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Abstract

In this paper, we explore an approach to computational
game theory based on variational inequalities (VIs). VIs
represent a comprehensive framework that provides a
way to model and analyze both cooperative and non-
cooperative games. Given the potentially large size of
real-world games, suitable algorithms must be designed
that can scale gracefully with the dimension of the
problems (e.g., number of players). In this paper, we
explore the effectiveness of novel Runge-Kutta meth-
ods on finding equilibrium solutions to two real-world
games defined by oligopolistic economies.

1 Introduction
A significant focus of game theory is the search for equi-
libria. Equilibrium solutions are important because they of-
ten represent the behavior of the game in steady state. If the
equilibrium state is undesirable, we may try to change the
game in some way to force a more desirable steady state be-
havior. On the other hand, if the steady state is already satis-
factory, we may still change the game in order to accelerate
convergence to the equilibrium. The identification, analysis,
and manipulation of equilibria represents a computationally
challenging problem.

In this paper, we explore an approach to computational
game theory in AI, based on the framework of variational
inequalities (VIs). Originally proposed in the context of
solving partial differential equations in mechanics (Hart-
man and Stampacchia 1966), VIs gained popularity in the
finite-dimensional setting when the traffic network equilib-
rium problem was formulated as a finite-dimensional VI
(Dafermos 1980). This advance inspired much follow-on
research, showing that a variety of equilibrium problems
in economics, game theory, and manufacturing could also
be formulated as finite-dimensional VIs – the books by
Nagurney (Nagurney 1999; Nagurney and Zhang 1996) and
Facchinei and Pang (Facchinei and J. 2003) provide a de-
tailed introduction to the theory and applications of VI.

We apply VIs to the problem of modeling large economic
games, where the challenging computational problem is to
find equilibrium solutions that balance numerous conflicting
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objectives. In order to solve these large games, we will re-
quire fast, scalable algorithms suitable to our problems. The
primary purpose of this paper is to explain how the theory of
VIs provides valuable computational tools for solving large
competitive systems as well as present a suitable algorithm
for solving such systems.

Section 2 describes two real-world oligopolistic
economies involving a sustainable freightage network
and a service-oriented internet network. Section 3 provides
a brief overview of VIs and describes standard algorithms
for solving VIs as well as a novel and general Runge-Kutta
algorithmic framework that we propose for large domains.
In Section 4, we explain the Runge-Kutta (RK) family
of methods along with their associated adaptive stepsize
scheme. Section 5 compares RK on VI formulations of
a sustainable freight supply chain network and a next-
generation economic model of the Internet. Experiments
in both these domains show significant benefits of our
proposed novel RK method.

2 Domain Backgrounds
We begin by describing two sustainable network domains
used to empirically validate our approach to solving large
games.

2.1 Sustainable Freightage Network
The Commission for Environmental Cooperation released
a report in 2010 focusing on reducing the greenhouse
gas (GHG) emissions from freight transportation in North
America1. This report revealed that while “light-duty vehi-
cle GHG emissions are projected...to decline nearly 12%...,
Freight trucks, on the other hand, show a projected 20% in-
crease in emissions.” Among the commission’s key findings
is the need for the “greening” of supply-chain management.
While some changes to the supply chain like reduced fuel
consumption clearly reduce business costs, others may help
to mitigate “reputational risk”. An important objective for
the next generation of supply-chain models is to incorporate
these factors in order to reflect the changing goals. The net-
work diagram associated with this problem is shown below

1http://www3.cec.org/islandora/en/item/4237-destination-
sustainability-reducing-greenhouse-gas-emissions-from-freight-
en.pdf



in Figure 1, which is based on a formulation proposed in
(Nagurney, Yu, and Floden 2013).

Figure 1: A ”green” economic model of the supply chain
proposed in (Nagurney, Yu, and Floden 2013). Firms are
modeled as playing a Cournot-Nash game, competing on the
basis of product flow and frequency of operation. Demand
markets consisting of individuals or groups of users choose
between the various products offered by the firms.

In this network model, I firms manufacture products
which are then either transported directly to retailers (de-
mand markets) or to storage facilities for later distribution.
The products in this economy are substitutable and distin-
guishable only by brand (e.g., milk). In addition, we assume
knowledge of the demand functions stating the prices mar-
kets are willing to pay for quantities of each product. In Fig-
ure 1, the nodes from the top tier to the bottom tier represent
in order the firms (i), manufacturing plants (M i

m), storage
warehouses (Di

d,1&Di
d,2), and demand markets (Rr). Each

link in the network represents a process acting on the prod-
uct between the origin and destination nodes. From the top
tier to the bottom tier, the links represent manufacturing,
transportation, storage, and distribution. Note that eachDi

d,1

and Di
d,2 pair actually represents the same distribution cen-

ter. This is because storage is a process that starts and ends
in the same warehouse, hence the duplication of the nodes.

Each firm must decide how to optimally deliver its prod-
uct to consumers given the allowable paths from its firm to
the multiple demand markets. They do this by controlling
their product flows (e.g., gallons of milk per day) and fre-
quencies of operation (e.g., shipments per day) along paths
in the network subject to capacity constraints (e.g., gallons
of milk per shipment). For example, firm 1 may decide on
two paths to optimize its supply chain: each day, ten 5-gallon
shipments are manufactured at plant 1 and transported using
mode 4 (barge) directly to retail market 1 and six 3-gallon
shipments are manufactured at plant 1 as well but are then
transported using mode 3 (truck) to warehouse 2 for storage
until they are finally distributed to retail market 11.

The firms in the network continuously adjust their prod-
uct flows and operation frequencies, optimizing their utili-
ties, until any unilateral adjustment attempted by one firm is

inherently detrimental to that firm’s utility function. Ratio-
nally competing on the basis of product output is known as
Cournot competition and the stalemate described is known
as a Nash equilibrium hence this state is known as a
Cournot-Nash equilibrium.

Given each firm’s utility function and capacity con-
straints, we aim to find the corresponding steady-state prod-
uct flows and frequencies of operation.

2.2 “Next Generation” Internet
Our second example is a “next generation” economic model
of the Internet. Since its inception, the size of the Internet
has exploded, greatly outpacing any economic regulations
that may have been instantiated to manage its evolution. Pro-
ponents of net-neutrality have argued that communications
service providers (CSPs) have enjoyed a sheltered economic
sphere due to lack of suitable laws and, until recently, poor
understanding of the underlying economics2. The commu-
nications industry is expected to soon enter a highly com-
petitive global dynamic marketplace, one more capable of
supporting the extremely diverse demand markets of today3.
These expectations require a more general, abstract perspec-
tive of the internet in order to understand its future.

The game-theoretic model of this “next generation” In-
ternet, a service-oriented Internet, has members of the net-
work (see Figure 2) compete to maximize profits by adjust-
ing the quantity, quality, and price of services delivered. Ser-
vice providers (e.g., Netflix, Amazon) play a Cournot-Nash
game controlling the quantities of services provided while
network providers (e.g., Verizon, AT&T) play a Bertrand
game controlling the delivery price as well as service qual-
ity. Consumers influence the network through demand func-
tions dictating the prices they are willing to pay for specific
quantities and qualities of services rendered.

3 Variational Inequalities
The two networks shown in Figure 1 and Figure 2 pose a
challenging computational problem, and our proposed so-
lution builds on the mathematical framework of variational
inequalities (VIs). As many readers may be unfamiliar with
the mathematics of VIs, we begin with a brief review.

3.1 Theory
The formal definition of a VI is as follows:
Definition 1. The finite-dimensional variational inequality
problem VI(F,K) involves finding a vector x∗ ∈ K ⊂ Rn
such that

〈F (x∗), x− x∗〉 ≥ 0, ∀x ∈ K
where F : K → Rn is a given continuous function, K is
a given closed convex set, and 〈., .〉 is the standard inner
product in Rn.

Figure 3 provides a geometric interpretation of a varia-
tional inequality. The following general result characterizes
when solutions to VIs exist:

2http://www.pcworld.com/article/149260/fcc comcast.html
3http://www.accenture.com/SiteCollectionDocuments/PDF/Accenture-

The-Future-CSP-Converged-Digital-World.pdf



Figure 2: A next-generation economic model of the Internet
proposed in (Nagurney and Wolf 2014). Service providers
(e.g., “Netflix”, “Amazon”, “IBM Cloud”) are modeled as
playing a Cournot-Nash game, competing on the basis of
quantity. Network providers (e.g., ”Verizon”, ”AT & T”) are
modeled as playing a Bertrand game, competing on the ba-
sis of prices. Demand markets consisting of individual users
or groups of users choose between combinations of service
providers and transport providers.

Theorem 1. Suppose K is compact and that F : K → Rn
is continuous. Then, there exists a solution to VI(F,K).

As Figure 3 shows, x∗ is a solution to V I(F,K) if and
only if the angle between the vectors F (x∗) and x− x∗, for
any vector x ∈ K, is less than or equal to 900.

Normal Cone

-F(x*)

F(x*)

x*x x-x*

Feasible set K

Figure 3: This figure provides a geometric interpretation of
the variational inequality V I(F,K). The mapping F defines
a vector field over the feasible set K such that at the so-
lution point x∗, the vector field F (x∗) is directed inwards
at the boundary, and −F (x∗) is an element of the normal
cone C(x∗) of K at x∗ where the normal cone C(x∗) at the
vector x∗ of a convex set K is defined as C(x∗) = {y ∈
Rn|〈y, x− x∗〉 ≤ 0,∀x ∈ K}.

The VI framework provides a mathematically elegant ap-
proach to model equilibrium problems in game theory (Fu-
denberg and Levine 1998; Nisan et al. 2007). A Nash game
consists of m players, where player i chooses a strategy xi
belonging to a closed convex set Xi ⊂ Rn. After execut-
ing the joint action, each player is penalized (or rewarded)

by the amount Fi(x1, . . . , xm), where Fi : Rn → R is
a continuously differentiable function. A set of strategies
x∗ = (x∗1, . . . , x

∗
m) ∈ ΠM

i=1Xi is said to be in equilib-
rium if no player can reduce the incurred penalty (or in-
crease the incurred reward) by unilaterally deviating from
the chosen strategy. If each Fi is convex on the set Xi,
then the set of strategies x∗ is in equilibrium if and only
if 〈(xi − x∗i ),∇iFi(x∗i )〉 ≥ 0. In other words, x∗ needs
to be a solution of the VI 〈(x − x∗), f(x∗)〉 ≥ 0, where
f(x) = (∇F1(x), . . . ,∇Fm(x)). Nash games are closely
related to saddle point problems (Juditsky, Nemirovski, and
others 2011a; 2011b; Liu, Mahadevan, and Liu 2012) where
we are given a function F : X × Y → R, and the objective
is to find a solution (x∗, y∗) ∈ X × Y such that

F (x∗, y) ≤ F (x∗, y∗) ≤ F (x, y∗),∀x ∈ X,∀y ∈ Y. (1)

Here, F is convex in x for each fixed y, and concave in y for
each fixed x. Many equilibria problems in economics can be
modeled using VIs (Nagurney 1998).

The algorithmic development of methods for solving VIs
begins with noticing their connection to fixed point prob-
lems.
Theorem 2. The vector x∗ is the solution of VI(F,K) if and
only if, for any α > 0, x∗ is also a fixed point of the map
x∗ = PK(x∗ − αF (x∗)), where PK is the projector onto
convex set K.

In terms of the geometric picture of a VI illustrated in Fig-
ure 3, this property means that the solution of a VI occurs at
a vector x∗ where the vector field F (x∗) induced by F onK
is normal to the boundary ofK and directed inwards, so that
the projection of x∗ − αF (x∗) is the vector x∗ itself. This
property forms the basis for the projection class of methods
that solve for the fixed point.
Definition 2. A gap function is a function ψ : Rn →
R ∪ {+∞} which satisfies ψ(X) ≥ 0 for all X ∈ K and
ψ(X∗) = 0, X∗ ∈ K if and only if X∗ solves V I(F,K).

While algorithmic convergence is often judged by the dif-
ference between successive states (|xk+1 − xk| < ε), this
crude approach is unsatisfactory in the presence of adaptive
step sizes (e.g. a small step size can satisfy this criterium
regardless of the iterates). Gap functions provide a superior
alternative as convergence criteria in the presence of adap-
tive step size schemes. Numerous gap functions have been
developed satisfying the properties above (Dutta 2012). One
such function, useful in unbounded domains, was developed
separately by Fukushima and Auchmuty, gα(x). We will use
gα(x) later in our experiments to judge convergence.

gα(x) = sup
y∈K
{〈F (x), x− y〉 − α

2
||x− y||2} (2)

3.2 Algorithms
The basic projection-based method (Algorithm 1) for solv-
ing VIs is based on Theorem 2 introduced earlier. Here,
PK is the orthogonal projector onto the convex set K. It
can be shown that the basic projection algorithm solves any
V I(F,K) for which the mapping F is strongly monotone
and Lipschitz smooth. A simple strategy is to set D = I



Algorithm 1 The Basic Projection Algorithm.
INPUT: Given VI(F,K), and a symmetric positive definite
matrix D.

1: Set k = 0 and xk ∈ K.
2: repeat
3: Set xk+1 ← PK(xk − αD−1F (xk)).
4: Set k ← k + 1.
5: until xk = PK(xk − αD−1F (xk)).
6: Return xk

where α < L2

2µ , L is the Lipschitz smoothness constant, and
µ is the strong monotonicity constant. Setting D equal to a
constant in this manner recovers what is known as Euler’s
method and is the most basic algorithm for solving VIs.

The basic projection-based algorithm has two critical lim-
itations. First, it requires that the mapping F be strongly
monotone. If, for example, F is the gradient map of a contin-
uously differentiable function, strong monotonicity implies
the function must be strongly convex. Second, setting the
parameter α requires knowing the Lipschitz smoothness L
and the strong monotonicity parameter µ.

Algorithm 2 The Extragradient Algorithm.
INPUT: Given VI(F,K), and a scalar α.

1: Set k = 0 and xk ∈ K.
2: repeat
3: Set yk ← PK(xk − αF (xk)).
4: Set xk+1 ← PK(xk − αF (yk)).
5: Set k ← k + 1.
6: until xk = PK(xk − αF (xk)).
7: Return xk

The extragradient method of Korpolevich (Korpelevich
1977) addresses some of these concerns, and is defined as
Algorithm 2. The extragradient algorithm has been the topic
of much attention in optimization since it was proposed, e.g.,
see (Peng and Yao 2008; Nesterov 2007).

The family of Runge-Kutta (RK) methods induced by
Nagurney’s general iterative scheme (Nagurney and Zhang
1996) is defined as Algorithm 3. We will explain the motiva-
tion behind RK methods in the following section by observ-
ing their role in the solution of ordinary differential equa-
tions (ODEs). An RK method is defined by its values a and
b which are typically presented as a Butcher table. Heun-
Euler and Cash-Karp refer to two tables that we will use in
our experiments.

4 Runge-Kutta Algorithms
In this section, we provide some intuition and explanation
for the strengths of Runge-Kutta methods and their associ-
ated stepsize scheme.

4.1 The Runge-Kutta Method for ODEs
Runge-Kutta methods are highly popular methods for solv-
ing systems of coupled first-order differential equations of

Algorithm 3 The General Runge-Kutta Algorithm.
INPUT: Given VI(F,K), lower-triangular matrix a ∈
Rs−1×s−1, vector b ∈ Rs, and a sequence of scalars αk.

1: Set k = 0 and xk ∈ K.
2: repeat
3: Set k1 ← αkF (xk)
4: Set k2 ← αkF (PK(xk − a21k1))
5: Set k3 ← αkF (PK(xk − a31k1 − a32k2))

...
6: Set ks ← αkF (PK(xk−as1k1− . . .−as,s−1ks−1))
7: Set xk+1 ← PK(xk −

∑s
i=1 biki)

8: Set k ← k + 1.
9: until xk = PK(xk −

∑s
i=1 biki).

10: Return xk

the form:
dx

dt
= f(x, t), x(t0) = x0 (3)

The simplest explicit RK method is Euler’s method:

xk+1 = xk + αf(xk, tk), tk+1 = tk + α (4)

Euler’s method, while simple, is not very accurate because
it only uses the derivative of the function at the beginning of
the interval. More accurate methods can be designed that ad-
vance xk by a weighted mean of the derivatives of the func-
tion in a neighborhood of (xk, tk). Runge-Kutta methods are
crafted such that the locations and corresponding weights at
which the derivatives are computed induce an approximate
Taylor series expansion of the algorithm that matches the
infinite Taylor series expansion of x up to some order p,
O(hp). The general explicit Runge-Kutta scheme is given
below where ci and aij designate which locations to inspect
and bi defines the weights. Euler’s method corresponds to
s = 1, b1 = 1, c1 = 1.

xk+1 = xk + Σsi=1biki, tk+1 = tk + α, (5)

ki = αf(xk + Σi−1
j=1aijkj , tk + ciα) (6)

Research into applying higher order methods has been con-
ducted (Sen and Shanno 2008), however, use of Runge-
Kutta methods and their convenient adaptive step size
schemes is unexplored as far as we know.

4.2 Using Adaptive Stepsizes in RK Methods
We now describe an additional enhancement of Runge-Kutta
methods that automatically tunes the stepsize. These adap-
tive methods are designed to produce an estimate of the local
truncation error of a single Runge-Kutta step. This can be
accomplished by computing and comparing steps with two
methods during each iteration of descent, however, more ef-
ficient methods make use of the same Runge-Kutta matrix,
but differing weights, bi. This is done by simultaneously us-
ing two methods, one with order p and one with order p− 1.
The lower-order step is given by

x∗k+1 = xk +

s∑
i=1

b∗i ki, (7)



where the ki are the same as for the higher-order method.
Then the error is

∆k+1 = xk+1 − x∗k+1 =

s∑
i=1

(bi − b∗i )ki, (8)

which is O(hp). Stepsizes can be updated as αk+1 ←
αk
∣∣ ∆0

∆k+1

∣∣1/p, where ∆0 is the desired accuracy.
Classical gradient rules commonly enforce diminishing

stepsizes. The scheme above, however, describes a stepsize
that depends on the local behavior of f and may possibly
grow with successive iterations. In fact, when used in prac-
tice, the stepsize increases as the solution nears the equilib-
rium to account for the diminishing value of the vector field.

5 Experiments
We now compare the proposed RK family of methods
against standard VI algorithms on the domains discussed in
Section 2.

5.1 Sustainable Freightage Network Experiment
Our first example focuses on an emissions-conscious com-
petitive supply chain network (Nagurney, Yu, and Floden
2013). We assume the governing equilibrium is Cournot-
Nash and the utility functions are all concave and fully dif-
ferentiable. This establishes the equivalence between the
equilibrium state we are searching for and the variational
inequality to be solved where the F mapping is a vector
consisting of the negative gradients of the augmented La-
grangian utility functions for each firm.

〈F (X∗), X −X∗〉 ≥ 0, ∀X ∈ K, where X = (x, γ, λ) ∈ RNX
+

F 1(X) =
∂Cp(x)

∂xp
+ ωi

∂Ep(x,γ)

∂xp
+

∑
a∈Li λaδap − ρik(x)

−
∑nR
l=1

∂ρil(x)
∂xp

∑
q∈P i

l
xq; p ∈ P ik; i = 1, . . . , I; k = 1, . . . , nR

F 2(X) = ∂ga(γa)
∂γa

+ ωi
∂Ep(x,γ)

∂γa
− µaλa; a ∈ Li; i = 1, . . . , I

F 3(X) = µaγa −
∑
q∈P xqδaq; a ∈ L

i; i = 1, . . . , I

Figure 4: Sustainable Freightage Network VI

The corresponding variational inequality model presented
in Figure 4 is defined in terms of the product flows (x)
on each unique path p from firm i to demand market k as
well as the operation frequencies (γ) and Lagrange multipli-
ers (λ) associated with each link a. Total operational costs,
frequency of operation costs, emission costs, demand func-
tions, and link-path indicator functions are designated by C,
g, E, ρ, and δap respectively.

Figures 5 and 6 reveal the performance gains achieved in
employing Runge-Kutta methods, specifically Heun-Euler
with ∆0 = 10−1 (RKHE) and Cash-Karp with ∆0 = 10−3

(RKCK), over Euler’s method and the well-known extragra-
dient (EG) method in determining the solution to the above
VI as the size of the network (dimensionality of X) grows.
Since in general, the value of our gap function in this exam-
ple, gα(X), grows with network size, we elect to judge con-
vergence by the reduction in gα(X) from the first iteration,
gα(X)/gα(X0) < ε, ε = 10−6. As shown in the figures, the

Runge-Kutta methods scale better than the other two meth-
ods both in terms of number of iterations to convergence and
time to completion. Even with constant iterations, runtime
increases primarily because the evaluation time of the map-
ping F (X), Feval, increases by more than 100 times over
the growth of the networks.

Figure 5: This figure compares our proposed adaptive step-
size RK methods against Euler’s method (Algorithm 1
where D = I) used in (Nagurney, Yu, and Floden 2013)
and the well-known extragradient method on the basis of it-
eration count.

Figure 6: This figure repeats the comparison in Figure 5 on
the basis of runtime.

5.2 “Next Generation” Internet Experiment
In this second experiment, providers compete to maximize
profits by adjusting the quantity, quality, and price of ser-



vices delivered (Nagurney and Wolf 2014). The game de-
scribed in Section 2.2 is modeled with the variational in-
equality in Figure 7. Like the supply chain model, we as-
sume the governing equilibrium is Cournot-Nash-Bertrand
and the utility functions are all concave and fully differen-
tiable.

〈F (X∗), X −X∗〉 ≥ 0, ∀X ∈ K, where X = (Q, q, π) ∈ R3mno
+

F 1
ijk(X) = ∂fi(Q)

∂Qijk
+ πijk − ρijk −

∑n
h=1

∑o
l=1

∂ρihl(Q,q)
∂Qijk

×Qihl
F 2
ijk(X) =

∑m
h=1

∑o
l=1

∂chjl(Q,q)

∂qijk

F 3
ijk(X) = −Qijk +

∂ocijk(πijk)

∂πijk

Figure 7: Service-Oriented Internet

The variational inequality in Figure 7 is defined in terms
of the service quantity (Q), quality (q), and price (π) deliv-
ered from service provider i by network provider j to con-
sumer k. Production costs, demand functions, delivery costs,
and delivery opportunity costs are designated by f , ρ, c, and
oc respectively.

Figure 8: This figure compares our proposed adaptive step-
size RK methods against Euler’s method (Algorithm 1
where D = I) used in (Nagurney and Wolf 2014) and the
well-known extragradient method on the basis of iteration
count.

Figures 8 and 9 repeat the same ε-convergence (ε = 10−6)
experiment for the internet model as Figures 5 and 6 did for
the freightage network. Here, RKHE is run with ∆0 = 10−2

and RKCK with ∆0 = 10−5. As shown in the figure, RKHE
and RKCK scale better than the other two methods both in
terms of number of iterations to convergence and time to
completion. Here, Feval increases by over 200 times.

6 Conclusion
In this paper, we explored a computational game theory
framework in AI based on variational inequalities. We an-
alyzed two real-world domains, both involving oligopolistic

Figure 9: This figure repeats the comparison in Figure 8 on
the basis of runtime.

network economies. We proposed a novel Runge Kutta algo-
rithmic framework to solve such networked VIs, and showed
that it scales far better than standard popular algorithms for
solving VIs, such as the projection method and the extragra-
dient method. The solutions to these variational inequality
formulations contain rich information useful for improving
the steady-states of the corresponding networks. For exam-
ple, emissions regulations would see much less resistance if
we could convince businesses that improving their shipping
fleets and cutting emissions could result in actual increases
in profits. Similarly, equilibrium solutions to the service-
oriented internet would tell us how we could shape future
internet policies to ensure a more comprehensive economic
infrastructure.
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