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The ChemCam instrument on theMars Curiosity rover is generating thousands of LIBS spectra and bringing inter-
est in this technique to public attention. The key to interpreting Mars or any other types of LIBS data are calibra-
tions that relate laboratory standards to unknowns examined in other settings and enable predictions of chemical
composition. Here, LIBS spectral data are analyzed using linear regressionmethods including partial least squares
(PLS-1 and PLS-2), principal component regression (PCR), least absolute shrinkage and selection operator (lasso),
elastic net, and linear support vector regression (SVR-Lin). These were compared against results from nonlinear
regressionmethods including kernel principal component regression (K-PCR), polynomial kernel support vector
regression (SVR-Py) and k-nearest neighbor (kNN) regression to discern the most effective models for
interpreting chemical abundances from LIBS spectra of geological samples. The results were evaluated for 100
samples analyzed with 50 laser pulses at each of five locations averaged together. Wilcoxon signed-rank tests
were employed to evaluate the statistical significance of differences among the ninemodels using their predicted
residual sum of squares (PRESS) to make comparisons. For MgO, SiO2, Fe2O3, CaO, and MnO, the sparse models
outperform all the others except for linear SVR, while for Na2O, K2O, TiO2, and P2O5, the sparse methods produce
inferior results, likely because their emission lines in this energy range have lower transition probabilities. The
strong performance of the sparsemethods in this study suggests that use of dimensionality-reduction techniques
as a preprocessing stepmay improve theperformance of the linearmodels. Nonlinearmethods tend to overfit the
data and predict less accurately, while the linearmethods proved to bemore generalizable with better predictive
performance. These results are attributed to the high dimensionality of the data (6144 channels) relative to the
small number of samples studied. The best-performing models were SVR-Lin for SiO2, MgO, Fe2O3, and Na2O,
lasso for Al2O3, elastic net forMnO, and PLS-1 for CaO, TiO2, and K2O. Although these differences inmodel perfor-
mance betweenmethods were identified, most of themodels produce comparable results when p≤ 0.05 and all
techniques except kNN produced statistically-indistinguishable results. It is likely that a combination of models
could be used together to yield a lower total error of prediction, depending on the requirements of the user.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

A laser-induced breakdown spectrometer (LIBS), along with a
remote microscopic imager, comprises ChemCam [1,2], a payload
instrument on the Mars Science Laboratory (MSL) rover Curiosity. This
LIBS instrument records emission spectra in the ultraviolet (UV), violet
(VIO), and visible to near-infrared (VNIR) ranges. The laser can be
focused on a small location size of roughly b0.5 mm from a standoff
distance of up to 7 m. ChemCam is being used to determine chemical
compositions of dust, rocks, and minerals on the Martian surface.
.

To aid in such quantitative analyses, a broad training set of LIBS spectra
of geological standardswith known compositions is beingdeveloped for
calibration [3]. The goal of ChemCam is to produce robust, accurate
chemical analyses of minerals, rocks, and soils on the Martian surface.

However, producing quantitative chemical analyses from LIBS data
is a challenging task due to the wide variety of chemical compositions
found on Mars. Ionization states from the many different elements
found in geological materials may interact in the LIBS plasma, causing
variations in line intensities that defeat univariate analysis techniques
using single-peak calibrations of intensity vs. concentration. Multivari-
ate analysis techniques are thus needed to account for the covariate
interactions that occur within the LIBS plasma. They are designed to
provide stable models when the data suffer from multicollinearity,
and are better suited to LIBS data analysis.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.sab.2015.02.003&domain=pdf
http://dx.doi.org/10.1016/j.sab.2015.02.003
mailto:boucher@cs.umass.edu
http://dx.doi.org/10.1016/j.sab.2015.02.003
http://www.sciencedirect.com/science/journal/05848547
www.elsevier.com/locate/sab
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Thus, this paper explores a variety of current machine learning
algorithms for regression problems and compares their performance
on a suite of 100 spectra from igneous and meta-igneous rocks. LIBS
spectral data are analyzed here using linear methods including partial
least squares (PLS-1 and PLS-2), principal component regression
(PCR), least absolute shrinkage and selection operator (lasso), elastic
net, and linear support vector regression (SVR-Lin). These were
compared against results from nonlinear methods including kernel
principal component regression (K-PCR), polynomial kernel support
vector regression (SVR-Py) and k-nearest neighbor (kNN) regression
to discern the most effective models for interpreting elemental
concentration from LIBS spectra of geological samples. Ten-fold
cross-validation was used to train the parameters and tune the
hyperparameters of each model using 70 samples while 30 samples
were held out for use as a test set. Wilcoxon signed-rank tests were
employed to evaluate the statistical significance of differences
among the ninemodels using their predicted residual sum of squares
(PRESS) to make comparisons. Results show the advantages of linear
models for this application, and lend insights into best practices for
interpretation of data from ChemCam and other LIBS studies of geo-
logical samples elsewhere in the solar system.

2. Background

LIBS relies on quantized valence-electron transitions that occur
when the electrons move to an excited state in the presence of an
excitation source and subsequently decay back down to their ground
states, emitting photons. When these transitions are detected by a
spectrometer, emission lines are observed at wavelengths that are
specific to the elemental or ionic electron source.

LIBS is challenging to use for geological sample analysis because
peak intensities and areas are influenced by interactions in the plasma
that are partially a function of the sample's chemical composition.
These interactions are collectively referred to as matrix effects; they
Table 1
Summary of models used.

Method Summary Tuning
parameters

Advantage(s)

PLS Projects explanatory matrix, X, into a
subspace of latent components that
maximize the covariance of X and the
response matrix, Y.

k, # of
components

Used when X has m
and when pN N N.
multivariate mode
all oxides (PLS-2).

Lasso Shrinks some coefficients and sets others
equal to zero in accordance with shrinkage
parameter. Provides a sparse model that
can be used for both feature selection and
composition predictions.

α, sparsity
weight

Provides an interp
subset of predictor
effects on the resp
for feature selectio
available.

Elastic
net

Extends the lasso. Shrinks some coefficients
and sets others equal to zero; averages
highly correlated features and shrinks
averages. Provides a sparse model that has
more terms than the lasso and can be used
for feature selection and composition
predictions.

α and l1
ratio

Performs well in th
interpretable mod
the lasso. Useful fo

PCR Projects data to a low-dimensional
uncorrelated subspace, then uses ordinary
least squares to regress in the latent space.

k, # of
components

De-correlates the d
dimensionality, co
dimensionality”

SVR Uses only a subset of the training data
(support vectors) to construct a model that
is most generalizable. Can be linear or non-
linear depending on the kernel function
used.

ϵ, sensitivity Performs well with
either linear or no
the kernel.

kNN A nonlinear regression model that predicts
samples using a weighted interpolation of
the k nearest training samples.

k, # of
neighbors

Requires no mode
choosing the num
run time and mak
data sets.
are chemical properties of a material that influence the extent to which
a given wavelength emission is detected compared to the true abun-
dance of the parent element. Thematrix effects are related to the relative
abundances of neutral and ionized species within the plasma, collisional
interactions within the plasma, laser-to-sample coupling efficiency, and
self-absorption [4]. Fortunately, advanced statistical analysis techniques
can tease out relationships that may be obscured by matrix effects.

Multivariate analyses have been used increasingly for LIBS over the
last decade, starting with the applications of principal components [5]
and partial least squares [4–10]. A few other methods have been inves-
tigated, such as artificial neural networks (ANN) [11]; however, results
showed that PLS was equivalent or superior to ANN. A few forays have
beenmade into the sparser models (lasso) [12] and intelligent selection
or rejection of training set spectra based on clustering methods [11].
Both of these show promise in improving results, particularly with clus-
tering, and in more closely connecting themodels with physical details,
i.e., with lasso predominantly using the emission lines of the element of
interest. Here we follow up on these works by comparing and contrast-
ing additional methods for providing sparseness to the data.

An ideal regression model for LIBS should be sparse, interpretable,
and well predicting. The property of sparsity, in which a small subset
of predictor variables drives the prediction results, can be critical to
instrument design because it may enable improved count rates and
higher-resolution spectra by guiding sampling to fewer channels more
frequently. It may not, however, enable model interpretation, because
the chosen features are dependent upon a complicated convolution of
end-member oxide spectra, experimental conditions, andmeasurement
errors [13–15]. In this paper, several multivariate analysis techniques
that meet these criteria to varying degrees are utilized and compared
to assess the effectiveness of each model and the effects of training set
size on the resultant predictions.

Table 1 provides a summary of themethods considered in this study.
The following discussion provides some background on the techniques
to be compared.
Disadvantage(s) Other

any collinear features
Provides a stable
l that can account for

Provides a complex model in which all
coefficients are linear combinations of
the original channels. Involves a complex
optimization problem with no simple,
closed-form representation.

Linear, uses
all channels
(not sparse)

retable model, selects
s with the strongest
onse variable. Can be used
n when less data are

Arbitrarily chooses one covariate from
a group of highly collinear covariates to
use in the model and discards the rest
[18].

Linear,
sparse,
eliminates
noisy
channels

e p NN N case. Provides an
el that is more stable than
r feature selection.

Cannot be used for feature selection in
situations when less data are available
because it overwhelms the data with too
many model variables.

Linear,
sparse,
eliminates
noisy
channels

ata and reduces its
mbating the “curse of

Higher order polynomial kernels tend to
over-fit the training set and poorly
predict the testing set in this application.

May be
linear or
nonlinear;
both use all
channels

a linear kernel. Can be
nlinear depending on

As above, polynomial kernels tend to
over-fit the training set and poorly
predict the testing set in this application.

May be
linear or
nonlinear;
either uses
all channels

l training other than
ber of neighbors, reducing
ing it scale well to large

Tends to over-fit the training data and is
only as effective as the distance metric
used to compare samples.

Nonlinear,
uses all
channels
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2.1. Partial least squares

Partial least squares (PLS), also known as projection to latent
structures, was developed for use in situations where explanatory
variables (p) significantly outnumber observations (N), such that
p NN N. It has been used to analyze data from a variety of types of
spectroscopy, including, but not limited to, near infrared reflectance
(NIR) spectroscopy, Fourier transform infrared (FTIR) spectroscopy,
and Fourier transform-Raman (FT-Raman) spectroscopy. PLS calculates
components that maximize the covariance between the feature and
response matrices [16], and is especially well suited for problems with
many, highly correlated features and multiple responses [17,18].

PLS sequentially chooses directions, or components, of maximal
covariance from the feature matrix, X, and the response matrix, Y, to
determine the model coefficients using a two-step process. The first
step is the shrinkage step, in which the shrinkage penalty determines
the number of factors to be included in the regression. This shrinks
the feature matrix by projecting it down from p-dimensional space
into a smaller q-dimensional vector space. In the context of this project,
p = 6144, the number of channels (wavelength values) at which
elemental intensity ismeasured, and q≈ 10, thenumber of components
typically used. The second step follows ordinary least squares by
regressing the response on the components generated in the first step
to minimize the residual sum of squared error. For this project, a single
response model, PLS-1, and a multiple response model, PLS-2, are
trained for comparison. Each has only one hyperparameter, which is
the number of components to include in the projection.

2.2. PCR and kernel PCR

Principal component regression (PCR) is a linear regression model
that uses principal component analysis (PCA). PCA is a statistical
technique that linearly transforms a data matrix with possibly correlat-
ed features into an orthogonal data matrix of uncorrelated features
called the principal components [19]. The first principal component is
the direction that explains themost variance of the data, and the succes-
sive components each explain the most variance under the condition
that they are orthogonal to the previous components. PCA can also be
used for dimensionality reduction by limiting the number of principal
components used. Discarding the later principal components may
eliminate noise present in the original feature matrix. The principal
components are calculated using either an eigenvector decomposition
of the feature covariance matrix or, equivalently, a singular-value
decomposition of the feature matrix directly, and so it is recommended
to mean center the original feature matrix before decomposition. PCR is
an ordinary least squares method; however, instead of regressing
directly on the feature matrix, PCR regresses on the principal compo-
nents of the feature matrix. PCR has a single hyperparameter, which is
the number of components to include in the model.

Kernel PCR (K-PCR) is a variation of PCR that uses kernel PCA instead
of standard PCA to create a nonlinear kernel-basedmodel [20]. K-PCA is
useful when the variance of the featurematrix cannot bewell explained
with a linear hyperplane (e.g., concentric spheres of data). Instead of
directly calculating nonlinear principal components, the feature matrix
is implicitly mapped into a higher dimensional kernel space where a
higher dimensional hyperplane can better fit the direction of highest
variance. The kernel principal components are calculated as the eigen-
vectors of the kernel matrix K, where Ki,j = (Φ(xi) ⋅ Φ(xj)) and Φ is
the map to high dimensional space. Because Φ(xi) is only used in the
dot product, the kernel trick can be used, whereby the dot products
between projected samples are replaced by a kernel function that
maps samples to an inner product space without having to explicitly
calculate Φ, so Ki,j = k(xi, xj) [21]. It can be shown using functional
analysis that the kernel function k computes the inner product in
some high dimensional space. In this project, K-PCR was trained with
a second order polynomial kernel, K(x, y) = (∑ixiyi)2. Higher-ordered
polynomial kernels and RBF kernels were not included in our experi-
ments because preliminary trials showed that both tended to over-fit
the training set and poorly predict the test set in this application. Similar
to PCR, K-PCR is an ordinary least squares method that regresses on the
K-PCA transformed feature matrix.

2.3. Lasso and elastic net

Least absolute shrinkage and selection operator (lasso) regression is
an ordinary least squares regression model with an l1 penalty on the
model coefficients to induce sparsity. The lasso provides a sparse
model by shrinking some coefficients and setting most other coeffi-
cients to zero. Under this principle, it is assumed that a smaller subset
of the predictor variables is driving the prediction results. Thus, other
coefficients can be excluded from the model (i.e., set to zero) with no
significant performance loss. This reduces a sizable, largely uninterpret-
able model to a sparse, more interpretable model.

To calculate its model coefficients, the lasso solves the following
optimization problem:

argmin
β

1
2
‖y−Xβ−β0‖

2
2 þ α‖β‖1

� �
: ð1Þ

Adding a regularizer to ordinary least squares smooths the model
coefficients and prevents the model from overfitting the training data.
Unlike l2-regularized models, i.e., ridge regression models, the l1-
regularizer is able to performautomatic feature selection by constricting
feature coefficients to zero. For problems with many superfluous
features, like broadband LIBS data, the lasso can eliminate these noisy
features that may otherwise hinder the model. Parsimonious models
have been shown to be effective for modeling in chemometrics [22,
23]. The lasso has one hyperparameter α that controls the constriction
level of the coefficient vector β.

Elastic net regression is a hybrid of lasso and ridge regression that
retains the sparse properties of lasso regression and the stability of
ridge regression in the p NNN case. It can also select groups of correlated
variables. To calculate its model coefficients, the elastic net solves the
following optimization problem:

argmin
β

1
2
‖y−Xβ−β0‖

2
2 þ α λ‖β‖1 þ

1−λ
2

‖β‖22

� �� �
where0≤λ≤1:

ð2Þ

In the equation above, α controls the strength of the combined
regularizer penalty and λ controls the mixture of the two regularizers.
At the extremes, if λ = 0 then the model is ridge regression [24], and
if λ = 1 then the model is lasso. The elastic net aims to provide the
best of both regularizers, the feature selection of l1 and the predictive
improvement of l2. Unlike the lasso, which indiscriminately selects a
feature from a group of highly correlated features to represent in the
model, the elastic net tends to smooth the coefficientweights andbetter
preserves information in groups of similar features by averaging them
in the model.

2.4. Support vector regression

Support vector regression (SVR) is a kernel-based regression model
from machine learning that uses only a subset of the training samples,
called the support vectors, to define a model [25]. The coefficients of
an SVRmodel are equal to a linear combination of the training samples,
and to improve the model's generalizability, the model ignores training
samples with a residual error smaller than ϵ. This is accomplished using
an ϵ-insensitive loss function. Unlike the squared loss of ordinary least
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squares, ϵ-insensitive loss is a piecewise function defined as

error y; y
̂

� �
¼ max y− y

̂
����

����−ϵ;0
� �

: ð3Þ

Using this loss, SVR creates an ϵ-tube around the regression function
where samples with small residuals that fall within the ϵ-tube are
ignored in the final model.

SVR uses only a linear combination of dot products with the support
vectors to predict a sample, so like K-PCR it is able to use the kernel trick,
whereby the dot products are replaced by a kernel function. SVR can be
either a linear or nonlinear regression method based upon the kernel
used. Although SVRwas developed in themachine learning community,
it is now becoming a popular tool in chemometrics [22,26,17]. For our
experiments we trained SVR models with a linear kernel and a second
order polynomial kernel. ϵ is the only hyperparameter that is relevant
to our problem.

2.5. k-Nearest neighbors

Weighted k-nearest neighbor regression (kNN) is a nonlinear
regression model that predicts samples using local interpolation of the
k nearest training samples [27,28]. The response of an unknown sample
x is predicted as the mean of its surrounding neighbors weighted by
their distance from x,

f xð Þ ¼
X

xn ;ynð Þ ϵ neighbors

yn
x−xnk k

� � X
xn ;ynð Þ ϵ neighbors

1
x−xnk k

� �−1
: ð4Þ

The inverse of the neighbor distance is used in Eq. (4) so that sam-
ples close by are weighted more than samples far apart. Unlike all the
other models tested, kNN has no model coefficients and requires only
that k be tuned. Moreover, kNN requires no model training because all
computation is done at the time of prediction. The only hyperparameter
that requires tuning is the number of neighbors.

3. Model evaluation and comparisons

3.1. Model selection criteria

To compare the effectiveness of different multivariate analysis
techniques, model selection criteria that compare the accuracies of the
models are needed to minimize prediction error and assist in choice of
models for optimal results. Mean squared error (MSE) is often used as
a measure of the overall size of the measurement error [29]. MSE for a
model coefficient has the following form:

MSE ¼ E Xβ̂−Xβ
� �2

	 

¼ Var Xβ̂

� �
þ bias2 Xβ̂

� �
; ð5Þ

where bias Xβ̂
� �

¼ E Xβ̂
� �

−Xβ. In these formulae, β ̂ is the calculated

model coefficient and β is the true parameter.
Bias is the extent to which themodel is overfit using the training set,

with two components. Model bias is the difference (error) between the
best-fitting linear approximation and the true function. Estimation bias
is the difference (error) between the average estimates of the model

components xβ ̂ and the best-fitting linear approximation. Variance de-
scribes how much the model can deviate from the training set when it
calculates the model coefficients.

When the MSE is minimized, so are the bias and the variance of the
model. Thus, a reasonable bias–variance tradeoff can be achieved for
each of the various regression methods. Prediction error results for
regression methods are often reported as root mean squared errors of
prediction (RMSEP) because these have the same units as the original
measurements of sample compositions, which in this project are
expressed as wt.% oxides.

3.2. Cross-validation

To compare and quantify the usefulness of various statistical
methods to LIBS, we used K-fold cross-validation, which splits the data
set into K approximately equal-sized parts, to train the model and
tune its hyperparameters (e.g., the number of components used in
partial least squares) before it is tested on a held-out dataset. When
models are being fit for a sample in Ki, the other K-1 folds (all Kj folds,
i ≠ j) are used to train the model and the Ki fold is used to test the
model. In the training set of 70 averaged spectra used here, 10-fold
cross-validation has ten folds each containing seven samples. The
models are trained using 63 samples and are then tested on the other
seven samples.

3.3. Model comparison

The Wilcoxon signed-rank test can be used to compare the RMSEP
values that result from twomodels tested on held-out data to determine
whether a difference in their expected values exists. It is appropriate for
this application because it does not assume an underlying distribution
of the data. The hypotheses are H0: Δ = 0 versus H1: Δ ≠ 0, where Δ
denotes the location difference in the expected value for the popula-
tions. The two-sided alternative hypothesis is appropriate in this case
because the question of interest is whether any difference between
models exists. This comparison is performed for each element.

Three conditions must be met [29] for use of the Wilcoxon signed-
ranked test, t. First, observations from each of the populations must be
a random sample. Because models can be generated using randomly
selected cross-validation folds, this assumption is valid for this applica-
tion. Second, the observations from the two populationsmust bemutu-
ally independent. Because the models are generated using different
algorithms, this is reasonable in this context. Finally, the two popula-
tions must be continuous. The RMSEP values can take on any value on
the positive real line, so this last assumption is valid.

4. Methods

4.1. Samples and experimental methods

A suite of 100 igneous and meta-igneous rocks was selected for this
study; the same samples were used in the work of Tucker et al. [4] and
Dyar et al. [8]. These data were acquired at 9 m distance at Los Alamos
National Laboratory (LANL) using conditions configured to mimic
those on Mars so the results would be applicable to the ChemCam
instrument [6]. The entire data set can be requested from the authors.
However, we note that an even larger suite of data representing the
actual calibration data used on Mars is available on the mission web
site of the Planetary Data System at http://pds-geosciences.wustl.edu/
missions/msl/chemcam.htm.

Approximately 150 g of each sample was crushed to particle sizes of
b45 μm, roughly 10× smaller than the LIBS beamdiameter, tominimize
sample inhomogeneity and equalize grain size. Splits of these powders
were used for X-ray Fluorescence (XRF) analyses of major, minor, and
trace element analyses at the University of Massachusetts, Amherst in
the laboratory of Michael Rhodes [30]. Samples were prepared as
fused La-bearing lithium borate glass disks using a modification of the
methods of Norrish and Hutton [31], though each sample was first
ignited at 1000 °C for several hours in order to oxidize the iron to
Fe3+ and remove volatiles. All elements (including Na2O) were
measured simultaneously using a Siemens MRS-400 spectrometer.
Intensities were corrected for nonlinear background, inter-element
interferences, and variations in mass absorption coefficient, using
methods modified from those of Norrish and Chappell [32].

http://pds-geosciences.wustl.edu/missions/msl/chemcam.htm
http://pds-geosciences.wustl.edu/missions/msl/chemcam.htm


Fig. 1. Compositional ranges of samples used in this study, with elemental abundances
expressed as oxide weight percents (wt.%) using the geological convention.

5T.F. Boucher et al. / Spectrochimica Acta Part B 107 (2015) 1–10
Mass absorption coefficients for elements with shorter characteristic
wavelength than the Fe-absorption edge were estimated from the
intensity of the Compton radiation of the appropriate X-ray tube [33].
Fig. 2. Selected LIBS spectra of some of the 100 igne
Mass absorption coefficients of elements with longer characteristic
radiation than the Fe absorption edge were calculated from the
Compton-derived mass absorption coefficients, after allowance was
made for Fe and Ti intensities [34]. Reference absolute errors on
the XRF methods, expressed as the weight percent of each oxide,
are 0.16 for SiO2, 0.06 for Al2O3, 0.005 for TiO2, 0.03 for Fe2O3, 0.04
for MgO, 0.005 for MnO, 0.03 for CaO, 0.09 for Na2O, 0.003 for P2O5,
and 0.006 for K2O [30]. Compositional ranges of the 100 samples
are shown in Fig. 1. For LIBS sample preparation, another split of
3 g from each sample was pressed into a pellet in an aluminum cup
using 35 tons of pressure.

Because atmospheric pressure exerts known effects on LIBS spectra,
samples were placed in a chamber filled with 7 Torr CO2 to simulate the
Mars surface pressure. They were observed from a standoff distance of
9 m using a 1064-nm Nd:YAG laser operating at 17 mJ/pulse; 50 laser
pulses were taken at each of five locations per sample. The optical
emission from resultant sample plasma was collected using three
Ocean Optics HR2000 spectrometers with UV (223–326 nm), VIO
(328–471 nm), and VNIR (495–927 nm)wavelength regions analogous
to those in the ChemCam instrument (Fig. 2). Spectra of samples from
this suite are exactly the same data used in [4] and [12].
4.2. Data pre-processing

Fifty plasmas per location on five locations per sample were
averaged before smoothing. The baseline (A–D offset and ambient
light background) was measured and subtracted. The bremsstrahlung
continuum was modeled and removed by iteratively suppressing
peaks by taking the average of each channel with its adjacent channels
above and below it and then using the minimum value of those two
quantities as the new value of the channel. This is repeated for every
channel in every spectrum multiple times until changes become
diminishingly small. Spectra were averaged to reduce noise. Channels
with near-zero variance were removed prior to analysis [35].
4.3. Hyperparameter tuning

All hyperparameters were tuned using a grid search over the
parameter space, and all settings were evaluated using 10-fold cross
validation over the training set. A global minimum heuristic, based on
the point at which the model MSE is at its smallest value, was used to
choose the number of components for the model. A complete listing of
the final hyperparameter values can be found in Table 2.
ous and meta-igneous rocks used in this study.



Table 2
Hyperparameter settings.

SiO2 Al2O3 TiO2 Fe2O3 MgO MnO CaO K2O Na2O P2O5

PLS-2 Components 15 15 15 15 15 15 15 15 15 15
PLS-1 Components 3 7 12 11 14 3 7 6 6 9
PCR Components 13 49 20 7 37 6 31 45 38 49
K-PCR Components 22 46 40 8 39 26 48 48 38 50
Elastic net α 2.91 1.31 1.01 0.11 0.91 2.51 0.41 0.41 2.91 2.91

l1 ratio 0.8 0 0.1 0.5 0 0 0.7 0.1 0.9 0
Lasso α 2.395 0.73 0.114 0.057 0.12 0.069 0.297 0.038 2.99 0.33
SVR-Lin ϵ 0 0.83 0.4 0.13 0.45 0.71 0.98 0.24 0.25 0.03
SVR-Py ϵ 0 0 0 0 0 0.02 0.24 0.38 0.5 0.16
kNN Neighbors 16 2 4 1 2 1 1 11 1 1
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4.4. Code

The CRAN R [36] packages Peaks and hyperSpec were used for all
data preprocessing. The open-source machine learning Python library
Scikit-learn [37] was used to train and test all models except S-LLE.
Scikit-learn uses the open-source applications LIBLINEAR [38] and
LIBSVM [39] for its linear and polynomial SVR models, respectively.
5. Model comparison results

After tuning all hyperparameters, the models were fit using a 70-
sample training set and evaluated using a 30 sample held-out testing
set to provide accurate estimates of prediction error. The only require-
ment for this method is that all samples are from the same population.
The models were compared based solely on their predictive perfor-
mance, as indicated by the predicted residual sum of squares (PRESS),
the mean squared error of prediction (MSEP), and the root mean
squared error of prediction (RMSEP). Evaluation methods that make
parametric assumptions about the data were strictly not used.

Fig. 3 compares the models' element-wise performance using the
RMSEP of the nine models over the ten most abundant oxides. The
oxides are sorted in descending order according to the average model
error, where the scale of the first row is three times the scale of the
Fig. 3.RMSEP in units ofwt.% oxide for the tenmajor elements of allmodels evaluated over the h
in the 100-sample suite studied are 8.91 ± 7.37 wt.% MgO, 52.53 ± 9.64 wt.% SiO2, 12.92 ± 3.4
1.35 ± 1.59 wt.% K2O, 2.04 ± 1.40 wt.% TiO2, 0.43 ± 0.56 wt.% P2O5 and 0.17 ± 0.06 wt.% MnO
second row. The five oxides in the first row are also the oxides with
the highest abundances in the testing set.

No single model outperformed all others on every oxide. However,
linear SVR had the lowest element-wise error, producing significantly
better results for total Fe2O3 andNa2O. In contrast, the nonlinearmodels
SVR-Py and kNNhad themarkedly largest prediction errors on all oxides
except Al2O3 and MnO. A complete listing of summed element-wise
prediction errors is given in Table 3.

Fig. 4 uses PRESS to compare the sample-wise performance of the 10
models (~horizontal axis) over the 30 testing samples (receding axis).
The vertical axis represents the magnitude of the total error associated
with predicting each element in each sample. To better visualize the
error, the samples are sorted in descending order according to the
average model error. Samples with high PRESS are those for which
there is a high mismatch between the predicted and the true composi-
tions. Again, it is clear that the linear support vector results are themost
accurate. However, all of the models suffer from some inconsistent
performance on the test set with prediction errors much larger for
some samples than others, but this was expected because of the non-
homogeneity of the testing samples. Theworst sample-wise performing
models were kernel (polynomial) SVR and kNN regression; these
models likely over-fitted the training samples. Kernel SVR and kNN
had the lowest error on more samples than any other two models
tested, a total of eight and five, respectively, but both had a cumulative
eld-out testing set. Themean and standard deviations for concentrations of these elements
2 wt.% Al2O3, 10.79 ± 4.21 wt.% total Fe2O3, 8.12± 3.64 wt.% CaO, 2.56 ± 1.14 wt.% Na2O,
.



Table 3
Model results.

PLS-2 PLS-1 PCR K-PCR Elastic
net

Lasso SVR-Lin SVR-Py kNN

MSEP 12.55 13.07 14.22 14.79 12.14 11.51 10.63 19.79 23.40
RMSEP 8.97 9.07 9.47 9.68 8.99 8.81 8.46 11.28 12.27

Fig. 4. The predicted residual sum of squares (PRESS) of all models (vertical axis)
evaluated for each of the 30held-out testing samples (receding axis) and all ten 10models
(horizontal axis). Color scheme is the same as in Fig. 3. The vertical axis represents the
magnitude of the total error associated with predicting each oxide in each sample, so
high bars indicate high errors. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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error almost double the third worst performing model. This strongly
suggests that these models are fitting a small portion of the training
samples too tightly, namely the samples that are very similar in compo-
sition to these low error test samples. This overfitting prevents the
models from predicting the majority of the test samples well.

The Wilcoxon signed-rank test [40] was used to determine whether
the evaluated models produced significantly different results. Like all of
our evaluation methods, this hypothesis test makes no parametric
assumptions about the data. PRESS over the testing samples was used
to compare each pair of models, and the results of the full pairwise
model comparison are given in Table 4. Given a p value of b0.05, there
are very few significant differences among models. However, the
value of 0.033 for PCR vs. PLS-2 indicates that these models are not
indistinguishable; their predicted compositions per sample are very
different. The most distinctive model was kNN, which was expected
because this model differs from the others by having no feature coeffi-
cients (nonparametric) and using solely a weighted interpolation of
the k nearest samples for training. In fact, the construction of this algo-
rithm is unique among those studied here because it is parameter-free.
Apparently for this reason, kNN distinguished itself as the overall worst
performing model.
6. Discussion

6.1. Sparse vs. non-sparse models

Results from sparse models (lasso and elastic net) versus models
that use all channels of the data (Fig. 3) vary by oxide. For MgO, SiO2,
Fe2O3, CaO, and MnO, the sparse models outperform all the others
except for linear SVR, requiring only between 20 and 50 channels
(lines) per oxide. For Na2O, K2O, TiO2, and P2O5, the sparse methods
produce inferior results. This result may be explained by factors relating
to the nature of the LIBS lines themselves.

The ability tomake accurate predictions from sparse techniques that
use only a few lines for any given oxide is dependent on the presence of
strong lines associated with the oxide(s) being predicted. To show this
effect, lines with intensities N300 that fell in the studied wavelength
range for each of the ten oxides of interest were compiled from the
NIST Atomic Spectra Database1 using. Note that NIST database intensi-
ties are not standardized, so this is a relatively imperfect tool, but the
results are quite informative (Fig. 5). The strongest emission lines for
Na, K, Ti, P are all roughly an order of magnitude lower than those
from the other six oxides in the energy range covered by the spectrom-
eter used in these experiments. The lower transition probabilities result
in weaker emission lines that are harder for the sparse techniques to
separate from noise, whereas strong emission lines allow sparsemodels
to eliminate much of the noise that would otherwise impede dense
models.

The number of observable emission lines and the degree to which
they are overlapped by lines from other oxides within the studied UV-
VNIR wavelength range may also influence the functionality of the
sparse methods. To pursue this hypothesis, the possibility of interfer-
ence from nearby peaks for Na, K, Ti, P, Mg, Si, Al, Fe, and Ca was
investigated using the same strong lines with intensities N300 as for
the transition probabilities. Emissions within about 0.5 nm of those
1 http://www.nist.gov/pml/data/asd.cfm.
emission peaks were scrutinized, including any oxides that had a
relatively high intensity (at least 20–30% of the intensity of the strong
emission peak). Although there were some minor trace metals that
might be abundant enough to cause interference, etc., there was no
clear difference between the two sets of elements (Na, K, Ti, P vs. Mg,
Si, Al, Fe, Ca).

6.2. Linear vs. nonlinear models

In terms of predictive performance indicated by the predicted
residual sum of squares (PRESS), the three worst-performing models
are kernel PCR, polynomial SVR, and kNN regression (Fig. 4). This result
suggests that such nonlinear methods tend to overfit the data and
predict less accurately in this application. In contrast, the linearmethods
proved to bemore generalizable with better predictive performance on
a test set. This outcome is attributed to the high dimensionality of the
data (6144 channels) relative to the small number of samples studied.

Theory from statistics shows that mean squared error can be
decomposed into two terms that trade off: error due to the bias of the
model (i.e., the distance of each prediction from the average of all
predictions) and the variance error (the maximum distance between
all possible models). As model complexity grows, variance error grows
relative to bias error. So the high variance of the nonlinear models
evaluated proved to be larger than the inherent high bias of the linear
models.

6.3. Importance of training set selection for geological applications

Data in Fig. 3 can further be considered in terms of the abundances
of each oxide, given in the figure caption and represented in Fig. 1.
The average RMSEP represents a high percentage of the actual observed
concentration for many oxides: 51% of the total concentration of P2O5,
41% of K2O, 26% of Na2O, and 24% of the average MgO. Ranking the
oxides in terms of the percentage of relative error gives SiO2

(lowest relative error at 4%) b Fe2O3 b CaO ≈ MnO ≈ Al2O3 b

TiO2 b MgO b Na2O b K2O b P2O5 (highest relative error).
Some of this observed variation from oxide to oxide may be due to

the distribution and abundance (magnitude) of oxides in the data set
overall. Inspection of Fig. 1 shows that the oxides are not uniformly
distributed over the wt.% ranges in geological samples. Thus, any
random procedure that draws a subset of samples may have very

http://www.nist.gov/pml/data/asd.cfm


Table 4
Wilcoxon test results.

PLS-2 PLS-1 PCR K-PCR Elastic net Lasso SVR-Linear SVR-Poly kNN Reg

PLS-2 0.136 0.033 0.141 0.975 0.943 0.280 0.329 0.022
PLS-1 0.136 0.428 0.673 0.586 0.614 0.159 0.544 0.063
PCR 0.033 0.428 0.734 0.393 0.393 0.094 0.719 0.090
K-PCR 0.141 0.673 0.734 0.658 0.558 0.171 0.781 0.030
Elastic net 0.975 0.586 0.393 0.658 0.673 0.254 0.465 0.021
Lasso 0.943 0.614 0.393 0.558 0.673 0.704 0.465 0.013
SVR-Lin 0.280 0.159 0.094 0.171 0.254 0.704 0.393 0.010
SVR-Py 0.329 0.544 0.719 0.781 0.465 0.465 0.393 0.185
kNN 0.022 0.063 0.090 0.030 0.021 0.013 0.010 0.185

The bold values are those with a p b =0.05, indicating a statistically significant value.
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different summary statistics than the entire population. As an
extreme example, consider that a majority of the samples contain
P2O5 b 0.5 wt.%. So if a training set happens to draw only from that
limited range of concentrations, then predicting samples in the test set
with P2O5 N 2.5 wt.% is an extreme extrapolation. In such a situation,
the test RMSEP values for P2O5will be large. Conversely, the distribution
of SiO2 in our 100 samples is slightly more uniform, as shown in Fig. 1.
Thus, it would be unlikely to randomly draw a test set that does not
represent the full range of SiO2 concentrations. If a training set does
not contain a uniform distribution of each oxide in its geological compo-
sition space, then our results show that test set results will be greatly
influenced. This result demonstrates the importance of careful construc-
tion of training sets for optimal accuracy.

6.4. Model selection for optimal performance in geological samples

PLS has become the conventional form of analysis for LIBS geological
data in recent years. As such, researchers in the field are more familiar
with the implementation and output of PLS. From an interpretation
perspective, it does have two drawbacks. First, the dimensionality
reduction algorithm does not have a closed form expression, so it is
difficult to discern exactly what is happening during this process. This
has been a subject of debate [41,42]. Second, because the model coeffi-
cients are made by taking linear combinations of channels from the
original data set, these coefficients can only have implicit physical
Fig. 5. Transition probabilities of emission lines with intensities N300 (ambiguous units
using an arbitrary cut-off, as compiled from the NIST Atomic Spectra Database) that fell
in the studied wavelength range for the nine most abundant oxides studied here for
geological samples. Colors indicate the wavelength of the lines in order from lowest to
highest. Emission lines for Mg, Si, Al, Fe, and Ca have probabilities significantly higher
than those for Na, K, Ti, and P. Higher transition probabilities result in greater line
strengths that likely make it easier for sparse models to outperform those that use the
entire spectrum. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
meaning, though they can bemapped onto emission lines using loading
plots [43]. Thismatchup is not as convenient as the directmapping from
model coefficients to emission lines inherent in sparse methods like the
lasso and elastic net, though that practice in itself may also be suspect,
especially when there are many collinear features present in the data
[13–15].

Model parsimony and explicit physical meaning of model coeffi-
cients may eventually enhance interpretability of sparser models,
making them advantageous for future LIBS studies so that geochemistry
can be better understood. Future studies may choose to employ sparse
methods in situations where the data are noisy (i.e., when collected
under difficult environmental conditions) or where interpretability is
important. This suggests that alternative techniques that remove noisy
features might be useful. Dimensionality reduction is a field in machine
learning that focuses on simplified data representation by eliminating
dimensions that do not inform the model. Such models show promise
and are the subject of ongoing work [44].

However, among the methods used in the current study, there are
also better (more accurate) alternatives to PLS that still employ the
entire spectrum. For example, linear SVR can produce superior results
because only a subset of the training set is used to construct the most
generalizable model possible. This suggests that statistical
bootstrapping methods, like bagging, or generating multiple training
sets by uniformly sampling with replacement from the original training
set [45], could be used as meta-algorithms to improve predictive
performance. Future studies may choose to employ sparse methods in
situations where the element being predicted has a small number of
lines with large transition probabilities or where interpretability is im-
portant. The strong performance of the sparse methods in this study
at predicting major elements suggests that the use of dimensionality-
reduction techniques as a preprocessing step may improve the perfor-
mance of the linear models.

Finally, the differences in model performance on an oxide basis
might be taken to suggest that the model choice could be customized
depending on the oxide of interest. The best-performing models as
seen in Table 3 were SVR-Lin for SiO2, MgO, Fe2O3total, and Na2O,
lasso for Al2O3, elastic net for MnO, and PLS-1 for CaO, TiO2, and K2O.
However, none of these differences is statistically significant (Table 4)
in our small test set of only 30 samples, except for the case of kNN
(which is clearly worse). With a bigger test set, a greater difference in
predictive performance might be expected, in which case using an
ensemble of regressionmodels might yield superior results. This suppo-
sition clearly merits additional work.
7. Conclusions

Our results show that the linear models evaluated better predicted
the major elements of the out of sample rocks than the nonlinear
models evaluated. Models that used a subset of the features or a subset
of the training data proved to be the most accurate models for
predicting the five major oxides. However, no superior algorithm has
emerged in general, the methods should be used in tandem to
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exploit their individual qualities, which include familiarity, sparsity, in-
terpretability, and computational speed. This suggests that a combina-
tion of models could be used together to yield a lower total error of
prediction, depending on the requirements of the user.

The extent to which these conclusions can be generalized surely
depends on the size and composition of the data set, though this conclu-
sion remains to be tested due to lack of availability of appropriate data.
This data set is one of the largest, best-characterized calibration suites
currently available for geological samples. The fact that it is deliberately
restricted to igneous and meta-igneous rocks means that matrix effects
caused by wide compositional variations are mitigated, allowing our
work to be focused on model comparisons under ideal conditions. This
study thus provides a useful benchmark against which other models
that include more diverse samples can be compared. To date there are
no larger data sets available for this analysis that were collected using
similar rock types and identical instrumental conditions. With smaller
data sets, certain test and training sets will not produce reasonable
RMSEP values, but other randomly-generated combinations will.
Results are expected to change as other data sets with even greater
compositional variation are used. Thus, this work lays a foundation for
future work as larger data sets are developed. It is likely that the future
studies will further clarify the relative utility of the methods studied
here.

In particular, as noted by Brown andGreen [15], future experimental
designmay allow quantitative assessments of sensitivity and selectivity
as figures of merit for LIBS analyses. However, acquiring such data may
be difficult given the complexity of elemental interactions in LIBS
plasmas caused by chemical matrix effects and the limitless combina-
tions of elements in geological samples. As larger data sets become
available, it is likely that an array of methods may be needed to extract
optimal chemical analyses from LIBS data.

Acknowledgments

We are grateful for support fromNSF grants CHE-1306133 and CHE-
1307179 and NASA grants NNG06GH35G and NNX09AL21G, and for
student support from the Massachusetts Space Grant Consortium. We
thank Michael Vollinger and Michael Rhodes for contributing analyzed
samples and good advice to this project.

References

[1] R.C. Wiens, S. Maurice, B. Barraclough, M. Saccoccio, W.C. Barkley, J.F. Bell III, S.
Bender, J. Bernardin, D. Blaney, J. Blank, M. Bouye, N. Bridges, P. Cais, R.C. Clanton,
B. Clark, S. Clegg, A. Cousin, D. Cremers, A. Cros, L. DeFlores, D. Delapp, R. Dingler,
C. D'Uston, M.D. Dyar, T. Elliott, D. Enemark, C. Fabre, M. Flores, O. Forni, O. Gasnault,
T. Hale, C. Hays, K. Herkenhoff, E. Kan, L. Kirkland, D. Kouach, D. Landis, Y. Langevin,
N. Lanza, F. LaRocca, J. Lasue, J. Latino, D. Limonadi, C. Lindensmith, C. Little, N.
Mangold, G. Manhes, P. Mauchien, C. McKay, E. Miller, J. Mooney, R.V. Morris, L.
Morrison, T. Nelson, H. Newsom, A. Ollila, M. Ott, L. Pares, R. Perez, F. Poitrasson,
C. Provost, J.W. Reiter, T. Roberts, F. Romero, V. Sautter, S. Salazar, J.J. Simmonds,
R. Stiglich, S. Storms, N. Streibig, J.J. Thocaven, T. Trujillo, M. Ulibarri, D. Vaniman,
N. Warner, R. Waterbury, R. Whitaker, J. Witt, B. Wong-Swanson, The ChemCam in-
struments on the Mars Science Laboratory (MSL) rover: body unit and combined
system performance, Space Sci. Rev. 170 (2012) 167–227.

[2] S. Maurice, R.C. Wiens, M. Saccoccio, B. Barraclough, O. Gasnault, O. Forni, N.
Mangold, D. Baratoux, S. Bender, G. Berger, J. Bernardin, M. Berthé, N. Bridges, D.
Blaney, M. Bouyé, P. Cais, B. Clark, S. Clegg, A. Cousin, D. Cremers, A. Cros, L. DeFlores,
C. Derycke, B. Dingler, G. Dromart, B. Dubois, M. Dupieux, E. Durand, L. d'Uston, C.
Fabre, B. Faure, A. Gaboriaud, T. Gharsa, K. Herkenhoff, E. Kan, L. Kirkland, D. Kouach,
J.L. Lacour, Y. Langevin, J. Lasue, S. Le Mouélic, M. Lescure, E. Lewin, D. Limonadi, G.
Manhes, P. Mauchien, C. McKay, P.Y. Meslin, Y. Michel, E. Miller, H.E. Newsom, G.
Orttner, A. Paillet, L. Pares, Y. Parot, R. Perez, P. Pinet, F. Poitrasson, B. Quertier, B.
Sallé, C. Sotin, V. Sautter, H. Seran, J.J. Simmonds, J.B. Sirven, R. Stiglich, N. Streibig,
J.J. Thocaven,M. Toplis, D. Vaniman, The ChemCam instruments on theMars Science
Laboratory (MSL) rover: science objectives and mast unit, Space Sci. Rev. 170
(2012) 95–166.

[3] S.M. Clegg, J. Lasue, O. Forni, S. Bender, R.C. Wiens, S. Maurice, B. Barraclough, D.
Blaney, A. Cousin, L. DeFlores, D. Delapp, M.D. Dyar, C. Fabre, O. Gasnault, N. Lanza,
R.V. Morris, T. Nelson, H. Newsom, A. Ollila, R. Perez, V. Sautter, D.T. Vaniman,
ChemCam flight model calibration, Lunar Planet. Sci., Woodlands, TX, 2012, Abstract
2076, 2012.
[4] J.M. Tucker, M.D. Dyar, M.W. Schaefer, S.M. Clegg, R.C. Wiens, Optimization of laser-
induced breakdown spectroscopy for rapid geochemical analysis, Chem. Geol. 277
(2010) 137–148.

[5] J.B. Sirven, B. Sallé, P. Mauchien, J.L. Lacour, S. Maurice, G. Manhès, Feasibility study
of rock identification at the surface of Mars by remote laser-induced breakdown
spectroscopy and three chemometric methods, J. Anal. At. Spectrom. 22 (2007)
1471–1480.

[6] S.M. Clegg, E. Skulte, M.D. Dyar, J.E. Barefield, R.C. Wiens, Multivariate analysis of
remote laser-induced breakdown spectroscopy spectra using partial least squares,
principal component analysis, and related techniques, Spectrochim. Acta Part B 88
(2009) 79–88.

[7] R.M. Anderson, R.V. Morris, S.M. Clegg, J.F. Bell, R.C. Wiens, S.D. Humphries, S.A.
Mertzman, T.G. Graff, R. McInroy, The influence of multivariate analysis methods
and target analysis of rocks using laser induced breakdown spectroscopy, Icarus
215 (2011) 608–627.

[8] M.D. Dyar, M.L. Carmosino, J.M. Tucker, E.A. Brown, S.M. Clegg, R.C. Wiens, J.E.
Barefield, J.S. Delaney, G.M. Ashley, S.G. Driese, Remote laser-induced breakdown
spectroscopy analysis of East African Rift sedimentary samples under Mars
conditions, Chem. Geol. 294–295 (2012) 135–151.

[9] L. Liang, T.L. Zhang, K. Wang, H.S. Tang, X.F. Yang, X.Q. Zhu, Y.X. Duan, H. Li,
Classification of steel materials by laser-induced breakdown spectroscopy coupled
with support vector machines, Appl. Opt. 53 (2014) 544–552.

[10] X.W. Li, Z. Wang, S.L. Lui, Y.T. Fu, Z. Li, J.M. Liu, W.D. Ni, A partial least squares
based spectrum normalization method for uncertainty reduction for laser-
induced breakdown spectroscopy measurements, Spectrochim. Acta Part B 88
(2013) 180–185.

[11] R.B. Anderson, J.F. Bell, R.C.Wiens, R.V. Morris, S.M. Clegg, Clustering and training set
selection methods for improving the accuracy of quantitative laser induced break-
down spectroscopy, Spectrochim. Acta Part B 70 (2012) 24–32.

[12] M.D. Dyar, M.L. Carmosino, E.A. Breves, M.V. Ozanne, S.M. Clegg, R.C. Wiens,
Comparison of partial least squares and lasso regression techniques as applied to
laser-induced breakdown spectroscopy of geological samples, Spectrochim. Acta
Part B 70 (2012) 51–67.

[13] M.B. Seasholtz, B.R. Kowalski, Qualitative information from multivariate calibration
models, Appl. Spectrosc. 44 (2009) 1337–1348.

[14] O.M. Kvalheim, T.V. Karstang, Interpretation of latent-variable regression models,
Chemometr. Intell. Lab. Des. 7 (1989) 39–51.

[15] C.D. Brown, R.L. Green, Critical factors limiting the interpretation of regression
vectors in multivariate calibration, Trends Anal. Chem. 28 (2009) 506–519.

[16] J.A. Wegelin, A survey of partial least squares (pls) methods, with emphasis on the
two-block case, Technical Report, University of Washington, USA, 2000.

[17] O. Erdas, E. Buyukbingol, F.N. Alpaslan, A. Adejare, Modeling and predicting binding
affinity of phencyclidine-like compounds using machine learning methods, J.
Chemometr. 24 (2010) 1–13.

[18] J.H. Kalivas, Interrelationships of multivariate regression methods using eigenvector
basis sets, J. Chemometr. 13 (1999) 111–1329.

[19] I.T. Jolliffe, Principal Component Analysis, 2nd edition Springer, 2002.
[20] B. Scholkopf, A. Smola, K.-R. Müller, Kernel principal component analysis, Advances

in Kernel Methods — Support Vector Learning, MIT Press, 1999, pp. 327–352.
[21] B. Scholkopf, A. Smola, Learning With Kernels: Support Vector Machines, Regulari-

zation, Optimization, and Beyond, MIT Press, Cambridge, MA, USA, 2001.
[22] E. Andries, Sparse models by iteratively reweighted feature scaling: a framework for

wavelength and sample selection, J. Chemometr. 27 (2013) 50–62.
[23] P. Filzmoser, M. Gschwandtner, V. Todorov, Review of sparse methods in regression

and classification with application to chemometrics, J. Chemometr. 26 (2012)
42–51.

[24] A.E. Hoerl, R.W. Kennard, Ridge regression — applications to non-orthogonal
problems, Technometrics 12 (1970) 69–76.

[25] H. Drucker, C.J.C. Burges, L. Kaufman, A. Smola, V. Vapnik, Support vector regression
machines, Advances in Neural Information Processing Systems, 9, MIT Press, 1997,
pp. 155–161.

[26] C. Butnariu, C. Lisa, F. Leon, S. Curteanu, Prediction of liquid–crystalline property
using support vector machine classification, J. Chemometr. 27 (2013) 179–188.

[27] J. Gertheissa, G. Tutza, Variable scaling and nearest neighbor methods, J.
Chemometr. 23 (2009) 149–151.

[28] T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning, 2nd ed.
Springer Verlag, New York, 2009.

[29] M. Hollander, D.A. Wolfe, Nonparametric Statistical Methods, 2nd ed. John Wiley &
Sons, Inc., New York, 1999.

[30] J.M. Rhodes, M.J. Vollinger, Composition of basaltic lavas sampled by phase-2 of the
Hawaii Scientific Drilling Project: geochemical stratigraphy and magma types,
Geochem. Geophys. Geosyst. 5 (2004) Q03G13.

[31] K. Norrish, J.T. Hutton, An accurate X-ray spectrographic method for the analysis
of a wide range of geological samples, Geochim. Cosmochim. Acta 33 (1969)
431–453.

[32] K. Norrish, B.W. Chappell, X-ray fluorescent spectrography, in: J. Zussman (Ed.),
Physical Methods in Determinative Mineralogy, Academic, San Diego, Calif., 1967,
pp. 161–214.

[33] R.C. Reynolds, Estimation of mass absorption coefficients by Compton scattering:
improvements and extension of the method, Am. Mineral. 52 (1967) 1493–1502.

[34] D. Walker, Behavior of mass absorption coefficients near absorption edges:
Reynolds' method revisited, Am. Mineral. 58 (1973) 1069–1072.

[35] M. Kuhn, Building predictive models in r using the caret package, J. Stat. Softw. 28
(2008) 1–26.

[36] R Core Team, R: A Language and Environment for Statistical Computing, R
Foundation for Statistical Computing, Vienna, Austria, 2013.

http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0005
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0005
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0005
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0005
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0005
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0005
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0005
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0005
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0005
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0005
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0005
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0005
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0005
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0010
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0010
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0010
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0010
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0010
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0010
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0010
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0010
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0010
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0010
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0010
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0010
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0185
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0185
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0185
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0185
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0185
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0015
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0015
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0015
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0020
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0020
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0020
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0020
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0025
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0025
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0025
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0025
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0030
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0030
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0030
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0030
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0035
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0035
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0035
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0035
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0040
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0040
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0040
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0045
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0045
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0045
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0045
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0050
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0050
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0050
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0055
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0055
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0055
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0055
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0060
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0060
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0065
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0065
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0070
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0070
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0075
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0075
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0080
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0080
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0080
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0085
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0085
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0190
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0195
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0195
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0095
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0095
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0200
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0200
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0100
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0100
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0100
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0105
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0105
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0205
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0205
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0205
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0115
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0115
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0120
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0120
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0125
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0125
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0130
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0130
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0210
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0210
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0210
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0135
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0135
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0135
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0215
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0215
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0215
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0140
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0140
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0145
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0145
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0150
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0150
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0220
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0220


10 T.F. Boucher et al. / Spectrochimica Acta Part B 107 (2015) 1–10
[37] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M.
Brucher, M. Perrot, E. Duchesnay, Scikit-learn: machine learning in Python, J.
Mach. Learn. Res. 12 (2011) 2825–2830.

[38] R. Fan, K. Chang, C. Hsieh, X. Wang, C. Lin, LIBLINEAR: a library for large linear
classification, J. Mach. Learn. Res. 9 (2008) 1871–1874.

[39] C. Chang, C. Lin, LIBSVM: a library for support vector machines, ACM Trans. Intell.
Syst. Technol. 2 (27) (2011) 1–27.

[40] F. Wilcoxon, Individual comparisons by ranking methods, Biometrics Bull. 1 (1945)
80–83.
[41] R. Rosipal, N. Krämer, Overview and recent advances in partial least squares, LNCS
3940 (2006) 34–51.

[42] C. Goutis, Partial least squares algorithm yields shrinkage estimators, Ann. Stat. 24
(1996) 816–824.

[43] B.H. Mevik, R. Wehrens, K.H. Liland KH, pls: partial least squares and principal
component regression, R Package Version 2.3-02011.

[44] T. Boucher, M.D. Dyar, M.L. Carmosino, S. Mahadevan, S. Clegg, R. Wiens, Manifold
regression of LIBS data from geological samples for application to ChemCam on
Mars, Sci-X 2013, Milwaukee, Abstract #242013.

[45] L. Breiman, Bagging predictors, J. Mach. Learn. 24 (1996) 123–140.

http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0155
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0155
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0155
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0155
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0160
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0160
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0225
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0225
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0165
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0165
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0170
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0170
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0175
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0175
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0230
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0230
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0235
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0235
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0235
http://refhub.elsevier.com/S0584-8547(15)00051-8/rf0180

	A study of machine learning regression methods for major elemental analysis of rocks using laser-�induced breakdown spectroscopy
	1. Introduction
	2. Background
	2.1. Partial least squares
	2.2. PCR and kernel PCR
	2.3. Lasso and elastic net
	2.4. Support vector regression
	2.5. k-Nearest neighbors

	3. Model evaluation and comparisons
	3.1. Model selection criteria
	3.2. Cross-validation
	3.3. Model comparison

	4. Methods
	4.1. Samples and experimental methods
	4.2. Data pre-processing
	4.3. Hyperparameter tuning
	4.4. Code

	5. Model comparison results
	6. Discussion
	6.1. Sparse vs. non-sparse models
	6.2. Linear vs. nonlinear models
	6.3. Importance of training set selection for geological applications
	6.4. Model selection for optimal performance in geological samples

	7. Conclusions
	Acknowledgments
	References


