Imagination Machines: A New Challenge for Artificial Intelligence

Sridhar Mahadevan
sridhar.i.mahadevan@gmail.com
College of Information and Computer Sciences
140 Governor’s Drive
Ambherst, MA 01003

Abstract

The aim of this paper is to propose a new overarching chal-
lenge for Al: the design of imagination machines. Imagina-
tion has been defined as the capacity to mentally transcend
time, place, and/or circumstance. Much of the success of Al
currently comes from a revolution in data science, specifi-
cally the use of deep learning neural networks to extract struc-
ture from data. This paper argues for the development of a
new field called imagination science, which extends data sci-
ence beyond its current realm of learning probability distri-
butions from samples. Numerous examples are given in the
paper to illustrate that human achievements in the arts, liter-
ature, poetry, and science may lie beyond the realm of data
science, because they require abilities that go beyond finding
correlations: for example, generating samples from a novel
probability distribution different from the one given during
training; causal reasoning to uncover interpretable explana-
tions; or analogical reasoning to generalize to novel situations
(e.g., imagination in art, representing alien life in a distant
galaxy, understanding a story about talking animals, or in-
venting representations to model the large-scale structure of
the universe). We describe the key challenges in automating
imagination, discuss connections between ongoing research
and imagination, and outline why automation of imagination
provides a powerful launching pad for transforming Al

“Imagination is more important than knowledge.
Knowledge is limited. Imagination encircles the
world.” — Albert Einstein

‘Imagine there’s no countries. It isn’t hard to do. Noth-
ing to kill or die for. And no religion too” — Song by
John Lennon

Artificial intelligence is poised to become the “electric-
ity” of our age (Ng 2016), transforming industries across a
wide spectrum of areas, from autonomous driving to voice-
activated virtual personal assistants. However, these suc-
cesses of Al, powered by data science (Murphy 2013) and
deep learning (Goodfellow, Bengio, and Courville 2016),
may not be sufficient for Al to be capable of matching hu-
man capabilities in the long run. This paper focuses specif-
ically on one core capability — imagination — and discusses
why its automation may be fundamental to the continuing
success of Al in the coming decades.
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Figure 1: Jean-Michel Basquiat’s untitled painting of a hu-
man skull sold recently at a New York auction for over 100
million dollars. Art is a paradigmatic example of the imagi-
native capacity of humans.

The Oxford Handbook of the Development of Imagina-
tion defines imagination as the capacity to mentally tran-
scend time, place, and/or circumstance (Taylor 2013).
Einstein prized imagination because it enabled him to pose
hypothetical questions, such as “What would the world look
like if I rode a beam of light”, a question that led him to de-
velop the revolutionary theory of special (and later, general)
relativity. Imagination is a hallmark of counterfactual and
causal reasoning (Pearl 2009). Imagination also provides the
foundational basis for art (see Figure 1). Basquiat’s painting
illustrates what is special about imagination in art: fidelity to
the original is not the objective here, but rather the striking
use of colors and textures to signify an illusion.

In John Lennon’s famous song “Imagine”, he asks us
to contemplate a world without countries, an abstraction
of reality that is a hallmark of imaginative thinking. In
Beethoven’s Pastoral symphony, each of the five movements
portrays a particular aspect of nature, from the slow move-
ment depicting the motion of a stream to the strenuous
fourth movement depicting the arrival of a storm and thun-
der. Imagination plays a central role in the lives of children



and adults. The runaway success of the Harry Potter se-
ries shows what a gifted writer can accomplish in holding
the attention of children, highlighting the crucial role that
make-believe plays in the formative years of children. Won-
der Woman was the smash $1 billion Hollywood hit of the
year, showing once again that the world of fantasy and imag-
ination is one sure fire way to create a money making movie.

Although imagination has attracted the attention of some
researchers, the early work on this topic has been somewhat
limited in scope (Alexander 2001), and more recent work
has explored this topic in rather restricted situations (Pas-
canu et al. 2017; Elgamman et al. 2017). This brief paper
summarizes several converging lines of argument as to why
imagination machines constitutes a broad comprehensive re-
search program that has the potential to transform Al in the
next few decades. Imagination is one of the hallmarks of
human intelligence (Asma 2017), an ability that manifests
itself in children at a very young age, and prized by soci-
ety in many endeavors, from art (see Figure 1) and litera-
ture to science. It represents an area largely ignored by most
Al research, although tantalizing glimpses of the power of
imagination are beginning to manifest themselves in differ-
ent strands of current Al research, as will be discussed be-
low.

As work by the Nobel-prize winning economist Daniel
Kahneman (with his late colleague, Amos Tversky) has
shown, based on many empirical studies, human decision
making does not conform to the maxims of expected utility
theory. Faced with a “lottery” (a decision problem with sev-
eral uncertain outcomes with different payoffs), human de-
cision making often does not result in picking choices that
have the maximum expected utility. Year after year, in state
after state, millions of Americans buy lottery tickets, be-
cause they can “imagine” themselves winning and becom-
ing rich, despite the vanishingly small probability of win-
ning. Clearly, for many humans, imagination in this case
(mis)guides their actions into violating the principle of max-
imizing expected utility.

From Data Science to Imagination Science

“A theory is not like an airline or bus timetable. We
are not interested simply in the accuracy of its predic-
tions. A theory also serves as a base for thinking. It
helps us to understand what is going on by enabling
us to organize our thoughts. Faced with a choice be-
tween a theory which predicts well but gives us little
insight into how the system works and one which gives
us this insight but predicts badly, I would choose the
latter, and I am inclined to think that most economists
would do the same.” — Ronald Coase, Nobel-prize win-
ning economist.

“I now take causal relationships to be the fundamental
building blocks both of physical reality and of human
understanding of that reality, and I regard probabilis-
tic relationships as but the surface phenomena of the
causal machinery that underlies and propels our under-
standing of the world”. — Judea Pearl, Causality.

The ability to coax structure out of large datasets, partic-

Figure 2: Generative Adversarial Networks (GANs) (Good-
fellow et al. 2014) can create images from samples of a fixed
distribution, but imaginative art such as Basquiat’s painting
in Figure 1 require going beyond reproducing existing art. A
variant of a GAN, called a “creative adversarial network™ at-
tempts to generate “novel” art (Elgamman et al. 2017), pro-
ducing the images shown above.

ularly for difficult to program tasks, such as computer vi-
sion, speech recognition, and high-performance game play-
ing, has led to significant successes of machine learning in a
variety of real-world tasks, particularly using deep learning
approaches. Broadly speaking, machine learning or data sci-
ence is the process of constructing a probability distribution
from samples, or equivalently being able to generate new
samples from given samples that fool an expert discrimina-
tor (Goodfellow et al. 2014).

The fundamental difference between data science and
imagination science is that the latter extends to realms far
beyond the former: for example, imagination science ad-
dresses the problem of generating samples that are “novel”,
meaning they come from a distribution different from the
one used in training. Imagination science also addresses the
problem of causal reasoning to uncover simple explanations
for complex events, and uses analogical reasoning to under-
stand novel situations.

Can computers produce novel art like Basquiat’s paint-
ing? Recent work on a variant of a generative adversar-
ial network called CAN (for Creative Adversarial Network)
(see Figure 2) shows that computers can be trained to pro-
duce images that are both art, as well as differ from stan-
dard styles, like impressionism or cubism. While CANs are
a useful step forward, building on Berlyne’s theory of nov-
elty (Berlyne 1960), their architecture is currently specific
to art, and not general enough to provide a computational
framework for imagination. However, it does suggest one
possible avenue to designing an Imagination Network archi-
tecture. Other extensions of GAN models, such as Cycle-
GAN (Zhu et al. 2017), are suggestive, but such extensions
are at present tailored to visual domains, and even in that cir-
cumscribed setting, only capable of specific generalizations
(e.g., turning Monet styled watercolor paintings into what



look like digital photographs of the original scene).

Most machine learning is based on the discovery and ex-
ploitation of statistical correlations from data, including ap-
proaches using parametric graphical model representations
(Murphy 2013) or kernel-based non-parametric representa-
tions (Scholkopf and Smola 2002), and most recently, non-
linear neural net based models (Goodfellow, Bengio, and
Courville 2016). Correlation, as has been pointed out many
times, is not causation, however, and causal reasoning is one
of the primary hallmarks of human imaginative reasoning
(Pearl 2009). One of the primary rationales for causal rea-
soning is the need to provide comprehensible explanations,
which will become increasingly important as autonomous
systems play an ever larger role in society. A self-driving
car that gets involved in an accident may be required to pro-
vide an explanation of its behavior, much as a human driver
would, and such explanations often take on a causal form
(see Figure 3).

A hallmark of imagination is the ability to reason about
counterfactuals (Pearl 2009). The links between causal rea-
soning and imagination are explored from a probabilistic
Bayesian perspective in (Walker and Gopnik 2013). Humans
seek causal explanations because they want to understand
the world in simple “cause-effect” relationships. They make
analogies to interpret strange worlds, like the interior of an
atom, in terms of worlds they understand, like the solar sys-
tem, even though such analogies are imperfect. As Coase
suggests above, humans desire interpretable explanations,
even at the expense of fidelity to reality.

Imaginative Perception: Labels to Affordances

“Although the field of A.L is exploding with microdis-
coveries, progress toward the robustness and flexibility
of human cognition remains elusive. Not long ago, for
example, while sitting with me in a cafe, my 3-year-old
daughter spontaneously realized that she could climb
out of her chair in a new way: backward, by sliding
through the gap between the back and the seat of the
chair. My daughter had never seen anyone else disem-
bark in quite this way; she invented it on her own and
without the benefit of trial and error, or the need for ter-
abytes of labeled data.” — Gary Marcus, Artificial Intel-
ligence is Stuck: Here’s how to Move it forward., New
York Times Sunday Review, July 29, 2017.

Alison Gopnik, a well known psychologist, in a recent
article in Scientific American titled “Making AI More Hu-
man”, marveled at the fact that “my five-year-old grand-
son, Augie, has learned about plants, animals and clocks,
not to mention dinosaurs and spaceships. He also can fig-
ure out what other people want and how they think and
feel. He can use that knowledge to classify what he sees
and hears and make new predictions”(Gopnik 2017). One
of the successes of machine learning, specifically deep neu-
ral networks (Goodfellow, Bengio, and Courville 2016), is
object recognition. Performance on certain fixed datasets,
such as Imagenet, has been steadily improving (Krizhevsky,
Sutskever, and Hinton 2017). Under certain specific con-
ditions, where large amounts of labeled datasets are avail-

able for narrowly defined tasks, deep learning approaches
are able to exceed human level performance, a remarkable
achievement. However, these results have to be interpreted
with caution. There are as yet no well-defined procedures
for extracting interpretable explanations from deep learning
networks, and innocuous amounts of imperceptible noise ap-
pear sufficient to make a deep learning network guess the
wrong label (Nguyen, Yosinski, and Clune 2015).

Children, such as Augie, generally do not excel at high-
performance problem-solving in narrowly constrained prob-
lems, be it Imagenet or Go (Silver et al. 2016) or Jeop-
ardy (Tesauro et al. 2014), but rather demonstrate extremely
versatile competence at comprehending the world in all its
multi-modal richness and dimensionality. Al researchers fo-
cusing almost entirely at superhuman performance on arti-
ficial datasets or puzzles are at risk of losing sight of what
makes humans like Augie truly special. Challenge tasks in
computer vision, speech recognition, and other areas, focus
on the ability to label a particular object or scene (or tran-
scribe a given dialog), where the emphasis is on expert level
ability given a statically defined task. Children, in contrast,
are capable of learning in a much more fluid manner, coping
with significant variability between training and test distri-
butions, and they seem to be able to learn quite effectively
without requiring much explicit labeling.

Recent work is beginning to address the importance of
imaginative causal reasoning in enabling neural net ap-
proaches to learn more effectively without labels (Stewart
and Ermon 2017). However, a child interprets objects with
an imaginative flexibility that lies far beyond what any Al
system can accomplish today. To a child, a chair may serve
as a hiding place, by crouching under it, or a stool, to re-
trieve another object placed beyond reach on a high table. In
other words, using the terminology introduced by the psy-
chologist James Gibson, imaginative thinking in perception
revolves centrally around the core concept of “affordances”:
an object is perceived in terms of the actions it enables an
agent to do, and not purely in terms of a descriptive label
(Gibson 1977). A bed may suggest lying down to an adult,
but to a child, it means many different things, including the
ability to jump up and down on it, as children are apt to do.
Affordances are also essential to the design of everyday ap-
pliances (Norman 2002).

What would it take to develop “Imagination Networks”,
an imaginative perceptual system that is able to interpret im-
ages with the same flexibility and richness of behavior that
Gary Marcus’ 3 year old child demonstrates, or the breadth
of knowledge of Alison Gopnik’s five-year-old grandson,
Augie? For one, the ability to recognize and exploit affor-
dances. Second, the ability to integrate perceptual informa-
tion into an agent’s goals, which are entirely a function of
the agent’s body. Affordances, like being able to get in and
out of small openings in the back of a chair, depend on an
agent’s physical size and its capabilities. Simulated agents
that function in video games, such as Atari, may have affor-
dances that depend on their particular capabilities. Imagina-
tive perception also plays a key role in other perceptual abil-
ities, such as interpreting speech intonations and emotions,
as well as body gestures. Affordances play a central role
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(a) ALVINN learned to drive from  (b) Imagination in ALVINN
human supervised data.

Figure 3: ALVINN (Pomerleau 1989) was an early attempt
at building a self-driving vehicle that learned from observing
human driving behavior. To accelerate learning, ALVINN
employed a simple causal model of driving to imagine many
hypothetical driving situations from each real experience.

in connecting objects with the actions they enable agents
to undertake. The computation of affordances is an impor-
tant objective for extending current work in deep learning
for computer vision. Work on affordance recognition is still
in its infancy, but important steps have been taken (Rome,
Hertzberg, and Dorffner 2008). We discuss below how affor-
dances can be learned by recognizing topological features in
environments.

Imagination in Problem Creation

“Perhaps no single phenomenon reflects the positive
potential of human nature as much as intrinsic moti-
vation, the inherent tendency to seek out novelty and
challenges, to extend and exercise one’s capacities, to
explore, and to learn. Developmentalists acknowledge
that from the time of birth, children, in their healthiest
states, are active, inquisitive, curious, and playful, even
in the absence of specific rewards” (Ryan and Deci
2000).

Much Al research has been focused on problem solving,
but imagination provides the ability to do problem creation.
A landmark early example was Doug Lenat’s AM system
(Lenat and Brown 1983), which was able to conjecture a
large number of interesting theorems in elementary num-
ber theory (but lacked the ability to prove any of them). We
now have many sophisticated ways to solve large Markov
decision processes (Sutton and Barto 1998), but we lack the
knowhow to create new MDPs. Deep reinforcement learn-
ing agents (Mnih et al. 2015) can play a precisely formu-
lated Atari video game endlessly without getting bored, but
the ability to create a new Atari video game remains com-
pletely out of reach of these systems. Yet, game design is a
hallmark of imagination in human game developers, a skill
whose success can be measured in billions of dollars of rev-
enue.

It has long been recognized that reinforcement learning
systems require the human to supply a reward function of the
task. Yet, children seem capable of learning a wide variety
of tasks, seemingly without explicit reward functions being
supplied. One possible way humans acquire rewards is to
learn them from observing the behavior of other humans, an

approach referred to as inverse reinforcement learning (Ng
and Russell 2000).

Another hallmark of imagination is the ability to get cu-
rious, to seek out novel situations, and to get bored solv-
ing the same problem repeatedly. Increasingly, many CEOs
and managers have recognized is that excellence is often a
by product of giving humans more autonomy in their work
(Pink 2009). Intrinsic motivation has been studied in psy-
chology for several decades (Ryan and Deci 2000), and now
receiving increasing attention in machine learning (Singh,
Barto, and Chentanez 2004).

Imagination in Language: Metaphors

“I done wrestled with an alligator, I done tussled with
a whale; handcuffed lightning, thrown thunder in jail;
only last week, I murdered a rock, injured a stone, hos-
pitalized a brick; I'm so mean I make medicine sick.” —
Muhammad Ali.

Metaphors play a crucial role in language (Lakoff and
Johnson 1980), where phrases like “The stock market
crashed” are apt to be used in everyday language. The cre-
ative use of metaphors in language, such as the above quota-
tion from Muhammad Ali, shows the power of imagination
in language. Recent successes in natural language process-
ing, such as machine translation, build on deep learning se-
quence learning models, such as long short-term memory
(LSTM) (Gers et al. 2002). However, the ability to under-
take routine translation is far removed from the ability to
creatively use language.

Recently, several techniques have emerged for mapping
words into vectors, like word2vec (Mikolov, Yih, and
Zweig 2013) or GLOVE (Pennington, Socher, and Manning
2014). Such word embedding systems can be trained on a
large corpus of words, like Wikipedia, and produce continu-
ous representations, which can be used to reason about lin-
guistic relations (such as “Man is to Woman as King is to
X”). A significant challenge remains in showing how word
embedding techniques can be extended so that they can pro-
vide the basis for generating new metaphors or richly de-
scriptive phrases of the sort quoted above, which lie at the
heart of imaginative language use. What insights will enable
Al to generate imaginative poetry?

”Beauty is truth, truth beauty, — that is all
Ye know on earth, and all ye need to know.” Ode on a
Grecian Urn, John Keats.

Probabilistic Imaginative Models

Thus far, the paper has discussed the problem of design-
ing imagination machines in a non-technical manner. In this
last section, we briefly sketch out some ideas for how to
develop a more rigorous mathematically-based theory of
imagination. Machine learning is based on the core concept
of a probabilistic generative model (PGM) (Murphy 2013),
which concisely summarizes the distribution that generates
both the training as well as the test datasets. Examples of
PGMs include Gaussian mixture models, hidden Markov
models, and Bayesian networks. Building on this concept,
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Figure 4: This figure illustrates the difference between a
probabilistic generative model PGM and a probabilistic
imaginative model (PIM).

we introduce in this section the idea of probabilistic imagi-
native models (PIMs), which attempt to capture the essence
of imagination science, and how it extends data science (see
Figure 4). Broadly speaking, each PGM is represented by a
point on a PIM, so the latter represents not a single dataset,
but an entire universe of datasets, and its geometry is used
to construct imagination routines.

In a probabilistic generative model, such as the simple
Gaussian 2D ellipsoid illustrated in Figure 4a, samples from
the training distribution are used to construct a generative
model, in this case a 2D Gaussian, that with high likeli-
hood produced the training data. In a probabilistic imagi-
native model, as shown in Figure 4b, each training set cor-
responds to a single point in a so-called imagination space.
In this example, the space of covariance matrices is mod-
eled as a homogeneous space, namely a curved Riemannian
manifold that is acted upon by a continuous Lie group of in-
vertible matrices. Every point on the manifold corresponds
to a different dataset, and a different distribution. Given a
training set of data points, and an unlabeled target set of
data points, the process of constructing a PIM corresponds to
finding a shortest path geodesic between the source and tar-
get datasets. It is possible to construct a new set of features
from the training dataset that is shaped by the test samples,
such as for example constructing the geometric mean (or
sharp mean) of the source and target data covariances. Points
along the geodesic correspond to imagined datasets, which
have not previously been seen by the learner, but nonetheless
represent valid possible points in the imagination space.

The homogeneous space constructed in Figure 4b is a spe-
cial case of a much more general concept in mathematics
called a fiber bundle (Husemller 1994), which represents a
parameterized space that satisfies certain properties. For ex-
ample, a Riemannian manifold is a fiber bundle, compris-
ing of a base space of points, at each of which can be con-
structed a tangent space of fibers. Each such tangent space
can be linked to other tangent spaces using the procedures
developed in differential geometry. Interestingly, probabilis-
tic imaginative models based on fiber bundles are signifi-
cantly superior to linear vector-based approaches at captur-
ing properties of linguistic relations (Mahadevan and Chan-
dar 2015).

(a) Montezuma’s Revenge

(b) Proto-value function

Figure 5: This figure illustrates how proto-value functions
(PVFs) can be used to construct imagination spaces, and
subsequently used to solve difficult control learning tasks.

Proto-Value Functions

We now turn to provide a second example of how to con-
struct imagination spaces, based on the author’s previous
work on proto-value functions (PVFs) (Mahadevan 2005).
Proto-value functions are task-independent value functions
that are constructed from a reinforcement learning agent’s
random trial and error exploration through a state (action)
space. Unlike pre-defined bases, like the radial basis func-
tion (RBF) or CMAC, PVFs adapt to the nonlinear geom-
etry of a state (action) space, as shown in Figure 5b. In
this example, the particular PVF represents an eigenfunc-
tion of the graph Laplacian operator defined on the space
of all functions on the (discrete) state space of a environ-
ment with two rooms connected by a door. The PVF shows
clearly the geometry of the space, and the bottleneck that
exists between the two rooms. Figure 5a shows one of the
Atari video games called Montezuma’s Revenge, which the
standard DQN deep RL approach completely failed to solve
(Mnih et al. 2015). However, recent work (Machado, Belle-
mare, and Bowling 2017) has shown that PVFs can be used
to construct eigenpurposes, intrinsically rewarded behavior
where each PVF is treated as an internally generated task-
independent value function, using which a deep Q-learner
can bootstrap itself to solve this difficult Atari video game.
Mathematically, the space of all possible eigenfunctions on
a state (action) space can be decomposed into a flag mani-
fold (Monk 1959), a special type of homogeneous space that
is also a fiber bundle. A flag manifold is a nested series of
subspaces, where each subspace is defined as the span of a
corresponding set of PVFs.
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