize the

di↵erent objective functions, and in this work, a single framework is presented to optimize

many combinations of di↵erentiable and non-di↵erentiable penalties.

2 Background

Calibration transfer (CT) of the spectral responses is more formally defined as follows. Given

a source set data S 2 RL⇥p and a target dataset T 2 RM⇥q of calibration spectra, where a

small subset of N linking samples, X ⇢ S and Y ⇢ T , have been recorded in both source and

target formats, we seek to find a transfer function f : Rp ! Rq such that,

f := argmin
f

1

2
kf(X)� Y k2 . (1)

The map f is referred to as the transfer function, and its purpose is to map samples from

their source representation to their target representation. In practice, there are often too few

calibration spectra X and Y to well-fit a non-linear transfer function.

In this work, we examine the case where f is a linear function, and so equation 1 can be

rewritten using the linear transformation T 2 Rp⇥q as f(X) = XT +B, where B is a diagonal

matrix bias term. Traditionally, this is solved using the pseudoinverse T = U⌃�1
V

>, for the

singular value decomposition, SVD (T ) = U⌃V >, or more recent computationally e�cient

methods [7]. This method is called direct standardization (DS) in the chemometrics literature

[2]. To get the most benefit from CT, it is desirable to have as few overlapping samples

between source and target sets as possible. Unfortunately, this often results in a dramatically

underdetermined system where p � N , which DS is has trouble solving. To help solve ill-

posed problems like this, additional constraints can be added to the CT objective function

(equation 1). These constraints, known as regularizers, often encourage traits, like smoothness
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and simplicity, or encode domain knowledge, like a structured feature space.

Perhaps the most popular regularized variant of direct standardization is the piecewise

direct standardization (PDS) [2] method. PDS is a sliding window method that solves equation

1 by breaking the problem into q di↵erent least squares sub-problems, where each least squares

problems uses a w-length window around the i

th channel of X to predict the i

th channel of

Y . This results in T

> being a band matrix with w non-zero entries in each row. The

piecewise nature of the solution has been shown to cause discontinuities in the resulting

transferred spectra [8], so a regularized regression method must be used to solve the least

squares problems to enforce a smooth result. In practice, partial least squares or principal

component regression are used. PDS uses the structured (or ordered) nature of the feature

representation to condition the CT problem by enforcing constraints on channel space. This

method works well when the transfer instruments are similar, sharing the same wavelength

range and sampling frequency; however, PDS cannot be used to transfer spectra of di↵erent

wavelengths. For example, a spectrometer recording in the visual range cannot be transferred

with PDS to a spectrometer in the near-infrared (NIR) range because the corresponding

structured assumption of the spectra is no longer valid. Likewise, PDS cannot be used to

transfer instruments with only overlapping wavelength regions. DS can be used in these more

challenging transfer scenarios, but it must still be regularized.

3 Proximal Regularizers

PDS regularizes the problem by separating the CT problem into many sub-problems. However,

equation 1 can also be regularized directly by appending a penalty to the transfer matrix T ,

T := argmin
T

1

2
kY �XT �Bk2 + �g(T ), (2)

where g is a penalty function, often a norm k · k and � � 0 is the penalty parameter. The

function g is used to encourage certain properties in the solution T , like small-valued entries,

that encourage di↵erent behaviors in the transferred spectra XT + B, like smoothness. For
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example, to encourage a sparse solution, where T has many zero entries, the l1-norm can be

used g(T ) = kTk1 =
P

p

i=1

P
q

j=1 |ti,j |, where ti,j is the i, j-element of the matrix T . This is an

entry-wise matrix extension of the lasso model [9]. The l1-norm is a case of the more general

p-norm kTk
p

=
⇣P

p

i=1

P
q

j=1 |ti,j |p
⌘1/p

. There are many benefits to a sparse solution, like

decreased computing demands and increased interpretability. Many modern spectrometers

record at hundreds or thousands of channels, which can result in a dense transfer matrix T

with millions of entries. A sparse T greatly reduces the size on disk and in memory and leads

to faster matrix computation. Also, by eliminating channels not used in the transfer function,

T becomes human interpretable, allowing researchers to closely investigate the di↵erences

between source and target instruments or conditions.

Another entry-wise norm that can be used as a regularizing penalty is the Frobenius norm,

also known as the Euclidean norm, g(T ) = kTk
F

=
qP

p

i=1

P
q

j=1 |ti,j |2. Like the l1 norm, the

Euclidean norm is a p-norm where p = 2. Unlike the l1 norm, the Euclidean norm does not

induce sparsity, but rather shrinks the coe�cients and smooths their values by drawing them

into a similar range. In the residual, the penalty greatly decreases the variance, which improves

the methods ability to transfer spectra outside of the original training set. Moreover, the

smoothness in coe�cients directly e↵ects the smoothness of the resulting transferred spectra.

As the penalty parameter � is increased, the smoothness of the transferred spectra increases,

within limits. This regularizer is commonly squared k·k22 to make it di↵erentiable everywhere

and is known as the ridge or Tikhonov regularizer.

To combine the sparsity of the lasso with the predictive power of the ridge, the elastic

net g(T ) = kTk1 +
�

2 kTk
2
F

was developed [10]. When the system is underdetermined p < N

and there are many collinear features, the typical scenario in spectroscopy, the performance

of the lasso method is greatly improved with the addition of the ridge penalty. The presence

of the l1 norm will still encourage T to be sparse, but the l2 term encourages smoothness in

the transferred spectra. As � is decreased, the elastic net solution will approach the lasso

solution.

The regularizers discussed so far have been p-norms applied to matrices, but there is
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another family of matrix norms called Schatten norms that apply p-norms to the singular

values of a matrix. For example, the Frobenius norm is also the p = 2 Schatten norm

kTk
F

=
qPmin(p,q)

i=1 �

2
i

, where ⌃ = diag
�
�1, . . . ,�min(p,q), 0, . . . , 0

�
are the singular values

from the the singular value decomposition, SVD(T ) = U⌃V >. Another common regular-

izer is the Schatten norm p = 1, kTk⇤ =
Pmin(p,q)

i=1 |�
i

|, know as the nuclear norm (or trace

norm). By applying the l1 norm to the singular values of T , the nuclear norm forces the

transfer matrix to have low rank. This low rank approximation of T is closely related to the

principal components analysis (PCA) representation, as they both use the truncated SVD

operation. In this way, the low rank regularizer encourages simplicity and reduces noise in

the transfer function.

All of the regularizers g discussed have been norms, so the objective function in equation 2

is a convex function in all cases. Unfortunately, none of the regularizers are di↵erentiable, so

traditional gradient descent algorithms cannot be used. Instead, a class of algorithms known

as proximal methods will be used. Proximal methods are general purpose convex optimization

methods, but are especially well-suited to non-di↵erentiable, penalized, large-scale problems

[11]. Proximal algorithms use the proximal operator of a convex function g with domain D,

prox
�g

(x) = argmin
u2D

✓
g(u) +

1

2�
ku� xk22

◆
,

where � > 0 is a mixing parameter controlling the di↵erence penalty. The proximal operator

(or mapping) can be interpreted as a generalization of the projection operator. If x is outside

the domain D of g, then prox
�g

(x) will map x to a point in D that also minimizes g. Moreover,

if g is the indicator function of a set C, then prox
�g

(x) is the Euclidean projection onto C.

The proximal operator can also be interpreted as a type of gradient method. The operator

prox
�g

(x) yields the proximal point u that minimizes the function g while not straying too

far from the point x. The parameter � controls how far the proximal point can deviate from

x, where higher values allow for greater deviation and stronger minimization of g. For a more

complete listing of interpretations, reference chapter 3 of [11].
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As a gradient method, the simplest proximal minimization algorithm is repeating

x

k+1 = prox
�g

⇣
x

k

⌘
, (3)

where xk indicates the point x during the kth iteration of the algorithm, until
��
x

k+1 � x

k

��
< ✏

for some very small ✏ > 0. If g is a norm k·k, then equation 3 will converge to the point x

⇤

that minimizes g. 1 In the next section, the proximal operator for a few regularizing norms

are discussed. Table I lists all of the proximal operators evaluated here.

The proximal operator of a vector norm g = k·k is prox
�g

(x) = x��

Q
B(x/�), where

Q
B

is the projection onto the unit ball B of the norm. For a proof see section 6.5 of [11]. From

this, the proximal operator for the l1 norm, called soft thresholding, can be deduced. The soft

thresholding operator is defined as

prox
�k·k1 (T ) =

8
>>>>>><

>>>>>>:

T

i,j

� �, T

i,j

> �

0, |T
i,j

|  �

T

i,j

+ �, T

i,j

< ��

.

In some texts, this operator is also called the shrinkage operator, but we will follow the

notation of [11] and reserve the latter term for the proxk·k2F
operator.

Similarly, the proximal operator for the Frobenius norm, the entry-wise k·k
l2
, is called the

block soft thresholding,

prox
�k·kF (T ) =

8
>><

>>:

(1� �/ kTk
F

, kTk
F

� �

0, kTk
F

< �

.

The Frobenius norm is not di↵erentiable everywhere, but the squared norm k·k2
F

is, so

standard calculus can be used to derive its proximal operator, called the shrinkage operator,

prox
�k·k2F

(T ) = 1
�+1T . To calculate the proximal operator of the elastic net penalty, the soft

1
This holds true more generally for all functions g : Rn ! R [+1 that are closed proper convex.
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Regularizer Objective Proximal Operator Algorithm

� kTk1 sparsity soft thresholding sign(T ) ·max (0, |T |� �)
� kTk2 smoothness block soft thresholding max (0, |T |� �) T

kTk

� kTk1 +
�

2 kTk
2
2

sparsity and
smoothness

composition 1
1+�

sign(T ) ·max (0, |T |� �)

� kTk⇤ low rank
singular value
thresholding

Umax (0,⌃� �)V >

Table I: Proximal regularizers used in experimentation, their primary objectives, and their
one-line algorithms.

thresholding operator is composed with the shrinkage operator yielding,

prox
�k·k1+�k·k2F

(T ) =
1

� + 1
prox

�k·k1 (T ) . (4)

The nuclear norm k·k⇤ is a matrix norm, and so its proximal operator does not follow from

the previous operators. However, it can be shown that the proximal operator of a Schatten

p-norm is equal to the proximal operator of the vector p-norm applied to the singular values

in the SVD decomposition. For g = k·k⇤ and SVD(T ) = U⌃V >,

prox
�k·k⇤(T ) = U

⇣
prox

�k·k1 (⌃)
⌘
V

>
. (5)

The same holds true for other Schatten norms p 2 [1,1], including the spectral norm

kTk1 = max (⌃) whose proximal operator yields the best rank-1 approximation of T .

A complete listing of the proximal operator regularizers evaluated in section 4 is listed in

Table I, along with simplified algorithms for their implementation. A large list of proximal

operators can be found in Chapter 6 of [11].

To optimize equation 2 with a non-di↵erentiable regularizer g, the proximal operator

prox
�

g can be used. To isolate the regularizer, the variable T can be split and the equation

constrained,

min
T

1

2
kY �XTk2 + �g(Z) such that T = Z. (6)

The bias term B is omitted to decrease the notation because it is subtracted out before cal-
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culating T . While the splitting between T and Z may seem trivial, it allows the di↵erentiable

and non-di↵erentiable terms of the objective function to be optimized separately. To impose

the equality constraint T = Z the augmented Lagrangian L
⇢

is formed

L
⇢

(T, Z, Y ) =
1

2
kY �XTk2 + g(Z) + hY, T � Zi+ ⇢

2
kT � Zk2 , (7)

where Y is the Lagrange dual variable to enforce the equality constraint and ⇢ > 0 is a

penalty parameter controlling the rate of convergence by enforcing equality. The function L
⇢

can be minimized using the constrained optimization algorithm alternating direction method

of multipliers (ADMM) [12].

In a general form, the ADMM algorithm iterates over the three steps:

T

k+1 = argmin
T

L
⇢

(T, Zk

, Y

k) (8)

Z

k+1 = argmin
Z

L
⇢

(T k+1
, Z, Y

k) (9)

Y

k+1 = Y

k + ⇢(T k+1 � Z

k+1). (10)

where T

k is the value for T at the k

th iteration, likewise for Z, Y . The first step (8) is

a minimization of T . This can be solved in closed form using standard matrix calculus

techniques, resulting in

T

k+1 =
⇣
B

>
B + ⇢I

⌘�1 ⇣
B

>
A+ ⇢Z

k � Y

k

⌘
.

The second step (9) is a minimization of Z. The regularizers studied in this work are non-

di↵erentiable, and so the proximal operator must be used in this step,

Z

k+1 = argmin
Z

✓
g(Z)� trace

⇣
Y

k>
Z

⌘
+

⇢

2

���T k+1 � Z

���
2

F

◆

= argmin
Z

✓
g(Z) +

1

2�

���T k+1 + �Y

k � Z

���
2

F

◆

= prox
�g

⇣
T

k+1 + �Y

k

⌘
,
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setting � = 1/⇢ and where trace(·) is the matrix trace. The last step (9) is an update of the La-

grange dual variable Y . These three steps are repeated until the variables Z and T converge. A

simple test for convergence is if
��
Z

k+1 � Z

k

��
/

��
Z

k+1
��
< ✏

tol

and
��
T

k+1 � T

k

��
/

��
T

k+1
��
< ✏

tol

for some small tolerance like ✏

tol

= 10�4. Alternately, convergence of the primal residual
��
T

k+1 � Z

k+1
�� and the dual residual

���⇢(Zk+1 � Z

k)
�� can be used for stopping criteria.

See section 3.3.1 of [12] for greater detail.

In practice, ADMM typically converges quickly to a good solution. To decrease the compu-

tational burden of solving equation 8 in each iteration, the (symmetric, positive semi-definite)

term B

>
B + ⇢I may be decomposed into triangular matrices using the Cholesky decomposi-

tion. Performing this operation once before gradient descent makes all subsequent calculations

of T k+1 more e�cient. For extremely large spectra with thousands of channels or more, it

may be computationally advantageous to distribute the problem across channels. This is a

detailed in section 8.3 of [12].

4 Experiments

Given a small training set of spectra recorded on both the source and target instruments,

S
train

, T
train

, the task of the experiments was to learn a transfer function T : S
train

T ⇡ T
train

to map a large testing set of spectra from their source representation S
test

to their target

representation T
test

. In these experiments, the source spectrometer had a narrow wavelength

range, while the target spectrometer had a wavelength range many times larger than the

source. In practice, using a technique like this a researcher could use a limited spectrometer

with a very narrow wavelength range, like 200 nm, and transform it to a much wider spectrum,

like 1400 nm, while sacrificing only a small amount of error. To evaluate the performance

of the DS methods, the prediction error kS
test

T � T
test

k
F

and the relative prediction error

kS
test

T � T
test

k
F

/ kT
test

k
F

were used to compare the predicted target test spectra with the

actual target test spectra. All of the CT methods evaluated first mean centered the spectra, so

a bias term has been omitted from the error description for simplicity. This error was used as

a direct comparison of the transferred spectra. Instead of comparing the predictive accuracy
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of calibration models fit on the transferred spectra, which can confound the e↵ectiveness of

the DS methods with the choice of calibration model algorithm and parameter settings, this

directly compared DS methods.

The evaluated CT methods were direct standardization (DS), elastic net DS, Euclidean DS,

low rank DS, and sparse DS. A description of the proximal DS methods and their objective

functions is listed in Table II. A Python implementation of all the methods evaluated is

available through the authors website.2 Two publicly available datasets of NIR spectra were

used in the experimentation.3 The performance of the CT methods were evaluated using

varying training set sizes, where the training samples were subselected from a larger training

set (from the source) using the Kennard-Stone selection method [13]. The sample closest

(in Euclidean space) to the mean was first selected for the training set, then the set was

constructed iteratively, where the next sample chosen was the one farthest from the closest

current training set sample [14]. This method was used to select a representative source

training subset.

4.1 NIR Corn Data

The dataset used in the first experiment was composed of 80 spectra of corn samples recorded

using three di↵erent NIR spectrometers, labeled M5, MP5, and MP6, all from the same

manufacturer and where MP5 and MP6 were located in the same facility. Each spectrum

was recorded from 1100-2498 nm in 2 nm intervals resulting in 700 channels. This is a well

studied dataset [15], but the experimental task conducted in this work was novel. Two sets

of experiments were performed, one with M5 as the source and MP5 as the target and the

other with M5 as the source and MP6 as the target. In both experiments, only wavelengths

1700-1898 nm (100 channels) of the source spectra were used. In figure 1 are example spectra

from M5 and MP5 and the channels used during experimentation. To tune the CT methods,

a 10 sample subset was selected from the source population using the Kennard-Stone method

described above. For the proximal methods, leave-one-out cross validation was used to perform

2
https://www.github.com/all-umass/

3
http://www.eigenvector.com/data/
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CT Method Objective function Comments

Sparse DS min
T

1
2 kY �XTk2

F

+ ↵ kTk1

Produces a sparse transfer function.
More human interpretable. Es-
pecially advantageous for datasets
with many channels. Resulting
transferred spectra may be noisy.

Euclidean DS min
T

1
2 kY �XTk2

F

+ ↵ kTk2
Produces a smooth transfer function
and transferred spectra. Like a non-
di↵erentiable ridge penalty.

ElasticNet DS min
T

1
2 kY �XTk2

F

+ ↵ kTk1 +
�

2 kTk
2
2

A combination of the previous
two regularizers, produces a sparse
transfer matrix and smooth trans-
ferred spectra. Scales well for data
with many channels.

Low Rank DS min
T

1
2 kY �XTk2

F

+ ↵ kTk⇤

Produces a low rank transfer func-
tion. Reduces noisy, unnecessary
transforms in T using a PCA-like
penalty.

Table II: The evaluated proximal calibration transfer (CT) methods, their loss functions, and
some notes about each of the methods.
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(a) Corn NIR spectra (b) Tablet NIR spectra

Figure 1: The target spectra are red, the original full source spectra are in gray, and the
source spectra used for experimentation are in blue.

a grid search over values for ↵ and �. In ADMM, for all proximal methods the convergence

parameter � = 0.01 was used. The other 70 samples were used to evaluated the CT methods

using cross validation, where only a subset (n = 10, 20, 30) of the training samples were used

to train the models during each fold. For each setting of n, cross validation was repeated 50

times with random shu✏ing between iterations.

CT Method M5 ! MP5 M5 ! MP6 Tablet

ElasticNet DS
Regularizer ↵ 0.0001 0.001 0.0002
Regularizer � 0.003 0.003 0.0005

Euclidean DS Regularizer ↵ 0.5 0.4 0.01
Low Rank DS Regularizer ↵ 0.1 0.1 0.03
Sparse DS Regularizer ↵ 0.02 0.02 0.01

Table III: The parameter settings used by the calibration transfer techniques for the NIR
experiments.

All proximal DS methods performed comparably well on the two tasks, M5 ! MP5 and

M5 ! MP6 while standard DS performed significantly worse. The performance gap was

most noticeable with fewer training examples. When n = 10, the error of standard DS was

more than double any of the proximal DS methods. As the training set size n increased,

the methods performance improved and became more equal. The prediction errors and the

relative prediction errors and their standard errors for both tasks and all settings of n are
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listed in Table IV. Even though the small training set was selected to be representative of

the larger set, the primary cause of failure for DS was still overfitting. In fact, since all of the

proximal methods performed comparably, it suggests that many forms of regularization can

remedy the problem.

M5 ! MP5

CT Method n = 10 n = 20 n = 30

DS 1.91± 0.15 / 3.82%± 0.30 1.52± 0.09 / 3.05%± 0.18 1.39± 0.08 / 2.78%± 0.16
ElasticNet DS 0.99± 0.03 / 1.99%± 0.07 0.97± 0.03 / 1.94%± 0.07 0.94± 0.03 / 1.88%± 0.07
Euclidean DS 0.98± 0.04 / 1.97%± 0.08 0.94± 0.03 / 1.88%± 0.06 0.91± 0.04 / 1.82%± 0.07
Low Rank DS 1.00± 0.04 / 2.01%± 0.07 0.93± 0.03 / 1.86%± 0.07 0.92± 0.03 / 1.85%± 0.06
Sparse DS 1.00± 0.04 / 2.01%± 0.08 0.97± 0.03 / 1.95%± 0.06 0.97± 0.03 / 1.94%± 0.07

M5 ! MP6

CT Method n = 10 n = 20 n = 30

DS 1.93± 0.18 / 3.97%± 0.36 1.56± 0.08 / 3.21%± 0.17 1.47± 0.08 / 3.02%± 0.17
ElasticNet DS 1.03± 0.05 / 2.13%± 0.11 1.00± 0.05 / 2.06%± 0.10 0.99± 0.05 / 2.04%± 0.10
Euclidean DS 1.01± 0.06 / 2.09%± 0.12 0.96± 0.05 / 1.98%± 0.11 0.96± 0.05 / 1.98%± 0.11
Low Rank DS 1.04± 0.05 / 2.14%± 0.10 0.99± 0.05 / 2.03%± 0.10 0.96± 0.05 / 1.98%± 0.11
Sparse DS 1.03± 0.06 / 2.11%± 0.12 1.01± 0.05 / 2.08%± 0.12 1.00± 0.05 / 2.05%± 0.10

Table IV: The prediction error / relative error ± the standard error of cross validation of NIR
corn spectra setting M5 as the source and MP5 as the target on the top and setting M5 as
the source and MP6 as the target on the bottom.

Although the prediction error of the proximal DS methods are similar, the transferred

spectra they produced and the transfer functions were quite di↵erent. For example, the

sparse DS model achieved error comparable to the other proximal methods, but the transferred

spectra were extremely noisy. This was a direct result of the sparse transfer matrix. Shrinking

entries of the transfer matrix to zero induced discontinuities in the resulting spectra. In the

M5 ! MP5 experiment with n = 10, the sparse DS transfer matrix was 78.7%± 0.01 sparse,

meaning that most of the entries in the matrix were zero. In figure 2 is a zoomed-in portion

of a transferred spectrum showing the discontinuities imparted by sparse DS. In contrast, the

Euclidean DS model produced smooth transferred spectra, but had a dense transfer matrix.

To quantitatively measure the roughness of a set of transferred spectra X

N⇥q, the sum of
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Figure 2: Applying Sparse DS, Euclidean DS, and ElasticNet DS to a test set spectrum from
the NIR corn data. Sparse DS produces a sparse transfer matrix T , but T yields a rough
spectrum. Euclidean DS yields a smooth spectrum, but has a dense T . ElasticNet DS is a
combination of Sparse DS and squared Euclidean DS, and so yields a smooth spectrum with
a sparse T .

squared second order di↵erences was used,

R(X) =
NX

i=1

q�1X

j=2

((x
i,j+1 � x

i,j

)� (x
i,j

� x

i,j�1))
2
. (11)

When X is perfectly smooth, R(X) = 0, and as the roughness of X grows, R(x) increases.

This is the same measure of smoothness used in Hodrick-Prescott filtering [16]. In the same

experiment, the spectra from Euclidean DS had a roughness of 2.0⇥10�3±2⇥10�4, whereas

sparse DS produced spectra with 3.75 times the roughness 7.5⇥10�3±6⇥10�4. In this case,

the goal roughness of the target set was 1.5⇥ 10�3. To smooth the spectra of sparse DS, an

additional Euclidean penalty was added to form the elastic net DS model. The elastic net

model was 64.53%±0.02 sparse with a roughness of 2.9⇥10�3±1⇥10�4, a good compromise

between sparsity and smoothness.

The low rank DS model produced transferred spectra similar to the Euclidean DS model.

However, the transfer matrix of low rank DS was most similar to standard DS, because instead

of directly shrinking the transfer matrix entries it operated on the components of the matrix.

In figure 3 are portions of the transfer matrices for standard DS, Euclidean DS, and low rank
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(a) DS (b) Euclidean DS (c) Low Rank DS

Figure 3: A portion of the transfer matrix for three of the direct standardization (DS) meth-
ods, (a) DS, (b) Euclidean DS, (c) Low Rank DS. All 100 source channels are displayed, but
for clarity only 300 target channels are displayed. Observe that (a) overfits the data, having
large variance between rows, while (b) and (c) have been regularized and are more general-
izable. (b) appears more pixelated than (c) because its regularization is local to the matrix
entries, whereas (c) regularizes the matrix globally by shrinking its singular values.

DS. The pixelated appearance of the Euclidean DS matrix was caused by the local entry-

wise regularization, versus the smooth gradation of the low rank DS matrix that globally

regularized by shrinking the singular values.

In these experiments, only a small portion (14%) of the available channels from the source

spectra were used to predict the entire target spectra. Even with this handicap, and using

just ten training samples, the transferred target spectra from the proximal methods had on

average only a 1.99% error (for M5 ! MP5). For a comparison with ideal conditions, the

experiment was repeated using all of the source channels. In this case, piecewise models like

PDS and block-style proximal methods could be used and were included in the experiment.

Even with this expanded list of competing DS methods and access to the full wavelength

source spectra, the top model still had an average error of 1.83%. This small di↵erence

in accuracy of just 0.16% indicates the feasibility of this method of using proximal DS to

extrapolate large wavelength regions from much smaller regions.

4.2 NIR Tablet Data

In the second experiment, the same task was repeated using a di↵erent NIR dataset to ensure

the results were reproducible across datasets, predicting the full target spectra from a partial

source spectra. The experimental dataset was composed of two subsets, a 154 sample cali-

bration set and a 459 sample held-out test set. Each spectrum was recorded from 600-1898
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nm in 2 nm intervals resulting in 650 channels. The last 50 channels of both spectrometers

were nearly entirely noise, so these channels were omitted from the experiment. Only 100

channels were used in the source spectra, from 1400-1598 nm. Figure 1 contains examples

of the source and target spectra and the utilized wavelength ranges. To tune the proximal

method parameters, cross validation grid search over the calibration set was used. For each

validation fold, the Kennard-Stone algorithm was used to select 15 training samples. The

final tuned parameter settings are listed in table III. In ADMM, for all proximal methods

the convergence parameter � = 0.9 was used. There was little di↵erence in performance as

� varied, so the setting was selected to keep the number of ADMM iterations low. After

the parameters were tuned for each method, they were fitted using the calibration set and

evaluated on the held-out test set.

The prediction error and relative prediction error over the test set are listed in table V.

The size of the training set was varied n = 10, 15, 20, 25. When the training set size was small

n = 10, all of the proximal DS methods greatly outperformed standard DS, which had twice

the error of any proximal method. As the training set size increased, the performance gap

between the proximal methods and standard DS decreased.

Similar to corn experiments, there was little di↵erence in the predictive error of the prox-

imal methods. Overall, Euclidean DS performed slightly better than the competing proximal

methods. However, its performance worsened for the largest setting of n = 25. This could be

due to statically setting n = 15 during the parameter tuning, and refitting the parameters for

each training set size would likely eliminate this spike in prediction error.

In ideal unhindered conditions, using all 650 source channels, the global proximal methods

outperformed the local piecewise DS methods. With n = 15, Euclidean DS achieved a relative

error of 0.82% whereas the best piecewise method had 1.01% error. The di↵erence between

using the full source versus the partial source was 0.86% relative error. While this was still

small compared to the fraction of channels used in the hindered experiment, this error was

larger than the 0.16% di↵erence reported in the first experiment experiment. This is likely

due to how well the source channel subsets represent the instrument di↵erences. Moreover,
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global di↵erences in the tablet set may reach beyond the small 100 channel window.

CT Method n = 10 n = 15 n = 20 n = 25

DS 79.40 / 4.02% 51.40 / 2.60% 37.97 / 1.92% 33.75 / 1.71%
ElasticNet 36.86 / 1.87% 34.05 / 1.72% 33.04 / 1.67% 32.35 / 1.64%
Euclidean DS 36.35 / 1.84% 33.26 / 1.68% 32.27 / 1.63% 32.85 / 1.66%
Low Rank DS 36.54 / 1.85% 33.60 / 1.70% 32.55 / 1.65% 32.74 / 1.66%
Sparse DS 36.50 / 1.85% 33.51 / 1.70% 32.48 / 1.64% 32.66 / 1.65%

Table V: The prediction error / relative prediction error over the held-out NIR tablet test set.

5 Conclusion

In this work, a new method for regularizing direct standardization (DS) is presented, proximal

DS. Using proximal methods from the field of optimization, non-di↵erentiable convex penalty

terms are added to DS to enforce certain characteristics, like sparsity or smoothness, and to

prevent overfitting. Proximal DS is especially useful for solving standardization tasks between

instruments of varying wavelength regions, like inferring a complete NIR spectra from only a

portion. This is shown experimentally using two well studied NIR spectra datasets. With a

NIR corn dataset, all proximal DS methods were shown to transfer spectra with around 2%

relative error using only 10 training standards, which is only .2% more relative error than the

best performing method using the entire source wavelength. Similar results were shown for

the NIR tablet dataset.

Only four proximal DS methods were evaluated during experimentation, but many more

are easily derived. Furthermore, many of the penalties can be combined to form new methods,

For example, for a robust low rank DS method, the error can be directly modeled using a

sparse term kTk⇤ + kEk1. The conditions of the CT task and the type of spectroscopy may

require di↵erent penalty schemes. In future work, we plan to specifically investigate proximal

DS methods for laser-induced breakdown spectroscopy (LIBS), where matrix e↵ects in the

plasma can cause global discrepancies between the source and target instruments that locally

regularized methods cannot correct.
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