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Goals and Outline of Tutorial

* Jo teach you abstraction and compositional thinking:
e How to “ ’
* How to analyze using functors
 Jo cover theory and practice

 |llustrate applications of categories and functors to A(G)!

* Introduce new directions for A(G)l research
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Nothing is more practical than a
good theory.

~ Ludwig Boltzmann

AZ QUOTES

“A theory Is not like an airline or bus timetable. We are not
interested simply in the accuracy of its predictions. A theory
also serves as a base for thinking. It helps us to understand
what is going on by enabling us to organize our thoughts.”

—~Ronald Coase



Introduction to Category Theory
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Objects: Causal models or Transformer models

Arrows: Causal interventions or compositions of Transformer blocks



A Compositional Theory of AGI
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What is Category Theory?

* |t is the most transformative unification in mathematics since set theory
* |t merges many different subfields of mathematics

« Geometry to Logic: theory of

» Algebra to Probabillity:

* |Induction vs. : as dynamical systems



What are Categories?
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* A category C is defined by

A collection of (X,, z, ...)
* A collection of C(X,y)
. . X —>Yy —> Z compose Iin general

 Remarkable property: The category Cat of all categories is a category!
 \What are the objects of Cat?

e What are the arrows of Cat”?



There are a myriad ways to construct categories!

Monoidal Functor Model
Categories Categories Categories
Cartesian Infinity Slice

Categories Categories Categories



Monoidal Categories

 Equipped with a tensor product: { o 1 Closed | [ Closed |
Monoidal { Viomoidal H Monoidal }
+ @:CXC—->C RS
Monoidal Monoidal Monoidal

e |dentityelement1: 1 ®c~c~c® 1

* Unitinterval [0,1]: closed symmetric monoidal preorder

« 7 —enriched monoidal category: a,b € C = C(a,b) € 7/



Simplicial Objects

Cambridge studies in advanced mathematics 188

Combinatorial model of spaces
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Main Concepts of Category Theory

Yoneda
Lemma

Functors

Limits

Colimits

Kan
Extensions



Natural Transformations between Functors
F

For every object of C

An arrow Fc —> Gec in D

Ff

Gf




Adjoint Functors
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Functor F Ff
Fh Fg
Functor G
Category C HHETor Category D

“Free” and “Forgetful” functors;
Sets —> Abelian Groups

Categories —> Graphs



Adjoint Functors
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Universal Property: Limits/Colimits

T -
 The Cartesian product of two sets is a set \
,

e Can we define it without looking inside” a set? ? > X
* Find its universal property vf
N/
e Limits: Equalizer, meet, supremum, ...
Pullback

e Colimits: Coequalizer, join, infimum, ...
If X, Y, Z are sets, U = {x | fx = gx}

If g Is monic, then pullback is f-1(Z)



x +— C(z,—) : C — Sets®

Yoneda Embedding

v/

“Categories”

Birds and Frogs

Freeman Dyson

ome mathematicians are birds, others

are frogs. Birds fly high in the air and

survey broad vistas of mathematics out

to the far horizon. They delight in con-

cepts that unify our thinking and bring
together diverse problems from different parts of
the landscape. Frogs live in the mud below and see
only the flowers that grow nearby. They delight
in the details of particular objects, and they solve
problems one at a time. I happen to be a frog, but
many of my best friends are birds. The main theme
of my talk tonight is this. Mathematics needs both
birds and frogs. Mathematics is rich and beautiful
because birds give it broad visions and frogs give it
intricate details. Mathematics is both great art and
important science, because it combines generality
of concepts with depth of structures. It is stupid
to claim that birds are better than frogs because
they see farther, or that frogs are better than birds
because they see deeper. The world of mathemat-
ics is both broad and deep, and we need birds and
frogs working together to explore it.

This talk is called the Einstein lecture, and I am
grateful to the American Mathematical Society
for inviting me to do honor to Albert Einstein.
Einstein was not a mathematician, but a physicist
who had mixed feelings about mathematics. On
the one hand, he had enormous respect for the
power of mathematics to describe the workings
of nature, and he had an instinct for mathematical
beauty which led him onto the right track to find
nature’s laws. On the other hand, he had no inter-
est in pure mathematics, and he had no technical

Freeman Dyson is an emeritus professor in the School of
Natural Sciences, Institute for Advanced Study, Princeton,
NJ. His email address is dyson@ias . edu.

This article is a written version of his AMS Einstein Lecture,
which was to have been given in October 2008 but which
unfortunately had to be canceled.

NOTICES OF THE AMS

skill as a mathematician. In his later years he hired
younger colleagues with the title of assistants to
do mathematical calculations for him. His way of
thinking was physical rather than mathematical.
He was supreme among physicists as a bird who
saw further than others. I will not talk about Ein-
stein since I have nothing new to say.

Francis Bacon and René Descartes

At the beginning of the seventeenth century, two
great philosophers, Francis Bacon in England and
René Descartes in France, proclaimed the birth of
modern science. Descartes was a bird, and Bacon
was a frog. Each of them described his vision of
the future. Their visions were very different. Bacon
said, “All depends on keeping the eye steadily fixed
on the facts of nature.” Descartes said, “I think,
therefore I am.” According to Bacon, scientists
should travel over the earth collecting facts, until
the accumulated facts reveal how Nature works.
The scientists will then induce from the facts the
laws that Nature obeys. According to Descartes,
scientists should stay at home and deduce the
laws of Nature by pure thought. In order to deduce
the laws correctly, the scientists will need only
the rules of logic and knowledge of the existence
of God. For four hundred years since Bacon and
Descartes led the way, science has raced ahead
by following both paths simultaneously. Neither
Baconian empiricism nor Cartesian dogmatism
has the power to elucidate Nature’s secrets by
itself, but both together have been amazingly suc-
cessful. For four hundred years English scientists
have tended to be Baconian and French scientists
Cartesian. Faraday and Darwin and Rutherford
were Baconians; Pascal and Laplace and Poincaré
were Cartesians. Science was greatly enriched by
the cross-fertilization of the two contrasting cul-
tures. Both cultures were always at work in both
countries. Newton was at heart a Cartesian, using

VOLUME 56, NUMBER 2



Categorical Generative Models
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Coalgebra: X —> T(X) Algebra: T(X) —> X

coinduction iInduction

Final coalgebra Initial Algebra



The PowerSet Functor

 Consider the coalgebra: X —> PowerSet(X)

» Example: X = {0,1}, PowerSet = {{}, {0}, {1}, {0,1}}

 Why is PowerSet a ?
. : Sets, like X
. : functions on sets f:X —>Y

 How does PowerSet act on the arrows?

 On arrows: Powerset(f): PowerSet(X) —> PowerSet(Y)



Labeled Transition Systems as Coalgebras

 Any automata (deterministic or stochastic) is a coalgebra

o Set of states S

» Transition relation - C S XA X §

» Here, s —“ tis the same as (s,a,1) € —
 Coalgebra of LTS defined by powerset functor L

e a¢: S = L(S),s = {(a,s)|s =5}



Category theory gives us a new way to define states!

X, X —> T(X)): Coalgebra

o () —

X B

VA, B0 QQ X A — Q)

[Hahn, ACL, 2020]
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Theoretical
Computer Science

LSEVIER Theoretical Computer Science 249 (2000) 3-80

www.elsevier.com/locate/tcs

Fundamental Study
Universal coalgebra: a theory of systems

J.J.M.M. Rutten
CWI, P.O. Box 94079, 1090 GB Amsterdam, Netherlands

Communicated by M.W. Mislove

Abstract

In the semantics of programming, finite data types such as finite lists, have traditionally been
modelled by initial algebras. Later final coalgebras were used in order to deal with infinite data
types. Coalgebras, which are the dual of algebras, turned out to be suited, moreover, as mod-
els for certain types of automata and more generally, for (transition and dynamical) systems.
An important property of initial algebras is that they satisfy the familiar principle of induc-
tion. Such a principle was missing for coalgebras until the work of Aczel (Non-Well-Founded
sets, CSLI Leethre Notes, Vol. 14, center for the study of Languages and information, Stan-
ford, 1988) on a theory of non-wellfounded sets, in which he introduced a proof principle
nowadays called coinduction. It was formulated in terms of bisimulation, a notion originally
stemming from the world of concurrent programming languages. Using the notion of coalge-
bra homomorphism, the definition of bisimulation on coalgebras can be shown to be formally
dual to that of congruence on algebras. Thus, the three basic notions of universal algebra:
algebra, homomorphism of algebras, and congruence, turn out to correspond to coalgebra, ho-
momorphism of coalgebras, and bisimulation, respectively. In this paper, the latter are taken
as the basic ingredients of a theory called universal coalgebra. Some standard results from
universal algebra are reformulated (using the aforementioned correspondence) and proved for
a large class of coalgebras, leading to a series of results on, e.g., the lattices of subcoalge-
bras and bisimulations, simple coalgebras and coinduction, and a covariety theorem for coalge-
bras similar to Birkhoff’s variety theorem. (©) 2000 Elsevier Science B.V. All rights reserved.

MSC: 68Q10; 68Q55
PACS: D.3; F.1; F3

Keywords: Coalgebra; Algebra; Dynamical system; Transition system; Bisimulation;
Universal coalgebra; Universal algebra; Congruence; Homomorphism; Induction; Coinduction;
Variety; Covariety

E-mail address: janr@cwinl (J.J.M.M. Rutten).

0304-3975/00/$ - see front matter (©) 2000 Elsevier Science B.V. All rights reserved.
PII: S0304-3975(00)00056-6

T — S

Introduction
to Coalgebra

Towards
Mathematics
of States and
Ohservation

e yocobe




Category of Coalgebras

Introduction
to Coalgebra

» Category of Coalgebras: towrds
e Objects: Coalgebras (X, a: X —> T(X)) f
X .Y
o Arrows: Coalgebra homomorphisms
e |nitial and Final Coalgebras ' T(f) '
T(X) - T(Y)

* |nitial object: unigue morphism into other objects
* Final object: unique morphism from other objects

* Generalizes the concept of fixed points!



Categorical Deep Learning



Deep Learning as a Functor

Backprop as Functor:
A compositional perspective on supervised
learning

Brendan Fong David Spivak

Department of Mathematics,
Massachusetts Institute of Technology

Abstract—A supervised learning algorithm searches over a
set of functions A — B parametrised by a space P to find the
best approximation to some ideal function f: A — B. It does
this by taking examples (g, f(7)) € A X B, and updating the
parameter according to some rule. We define a category where
these update rules may be composed, and show that gradient
descent—with respect to a fixed step size and an error
function satisfying a certain property—defines a monoidal
functor from a category of parametrised functions to this
category of update rules. A key contribution is the notion
of request function. This provides a structural perspective
on backpropagation, giving a broad generalisation of neural
networks and linking it with structures from bidirectional
programming and open games.

Rémy Tuyéras

Computer Science and Artificial Intelligence Lab,
Massachusetts Institute of Technology

Consider a supervised learning algorithm. The goal
of a supervised learning algorithm is to find a suitable
approximation to a function f: A — B. To do so,
the supervisor provides a list of pairs (a,b) € A X B,
each of which is supposed to approximate the values
taken by f, i.e. b = f(a). The supervisor also defines
a space of functions over which the learning algorithm
will search. This is formalised by choosing a set P and
a function I: P X A — B. We denote the function at
parameter p € P as I(p,—): A — B. Then, given a pair
(a,b) € A x B, the learning algorithm takes a current
hypothetical approximation of f, say given by I(p,-),

USSR R SR R S - ~ e e e A
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GAIA: Generative Al Architecture

GAIA: CATEGORICAL FOUNDATIONS OF GENERATIVE AI*

A PREPRINT

Sridhar Mahadevan
Adobe Research and University of Massachusetts, Amherst
smahadev@adobe.com, mahadeva@umass.edu

March 1, 2024 g G
e R
ABSTRACT
Category of

In this paper, we explore the categorical foundations of generative Al. Specifically, we investigate -
a Generative Al Architecture (GAIA) that lies beyond backpropagation, the longstanding algorith- Algebralc Categ ory of Parameters Category of Learners
mic workhorse of deep learning. Backpropagation is at its core a compositional framework for StrUCtU res
(un)supervised learning: it can be conceptualized as a sequence of modules, where each module
updates its parameters based on information it receives from downstream modules, and in turn, trans-
mits information back to upstream modules to guide their updates. GAIA is based on a fundamentally T
different hierarchical model. Modules in GAIA are organized into a simplicial complex. Each . L. e e
n-simplicial complex acts like a manager of a business unit: it receives updates from its superiors and S Im pl icial functor Backpropaaation
transmits information back to its n + 1 subsimplicial complexes that are its subordinates. To ensure p p g

this simplicial generative Al organization behaves coherently, GAIA builds on the mathematics of
the higher-order category theory of simplicial sets and objects. Computations in GAIA, from query
answering to foundation model building, are posed in terms of lifting diagrams over simplicial objects.
The problem of machine learning in GAIA is modeled as “horn" extensions of simplicial sets: each
sub-simplicial complex tries to update its parameters in such a way that a lifting diagram is solved.
Traditional approaches used in generative Al using backpropagation can be used to solve “inner" horn
extension problems, but addressing “outer horn" extensions requires a more elaborate framework.

At the top level, GAIA uses the simplicial category of ordinal numbers with objects defined as
[n],n > 0 and arrows defined as weakly order-preserving mappings f : [n] — [m], where f(i) <
f(4),% < j. This top-level structure can be viewed as a combinatorial “factory" for constructing,
manipulating, and destructing complex objects that can be built out of modular components defined
over categories. The second layer of GAIA defines the building blocks of generative AI models
as universal coalgebras over categories that can be defined using current generative Al approaches,
including Transformers that define a category of permutation-equivariant functions on vector spaces,
structured state-space models that define a category over linear dynamical systems, or image diffusion
models that define a probabilistic coalgebra over ordinary differential equations. The third layer
in GAIA is a category of elements over a (relational) database that defines the data over which
foundation models are built. GAIA formulates the machine learning problem of building foundation
models as extending functors over categories, rather than interpolating functions on sets or spaces,
which yields canonical solutions called left and right Kan extensions. GAIA uses the metric Yoneda
Lemma to construct universal representers of objects in non-symmetric generalized metric spaces.
GALIA uses a categorical integral calculus of (co)ends to define two families of generative Al systems.
GAIA models based on coends correspond to topological generative Al systems, whereas GAIA
systems based on ends correspond to probabilistic generative Al systems.

Functor

Keywords Generative Al - Foundation Models - Higher-Order Category Theory - Machine Learning



Compositional Deep Learning

(P1,U,R)

L, oy
(P!,IS,U!,R!)

:
d
(P”,I”,Lm

ers

tegory of Learn
©

Arrows are | earnersl!

[Fong, Spivak, Tuyeras: “Backprop as Functor”, 2019]



How to compose Learners?

Parameter Parameter

Implement Implement

Update Update

Request Parameter

Request




Backpropagation as a coalgebra

 Backpropagation can also be modeled as a coalgebra X —> F(X)

 This alternative view gives us deeper insight into the convergence of
backpropation

e |t gives us more powerful tools to design new deep learning methods
(see [Mahadevan, GAIA, Arxiv, 20241])



Natural Transformations for Deep Learning

Backpropagation

Category of Category of

Parameters | earners

Stochastic approximation

Ff

Gf




Category of Transformers

Objects: Xis a n x d token sequence of matrices

Output
Probabilities
Softfmax . . . .
1 Arrows: permutation-equivariant functions
¢ Add&?Norm w [Yun et al., ICLR 2020]
Feed
= fXP) = f(X)P
o (Add & Norm ) A,\::ni'::;: X ! > Y 7 > /4
Feed Attention
Fonﬁlard ) )r g J N x
v | ) | | P P P Commutative diagram
Multi-Head Multi-Head ~- S ~
Attention Attention
e XP » Y P » ZP
O J U ) f g
= IR Yo
Input Output
Emberding Emberding Thm.r . {f . RAX1 _y REX™ ‘f(XP) — f(X)P}
Inputs Outputs
(shifted right)

How do we define new Transformer architectures?
[Mahadevan, GAIA, Arxiv, 2024]



Enriched LLM Categories

* \We can construct different types of categories for LLMs

. category: L(x,y) = P(y | x) (where x =“l am flying”, y="1 am flying
to Philadelphia™)

. category: Yoneda Embedding: x —> L(x, -) (all possible
completions of the phrase | am flying”)

o category: the "hom-object” L(x,y) is itself an object of another
category (in this case, a symmetric monoidal preorder on [0,1]).



Intrinsic Limitations of Transformers
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Theoretical Limitations of Self-Attention in Neural Sequence Models

Michael Hahn
Stanford University
mhahn2@stanford.edu

Abstract

Transformers are emerging as the new
workhorse of NLP, showing great success
across tasks. Unlike LSTMs, transform-
ers process input sequences entirely through
self-attention. Previous work has suggested
that the computational capabilities of self-
attention to process hierarchical structures
are limited. In this work, we mathematically
investigate the computational power of self-
attention to model formal languages. Across
both soft and hard attention, we show strong
theoretical limitations of the computational
abilities of self-attention, finding that it can-
not model periodic finite-state languages,
nor hierarchical structure, unless the num-
ber of layers or heads increases with input
length. These limitations seem surprising
given the practical success of self-attention
and the prominent role assigned to hier-
archical structure in linguistics, suggesting
that natural language can be approximated
well with models that are too weak for the
formal languages typically assumed in theo-
retical linguistics.

1 Introduction

Transformers are emerging as the new workhorse
of NLP, achieving the state-of-the-art in tasks such
as language modeling, machine translation, and
creating pretrained contextualized word embed-
dings. Eschewing recurrent computations, trans-
formers are entirely based on self-attention, per-

Frvimnicon thaivn cnncrassbatinan lavanle: fca caawallal

chical structure and recursion. Hierarchical struc-
ture is widely thought to be essential to model-
ing natural language, in particular its syntax (Ever-
aert et al., 2015). Consequently, many researchers
have studied the capability of recurrent neural net-
work models to capture context-free languages
(e.g., Kalinke and Lehmann (1998); Gers and
Schmidhuber (2001); Griining (2006); Weiss et al.
(2018); Sennhauser and Berwick (2018); Korsky
and Berwick (2019)) and linguistic phenomena in-
volving hierarchical structure (e.g., Linzen et al.
(2016); Gulordava et al. (2018)). Some experi-
mental evidence suggests that transformers might
not be as strong as LSTMs at modeling hierarchi-
cal structure (Tran et al., 2018), though analysis
studies have shown that transformer-based mod-
els encode a good amount of syntactic knowledge
(e.g., Clark et al. (2019); Lin et al. (2019); Tenney
et al. (2019)).

In this work, we examine these questions from a
theoretical perspective, asking whether models en-
tirely based on self-attention are theoretically ca-
pable of modeling hierarchical structures involv-
ing unbounded recursion. Formally, we study
their ability to perform two computations that are
thought to be essential to hierarchical structure:
First, their ability to correctly close brackets, a
basic problem underlying all nonregular context-
free languages and formalized by the DYCK lan-
guage (Chomsky and Schiitzenberger, 1963). Sec-
ond, their ability to evaluate iterated negation, a
basic component of the task of evaluating logical

Frviamnsilan nmnnsratican ba Aarraliiatican thha A nrmxr ~AF

Published as a conference paper at ICLR 2023

NEURAL NETWORKS AND THE CHOMSKY HIERARCHY

Grégoire Delétang*! Anian Ruoss*! Jordi Grau-Moya' Tim Genewein' Li Kevin Wenliang'

Elliot Catt' Chris Cundy' Marcus Hutter' Shane Legg' Joel Veness' Pedro A. Ortega'

ABSTRACT

Reliable generalization lies at the heart of safe ML and AI. However, understanding
when and how neural networks generalize remains one of the most important
unsolved problems in the field. In this work, we conduct an extensive empirical
study (20 910 models, 15 tasks) to investigate whether insights from the theory of
computation can predict the limits of neural network generalization in practice.
We demonstrate that grouping tasks according to the Chomsky hierarchy allows
us to forecast whether certain architectures will be able to generalize to out-of-
distribution inputs. This includes negative results where even extensive amounts
of data and training time never lead to any non-trivial generalization, despite
models having sufficient capacity to fit the training data perfectly. Our results
show that, for our subset of tasks, RNNs and Transformers fail to generalize on
non-regular tasks, LSTMs can solve regular and counter-language tasks, and only
networks augmented with structured memory (such as a stack or memory tape) can
successfully generalize on context-free and context-sensitive tasks.

1 INTRODUCTION

Statistical learning theory is the most widely used theory of generalization in practical machine
learning, justifying empirical risk minimization and estimating the generalization error via a test
set (Vapnik, 1998). However, its central assumption that training and test data are independent and
identically distributed (i.i.d.) is violated for many problems of interest (distribution shifts, continual
learning, etc.). An example of such a non-i.i.d. setting is testing generalization on sequence prediction
problems, where an agent is trained with sequences of length £ < N and tested with arbitrarily
longer sequences ¢ > N. This problem is of particular importance since it subsumes all computable
problems (Dawid, 1984; Rich, 2007; Sipser, 1997; Solomonoff, 2009; 2010). Central to sequence
prediction is inductive inference, which consists of deriving a general rule from a finite set of concrete
instances and using this rule to make predictions. For example, in program induction (Goldberg,
1989; Gomez et al., 2008; Holland, 1992; Liang et al., 2013; Nordin, 1997; Solomonoff, 1964a;b;
Wineberg & Oppacher, 1994), the goal is to obtain a model that correctly identifies the underlying
data-generating process given examples of input-output sequences. Then, if the model is correct, it
can produce results in accordance with the generative process for previously unseen input sequences.

*Hard-attention” Transformers cannot compute parity, recognize Dyck languages etc.



Computational Limitations of Transformers

e Transformers can be modeled in terms of

o [Merrill et al., Saturated Transformers are Constant-Depth Threshold Circuits, 2022]

 Complexity Classes can be characterized as categories

 Example: NP-complete problems define a category sy
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[Strobl et al., What Formal Languages can Transformers Express, 2024]



Limitations of Deep Learning

* Deep learning models cannot reason about causality

L . CAUSALITY
e A Transformer computes permutation-invariant functions

= SECOND EDITION

» Attention scores are symmetric

* Next-token distributions do not capture causality

MODELS. REASONING
AND INFERENCI

 Generative models by themselves do not capture causality JUDEA PEAR

e “Curve-fitting” is not enough to do causal reasoning!



Universal Causality
and Probability
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How a Pioneer of Machine Learning
Became One of Its Sharpest Critics

Judea Pearl helped artificial intelligence gain a strong grasp on

probability, but laments that it still can't compute cause and effecct.

By Kevin Hartnett and Quanta Magazine
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Article

Universal Causality

Sridhar Mahadevan

check for
updates

Citation: Mahadevan. S. Universal

Adobe Research, 345 Park Avenue, San Jose, CA 95110, USA; smahadev@adobe.com

Abstract: Universal Causality is a mathematical framework based on higher-order category theory,
which generalizes previous approaches based on directed graphs and regular categories. We present
a hierarchical framework called UCLA (Universal Causality Layered Architecture), where at the
top-most level, causal interventions are modeled as a higher-order category over simplicial sets
and objects. Simplicial sets are contravariant functors from the category of ordinal numbers A into
sets, and whose morphisms are order-preserving injections and surjections over finite ordered sets.
Non-random interventions on causal structures are modeled as face operators that map n-simplices
into lower-level simplices. At the second layer, causal models are defined as a category, for example
defining the schema of a relational causal model or a symmetric monoidal category representation
of DAG models. The third layer corresponds to the data layer in causal inference, where each
causal object is mapped functorially into a set of instances using the category of sets and functions
between sets. The fourth homotopy layer defines ways of abstractly characterizing causal models
in terms of homotopy colimits, defined in terms of the nerve of a category, a functor that converts
a causal (category) model into a simplicial object. Each functor between layers is characterized
by a universal arrow, which define universal elements and representations through the Yoneda
Lemma, and induces a Grothendieck category of elements that enables combining formal causal
models with data instances, and is related to the notion of ground graphs in relational causal models.
Causal inference between layers is defined as a lifting problem, a commutative diagram whose
objects are categories, and whose morphisms are functors that are characterized as different types of
fibrations. We illustrate UCLA using a variety of representations, including causal relational models,
symmetric monoidal categorical variants of DAG models, and non-graphical representations, such as
integer-valued multisets and separoids, and measure-theoretic and topological models.

Keywords: artificial intelligence; higher-order category theory; causality; machine learning; statistics

Table 2. Each layer of UCLA represents a categorical abstraction of causal inference.

Layer Objects Morphisms Description
Simplicial n] ={0,1,...,n} f =[m] = [n] Category of interventions
Relational Vertices V, Edges E S,$1:E=V Causal Model Category

Tabular Sets Functionsonsets f : S — T Category of instances

Homotopy Topological Spaces Causal equivalence Causal homotopy
Quasicategory of simplicial Layered Architecture for Universal Causality (UCLA)

objects A 'n]

@ Lifting Problems

Grothendieck Category
Of Elements

Functor
>(

Universal Arrow

Category of causal objects

Grothendieck Category
Of Elements

Universal Arrow

Functor

A4

Category of Instances

<=l —
Attribute
o Helshon “’/ Grothendieck Category
Of Elements

Universal Arrow % Functor

Category of homotopies




Universal Causality

[Mahadevan, Entropy, 2023]

Pollution in New Delhi, India

COVID-19 |
Overpopulation Lockdown Farming

Practices

Traffic Agricultural

Fires

Equ;lizer
. @
: Functor Pollution
| >
Pushforward Sullback : |
\ ,’ ﬁ ,
A ’/ ' Asthma Lung Infections
\ / :
\‘.’/ I
'y |
Co-limit ® ‘
Indexing Category of Abstract Diagrams Co-Equalizer

Actual Causal Model



What is categorical probability?

* 18th century: Bernoulli, Laplace: coin-tossing, card games
o 20th century: Kolmogorov: measure-theoretic foundations

e 21st century:



Category of Structural Causal Models

e A structural causal model (SCM) is defined as M = (U, V, F)

U is a set of exogenous causal variables

* Vs a set of endogenous variables defined over U and V

* Fis a collection of "local autonomous functions” fi: U x V/V; —>V,
* Objects: SCM models M, M’ ...

 Arrows: A function M —> M’ that represents an intervention etc.

 How to ensure local functions define a unigue global function F?



Monads

T: C -> C (endofunctor)
II : Meas — Meas evy : II(.) — [0, 1]
P+— P(A)

T 7 > L AH/GVACZP

\ . / This functor maps a measurable space X to all

distributions on X (which is also measurable!)

Example: T = 22X (powerset)
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A synthetic approach to Markov kernels, conditional
independence and theorems on sufficient statistics 2.1. Definition. A Markov category C is a symmetric monoidal category in which every

object X € C is equipped with a commutative comonoid structure given by a comultiplication

Tobias Fritz copyy : X -+ X ® X and a counit delx : X — I, depicted in string diagrams as
ABSTRACT. We develop Markov categories as a framework for synthetic probability and
statistics, fochYwing wo?k of Golubts%v as well as Cho and Jazobs. T}Izis meansythat CopyX — deIX — (21)
we treat the following concepts in purely abstract categorical terms: conditioning and
disintegration; various versions of conditional independence and its standard properties;
conditional products; almost surely; sufficient statistics; versions of theorems on sufficient and satis fyzng the commutative comonoid equations)
statistics due to Fisher—-Neyman, Basu, and Bahadur.
Besides the conceptual clarity offered by our categorical setup, its main advantage
is that it provides a uniform treatment of various types of probability theory, including
discrete probability theory, measure-theoretic probability with general measurable spaces,
Gaussian probability, stochastic processes of either of these kinds, and many others. - (22)
CONTENTS
1. Introduction 2 o o = (2 y 3)
2. Markov categories 9
3. Example: Kleisli categories of monoidal monads 16
4. Example: measurable spaces and measurable Markov kernels 18
5. Example: compact Hausdorff spaces and continuous Markov kernels 23 as well as compatz’bilz’ty with the monoidal structur €,
6. Example: Gaussian probability theory 25
7. Example: diagram categories and stochastic processes 27 X X Y X X Y X Y X Y
8. Example: hypergraph categories 29
9. Example: categories of commutative comonoids 29
10. Deterministic morphisms and a strictification theorem 30 . I . (2 4)
11. Further candidate axioms for Markov categories 39 T o
12. Conditional independence and the semigraphoid properties o6
13. Almost surely 73 XR®Y X Y
14. Sufficient statistics and the Fisher-Neyman factorization theorem 83 XY X Y
15. Complete morphisms, ancillary statistics, and Basu’s theorem 87
%{fi.f Minimal sufficient statistics and Bahadur’s theorem 3; and n atumlz’ty Of deI, which means that
eferences

for every morphism f.



Reasoning with Diagrams

vl — X v X
X | dely Y —» 1

W fl f:X—=Y \/
W Y:Il —-XQKY

Replaces the conventional measure-theoretic” foundation of probability

[Fritz, Adv. in Math, 2020]



: Markov Categories

VI =>XQY T
X l|/ fix
T ox] Yx: X =Y Xy
¥ ) f
Conditional Distribution !
Generalizes P(X,Y) = P(Y|X) P(X) Disintegration:Bayes Rule

| \
VARl
NG
N/
Conditional independence
POX, W,Y)=PX|W)P(Y | W)




Causal Models as String Diagrams

Covid-19 .
Overpopulation Lockdown Farming
Practices

A

Traffic Agricultural

Fires

Pollution

Convert DAG

into string diagram

Asthma Lung Infections

vV,

Exogenous variables
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Categorical Knowledge Representation



How do we represent knowledge?

* A popular formalism for representing knowledge is through relations

* Relational databases is the most used format in industry to store
iInformation

* A relational schema defines a category

 SQL query languages can be formalized as



Relational Database

: Martial :
Last Resident Person Education Children

Sridhar Mahadevan California ID1 PhD Married None
Elon Musk Texas ID2 BS Married Yes

Donald Trump DC ID3 BS Married Yes
Joe Biden Delaware BA Married Yes

Nationality Bornlin

Florida

USA USA Delaware



Databases are Categories

First WorksAt Works At
Sridhar  Mahadevan  Adobe Employee - Organization

Elon Musk DOGE : _
First Last Size
Donald Trump WhiteHouse
Joe Biden Retired Stri Nng Stri ng Number

W

Find a White House employee who was born in South Africa

Find an Adobe employee born in India



Database queries are Lifting Diagrams

F
C » B
R FF=Hol
T H// P G=H°P
+ + GOI:POF
D »
G

[Spivak, Database Queries and Constraints via Lifting Problems, 201 3]



Open Games



Game Theory

Developed by von Neumann and Nash as a model of economics

Widely applied in auctions of multi-billion dollar commodities (spectrum)
Basis behind a lot of e-commerce

Several Nobel prizes have been awarded in game theory

But:



Prisoner’s Dilemma

Players Confess




Compositional game theory

X R

<

The category of open games is defined as a symmetric monoidal category

It uses the concept of
Just like the abstract deep learning model, we need a request” function

In open games, It Is called



Functor Categories

Saunders Mac Lane
leke Moerdijk

Sheaves in
Geometry
and Logic

A Frst Introduction to
Topos Theory



Set-Valued Functors

Distance from c to all other objects

¥

T’

Fh

FQ

Generalized Metric Space Sets

Yoneda embeddings show how to construct generalized representers



Functor Categories

 The most interesting categories are those where every object is a functor!
. are constructed through the
 Simply map an object x —> C(-, x)

 The most beautiful embedding in all of mathematics!
* Yoneda embeddings create a nicer copy” of a category

 The category of presheaves is a



Contravariant and Covariant Functor Categories

op
€T > C(—, Q?) : C — SetSC Presheaves:

T > C(Z‘7 —) . C — SetSC Copresheaves:
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Noboru Yoneda
category C to Sets, &

)
a bijection to the set F(c) Nat(Hom(e, =), F) = F(c)

Yoneda enjoved relating
the story of the origins of
this le n:ﬁm. as follows, He
had guided Samuel Eilen-
berg during Eilenberg’s visit
to Japan, and in this process
learned homological algebra.
Soon Yoneda spent a yvear in
France (apparently in 1054
or 1955). There he met
Saunders Mac Lane. Mac
Laze, then visiting Paris.
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Yoneda, and Commenced an
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Yoneda Lemma

Nat(C(— ,x), F) ~ Fx

“Objects are defined by their interactions”

The Yoneda Lemma came to “life”

Coincidentally, Turing died in 1954

N

1954



Metric Yoneda Lemma In
Generalized Metric Spaces
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Fundamental Study

Generalized metric spaces: Completion, topology,
and powerdomains via the Yoneda embedding

M.M. Bonsangue®*, F. van Breugel®, J.J.M.M. Rutten®

a Rijks Universiteit Leiden, Department of Computer Science, P.O. Box 9512,
2300 RA Leiden, The Netherlands
b Universita di Pisa, Dipartimento di Informatica, Corso Italia 40, 56125 Pisa, Italy
< CWI P.0O. Box 94079, 1090 GB Amsterdam, The Netherlands

Received June 1996; revised January 1997
Communicated by M. Nivat

Abstract

Generalized metric spaces are a common generalization of preorders and ordinary metric spaces
(Lawvere, 1973). Combining Lawvere’s (1973) enriched-categorical and Smyth’s (1988, 1991)
topological view on generalized metric spaces, it is shown how to construct (1) completion, (2)
two topologies, and (3) powerdomains for generalized metric spaces. Restricted to the special
cases of preorders and ordinary metric spaces, these constructions yield, respectively: (1) chain
completion and Cauchy completion; (2) the Alexandroff and the Scott topology, and the ¢-ball
topology; (3) lower, upper, and convex powerdomains, and the hyperspace of compact subsets.
All constructions are formulated in terms of (a metric version of) the Yoneda (1954) embedding.




Generalized Metric Spaces

* A generalized metric space (gms) is defined as a space X, where
¢ X(x,y): XXX — |0,00]
e X(x,x)=0
» Triangle inequality: X(x, z) < X(x,y) + X(y, 2)

 Note: In a gms, symmetry does not hold, and two objects that are at
distance 0 need not be identical



Examples: gms over Preorders

 Let us define a gms over a preordered set (P, < )
o Reflexivity: x < x
o Transitivity: x <y, y<z=>x<7Z
» The gms is defined as
e If x <y, then P(x,y)=0

e If x £y, then P(x,y) = o©



Example: gms over strings

» Consider the set of strings 2* over some alphabet 2
« We can define a gms over the strings 2* as follows:
o 2%(x,y) =0 if x is a prefix of y

e 2*(x,y) = 27" otherwise where n is the longest common prefix



Example: gms over topological spaces

» We can define a gms over the power set S(X) of all subsets over a metric
space as:

« PX)V,W)=inf(e>0|VveV,Iwe Wst X(v,w) <€)

* This distance is referred to as the non-symmetric Hausdorff distance



Example: gms over distances

 Let us define a gms over the category [0,00] of non-negative distances:
e [0,00](x,y)=0ifx>y
* [0,00]Cr,y) =y —xifx <y

* This category is complete and co-complete, symmetric monoidal, as well as compact
and closed

* Product of two elements is their max (or supremum)
* Coproducts of two elements is their minimum (or infimum)

 Monoidal product is defined as addition +



Compact Closed Categories

o Let us define an “internal” Hom functor [0,00]( — , — ) as simply the
distance in [0,00] as given previously

* The Yoneda embedding [0,00](?, — ) is right adjoint to
t+ — forany t € [0,00]

o Theorem: Forallr,s,t € [0,00],

e t+ s >rifandonlyif s > [0,00](2, 1)



Metric Yoneda Lemma for gms

* \We can construct “universal representers” in any gms by applying the Yoneda
Lemma

« Let X be any gms. For any element x € X
e X(—,x): X7 —> [0,00] : vy~ X(y,Xx)
o Let us define a category over gms by using as arrows all non-expansive functions f

e Y(f(x),f(y) <c-X(x,y)

e Where c € (0,1)



Presheaves In a gms

e For any category C, define its presheaf C = Set¢”

* In particular, the presheaf for the category of gms is given as

A\

¢« X =[0,00]*"
» Which defines the set of all non-expansive functions from X to [0,00]

» Remarkably, the Yoneda embedding y — [0,00](y, x) is itself a non-
expansive mapping, and therefore an element of X



Metric Yoneda Lemma

 For any non-expansive function ¢ & X

.« X(X(—,x), ) = p(x)

 The Yoneda embedding is an isometry!

* y(x) — X( N ,X)

. X(x,y) = X(y(x), y(y)) = X(X(—,x), X(—,))

* Recall we have made no assumptions about symmetry!



Non-symmetric Attention in LLMs

 Recall that Tranformer modules compute permutation-equivariant maps
because attention matrices are symmetric!

* Jo fix that problem, a Transformer uses Absolute Positional Encoding
o But, that “fix” causes problems of generalization in long sequences

* Conjecture: Yoneda embeddings in a gms may lead to new insights into
attention in LLMs



Simplicial Category A

 Objects: ordinal numbers
e [n]=1{0,1,....n—1}

e Arrows: 2

» f:[m] — [n] 1

C 1 < . then f() < fU)) 0 0

* All morphisms can be built out of primitive injections/surjections
e 0,:[n] = [n+ 1] : injection skipping i

» 0;:|n] = [n — 1], surjection repeating 1



Nerve of a Category

Recall a category is defined as a collection of objects, and a collection of
arrows between any pair of objects

A simplicial set is a contravariant functor mapping the simplicial category
to the category of sets

Any category can be mapped onto a simplicial set by constructing its
nerve

Intuitively, consider all sequences of composable morphisms of length n!



Simplicial Sets: Contravariant Functors

n
ﬁ
l' .



Simplicial Sets vs. Categories

Any category can be embedded faithfully into a simplicial set using its
nerve

The embedding is full and faithful (perfect reconstruction)
Unfortunately, the converse is not possible

Given a simplicial set, the left adjoint functor that maps it into a category
IS lossy!

GAIA (in theory!) is more powerful than existing generative Al formalisms
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Figure 10: A learner in the symmetric monoidal category Learn 1s defined as a morphism. Later in Section we will
see how to define learners as coalgebras instead.

Definition 3. Fong et al.|[2019] The symmetric monoidal category Learn is defined as a collection of objects that
define sets, and a collection of an equivalence class of learners. Each learner is defined by the following 4-tuple (see

Figure([10).

* A parameter space I

e

* An implementation function/ : P x A — B
* Anupdate functionU : P x A x B — P

e Arequest functionr : P X AX B — A
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How to compose a sequence of two Learner objects?

Q) LYV8)

(P,I,U,r)
>

A B >

The composite learner A — C'is defined as (P x Q,I-J,U -V, r - s), where the composite implementation function is

(I ' '])(pa q; (1,.) Be= ']((Ia I(p a))

and the composite update function 1s

U= Ve(p.gsac) = (U(p,sa; sl I(p,a)e)), Vg lI(p,a);e)

and the composite request function 1s

(7: 8)(p,q,a,¢) = r(p,a,8(q,. L(p;a)c)).



N Net _—_—ms oreee-eo0o-F———-> L(ZCI’I"II
' e
Backprop is a
Param functor!

UI(p}aab) — vaE[(p, a, b)

4 | (pa a, b) = fa(vaEI(pa a, b))



/ First-order

\ oracle




A Categorical Model of Attention

Backprop

Category
of Learners

Transformer
Category

(P1,U,R)

Th ™ = {f : R - R [ f(XP) = f(X)P}

Cateqgory of Learners
- & P U R)




3-simplex

Simplicial Sets

2-simplices

O-simplices

4-simplex

4-simplex

3-simplex
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1-simplex 1-simplex 1-simplex

/
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Simplicial framework for generative Al

Each directed
edge defines a morphism that

represents a generative Al method

iy Each collection of

simplices can be "glued” on
to compatible simplices through
“ports” that define the components

of the simplex.

Simplicial learning is based on
extension problems of
inner and outer "horns” of

simplicial objects

2-simplices

1-simplices

?

3-simplex

O-simplices




GAIA: Categorical Foundations of Generative Al
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Simplicial Generative Al

Sequential Generative Al Model Simplicial Complex of Gen Al Models in GAIA
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Calculus of (Co)Ends
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/ Bifunctors F : C? x C — D / \

Ends
\ Distances in generalized metric spaces

Topological data analysis Probabilistic Generative Models
Manifold learning

Coends




Universal Universal representers : F(c,—), F(—,c)

lggifsn (Co)end : / o / (¢, c)
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/ \
Generalized . Incremental Random
metric ~ Codensity adaptation variation
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B



The “Geometric” Transformer Model

/ (Transformeryn) - An

Intuition: Construct a simplicial set of of Transformers by
composing sequences of length n

Embed them in a Kan complex



Diffusion Process and Kan Complexe
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Generative Al and Kan Complexes

Diffusion models: X - X1 Xo - o 7

Gradually add Gaussian - - - - -« - - e “«——————
noise and then reverse

Every morphism

Invertible!

Figure Source: https://lilianweng.github.io/posts/2021-07-11-diffusion-models/



Categorical Machine Learning



Clustering as a Functor

e Scale invariance: If the distance metric d is increased or decreased by c - d, where c is a scalar real number, the !
output clustering should not change. In terms of Figure|9, if the points in each cluster became closer together
or further apart proportionally, the clustering should remain the same.

» Completeness: For any given partition of the space X, there should exist some distance function d such that
the clustering algorithm when given that distance function should return the desired partition. \

* Monotonicity: If the distance between points within each cluster in Figure 9| were decreased, and the distances \
between points in different clusters were increased, the clustering should not change either. R .

An Impossibility Theorem for Clustering

Jon Kleinberg
Department of Computer Science

Cornell University
Ithaca NY 14853

Abstract

Although the study of clustering is centered around an intuitively
compelling goal, it has been very difficult to develop a unified
framework for reasoning about it at a technical level, and pro-
foundly diverse approaches to clustering abound in the research
community. Here we suggest a formal perspective on the difficulty
in finding such a unification, in the form of an impossibility theo-
rem: for a set of three simple properties, we show that there is no
clustering function satisfying all three. Relaxations of these prop-
erties expose some of the interesting (and unavoidable) trade-offs
at work in well-studied clustering techniques such as single-linkage,
sum-of-pairs, k-means, and k-median.

Journal of Machine Learning Research 11 (2010) 1425-1470 Submitted 4/09; Revised 12/09; Published 4/10

Characterization, Stability and Convergence of Hierarchical
Clustering Methods

Gunnar Carlsson GUNNAR(@MATH.STANFORD.EDU
Facundo Mémoli* MEMOLI@MATH.STANFORD.EDU
Department of Mathematics

Stanford University

Stanford, CA 94305

Editor: Ulrike von Luxburg

Abstract

We study hierarchical clustering schemes under an axiomatic view. We show that within this frame-
work, one can prove a theorem analogous to one of Kleinberg (2002), in which one obtains an
existence and uniqueness theorem instead of a non-existence result. We explore further properties
of this unique scheme: stability and convergence are established. We represent dendrograms as
ultrametric spaces and use tools from metric geometry, namely the Gromov-Hausdorff distance, to
quantify the degree to which perturbations in the input metric space affect the result of hierarchical
methods.

Keywords: clustering, hierarchical clustering, stability of clustering, Gromov-Hausdorff distance
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UNIFORM MANIFOLD

UMAP

APPROXIMATION & PROJECTION

How to Use UMAP

Basic UMAP Parameters

Plotting UMAP results

UMAP Reproducibility
Transforming New Data with UMAP

Inverse transforms

Parametric (neural network) Embedding

UMAP on sparse data

UMAP for Supervised Dimension
Reduction and Metric Learning

Using UMAP for Clustering
Outlier detection using UMAP
Combining multiple UMAP models

Better Preserving Local Density with
DensMAP

Improving the Separation Between
Similar Classes Using a Mutual k-NN
Graph

Document embedding using UMAP

& / UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction
O Edit on GitHub

UNIFORM MANIFOLD

UMAP

APPROXIMATION & PROJECTION

UMAP: Uniform Manifold Approximation and
Projection for Dimension Reduction

Uniform Manifold Approximation and Projection (UMAP) is a dimension reduction technique that
can be used for visualisation similarly to t-SNE, but also for general non-linear dimension reduction.
The algorithm is founded on three assumptions about the data

1. The data is uniformly distributed on Riemannian manifold;

2. The Riemannian metric is locally constant (or can be approximated as such);

3. The manifold is locally connected.

From these assumptions it is possible to model the manifold with a fuzzy topological structure. The
embedding is found by searching for a low dimensional projection of the data that has the closest
possible equivalent fuzzy topological structure.

The details for the underlying mathematics can be found in our paper on ArXiv:

Mclnnes, L, Healy, J, UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction,
ArXiv e-prints 1802.03426, 2018

You can find the software on github.

Installation



UMAP: Uniform Manifold

Approximation and Projection for
Dimension Reduction

Leland Mclnnes

Tutte Institute for Mathematics and Computing
leland.mcinnes@gmail.com

John Healy

Tutte Institute for Mathematics and Computing
jchealy@gmail.com

James Melville
jlmelville@gmail.com
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Abstract

UMAP (Uniform Manifold Approximation and Projection) is a novel
manifold learning technique for dimension reduction. UMAP is constructed
from a theoretical framework based in Riemannian geometry and algebraic
topology. The result is a practical scalable algorithm that is applicable to
real world data. The UMAP algorithm is competitive with t-SNE for visu-
alization quality, and arguably preserves more of the global structure with
superior run time performance. Furthermore, UMAP has no computational
restrictions on embedding dimension, making it viable as a general purpose
dimension reduction technique for machine learning.

1 Introduction

Dimension reduction plays an important role in data science, being a funda-
mental technique in both visualisation and as pre-processing for machine

Definition 1. The category A has as objects the finite order sets |n| =
{1,...,n}, with morphims given by (non-strictly) order-preserving maps.

Following standard category theoretic notation, A®? denotes the cate-
gory with the same objects as A and morphisms given by the morphisms
of A with the direction (domain and codomain) reversed.

Definition 2. A simplicial set is a functor from A°P to Sets, the category of
sets; that is, a contravariant functor from A to Sets.

Given a simplicial set X : A®°? — Sets, it is common to denote the set
X ([n]) as X, and refer to the elements of the set as the n-simplices of X.
The simplest possible examples of simplicial sets are the standard simplices
A", defined as the representable functors homa (-, [n]). It follows from the
Yoneda lemma that there is a natural correspondence between n-simplices
of X and morphisms A™ — X in the category of simplicial sets, and it
is often helpful to think in these terms. Thus for each x € X,, we have
a corresponding morphism x : A" — X. By the density theorem and
employing a minor abuse of notation we then have

coim A" = X
reXy,

There is a standard covariant functor | - | : A — Top mapping from
the category A to the category of topological spaces that sends |[n| to the
standard n-simplex |A"| C R™"! defined as

n
A™ £ J(to, ... tn) ER™ Y ti=1,8>0
1=0

with the standard subspace topology. If X : A" — Sets is a simplicial
set then we can construct the realization of X (denoted | X |) as the colimit

| X| = colim |A"|
reXn



Definition 7. Define the functor FinReal : Fin-sFuzz — FinEPMet by

setting
FinReaI(AZCL) = ({xla L2y ey ZEn}, da)’
where
— lOg a l]CZ # .jv
da(x’iv x]) — ( )
0 otherwise
and then defining

FinReal(X) = colim FinReal(A”,).
AL 3K

[Mclnnes et al., 2020]



Definition 8. Define the functor FinSing : FinEPMet — Fin-sFuzz by
FinSing(Y) . ([’I’L], [O, a)) — homFinEpMet(FinReal(AZa), Y)

We then have the following theorem.

Theorem 1. The functors FinReal : Fin-sFuzz — FinEPMet andFinSing

FinEPMet — Fin-sFuzz form an adjunction with FinReal the left adjoint
and FinSing the right adjoint.

[Mclnnes et al., 2020]



Algorithm 1 UMAP algorithm
function UMAP(X, n, d, min-dist, n-epochs)

# Construct the relevant weighted graph
for all z € X do

fs-set[x] « LocALFuzzySIMPLICIALSET(.X, =, n)

top-rep < [, y fs-set|z] # We recommend the probabilistic t-conorm

# Perform optimization of the graph layout
Y < SPECTRALEMBEDDING(top-rep, d)
Y < OpTIMIZEEMBEDDING(top-rep, Y, min-dist, n-epochs)

return Y

[Mclnnes et al., 2020]
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The single-cell transcriptional landscape
of mammalian organogenesis

Junyue Cao>*!'°, Malte Spielmann’!'?, Xiaojie Qiu'?, Xingfan Huang"?, Daniel M. Ibrahim*®, Andrew J. Hill}, Fan Zhang®,
Stefan Mundlos*°, Lena Christiansen®, Frank J. Steemers®, Cole Trapnell”-3* & Jay Shendure!”-8*

Mammalian organogenesis is a remarkable process. Within a short timeframe, the cells of the three germ layers transform
into an embryo that includes most of the major internal and external organs. Here we investigate the transcriptional
dynamics of mouse organogenesis at single-cell resolution. Using single-cell combinatorial indexing, we profiled the
transcriptomes of around 2 million cells derived from 61 embryos staged between 9.5 and 13.5 days of gestation, in a single
experiment. The resulting ‘mouse organogenesis cell atlas’ (MOCA) provides a global view of developmental processes
during this critical window. We use Monocle 3 to identify hundreds of cell types and 56 trajectories, many of which are
detected only because of the depth of cellular coverage, and collectively define thousands of corresponding marker genes.
We explore the dynamics of gene expression within cell types and trajectories over time, including focused analyses of
the apical ectodermal ridge, limb mesenchyme and skeletal muscle.

Most studies of mammalian organogenesis rely on model organisms,
and, in particular, the mouse. Mice develop quickly, with just 21 days
between fertilization and birth. The implantation of the blastocyst on
embryonic day (E) 4.0 is followed by gastrulation and the formation
of germ layers on E6.5-E7.5"2. At the early-somite stages, the embryo
transits from gastrulation to early organogenesis, forming the neural
plate and heart tube (E8.0-E8.5). In the ensuing days (E9.5-E13.5),
the embryo expands from hundreds-of-thousands to over ten-
million cells, and concurrently develops nearly all major organ systems.
Unsurprisingly, these four days have been intensively studied. Indeed,
most genes that underlie major developmental defects can be studied
in this window>*.

The transcriptional profiling of single cells (scRNA-seq) represents
a promising strategy for obtaining a global view of developmental pro-
cesses’ . For example, scRNA-seq recently revealed a large degree of
heterogeneity in neurons and myocardiocytes during mouse develop-
ment>®. However, although two scRNA-seq atlases of the mouse were
recently released'®!!, they are mostly restricted to adult organs and do
not attempt to characterize the emergence and dynamics of cell types
during development.

Single-cell RNA -seq of two million cells

Single-cell combinatorial indexing is a methodological framework
involving split-pool barcoding of cells or nuclei'?"'*. We previously
developed single-cell combinatorial-indexing RNA-sequencing analysis
(sci-RNA-seq) and applied it to generate 50-fold shotgun coverage of
the cellular content of L2-stage Caenorhabditis elegans'’. A concep-
tually identical method was recently termed SPLiT-seq®. To increase
the throughput, we explored more than 1,000 experimental condi-
tions (Extended Data Fig. 1a, b, Methods). The major improvements
of the resulting method, sci-RNA-seq3, include: (i) nuclei are extracted
directly from fresh tissues without enzymatic treatment, then fixed and
stored; (ii) for the third level of indexing'’, we switched from Tn5 tag-
mentation to hairpin ligation; (iii) individual enzymatic reactions were
optimized; and (iv) fluorescence-activated cell sorting was replaced by

dilution, and sonication and filtration steps were added to minimize
aggregation. Even without automation, sci-RNA-seq3 library prepara-
tion can be completed through the intensive effort of a single researcher
in one week at a cost of less than $0.01 per cell.

We collected 61 C57BL/6 mouse embryos at E9.5, E10.5, E11.5, E12.5
or E13.5, and snap-froze them in liquid nitrogen. Nuclei from each
embryo were isolated and deposited in individual wells in four 96-well
plates, such that the first index identified the originating embryo of
a given cell. As a control, we spiked a mixture of human HEK-293T
and mouse NIH/3T3 nuclei into two wells. The resulting sci-RNA-
seq3 library was sequenced in a single Illumina NovaSeq run, yielding
11 billion reads (Fig. 1a, Extended Data Fig. 1c, d).

From one experiment, we recovered 2,058,652 cells from mouse
embryos and 13,359 cells from HEK-293T or NIH/3T3 cells (UMI
(unique molecular identifier) count > 200). Transcriptomes from
human or mouse control wells were overwhelmingly species-coherent
(3% collisions), with performance similar to previous experiments'”
(Extended Data Fig. le-i). A limitation is that only around 7% of cells
entering the experiment were ultimately profiled, with losses largely
consequent on filtration steps intended to remove aggregates of nuclei.

We profiled a median of 35,272 cells per embryo (Fig. 1b, Extended
Data Fig. 1j). Despite shallow sequencing (about 5,000 raw reads per
cell; 46% duplicate rate), we recovered a median of 671 UMIs (519
genes) per cell (Extended Data Fig. 1k). The 3.7-fold-deeper sequenc-
ing of a subset of wells nearly doubled the complexity (to a median of
1,142 UMIs per cell; 87% duplicate rate). Given that we are profiling
RNA in nuclei, 59% of UMIs per cell strand specifically mapped to
introns and 25% mapped to exons. The profiles may therefore primarily
reflect nascent transcription, temporally offset, but also predictive®! of
the cellular transcriptome. Later-stage embryos exhibited somewhat
reduced UMI counts, possibly reflecting decreasing nuclear mRNA
content (Extended Data Fig. 11). We used Scrublet** to detect 4.3%
likely doublet cells, corresponding to a doublet estimate of 10.3%
including both within-cluster and between-cluster doublets (Extended
Data Fig. 1m, n).

IDepartment of Genome Sciences, University of Washington, Seattle, WA, USA. 2Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA. 3Department of Computer
Science, University of Washington, Seattle, WA, USA. “Max Planck Institute for Molecular Genetics, RG Development & Disease, Berlin, Germany. ®Institute for Medical and Human Genetics, Charité
Universitatsmedizin Berlin, Berlin, Germany. ®lllumina, San Diego, CA, USA. ’Brotman Baty Institute for Precision Medicine, Seattle, WA, USA. 8Allen Discovery Center for Cell Lineage Tracing,
Seattle, WA, USA. *Howard Hughes Medical Institute, Seattle, WA, USA. 19These authors contributed equally: Junyue Cao, Malte Spielmann. *e-mail: coletrap@uw.edu; shendure@uw.edu
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the 10 major trajectories (columns, colour key in a, left). c, UMAP 3D
visualization of epithelial subtrajectories coloured by development stage
(colour key in a, right).
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simplicial set representations. UMAP then optimizes the lower-dimension embed-
ding, minimizing the cross-entropy between the low-dimensional representation
and the high-dimensional one.

The computational efficiency of UM AP markedly accelerated the analysis of the
mouse embryo data. We found that UMAP finished processing the two-million-
cell dataset in around 3 CPU hours whereas {-SNE took more than 64 CPU hours.
A few implementation details lead to the effectiveness of UM AP. Two major steps
are involved in both the UMAP and #-SNE algorithmes: first, the preprocessing
step before UM AP is similar to Monocle 2. In brief, genes expressed in fewer than
10 cells (or fewer than 5 cells in datasets with fewer than 1,000 cells) were filtered
out. The digital gene-count matrix was first normalized by cell-specific size factor
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Dynamical Systems and Universal Coalgebras

Universal Reinforcement Learning
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From Induction to Coinduction

Machine learning has traditionally been modeled as induction
Identification in the limit: Gold, Solomonoff

PAC Learning: Valiant, Vapnik

Algorithmic Information Theory: Chaitin, Koilmogorov

Occam’s Razor, Minimum Description Length



Coinduction: A New Paradigm for ML

 Generative Al is all about modeling infinite data streams
 Automata, Grammars, Markov processes, LLMs, diffusion models

* Infinite data streams define non-well-founded sets

* Final coalgebras generalize (greatest) fixed points

 Reinforcement learning is an example of coinduction in a coalgebra

 Causal inference is also usefully modeled in coalgebras
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Fundamental Study

Behavioural differential equations: a coinductive
Jan Rutten calculus of streams, automata, and power series™

J.J.M.M. Rutten
CWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

Received 25 October 2000; received in revised form 11 November 2002; accepted 14 November 2002
Communicated by D. Sannella

Abstract

We present a theory of streams (infinite sequences), automata and languages, and formal power
Febr uary 2019 series, in terms of the notions of homomorphism and bisimulation, which are the cornerstones

261 pages of the theory of (universal) coalgebra. This coalgebraic perspective leads to a unified theory, in
which the observation that each of the aforementioned sets carries a so-called fina/ automaton
ISBN 978-90-6196-568-8 structure, plays a central role. Finality forms the basis for both definitions and proofs by coin-
duction, the coalgebraic counterpart of induction. Coinductive definitions take the shape of what
Publisher: CWI, Amsterdam, we have called behavioural differential equations, after Brzozowski’s notion of input derivative.
A calculus 1s developed for coinductive reasoning about all of the afore mentioned structures,

The Netherlands closely resembling calculus from classical analysis.

(© 2002 Elsevier B.V. All rights reserved.




Conductive Inference

Based on non-well-founded sets
Uses the category-theoretic framework of universal coalgebras
Coinduction generalizes (greatest) fixed point analysis

Reinforcement learning: metric coinduction in stochastic coalgebras
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Universal coalgebra: a theory of systems
J.J.M.M. Rutten

CWI, P.O. Box 94079, 1090 GB Amsterdam, Netherlands Towa 'ds
Communicated by M.W. Mislove
Mathematics
Abstrac of States and

In the semantics of programming, finite data types such as finite lists, have traditionally been »
modelled by initial algebras. Later final coalgebras were used in order to deal with infinite data Obse 'va’lon
types. Coalgebras, which are the dual of algebras, turned out to be suited, moreover, as mod-
els for certain types of automata and more generally, for (transition and dynamical) systems.
An important property of initial algebras is that they satisfy the familiar principle of induc-
tion. Such a principle was missing for coalgebras until the work of Aczel (Non-Well-Founded Bart Joc Ob$
sets, CSLI Leethre Notes, Vol. 14, center for the study of Languages and information, Stan-
ford, 1988) on a theory of non-wellfounded sets, in which he introduced a proof principle
nowadays called coinduction. It was formulated in terms of bisimulation, a notion originally
stemming from the world of concurrent programming languages. Using the notion of coalge-
bra homomorphism, the definition of bisimulation on coalgebras can be shown to be formally
dual to that of congruence on algebras. Thus, the three basic notions of universal algebra:
algebra, homomorphism of algebras, and congruence, turn out to correspond to coalgebra, ho-
momorphism of coalgebras, and bisimulation, respectively. In this paper, the latter are taken
as the basic ingredients of a theory called wuniversal coalgebra. Some standard results from
universal algebra are reformulated (using the aforementioned correspondence) and proved for
a large class of coalgebras, leading to a series of results on, e.g., the lattices of subcoalge-
bras and bisimulations, simple coalgebras and coinduction, and a covariety theorem for coalge-
bras similar to Birkhoff’s variety theorem. (¢) 2000 Elsevier Science B.V. All rights reserved.

MSC: 68Q10; 68Q55
PACS: D3; E:1; B3

Keywords: Coalgebra; Algebra; Dynamical system; Transition system; Bisimulation;
Universal coalgebra; Universal algebra; Congruence; Homomorphism; Induction; Coinduction;
Variety; Covariety

E-mail address: janr@cwi.nl (J.J.M.M. Rutten).

0304-3975/00/$ - see front matter (¢) 2000 Elsevier Science B.V. All rights reserved.
PII: S0304-3975(00)00056-6
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Probabilistic systems coalgebraically: A survey
Ana Sokolova*
Department of Computer Sciences, University of Salzburg, Austria
ARTICLE 1INFO ABSTRACT
Keywords: We survey the work on both discrete and continuous-space probabilistic systems as

Probabilistic systems
Coalgebra

Markov chains
Markov processes

coalgebras, starting with how probabilistic systems are modeled as coalgebras and
followed by a discussion of their bisimilarity and behavioral equivalence, mentioning
results that follow from the coalgebraic treatment of probabilistic systems. It is interesting
to note that, for different reasons, for both discrete and continuous probabilistic systems it
may be more convenient to work with behavioral equivalence than with bisimilarity.

© 2011 Elsevier B.V. Open access under CC BY-NC-ND license.

1. Introduction

Probabilistic systems are models of systems that involve quantitative information about uncertainty. They have been
extensively studied in the past two decades in the area of probabilistic verification and concurrency theory. The models
originate in the rich theory of Markov chains and Markov processes (see e.g. [49]) and in the early work on probabilistic
automata [63,61].

Discrete probabilistic systems, see e.g. [49,77,30,55,62,67,33,22,70] for an overview, are transition systems on discrete
state spaces and come in different flavors: fully probabilistic (Markov chains), labeled (with reactive or generative labels), or
combining non-determinism and probability. Probabilities in discrete probabilistic systems appear as labels on transitions
between states. For example, in a Markov chain a transition from one state to another is taken with a given probability.

Continuous probabilistic systems, see e.g. [7,23,26,11,21,45] as well as the recent books [59,27,28] that contain most of
the research on continuous probabilistic systems, are transition systems modeling probabilistic behavior on continuous state
spaces. The basic model is that of a Markov process. Central to continuous probabilistic systems is the notion of a probability
measure on a measurable space. Therefore, the state space of a continuous probabilistic system is equipped with a o-algebra
and forms a measurable space. It is no longer the case that the probability of moving from one state to another determines
the behavior of the system. Actually, the probability of reaching any single state from a given state may be zero while the
probability of reaching a subset of states is nonzero. A Markov process is specified by the probability of moving from any
source state to any measurable subset in the o-algebra, which is intuitively interpreted as the probability of moving from
the source state to some state in the subset.

Both discrete and continuous probabilistic systems can be modeled as coalgebras and coalgebra theory has proved a
useful and fruitful means to deal with probabilistic systems. In this paper, we give an overview of how to model probabilistic
systems as coalgebras and survey coalgebraic results on discrete and continuous probabilistic systems. Having modeled
probabilistic systems as coalgebras, there are two types of results where coalgebra meets probabilistic systems: (1) particular
problems for probabilistic systems have been solved using coalgebraic techniques, and (2) probabilistic systems appear
as popular examples on which generic coalgebraic results are instantiated. The results of the second kind are not to be
considered of less importance: sometimes they lead to completely new results not known in the community of probabilistic
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Coalgy F name for X — FX/reference
MC D Markov chains

DLTS € 411 deterministic automata
LTS PAX )= PA non-deterministic automata, LTSs

React (D &1 reactive systems [55,30]
Gen DAx )+1 generative systems [30]
Str D+Ax )+1 stratified systems [30]
Alt D+PAX ) alternating systems [33]
Var DAxX )+ PAX ) Vardi systems [77]
SSeg PA X D) simple Segala systems [67,66]
Seg PDA X ) Segala systems [67,66]
Bun DPA X ) bundle systems [22]
PZ PDP(A X ) Pnueli-Zuck systems [62]
MG PDPA X ) most general systems

Fig. 1. Discrete probabilistic system types.

RL algorithms can be explored for these stochastic coalgebras!




Final Coalgebras

 In a category of coalgebras, where each object is X -> F(X), a final
coalgebra is an isomorphism X ~ F(X)

* Final coalgebra theorem (Aczel, Mendler): for a wide class of
endofunctors, final coalgebras exist (weak pullbacks)

 RL is essentially coinduction in a coalgebra

V® = R™ + yP*V™ = TXV)



MDP Coalgebras

Any MDP is defined as a tuple M = (S,A,R,P)
Given any action a, it induces a distribution on next states
Any fixed policy defines an induced Markov chain

Markov chains are coalgebras of the distribution functor D

. ayzS%M@(S)



Long-Term Values in
Markov Decision Processes, (Co)Algebraically

Frank M. V. Feys!, Helle Hvid Hansen!, and Lawrence S. Moss?

! Department of Engineering Systems and Services, TPM, Delft University of

Technology, Delft, The Netherlands {f.m.v.feys, h.h.hansen}@tudelft.nl ThiS paper can be
> Department of Mathematics, Indiana University, Bloomington IN, 47405 USA

lsm@cs.indiana. edu GXtended to the RL
setting

Abstract. This paper studies Markov decision processes (MDPs) from
the categorical perspective of coalgebra and algebra. Probabilistic systems,
similar to MDPs but without rewards, have been extensively studied,
also coalgebraically, from the perspective of program semantics. In this
paper, we focus on the role of MDPs as models in optimal planning,
where the reward structure is central. The main contributions of this
paper are (i) to give a coinductive explanation of policy improvement
using a new proof principle, based on Banach’s Fixpoint Theorem, that
we call contraction coinduction, and (ii) to show that the long-term value
function of a policy with respect to discounted sums can be obtained
via a generalized notion of corecursive algebra, which is designed to take
boundedness into account. We also explore boundedness features of the
Kantorovich lifting of the distribution monad to metric spaces.

Keywords: Markov decision process - long-term value - discounted sum
- coalgebra - algebra - corecursive algebra - fixpoint - metric space.



Non-well-founded sets

Non-well-founded sets violate the ZFC+ axioms of set theory

In particular, the axiom of well-foundedness states that there cannot
be any infinite membership chains

Many sets in computer science are not well-founded
Infinite data structures: lists, trees, recursion, stacks
Many Al problems involve non-well-founded sets

« Common knowledge, causality with feedback, natural language



Homomorphisms of Coalgebras

Oty Ay

F(X) ) F(Y)

MDP homomorphisms are a special case of this framework



RL as Metric Coinduction

APPLICATIONS OF METRIC COINDUCTION

DEXTER KOZEN AND NICHOLAS RUOZZI

Computer Science Department, Cornell University, Ithaca, NY 14853-7501, USA
e-mail address: kozen@cs.cornell.edu

Computer Science Department, Yale University, New Haven, CT 06520-8285, USA
e-mail address: Nicholas.RuozziQyale.edu

ABSTRACT. Metric coinduction is a form of coinduction that can be used to establish
properties of objects constructed as a limit of finite approximations. One can prove a
coinduction step showing that some property is preserved by one step of the approximation
process, then automatically infer by the coinduction principle that the property holds of the
limit object. This can often be used to avoid complicated analytic arguments involving
limits and convergence, replacing them with simpler algebraic arguments. This paper
examines the application of this principle in a variety of areas, including infinite streams,
Markov chains, Markov decision processes, and non-well-founded sets. These results point
to the usefulness of coinduction as a general proof technique.

1. INTRODUCTION

Mathematical induction is firmly entrenched as a fundamental and ubiquitous proof
principle for proving properties of inductively defined objects. Mathematics and computer
science abound with such objects, and mathematical induction is certainly one of the most
important tools, if not the most important, at our disposal.

Perhaps less well entrenched is the notion of coinduction. Despite recent interest,
coinduction is still not fully established in our collective mathematical consciousness. A
contributing factor is that coinduction is often presented in a relatively restricted form.
Coinduction is often considered synonymous with bisimulation and is used to establish
equality or other relations on infinite data objects such as streams [20] or recursive types
[11].

Ju o(u Vu o(u) = o(H(u
p(u*

Contraction mapping convergence in MDPs

IS a special case of metric coinduction



Induction vs Coinduction

 Given the class of all (hon)well-founded sets
e X —> F(X) is the powerset coalgebra
e F(X) —> X is the powerset algebra
 The Initial object in the category of algebras is well-founded sets

 The final object in the category of coalgebras is non-well-founded
sets



Final Coalgebras

A final object In a category is defined as one for which there is a
unique morphism into it from any other object

In the category of coalgebras, the final object is called a final
coalgebra

Example: in the coalgebra of finite state automata, the final coalgebra
Is the smallest automaton accepting a language

Example: in the coalgebra of MDPs, the final coalgebra is the
smallest MDP that defines the optimal value function



Lambek’s Lemma

Definition 83. An F'-coalgebra (A, «) is a fixed point for I, written as A ~ F'(A) if « is an isomorphism between A
and F'(A). That is, not only does there exist an arrow A — F'(A) by virtue of the coalgebra «, but there also exists its

inverse o~ : F'(A) — A such that

aoa " =idpa) and " oa =idy

The following lemma was shown by Lambek, and implies that the transition structure of a final coalgebra 1s an
1Isomorphism.

Theorem 23. Lambek: A final /'-coalgebra 1s a fixed point of the endofunctor F'.
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A general final coalgebra theorem

JIRI ADAMEK', STEFAN MILIUS! and JIRI VELEBILS

T+ Institute of Theoretical Computer Science, Technical University of Braunschweig, Germany
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By the Final Coalgebra Theorem of Aczel and Mendler, every endofunctor of the category
of sets has a final coalgebra, which, however, may be a proper class. We generalise this to all
‘well-behaved’ categories 7. The role of the category of classes 1s played by a free
cocompletion . of % under transfinite colimits, that 1s, colimits of ordinal-indexed
chains. Every endofunctor F of % has a canonical extension to an endofunctor F* of &~
which 1s proved to have a final coalgebra (and an 1nitial algebra). Based on this, we prove a
general solution theorem: for every endofunctor of a locally presentable category % all
guarded equation-morphisms have unique solutions. The last result does not need the
extension .# “: the solutions are always found within the category .7 .



Occam's Razor Coalgebraically

 We can now define a coalgebraic version of Occam's Razor
 Given any category of coalgebras, where there is a final coalgebra

 Any other coalgebra must define a uniqgue morphism into the final
coalgebra

 [f this unique morphism is injective (or a monomorphism), the given
coalgebra must be minimal

« States of the final coalgebra define behaviors" (see Jacobs book)



Bisimulation in Coalgebras
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An Extrinsic Theory of AGI



“I propose to consider the question, ‘Can machines think’?" — Alan Turing, Mind, Volume LIX, Issue
236, October 1950, Pages 433—460.
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ABSTRACT

In 1950, Alan Turing proposed a framework called an imitation game in which the participants are
to be classified Human or Machine solely from natural language interactions. Using mathematics
largely developed since Turing — category theory — we investigate a broader class of universal
imitation games (UIGs). Choosing a category means defining a collection of objects and a collection
of composable arrows between each pair of objects that represent “measurement probes" for solving
UIGs. The theoretical foundation of our paper rests on two celebrated results by Yoneda. The
first, called the Yoneda Lemma, discovered in 1954 — the year of Turing’s death — shows that
objects in categories can be identified up to isomorphism solely with measurement probes defined by
composable arrows. Yoneda embeddings are universal representers of objects in categories. A simple
yet general solution to the static UIG problem, where the participants are not changing during the
interactions, is to determine if the Yoneda embeddings are (weakly) isomorphic. A universal property
in category theory is defined by an initial or final object. A second foundational result of Yoneda from
1960 defines initial objects called coends and final objects called ends, which yields a categorical
“integral calculus" that unifies probabilistic generative models, distance-based kernel, metric and
optimal transport models, as well as topological manifold representations. When participants adapt

| [ | |
during interactions, we study two special cases: in dynamic UIGs, “learners" imitate “teachers". We
contrast the initial object framework of passive learning from observation over well-founded sets
using inductive inference — extensively studied by Gold, Solomonoff, Valiant, and Vapnik — with the

final object framework of coinductive inference over non-well-founded sets and universal coalgebras,
which formalizes learning from active experimentation using causal inference or reinforcement
learning. We define a category-theoretic notion of minimum description length or Occam’s razor
based on final objects in coalgebras. Finally, we explore evolutionary UIGs, where a society of
participants is playing a large-scale imitation game. Participants in evolutionary UIGs can go extinct
from “birth-death" evolutionary processes that model how novel technologies or “mutants” disrupt
previously stable equilibria. Given the rapidly rising energy costs of playing imitation games on
classical computers, it seems likely that tomorrow’s imitation games may have to played on non-
classical computers. We end with a brief discussion of how our categorical framework extends to
imitation games on quantum computers.
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Extrinsic AGI Framework



An Intrinsic Theory of AGI



What is our AGl Framework?

 Each AGI modality defines a category called a

* Objects in the category define entities, and arrows specify their interaction
 An AGI “mind” has to synthesize multiple AGI modalities

. to build a causal model

. to take actions

 Communication with language

* Topos theory shows us how to build AGI minds



Set Theory vs Topos Theory

Set theory Topos theory
set object
subset subobject
truth values {0, 1} subobiject classifier ()
power set P(A) = 24 power object P(A) = Q4
bijection isomorphims
injection mMonic arrow
surjection epic arrow
singleton set {#} terminal object 1
empty set () initial object 0
elements of a set X morphism f :1 — X
- functors, natural transformations
- limits, colimits, adjunctions




Topos as a Category

A topos is a category that
 Has all limits and colimits

e Has or an internal hom-object



Limits and Colimits

* Limits and colimits are abstractions of common mathematical constructs
e Limits: meet, max, supremum, product,...
e Colimits: join, min, infimum, coproduct,...

 They are defined by universal properties
 Alimitis a final object in a category of diagrams

* A colimit is an initial object in a category of diagrams



Limits and colimits:
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A limit is an object in C A colimit is an object in C

Universal cone under LimF Universal cone over colimF



Exponential Objects

* Given a category C with products:
 For each object c: definea functorF:c*? —>c: C —>C
* |f functor F has a right adjoint G: (-)¢: C —> C

 We say C has exponential objects



Subobject Classifier

Set theory Topos theory
S > 1 S > 1
M oo 5 N PR . O
Let X = natural numbers X Is an arbitrary object, S is a subobject:

Let S = prime numbers Causal model, deep learning model



Topos of Graphs

G S
Graphs as a Topos ., > L (t)
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Yoneda embedding:

C(= V): {1v}

C(-, BE): {s, t, 1€} [Vigna, Arxiv, 2003]



Stream of tokens from/to A Stream of tokens from/to B

<: Human or Machine? >

@Q \/X A
\

Participant A Participant B

Tester

Count me out on this one. I never could write poetry.

C(X.-)

Evaluator < Participant X

Please write me a sonnet on the subject of the Forth Bridge.




Quantum Computing and AGI



Quantum Computing in Categories
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Abstract

We study quantum information and computation from a
novel point of view. Qur approach is based on recasting
the standard axiomatic presentation of quantum mechan-
ics, due to von Neumann (28], at a more abstract level, of
compact closed categories with biproducts. We show how
the essential structures found in key quantum information

protocols such as teleportation 5], logic-gate teleportation

[12], and entanglement swapping [29] can be captured at
this abstract level. Moreover, from the combination of the
— apparently purely qualitative — structures of compact
closure and biproducts there emerge ‘scalars’ and a ‘Born
rule’. This abstract and structural point of view opens up
new possibilities for describing and reasoning about quan-
tum systems. It also shows the degrees of axiomatic free-
dom: we can show what requirements are placed on the
(semi)ring of scalars C(1,1), where C is the category and
I is the tensor unit, in order to perform various proto-
cols such as teleportation. Qur formalism captures both
the information-flow aspect of the protocols 8, 9], and the

tation [12], and entanglement swapping [29]. The 1deas
illustrated in these protocols form the basis for novel and
potentially very important applications to secure and fault-
tolerant communication and computation [7, 12, 20].

We now give a thumbnail sketch of teleportation to mo-
tivate our introductory discussion. (A more formal ‘stan-
dard’ presentation 1s given in Section 2. The — radically
different — presentation in our new approach appears in
Section 9.) Teleportation involves using an entangled pair
of qubits (qa,gp) as a kind of communication channel to
transmit an unknown qubit ¢ from a source A (‘Alice’) to a
remote target B (‘Bob’). A has g and g4, while B has ¢g.
We firstly entangle g4 and ¢ at A (by performing a suitable
unitary operation on them), and then perform a measure-
ment on g4 and qm This forces a ‘collapse’ in g because
of its entanglement with g4. We then send two classical
bits of information from A to B, which encode the four
possible results of the measurement we performed on ¢ and
qa. Based on this classical communication, B then per-
forms a ‘correction’ by applying one of four possible oper-
ations (unitary transformations) to ¢p, after which gp has



DisCoPy is a Python toolkit for computing with string diagrams.

» Documentation: https://docs.discopy.org
o Repository: https://github.com/discopy/discopy
Why?
Applied category theory is information plumbing. It’s boring... but plumbers save

lives than doctors.

As string diagrams become as ubiquitous as matrices, they need their own fundz
package: DisCoPy.
How?

DisCoPy began as an implementation of:

° DisCoCat (distributional compositional categorical) models,
o and QNLP (guantum natural language processing).

This application has now been packaged into its own library, lambeq.

Who?

e Giovanni de Felice (CEO)

@ Alexis Toumi (COO)

° Richie Yeung (CFO)

e Boldizsar Poor (CTO)

s Bob Coecke (Honorary President)

Diagrammatic Differentiation
for Quantum Machine Learning

Alexis Toumi*", Richie Yeung', Giovanni de Felice*"

* Department of Computer Science, University of Oxford T Cambridge Quantum Computing Ltd.

We introduce diagrammatic differentiation for tensor calculus by generalising the dual number con-
struction from rigs to monoidal categories. Applying this to ZX diagrams, we show how to calculate
diagrammatically the gradient of a linear map with respect to a phase parameter. For diagrams
of parametrised quantum circuits, we get the well-known parameter-shift rule at the basis of many
variational quantum algorithms. We then extend our method to the automatic differentation of hybrid
classical-quantum circuits, using diagrams with bubbles to encode arbitrary non-linear operators.
Moreover, diagrammatic differentiation comes with an open-source implementation in DisCoPy, the
Python library for monoidal categories. Diagrammatic gradients of classical-quantum circuits can
then be simplified using the PyZX library and executed on quantum hardware via the tket compiler.
This opens the door to many practical applications harnessing both the structure of string diagrams
and the computational power of quantum machine learning.

Introduction

String diagrams are a graphical language introduced by Penrose [33] to manipulate tensor expressions:
wires represent vector spaces, nodes represent multi-linear maps between them. In [34], these diagrams
are used to describe the geometry of space-time and an extra piece of notation is introduced: the covariant
derivative 1s represented as a bubble around the tensor to be differentiated. Joyal and Street [25, 26]
characterised string diagrams as the arrows of free monoidal categories, however their geometry of tensor
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Meaning arises out of words In a sentence using ‘quantum entanglement

single-system state GHZ-state two-system state single-system state
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https://medium.com/cambridge-quantum-computing/quantum-natural-language-
processing-/48d6f27b31d
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DisCoPy

The Python toolkit for computing with string diagrams

DisCoPy is a Python toolkit for computing with string diagrams.

° Documentation: https://docs.discopy.org
s Repository: https://github.com/discopy/discopy

Why?
Applied category theory is information plumbing. It's boring... but plumbers save more

lives than doctors.

As string diagrams become as ubiquitous as matrices, they need their own fundamental
package: DisCoPy.

How?

DisCoPy began as an implementation of:

@ DisCoCat (distributional compositional categorical) models,
s and QNLP (quantum natural language processing).

This application has now been packaged into its own library, lambeq.

Who?

° Giovanni de Felice (CEO)

° Alexis Toumi (COQ)

° Richie Yeung (CFO)

° Boldizsar Podér (CTO)

° Bob Coecke (Honorary President)

Want to contribute or just ask us a question? Get in touch on Discord!
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The Building Blocks

Objects Functor F —= >
Nat. Trans. i N FQ
Functor G
Category C Category D

Category Theory is all about compositionality

The category of all categories is a category!



How to think with functors

. and

 What are the generic objects and arrows of a category??

 What universal properties does the category satisfy?
 How to define adjoint functors between a category and other categories?
 How to convert a category into a simplicial set or a topos”?

. X —> C(-, X)



Many Applications in A(G)l

Machine Learning

 New ways to model deep learning, manifold learning clustering
Probabilistic and causal inference

 Markov categories show how to reason with string diagrams
Reinforcement learning over universal coalgebras

* A new way to think about state using functors

A new compositional framework for AGI



