
Learning Representation and Control In Continuous Markov Decision Processes

Sridhar Mahadevan ∗

Department of Computer Science
University of Massachusetts

140 Governor’s Drive
Amherst, MA 01003

mahadeva@cs.umass.edu

Mauro Maggioni
Program in Applied Mathematics

Department of Mathematics
Yale University

New Haven,CT,06510
mauro.maggioni@yale.edu

Kimberly Ferguson, Sarah Osentoski
Department of Computer Science

University of Massachusetts
140 Governor’s Drive
Amherst, MA 01003

(kferguso,sosentos)@cs.umass.edu

Abstract

This paper presents a novel framework for simultane-
ously learning representation and control in continuous
Markov decision processes. Our approach builds on the
framework of proto-value functions, in which the un-
derlying representation or basis functions are automati-
cally derived from a spectral analysis of the state space
manifold. The proto-value functions correspond to the
eigenfunctions of the graph Laplacian. We describe an
approach to extend the eigenfunctions to novel states us-
ing the Nystr̈om extension. A least-squares policy itera-
tion method is used to learn the control policy, where the
underlying subspace for approximating the value func-
tion is spanned by the learned proto-value functions.
A detailed set of experiments is presented using clas-
sic benchmark tasks, including the inverted pendulum
and the mountain car, showing the sensitivity in per-
formance to various parameters, and including compar-
isons with a parametric radial basis function method.

Introduction
This paper describes a novel framework for learning con-
trol tasks in continuous state spaces, building on the frame-
work of proto-value functions (Mahadevan 2005). Unlike
traditional approaches based on parametric function approx-
imation (Bertsekas & Tsitsiklis 1996), where the basis func-
tions are usually designed by a human, proto-value func-
tions are task-independent basis functions whose structure
is automatically learned from samples of the underlying
state space manifold. Consequently, their structure captures
large-scale geometric invariants, including bottlenecksand
symmetries. Proto-value functions can be learned in a vari-
ety of ways. “Off-policy” Fourier proto-value functions are
formed from spectral analysis of the graph Laplacian, whose
eigenfunctions form a complete orthonormal basis. In con-
trast, “on-policy” proto-value functions are learned by mul-
tiscale wavelet decomposition of the transition matrix of a
policy directly (Maggioni & Mahadevan 2006).

Previous work on proto-value functions was restricted to
discrete state spaces. The main contribution of this paper

∗This research was supported in part by the National Science
Foundation under grants IIS-0534999 and DMS-051050.
Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

is a detailed study of proto-value functions in continuous
state spaces, which present significant challenges not en-
countered in discrete state spaces. The eigenfunctions can
only be computed and stored on sampled real-valued states,
and hence must be interpolated to novel states. We ap-
ply the Nystr̈om interpolation method. While this approach
has been studied previously in kernel methods (Williams &
Seeger 2000) and spectral clustering (Belongieet al. 2002),
our paper presents the first detailed study of the Nyström
method for learning control, as well as a detailed compari-
son of graph normalization methods.

Markov Decision Processes
A continuous state Markov decision process (MDP)M =
〈S,A, P a

ss′ , Ra
ss′〉 is defined by a set of statesS ⊂ R

d, a
set of discrete actionsA, a transition modelP a

ss′ specify-
ing the distribution over future statess′ when an actiona
is performed in states, and a corresponding reward model
Ra

ss′ specifying a scalar cost or reward. Usually, continuous
control tasks are specified by some underlyingcontroller or
plant st+1 = f(st, at, σt) which specifies a functional map-
ping of a statest into a new statest+1 in response to the con-
trol or action selectedat and some (parametrically modeled)
noise termσt. In our paper, we do not assume either the con-
tinuous control system or the noise model is known. A value
function is a mappingS → R; in discrete state spaces, it can
be viewed as a vector∈ R

|S|. Given a policyπ : S → A
mapping states to actions, its corresponding value function
V π specifies the expected long-term discounted sum of re-
wards received by the agent in a states when actions are
chosen using the policy. Any optimal policyπ∗ defines the
same unique optimal action value functionQ∗(s, a) which
satisfies the nonlinear constraints

Q
∗

(s, a) =

∫

s′

P a
ss′

(

Ra
ss′ + max

a′
γQ∗(s′, a′)

)

ds′

A more detailed treatment can be found in standard treatises
on MDPs (Puterman 1994).

Representation Policy Iteration
Representation policy iteration (RPI) is a novel algorithm
for approximate policy iteration (Mahadevan 2005), where
the subspace for projecting the value function is constructed

from the spectral analysis of a graph. RPI can be viewed
as an enhancement of least-squares policy iteration (LSPI)
to include a basis learning step (Lagoudakis & Parr 2003).
The graph is constructed from a random walk of transitions
generated from the current policy. RPI approximates the true
action-value functionQπ(s, a) for a policyπ using a set of
basis functionsφ(s, a) computed from a graph formed from
an initial random walk:

Q̂π(s, a;w) =

k
∑

j=1

φj(s, a)wj

where thewj are weights or parameters that can be deter-
mined using a least-squares method. Given a data setD of
states∈ R

d visited during a random walk, wherek = |D|,
let Qπ be a real (column) vector of sizek × |A|. The col-
umn vectorφ(s, a) is a real vector of sizek where thejth

row corresponds to the basis functionφj(s, a) evaluated at
the state action pair(s, a), wheres ∈ D. The approximate
action-value function can be written aŝQπ = Φwπ, where
wπ is a real column vector of lengthk andΦ is a real matrix
with k × |A| rows andk columns. We use the Nystrom
extension to compute the value function across the entire
state spaceS ⊂ R

d. RPI solves a fixed-point approxima-
tion TπQπ ≈ Qπ, whereTπ is the Bellman backup operator,
yielding the following solution for the coefficients:

wπ =
(

ΦT (Φ − γPΠπΦ)
)−1

ΦT R

whereΠπ is a|S|×|S||A| matrix defining a stochastic policy
Πpi(s, (s, a)) = π(a|s). Since the transition dynamics are
unknown, a sampling technique is used to learn the state-
action value function̂Qπ.

Ãt+1 = Ãt + φ(st, at) (φ(st, at) − γφ(s′t, π(s′t)))
T

b̃t+1 = b̃t + φ(st, at)rt

(st, at, rt, s
′
t) is thetth sample of experience from a trajec-

tory generated by the agent (using some random or guided
policy). RPI, like LSPI, solves the linear system of equations
Ãw̃π = b̃ to find the coefficients̃wπ.

Spectral Analysis of Graphs
In this paper, proto-value functions are Fourier global bases
computed “off-policy” through a spectral analysis of a ran-
dom walk on the graph, in particular by a spectral analy-
sis of the graph Laplacian on samples∈ R

d representing
states traversed during a random walk. LetG = (V,E,W)
denote a weighted undirected graph with verticesV , edges
E and weightswij on edge(i, j) ∈ E. The degree of a
vertexv is denoted asdv. The adjacency matrixA can be
viewed as a binary weight matrixW . The graph Laplacian
is a discrete version of the Laplacian on a Riemannian man-
ifold. A well-known classical result calledHodge’s theo-
rem states that the eigenfunctions of the Laplacian provide
a complete basis for functions on a Riemannian manifold
(Rosenberg 1997). LetD be the valency matrix, in other
words a diagonal matrix whose entries are the row sums of

W . Thenormalized Laplacian L of the graphG is defined
asD− 1

2 (D − W)D− 1
2 , i.e.

L(u, v) =







1 − wvv

dv
if u = v anddv 6= 0

− wuv√
dudv

if u andv are adjacent
0 otherwise

L is a symmetric self-adjoint operator, its spectrum (eigen-
values) lie in the intervalλ ∈ [0, 2]. The random walk op-
erator on a graph, given byD−1A is not symmetric, but is
conjugate toI − L, and hence its spectrum is{1 − λ(L)}.
The eigenvectors of the random walk operator are the eigen-
vectors ofI − L scaled byD− 1

2 . The eigenvectors{φi}
of L have different degrees of smoothness as measured by
the quadratic form〈Lφi, φi〉 = λi: the largerλi the more
oscillatory and less smoothφi is.

Constructing Graphs from Point Sets inR
d

Given a data set{xi} in R
d, we can associate different

weighted graphs to this point set. There are different choices
of edges and for any such choice there is a choice of weights
on the edges. For example, edges can be inserted between a
pair of pointsxi andxj if:

(E1) ||xi − xj ||Rd ≤ δ, whereδ > 0 is a parameter;

(E2) xj is among thek nearest neighbors ofxi, wherek > 0 is
a parameter.

Weights can be assigned to the edges in any of the following
ways:

(W1) all edges have the same weight (say,1);

(W2) W (i, j) = α(i)e−
||xi−xj ||2

Rd

σ , whereσ > 0 is a parameter,
andα a weight function to be specified;

(W3) W (i, j) = α(i)e
−

||xi−xj ||2
Rd

||xi−xk(i)|| ||xj−xk(j)|| wherek > 0 is a
parameter andxk(i) is thek-th nearest neighbor ofxi (this
is called self-tuning Laplacian (L. Zelnik-Manor 2004).
Againα a weight function to be specified.

Observe that in case (E2) the graph is in general not undi-
rected, sincexj can be among theK nearest neighbors of
xi but xi may not be among theK nearest neighbors of
xj . Since here we consider undirected graphs, in such cases
we replace the weight matrixW constructed so far by the
symmetricW + WT , WWT or WT W . If the points{xi}
are drawn uniformly from a Riemannian manifold, then it
is shown in (Belkin & Niyogi 2004) that (E1)+(W2), with
α = 1, approximates the continuous Laplace-Beltrami op-
erator on the underlying manifold. If{xi} is not drawn uni-
formly from the manifold, as it typically happens here when
the space is explored by an agent, it is shown in (Lafon 2004)
that a pre-processing normalization step can (must) be per-
formed that yields the weight functionα, so that (E1)+(W2)
yields an approximation to the Laplace-Beltrami operator.
In the experiments below, we use the following terminology:

1. ’Ave’ means that the eigenvectors ofD−1(D − W) are
computed. This applies to any combination of (E1,2)-
(W1-3)

2. ’GraphMarkov’ means that the eigenvectors of the nor-
malized graph Laplacian are computed, with any combi-
nation of (E1,2)-(W1-3)

3. ’Beltrami’ applies to any combination of (E1,2)-(W1-3),
however the only theorem known about approximation to
the continuous Laplace-Beltrami is for the combination
(E1) (with largeδ) together with (W2).

Extension: Nyström, fast updates and
(randomized) low-rank approximations

To learn policies on continuous MDPs, it is necessary to be
able to extend eigenfunctions computed on a set of states
∈ R

d to new states. We describe here the Nyström method,
which can be combined with iterative updates and random-
ized algorithms for low-rank approximations. The Nyström
method interpolates the value of eigenvectors computed on
sample states to novel states, and is an application of a clas-
sical method used in the numerical solution of integral equa-
tions (Baker 1977). It can be viewed as a technique for ap-
proximating a semi-positive definite matrix from a low-rank
approximation. In this context it can be related to random-
ized algorithms for low-rank approximation of large matri-
ces (Frieze, Kannan, & Vempala 1998). Let us review the
Nyström method in its basic form. Suppose we have a pos-
itive semi-definite operatorK, with rows and columns in-
dexed by some measure space(X, µ). K acts on a vector
space of functions onX by the formula

Kf(x) =

∫

X

K(x, y)f(y)dµ(y) ,

for f in some function space onX. Examples include:

(i) X = R, µ is the Lebesgue measure, andKσ(x, y) =

e−
|x−y|2

σ , andK acts on square integral functionsf on

R by Kσf(x) =
∫ +∞
−∞ e−

|x−y|2

σ f(y)dy = Kσ ∗ f .

(ii) X is a compact Riemannian manifold(M, ρ) equipped
with the measure corresponding to the Riemannian vol-
ume, ∆ is the Laplace-Beltrami operator onM, with
Dirichlet or Neumann boundary conditions ifM has a
boundary, andK = (I −∆)−1 is the Green’s function or
potential operator associated with∆.

SinceK is positive semi-definite, by the spectral theorem it
has a square rootF , i.e. K = FT F . Sometimes this prop-
erty is expressed by saying thatK is a Gram matrix, since
we can interpretK(x, y) as the inner product between the
x-th andy-th columns ofF . In applications one approxi-
mates operators on uncountable spaces (such asR or a man-
ifold M as in the examples above) by a finite discretization
x1, . . . , xn, in which caseX = {0, . . . , n}, the measureµ
is an appropriate set of weights on then points, andK is a
n × n matrix acting onn-dimensional vectors. To simplify
the notation we use this discrete setting in what follows.

The Nystr̈om approximation starts with a choice of a par-
tition of the columns ofF into two subsetsF1 andF2. Let
k be the cardinality ofF1, so thatF1 can be represented as
n × k matrix andF2 as an × (n − k) matrix. One can then

write

K =

(

FT
1 F1 FT

1 F2

FT
2 F1 FT

2 F2

)

The Nystr̈om method consists of the approximation

FT
2 F2 ∼ (FT

1 F2)
T (FT

1 F1)
−1(FT

1 F2) . (1)

The quantity on the righthand side requires only the knowl-
edge of(FT

1 F2) andFT
1 F1, i.e. the firstk rows (or columns)

of K. Moreover if the matrixK has rankk andF1 spans the
range ofK, then the Nystr̈om approximation is in fact ex-
actly equal toFT

2 F2.
The natural question that arises is of course how to choose

F1 in these situations. Various heuristics exists, and mixed
results have been obtained (Platt 2004). The most desirable
choice ofF1, when the error of approximation is measured
by ||FT

2 F2 − (FT
1 F2)

T (FT
1 F1)

−1(FT
1 F2)||2 (or, equiva-

lently, the Fr̈obenius norm) would be to pickF1 such that
its span is as close as possible to the span of the topk singu-
lar vectors ofK. Several numerical algorithms exist, which
in general requireO(kN2) computations. One can use ran-
domized algorithms, which pick rows (or columns) ofK ac-
cordingly to some probability distribution (e.g. dependent
on the norm of the row or column). There are guarantees
that these algorithms will select with high probability a set
of rows whose span is close to that of the top singular vectors
(Drineas & Mahoney 2005).

The Nystr̈om method is applied to the approximation of
the eigenfunctions of the graph LaplacianLφi = λiφi by
letting F1 be the matrix withk eigenfunctions as columns:
equation (1) yields

φi(x) =
1

1 − λi

∑

y∼x

w(x, y)
√

d(x)d(y)
φi(y) , (2)

whered(z) =
∑

y∼z w(z, y), andx is a new vertex in the
graph. The Nystr̈om method can be refined with fast iter-
ative updates as follows: first compute an extension of the
eigenvectors to new points (states), to obtain approximated
eigenvectors of the extended graph{φ̃i}. Input these eigen-
vectors into an iterative eigensolver as initial approximate
eigenvectors: after very few iterations the eigensolver will
refine these initial approximate eigenvectors into more pre-
cise eigenvectors on the larger graph. The extra cost of this
computation isO(IN) if I iterations are necessary, and if
the adjacency matrix of the extended graph is sparse (only
O(N) non-zero entries).

Algorithmic Details and Experimental Results
This section presents detailed experimental results of the
RPI algorithm illustrated in Figure 1 on the inverted pen-
dulum and the mountain car benchmark problems. The ex-
periments measure the variance in performance with respect
to various parameters, such as the local distance metric used,
and also compare the performance of RPI with using hand-
coded function approximators, such as radial basis func-
tions.

RPI Algorithm (T, N, Z, ε, k, P,O):

// T : Number of initial random walk trials
// N : Maximum length of each trial
// Z: Size of the subsampled data to build the graph from
// ε : Convergence condition for policy iteration
// k: Number of nearest neighbors
// P : Number of proto-value basis functions to use
// O: Type of graph operator used

1. Representation Learning Phase: Perform a random walk
of T trials, each of maximumN steps, and store the states
visited in the datasetD. Construct a smaller datasetDZ of
sizeZ from the collected dataD by random subsampling.

2. Build an undirected weighted graphG from DZ , in one
of the ways described in the section on the construction of
graphs from point sets. Construct one of the operatorsO on
graphG as discussed in the section on graph construction.

3. Compute thek smoothest eigenvectors ofO on the sub-
sampled graphDZ , and collect them as columns of the basis
function matrixΦ, a |DZ | × k matrix. The embedding of a
state action pairφ(s, a) wheres ∈ DZ is given asea⊗φ(s),
whereea is the unit vector corresponding to actiona, φ(s) is
thesth row of Φ, and⊗ is the tensor product.

4. Control Learning Phase: Initialize w0 ∈ Rk to a random
vector.Repeatthe following steps

(a) Seti← i + 1. For each transition(st, at, s
′

t, a
′

t, rt) ∈ D,
compute low rank approximations of matrixA and b as
follows:

Ãt+1 = Ãt + φ(st, at)
`

φ(st, at)− γφ(s′t, a
′

t))
´T

b̃t+1 = b̃t + φ(st, at)rt

whereφ(st, at) is approximated using the Nyström exten-
sion wheneverst /∈ DZ .

(b) Solve the system̃Awi = b̃

5. until ‖wi − wi+1‖2 ≤ ε.

6. ReturnQ̂π =
P

i
wiΦ as the approximation to the optimal

value function.

end

Figure 1: Pseudo-code of the representation policy iteration
algorithm for continuous MDPs.

The Inverted Pendulum

The inverted pendulum problem requires balancing a pen-
dulum of unknown mass and length by applying force to the
cart which it is attached to. We used the implementation
described in (Lagoudakis & Parr 2003). The state space is
defined by two variables:θ, the vertical angle of the pendu-
lum, andθ̇, the angular velocity of the pendulum. The three
actions are applying a force of -50, 0, or 50 Newtons. Uni-
form noise from -10 and 10 is added to the chosen action.
State transitions are defined by the nonlinear dynamics of
the system, and depend upon the current state and the noisy

control signal,u.

θ̈ =
g sin(θ) − αmlθ̇2 sin(2θ)/2 − α cos(θ)u

4l/3 − αml cos2(θ)

whereg is gravity, 9.8m/s2, m is the mass of the pendulum,
2.0 kg,M is the mass of the cart, 8.0 kg,l is the length of the
pendulum, .5 m, andα = 1/(m + M). The simulation time
step is set to 0.1 seconds. The agent is given a reward of 0
as long as the absolute value of the angle of the pendulum
does not exceedπ/2. If the angle is greater than this value
the episode ends with a reward of -1. The discount factor
was set to 0.95. The maximum number of episodes the pen-
dulum was allowed to balance was fixed at 3000 steps. Each
learned policy was evaluated 10 times.

Mountain Car
The goal of themountain car task is to get a simulated car
to the top of a hill as quickly as possible (Sutton & Barto
1998). The car does not have enough power to get there
immediately, and so must oscillate on the hill to build up
the necessary momentum. This is a minimum time problem,
and thus the reward is -1 per step. The state space includes
the position and velocity of the car. There are three actions:
full throttle forward (+1), full throttle reverse (-1), andzero
throttle (0). It’s position,xt and velocityẋt, are updated by

xt+1 = bound[xt + ẋt+1] (3)

ẋt+1 = bound[ẋt + 0.001at + −0.0025cos(3xt)], (4)

where the bound operation enforces−1.2 ≤ xt+1 ≤ 0.6
and−0.07 ≤ ẋt+1 ≤ 0.07. The episode ends when the
car successfully reaches the top of the mountain, defined as
positionxt >= 0.5. In our experiments we allow a maxi-
mum of 500 steps, after which the task is terminated without
success. The discount factor was set to 0.99.

Experimental Settings
Table 1 summarizes the range of parameters over which the
RPI algorithm was tested in the two domains, as well as the
settings for the radial basis function experiments. Valuesin
boldface are the defaults for experiments in which those pa-
rameters were not being varied. The results for the following
experiments were averaged over 20 runs. The RBFs for both
domains were evenly spaced within the range of each axis.
The Number of RBFs as seen in Table 2 as well as Figure 6
includes plus one for a constant.

For the mountain car task, lower numbers indicate better
performance, since we are measuring the steps to reach the
top of the hill. In the inverted pendulum, however, since we
are measuring the number of steps that the pole remained
upright, higher numbers indicate better performance. Figure
2 displays the first set of experiments, which varied the num-
ber of random samplesDZ over which proto-value func-
tions were computed. In the mountain car task, performance
monotonically improves as the number of random samples
is increased, upto a maximum of 1500 states. However, in-
terestingly, in the pendulum task, a sample size of500 pro-
duced the best results, and performance appears to degrade
for larger sizes.

Parameter Inverted Pendulum Mountain Car
T (100 to 600) (50 to 550)
N 500 90
Z {100, 500, 1000} {200, 500, 800, 1500}
ε 10−5 10−3

k {25, 50, 100} {15, 25, 40, Gaussian}
P {25, 30, 50, 100, 150} {50, 100, 200}
δ 0.95 1
O varied graph markov

Table 1: Parameter values (as defined in Figure 1) for in-
verted pendulum and mountain car experiments. Default
values are in bold.

Number of RBFs Inverted Pendulum RBF Parameters
10 3 x-axis, 3 y-axis, sigma=1
37 6 x-axis, 6 y-axis, sigma=0.7
50 7 x-axis, 7 y-axis, sigma=0.3
Number of RBFs Mountain Car RBF Parameters
10 3 x-axis, 3 y-axis, sigma=1
37 6 x-axis, 6 y-axis, sigma=1

Table 2: RBF parameter settings for inverted pendulum and
mountain car experiments.

150 200 250 300 350 400 450 500 550 600
100

150

200

250

300

350

400

450

500

550
Mountain Car: Performace vs. Sample Size

Number of training episodes

St
ep

s

200 subset size
500 subset size
800 subset size
1500 subset size

100 200 300 400 500 600
0

500

1000

1500

2000

2500

3000

3500

Number of training episodes

St
ep

s

Pendulum: Performance vs. Sample Size

100 subset size
500 subset size
1000 subset size

Figure 2: Performance on mountain car and inverted pen-
dulum as a function of the number of subsampled points on
which proto-value functions were computed.

In the second experiment, illustrated in Figure 3, the
effect of varying the local distance metric was evaluated. In
the mountain car domain, the nearest neighbor metric out-
performed the gaussian distance metric. Also, using a lower
number of nearest neighbors improved the performance.

However, in the inverted pendulum task, performance
improved as the number of nearest neighbors was increased,
upto50, after which performance seemed to degrade.

150 200 250 300 350 400 450 500 550 600
100

150

200

250

300

350

400

450

500

550
Mounatian Car: Performance vs. Local Distance Metric

Number of training episodes

St
ep

s

15 nn
25 nn
40 nn
Gaussian

100 200 300 400 500 600
0

500

1000

1500

2000

2500

3000

3500

Number of training episodes
St

ep
s

Pendulum: Performance vs Local Distance Metric

25 NN
50 NN
100 NN

Figure 3: Performance on mountain car and inverted pendu-
lum as a function of the nearest neighbors.

Figure 4 varied the number of protovalue functions
(PVFs) used. Here, there were significant differences in
the two tasks. In the inverted pendulum task, performance
dramatically improved from25 to 50 proto-value functions,
whereas in the mountain car domain, performance differ-
ences were less acute (note that the mountain car results
used only500 samples, which results in worse performance
than using1500 samples, as shown earlier in Figure 2).

Figure 5 measures the effect of varying the type of
graph normalization in the pendulum task, which seems to
cause little difference in the results. The same behavior was
observed for the mountain car task (not shown).

Figure 6 compares the performance of proto-value functions
with radial basis functions (RBFs). These comparative
experiments are to be viewed with caution: only a limited
range of the possible set of parameter values were explored.
In the mountain car task, proto-value functions (bottom-
most curve) seem to outperform the choices of RBFs
that are listed in Table 2. For the inverted pendulum, the
performance of proto-value functions (top curve) appears
significantly better than RBFs as well.

Conclusions
This paper presented a framework for learning both repre-
sentation and control to solve continuous Markov decision
processes. Representations are learned by computing the

150 200 250 300 350 400 450 500 550 600
100

150

200

250

300

350

400

450

500

550
Mountain Car: Performance vs. Number of Proto−Value Functions

Number of training episodes

St
ep

s

50 PVF
100 PVF
200 PVF

0 100 200 300 400 500 600 700
−500

0

500

1000

1500

2000

2500

3000

3500
Pendulum: Performance vs. Number of Proto−Value Functions

Number of training episodes

St
ep

s

25 PVF
30 PVF
50 PVF
100 PVF
150 PVF

Figure 4: Performance on mountain car and inverted pendu-
lum as a function of the number of proto-value functions.

100 200 300 400 500 600 700
1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

3200
Pendulum: Performance vs. Graph Normalization

Number of training episodes

St
ep

s

Ave
Graph Markov
Beltrami
Graph

Figure 5: Results from the pendulum task, showing the vari-
ation in performance as a function of the type of graph nor-
malization. Similar results were seen in the mountain car
domain (not shown).

eigenfunctions of the graph Laplacian formed from an ini-
tial random walk of the state space. The eigenfunctions
are interpolated to novel states using the Nyström exten-
sion. A least-squares policy iteration method was used to
learn the control policy. Detailed results from two classic
domains showed the feasibility of the approach. We are
exploring a variety of extensions to scale this approach to
higher-dimensional control tasks.

References
Baker, C. T. H. 1977.The numerical treatment of integral equa-
tions. Oxford: Clarendon Press.

Belkin, M., and Niyogi, P. 2004. Semi-supervised learning on
Riemannian manifolds.Machine Learning 56:209–239.

Belongie, S.; Fowlkes, C.; Chung, F.; and Malik, J. 2002. Spectral
partitioning with indefinite kernels using the Nyström extension.
ECCV.

150 200 250 300 350 400 450 500 550 600
100

150

200

250

300

350

400

450

500

550
Mountain Car: Proto−Value Functions vs. Radial Basis Functions

Number of training episodes

St
ep

s

PVF (Z=500, P=100, k=25)
PVF (Z=1500, P=100, k=25)
10 RBF
37 RBF

0 100 200 300 400 500 600 700
500

1000

1500

2000

2500

3000

3500
Pendulum: Proto−Value Functions vs Radial Basis Functions

Number of training episodes

St
ep

s

50 PVF
10 RBF
37 RBF
50 RBF

Figure 6: A comparison of RBFs and PVFs on the mountain
car and inverted pendulum.

Bertsekas, D. P., and Tsitsiklis, J. N. 1996.Neuro-Dynamic Pro-
gramming. Belmont, Massachusetts: Athena Scientific.
Drineas, P., and Mahoney, M. W. 2005. On the Nyström
method for approximating a Gram matrix for improved kernel-
based learning.J. Machine Learning Research (6):2153–2175.
Frieze, A.; Kannan, R.; and Vempala, S. 1998. Fast Monte Carlo
algorithms for finding low-rank approximations. InProceedings
of the 39th annual IEEE symposium on foundations of computer
science, 370–378.
L. Zelnik-Manor, P. P. 2004. Self-tuning spectral clustering. In
Advances in Neural Information Processing Systems 17.
Lafon, S. 2004.Diffusion maps and geometric harmonics. Ph.D.
Dissertation, Yale University, Dept of Mathematics & Applied
Mathematics.
Lagoudakis, M., and Parr, R. 2003. Least-squares policy iteration.
Journal of Machine Learning Research 4:1107–1149.
Maggioni, M., and Mahadevan, S. 2006. Fast direct policy evalu-
ation using multiscale analysis of markov diffusion processes. In
International Conference on Machine Learning (ICML).
Mahadevan, S. 2005. Proto-value functions: Developmental re-
inforcement learning. InProceedings of the 22nd International
Conference on Machine Learning.
Platt, J. C. 2004. Fastmap, metricmap, and landmark mds are
all nystr̈om algorithms. Technical Report MSR-TR-2004-26, Mi-
crosoft Research.
Puterman, M. L. 1994.Markov decision processes. New York,
USA: Wiley Interscience.
Rosenberg, S. 1997.The Laplacian on a Riemannian Manifold.
Cambridge University Press.
Sutton, R., and Barto, A. G. 1998.An Introduction to Reinforce-
ment Learning. MIT Press.
Williams, C. K. I., and Seeger, M. 2000. Using the nyström
method to speed up kernel machines. InNIPS, 682–688.

