Sridhar Mahadevan

Adobe Research, U.Mass, Amherst www.cics.umass.edu/~mahadeva

2022 年 9 月 29 日

UMassAmherst

College of Information & Computer Sciences

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- 2 (Higher-Order) Category Theory
- **3** Universal Decision Models
- 4 Structure Discovery as Horn Filling of Simplicial Objects

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Recent Papers on Universal AI

- Universal Decision Models
- On The Universality of Diagrams for Causal Inference and the Causal Reproducing Property
- Categoroids: Universal Conditional Independence
- Unifying Causal Inference and Reinforcement Learning using Higher-Order Category Theory

 On Arxiv or my UMass web page: www.cics.umass.edu/~mahadeva

Language and Thought

WHY ONLY US

Robert C. Berwick - Noam Chomsky

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

The Importance of Abstraction

Civilization advances by extending the number of important operations which we can perform without thinking about them. Operations of thought are cavalry charges in a battle - they are limited in number, they require fresh horses, and must only be made at decisive moments.

— Alfred North Whitehead —

AZQUOTES

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Analogy and Metaphor in Language

SURFACES AND ESSENCES

ANALOGY AS THE FUEL AND FIRE OF THINKING

DOUGLAS HOFSTADTER & EMM INUEL SANDER

1日・イヨ・イヨ・ ヨー わえや

Emerging Directions in Computing

- Technological advances have greatly increased our ability our ability to perform tasks without "thinking" about them
- Computing in the cloud has decentralized collaborative activities and made remote work a reality
- Adobe just announced it will acquire Figma for \$20 billion! (https://www.figma.com)
- Blockchain, the "Internet of Money", will redefine computing and economics in the 21st century

Collaborative Design using Figma

Nothing great is brainstormed alone.

Figma connects everyone in the design process so teams can deliver better products, faster.

200

The Science of Collaborative Design

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

https://co-design.science/papers/

Category Theory: The Power of Abstraction

- Objects are defined by their interactions
- Functors define analogies across categories
- Natural transformations between functors give rise to universal representations

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- A huge library of design tools!
 - Pullbacks, pushforwards, (co)equalizers
 - Limits and colimits
 - Kan extensions
 - Braided monoidal categories
 - Cospans, operads, props, ...

Category Theory in AI/CS/ML

- Long been a foundation for programming languages (e.g., Haskell is widely used to implement blockchains such as Cardano)
- Uniform Manifold Approximation and Projection (https://umap-learn.readthedocs.io/en/latest/): widely used for visualizing high-dimensional data
- Clustering as a Functor (Gunnar Carlsson): overcomes Kleinberg's impossibility theorem.
- Seven Sketches in Compositionality (MIT Text on applied category theory): https://arxiv.org/abs/1803.05316
- Offers unparalleled power to abstract complex objects and their interactions

Reinforcement Learning

Markov Decision Processes: $\langle S, A, \Psi, P, R \rangle$

- S is a discrete set of states
- A is the discrete set of actions
- $\Psi \subset S imes A$ is the set of admissible state-action pairs
- $P: \Psi \times S \rightarrow [0,1]$ is the transition probability function specifying the one-step dynamics of the model

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• $R:\Psi
ightarrow \mathbb{R}$ is the expected reward function

(Higher-Order) Category Theory

RL as a Category: MDP Homomorphisms

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

MDP Homomorphism

An MDP homomorphism from MDP $M = \langle S, A, \Psi, P, R \rangle$ to $M' = \langle S', A', \Psi', P', R' \rangle$, denoted $h : M \twoheadrightarrow M'$, is defined by

- A tuple of surjections $\langle f, \{g_s | s \in S\} \rangle$
- where $f: S \twoheadrightarrow S', g_s: A_s \twoheadrightarrow A'_{f(s)}$
- $h((s,a)) = \langle f(s), g_s(a) \rangle$, for $s \in S$
- Stochastic substitution property and reward respecting properties below are respected:

$$P'(f(s), g_s(a), f(s')) = \sum_{s'' \in [s']_f} P(s, a, s'')$$
(1)

$$R'(f(s),g_s(a)) = R(s,a)$$
(2)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

(Higher-Order) Category Theory

Pullback: Reasoning with Diagrams

www.math3ma.com

The pullback (Initit) of the data in red is the data in blue.

> People use this little symbol to say "Hey! Not only does $A \times_{e} B$ fif into this diagram, it does so *universally*."

= the limit of that diagram

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > のへで

(Higher-Order) Category Theory

Category of Causal Models

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Pullback, pushforward: joins and meets
- Initial and terminal objects: \emptyset, V

(Higher-Order) Category Theory

Two Functors from MDPs to Graphs

Figure 1: An overview of Successor Options Framework

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

(Higher-Order) Category Theory

Natural Transformations between two Functors

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

(Higher-Order) Category Theory

Le Lemme de la Gare du Nord: Yoneda Lemma

$\operatorname{Hom}_{\mathcal{C}}(X,Y) \simeq \operatorname{Nat}(\operatorname{Hom}_{\mathcal{C}}(-,X),\operatorname{Hom}_{\mathcal{C}}(-,Y))$

(Higher-Order) Category Theory

Adjunctions

- · includes identify morphisms at each vertex.
- · morphisms are finite paths between vertices
- · composition is path concederation

U cat Dir Graph uc a category its underlying directed graph ? ____ ? forget all adapting data and structure except objects (vertices) and morphisms (edges)

・ロト ・四 ト ・ヨト ・ヨト

æ

(Higher-Order) Category Theory

Higher-Order Category Theory

(Higher-Order) Category Theory

Simplicial Objects: Higher-Order Category Theory

(▲口▶ ▲圖▶ ▲目▶ ▲目▶ | 目| のへの

Constructing Simplicial Objects from a Category

• The **nerve** of a category C is the set of composable morphisms of length n, for $n \ge 1$. Let $N_n(C)$ denote the set of sequences of composable morphisms of length n.

$$\{C_o \xrightarrow{f_1} C_1 \xrightarrow{f_2} \dots \xrightarrow{f_n} C_n \mid C_i \text{ is an object in } \mathcal{C}, f_i \text{ is a morphism in } \mathcal{C}\}$$

• **Theorem:** The nerve functor N_{\bullet} : Cat \rightarrow Set is fully faithful. More specifically, there is a bijection θ defined as:

$$\theta: \mathbf{Cat}(\mathcal{C}, \mathcal{C}') \to \mathbf{Set}_{\Delta}(\mathcal{N}_{\bullet}(\mathcal{C}), \mathcal{N}_{\bullet}(\mathcal{C}'))$$

(Higher-Order) Category Theory

Adjunctions between Categories and Simplicial Objects

$$X_0 \stackrel{\stackrel{d_0}{\longleftarrow}}{\underbrace{\longleftarrow}{}_{r_0}} X_1 \stackrel{\stackrel{d_0}{\longleftarrow}{}_{r_1}}{\underbrace{\longleftarrow}{}_{r_2}} X_2 \cdots$$

- Category to Simplicial Object: Nerve functor is a full and faithful embedding
- Simplicial object to Category: Lossy functor

(Higher-Order) Category Theory

Braided Monoidal Categories (Censi, Fong, Spivak)

dp: $\mathcal{F}^{\mathrm{op}} \times \mathcal{R} \to_{\mathbf{Pos}} \mathrm{Bool}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

(Higher-Order) Category Theory

Category Theory and Language: Words and Meaning

https://www.math3ma.com/categories/category-theory https://arxiv.org/abs/2106.07890

(Higher-Order) Category Theory

Deciphering Ancient Language: Indus Script

イロト イポト イヨト イヨト

Past vs. Future

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Challenge: Universal Decision Making

- We reason causally to understand our world
- We compete to gain advantage in commerce, sports and war
- We often act without complete information, but try to make better decisions over time

Adobe Experience Platform: Datamining the Past

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Universal Decision Models

Universal Decision Models: Controlling the Future

Category of Decision Problems

- Define categories of decision objects: causal models, RL models, Nash games, etc.
- Construct functors from one decision category to another

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Build universal representations for structure discovery

Universal Decision Models

Decision Objects: $\langle A, (\Omega, \mathcal{B}, P), (U_{\alpha}, \mathcal{F}_{\alpha}, \mathcal{I}_{\alpha})_{\alpha \in A} \rangle$:

- A describes a finite universe of decision points (e.g., in RL, causal inference, or Nash games)
- $(\Omega, \mathcal{B}, \mathcal{P})$ is a probability space
- $(U_{\alpha}, \mathcal{F}_{\alpha})$ is a measurable decision space from which a decision $u \in U_{\alpha}$ is chosen by α .
- Policy of agent α : any measurable function $\pi_{\alpha} : \prod_{\beta} U_{\beta} \to U_{\alpha}$.
- Each agent's policy is measurable from its **information field** \mathcal{I}_{α} , a subfield of the overall product space $(\prod_{\beta} U_{\beta}, \prod_{\beta} \mathcal{F}_{\beta})$, to the σ -algebra \mathcal{F}_{α} .

Scaling by Exploiting Conditional Independence

- Markov property: the past is conditionally independent of the future, given the current "state"
- Sufficient statistic: $(\theta \perp X \mid T(X))$
- Graphoids, Separoids, Imsets: See my Categoroids paper
 - **Separoid** (S, \leq, \bot) is a join semi-lattice.

P1:
$$x \perp \!\!\!\perp y \mid x$$

P2: $x \perp \!\!\!\perp y \mid z \Rightarrow y \perp \!\!\!\perp x \mid z$
P3: $x \perp \!\!\!\perp y \mid z$ and $w \leq y \Rightarrow x \perp \!\!\!\perp w \mid z$
P4: $x \perp \!\!\!\perp y \mid z$ and $w \leq y \Rightarrow x \perp \!\!\!\perp y \mid (z \lor w)$
P5: $x \perp \!\!\!\perp y \mid z$ and $x \perp \!\!\!\perp w \mid (y \lor z) \Rightarrow x \perp \!\!\!\perp (y \lor w) \mid z$

Universal Causality

Pollution in New Delhi, India

Yoneda Lemma Defines Universal Causality

Causal Reproducing Property: All causal influences between any two objects X and Y in a Universal Causal Model $\mathcal{M} = \langle \mathcal{C}, \mathcal{X}, \mathcal{I}, \mathcal{O}, \mathcal{E} \rangle$ is reproducible from presheaf functor objects

 $\operatorname{Hom}_{\mathcal{C}}(X, Y) \simeq \operatorname{Nat}(\operatorname{Hom}_{\mathcal{C}}(-, X), \operatorname{Hom}_{\mathcal{C}}(-, Y))$
Universal Decision Models

The Density Theorem in the Theory of Sheaves

Universal Causal Theorem: Given any universal causal model defined as a tuple $\mathcal{M} = \langle \mathcal{C}, \mathcal{X}, \mathcal{I}, \mathcal{O}, \mathcal{E} \rangle$, any causal inference in \mathcal{M} can be represented as a co-limit of a diagram of representable objects in a unique way.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Structure Discovery as Horn Filling of Simplicial Objects

Structure Discovery by solving Lifting Problems

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへ⊙

Lifting Problem in Causal Discovery

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Predictive State Representations

Tests

$$\phi = h_1 \underbrace{\begin{array}{ccc} t_1 & \cdots & t_j & \cdots \\ \phi = h_1 & p(t_1 \mid h_1) & \cdots & p(t_j \mid h_1) \\ \vdots & \vdots & \vdots \\ h_i & p(t_1 \mid h_i) & \cdots & p(t_j \mid h_i) \\ \vdots & \vdots & \end{array}}_{i \mid p(t_1 \mid h_i) & \cdots & p(t_j \mid h_i) \\ \vdots & \vdots & \vdots \\ p(t_1 \mid h_i) & \cdots & p(t_j \mid h_i) \\ \vdots & \vdots & \vdots \\ p(t_1 \mid h_i) & \cdots & p(t_j \mid h_i) \\ \vdots & \vdots & \vdots \\ p(t_1 \mid h_i) & \cdots & p(t_j \mid h_i) \\ \vdots & \vdots & \vdots \\ p(t_1 \mid h_i) & \cdots & p(t_j \mid h_i) \\ \vdots & \vdots & \vdots \\ p(t_1 \mid h_i) & \cdots & p(t_j \mid h_i) \\ \vdots & \vdots & \vdots \\ p(t_1 \mid h_i) & \cdots & p(t_j \mid h_i) \\ \vdots & \vdots & \vdots \\ p(t_1 \mid h_i) & \cdots & p(t_j \mid h_i) \\ \vdots & \vdots & \vdots \\ p(t_1 \mid h_i) & \cdots & p(t_j \mid h_i) \\ \vdots & \vdots & \vdots \\ p(t_1 \mid h_i) & \cdots & p(t_j \mid h_i) \\ \vdots & \vdots & \vdots \\ p(t_1 \mid h_i) & \cdots & p(t_j \mid h_i) \\ \vdots & \vdots & \vdots \\ p(t_1 \mid h_i) & \cdots & p(t_j \mid h_i) \\ \vdots & \vdots & \vdots \\ p(t_1 \mid h_i) & \cdots & p(t_j \mid h_i) \\ \vdots & \vdots & \vdots \\ p(t_1 \mid h_i) & \cdots & p(t_j \mid h_i) \\ \vdots & \vdots & \vdots \\ p(t_1 \mid h_i) & \cdots & p(t_j \mid h_i) \\ \vdots & \vdots & \vdots \\ p(t_1 \mid h_i) & \cdots & p(t_j \mid h_i) \\ \vdots & \vdots & \vdots \\ p(t_1 \mid h_i) & \cdots & p(t_j \mid h_i) \\ \vdots & \vdots & \vdots \\ p(t_1 \mid h_i) & \cdots & p(t_j \mid h_i) \\ \vdots & \vdots & \vdots \\ p(t_1 \mid h_i) & \cdots & p(t_j \mid h_i) \\ \vdots & \vdots \\ p(t_1 \mid h_i) & \cdots & p(t_j \mid h_i) \\ \vdots & \vdots \\ p(t_1 \mid h_i) & \cdots & p(t_j \mid h_i) \\ \vdots & \vdots \\ p(t_1 \mid h_i) & \cdots & p(t_j \mid h_i) \\ \vdots & \vdots \\ p(t_1 \mid h_i) & \cdots & p(t_j \mid h_i) \\ \vdots & \vdots \\ p(t_1 \mid h_i) & \cdots & p(t_j \mid h_i) \\ \vdots & \vdots \\ p(t_1 \mid h_i) & \cdots & p(t_j \mid h_i) \\ \vdots & \vdots \\ p(t_1 \mid h_i) & \cdots & p(t_j \mid h_i) \\ \vdots & \vdots \\ p(t_1 \mid h_i) & \cdots & p(t_j \mid h_i) \\ \vdots & \vdots \\ p(t_1 \mid h_i) & \cdots & p(t_j \mid h_i) \\ \vdots & \vdots \\ p(t_1 \mid h_i) & \cdots & p(t_j \mid h_i) \\ \vdots & \vdots \\ p(t_1 \mid h_i) & \cdots & p(t_j \mid h_i) \\ \vdots & \vdots \\ p(t_1 \mid h_i) & \cdots & p(t_j \mid h_i) \\ \vdots & \vdots \\ p(t_1 \mid h_i) & \cdots & p(t_j \mid h_i) \\ \vdots & \vdots \\ p(t_1 \mid h_i) & \cdots & p(t_j \mid h_i) \\ \vdots & \vdots \\ p(t_1 \mid h_i) & \cdots & p(t_j \mid h_i) \\ \vdots & \vdots \\ p(t_1 \mid h_i) & \cdots & p(t_j \mid h_i) \\ \vdots & \vdots \\ p(t_1 \mid h_i) & \cdots & p(t_j \mid h_i) \\ \vdots & \vdots \\ p(t_1 \mid h_i) & \cdots & p(t_j \mid h_i) \\ \vdots & \vdots \\ p(t_1 \mid h_i) & \cdots & p(t_j \mid h_i) \\ \vdots & \vdots \\ p(t_1 \mid h_i) & \cdots & p(t_j \mid h_i) \\ \vdots & \vdots \\ p(t_1 \mid h_i) \\ \vdots \\ p(t_1$$

Predictive State Representations

- Finite set of actions A and observations O.
- A history: sequence of actions and observations $h = a_1 o_1 \dots a_k o_k$.
- A *test*: possible sequence of future actions and observations $t = a_1 o_1 \dots a_n o_n$.
- P(t|h) is a prediction test t will succeed from history h.
- State ψ : a vector of predictions of *core tests* $\{q_1, \ldots, q_k\}$.
- The prediction vector ψ_h = ⟨P(q₁|h)...P(q_k|h)⟩ is a sufficient statistic. The predictive state of a PSR is denoted Ψ.

Category of PSRs

A **PSR homomorphism** from a PSR Ψ to another PSR Ψ' is defined as:

- A tuple of surjections $\langle f, v_{\psi}(a) \rangle$
- where $f:\Psi\to\Psi'$ and $v_\psi:A\to A'$ for all prediction vectors $\psi\in\Psi$

such that

$$P(\psi'|f(\psi), \mathbf{v}_{\psi}(\mathbf{a})) = P(f^{-1}(\psi')|\psi, \mathbf{a})$$
(3)

for all $\psi' \in \Psi, \psi \in \Psi, a \in A$.

Category of Ordinal Numbers

- Category ∆: objects are non-empty ordinals [n] = {0,1,...,n]
 Arrows: non-decreasing maps f: [m] → [n].
- Elementary injections $d_i : [n] \rightarrow [n+1]$, which omits $i \in [n]$
- Elementary surjections $s_i : [n] \rightarrow [n-1]$, which repeats $i \in [n]$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

• Fundamental simplex $\Delta([n])$: Yoneda functor $\Delta(-, [n])$.

Elementary Surjections and Injections

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Simplicial Objects are Functors!

- Simplicial objects over sets: $X[n] = X_n : [n] \to X$
- X_0 is a set of objects: $f: [0] = \{0\}$ to X
- Arrows are in X₁: functors mapping [1] = {0,1} and its non-identity morphism 0 → 1 to X.
- 2-simplices X[2]: functor mapping $[2] = \{0, 1, 2\}$, with its non-identity morphisms $0 \rightarrow 1, 1 \rightarrow 2, 0 \rightarrow 2$ into a category.

Yoneda Lemma: An *n*-simplex x ∈ X_n is defined by the presheaf functor Δ[n] → X.

Structure Discovery by Filling Horns of Simplicial Objects

The **Horn** $\Lambda_i^n : \Delta^{op} \to \mathbf{Set}$ is defined as

 $(\Lambda_i^n)([m]) = \{ \alpha \in \mathbf{Hom}_{\Delta}([m], [n]) : [n] \not\subseteq \alpha([m]) \cup \{i\} \}$

Structure Discovery as Horn Filling of Simplicial Objects

Solving Lifting Problems with Kan Fibrations

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Structure Discovery as Horn Filling of Simplicial Objects

Higher-Order Category Theory

Weak Kan complexes

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- Quasicategories
- ∞ -categories

Universal PSR Theorems

Theorem: The **nerve functor** defined by a PSR $N_{\bullet}: \operatorname{Cat}_{PSR} \to \operatorname{Set}$ is fully faithful. More specifically, there is a bijection θ defined as:

 $\theta: \mathbf{Cat}(\mathcal{C}_{PSR}, \mathcal{C}'_{PSR}) \leftrightarrow \mathbf{Set}_{\Delta}(N_{\bullet}(\mathcal{C}_{PSR}), N_{\bullet}(\mathcal{C}'_{PSR}))$

Theorem: The **nerve functor** defined by a PSR N_{\bullet} : Cat_{PSR} \rightarrow Set forms a quasicategory.

Singular Homology Group Defined by a Topological Space

For any topological space X, the **singular homology groups** $H_*(X; \mathbf{Z})$ are defined as the homology groups of a chain complex

$$\ldots \xrightarrow{\partial} \mathbf{Z}(\mathsf{Sing}_2(X)) \xrightarrow{\partial} \mathbf{Z}(\mathsf{Sing}_1(X)) \xrightarrow{\partial} \mathbf{Z}(\mathsf{Sing}_0(X))$$

where $\mathbf{Z}(\text{Sing}_n(X))$ denotes the free Abelian group generated by the set $\text{Sing}_n(X)$ and the differential ∂ is defined on the generators by the formula

$$\partial(\sigma) = \sum_{i=0}^{n} (-1)^{i} d_{i}\sigma$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Classifying Space of a PSR

- The classifying space of a PSR C is the topological space defined by its nerve functor |N_●(C)|.
- For any topological space defined by a PSR |N_•(C)|, the singular homology groups H_{*}(|N_•(C)|; Z) are defined as the homology groups of a chain complex

$$\ldots \xrightarrow{\partial} \mathbf{Z}(\mathsf{Sing}_2(|\mathcal{N}_{\bullet}(\mathcal{C})|)) \xrightarrow{\partial} \mathbf{Z}(\mathsf{Sing}_1(|\mathcal{N}_{\bullet}(\mathcal{C})|)) \xrightarrow{\partial} \mathbf{Z}(\mathsf{Sing}_0(|\mathcal{N}_{\bullet}(\mathcal{C})|))$$

where $\mathbf{Z}(\operatorname{Sing}_n(|\mathcal{N}_{\bullet}(\mathcal{C})|))$ denotes the free Abelian group generated by the set $\operatorname{Sing}_n(|\mathcal{N}_{\bullet}(\mathcal{C})|)$ and the differential ∂ is defined on the generators by the formula

$$\partial(\sigma) = \sum_{i=0}^{n} (-1)^{i} d_{i}\sigma$$

Structure Discovery as Horn Filling of Simplicial Objects

Singular Homology Defined by a Causal Model

 $\mathbf{Z}(\mathsf{Sing}_3(\textit{X})) \xrightarrow{\partial} \mathbf{Z}(\mathsf{Sing}_2(\textit{X})) \xrightarrow{\partial} \mathbf{Z}(\mathsf{Sing}_2(\textit{X})) \xrightarrow{\partial} \mathbf{Z}(\mathsf{Sing}_1(\textit{X})) \xrightarrow{\partial} \mathbf{Z}(\mathsf{Sing}_0(\textit{X}))$

$$\partial(\sigma) = \sum_{i=0}^{3} (-1)^{i} d_{i} \sigma$$

 $\sigma_n: |\Delta^n| \to X \text{ where } |\Delta^n| = \{t_0, \dots, t_n\} \in [0, 1]^n: \sum_i t_i = 1\}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Structure Discovery as Horn Filling of Simplicial Objects

Summary: Universal AI

- How to unify different models of decision making?
- How to build universal representations?
- How to solve the universal structure discovery problem?

(Higher-order) category theory provides answers