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Recent Papers on Universal Al

m Universal Decision Models

On The Universality of Diagrams for Causal Inference and the
Causal Reproducing Property

Categoroids: Universal Conditional Independence

Unifying Causal Inference and Reinforcement Learning
using Higher-Order Category Theory

m On Arxiv or my UMass web page:
WWw.cics.umass.edu/~mahadeva
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L Motivation

Language and Thought

WHY ONLY US

LANGUAGE AND EVOLUTION

Robert C. Berwick . Noam Chomsky
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L Motivation

The Importance of Abstraction

Civilization advances by extending the
number of important operations which
we can perform without thinking about
them. Operations of thought are cavalry
charges in a battle - they are limited in
number, they require fresh horses, and

must only be made at decisive moments.
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L Motivation

Analogy and Metaphor in Language

SURFACES AND ESSENCES

ANALOGY AS THE FUEL AND FIRE OF THINKING

DOUGLAS HOFSTADTER
& EMMANUEL S&2aNDER
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L Motivation

Emerging Directions in Computing

m Technological advances have greatly increased our ability our
ability to perform tasks without “thinking” about them

m Computing in the cloud has decentralized collaborative
activities and made remote work a reality

m Adobe just announced it will acquire Figma for $20 billion!
(https://www.figma.com)

m Blockchain, the “Internet of Money”, will redefine computing
and economics in the 21st century
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L Motivation

Collaborative Design using Figma

Nothing great is
brainstormed alone.

Figma connects everyone in the design process
so teams can deliver better products, faster.
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L Motivation

The Science of Collaborative Design

Thinking in Systems
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https://co-design.science/papers/
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L (Higher-Order) Category Theory

Category Theory: The Power of Abstraction

m Objects are defined by their interactions
m Functors define analogies across categories

m Natural transformations between functors give rise to
universal representations

m A huge library of design tools!

Pullbacks, pushforwards, (co)equalizers
Limits and colimits

Kan extensions

Braided monoidal categories

Cospans, operads, props, ...
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L (Higher-Order) Category Theory

Category Theory in Al/CS/ML

m Long been a foundation for programming languages (e.g.,
Haskell is widely used to implement blockchains such as
Cardano)

m Uniform Manifold Approximation and Projection
(https://umap-learn.readthedocs.io/en/latest/): widely used
for visualizing high-dimensional data

m Clustering as a Functor (Gunnar Carlsson): overcomes
Kleinberg's impossibility theorem.

m Seven Sketches in Compositionality (MIT Text on applied
category theory): https://arxiv.org/abs/1803.05316

m Offers unparalleled power to abstract complex objects
and their interactions
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L (Higher-Order) Category Theory

Reinforcement Learning

Markov Decision Processes: (S, A, ¥, P, R)
m Sis a discrete set of states
m A is the discrete set of actions
m U C S5x Ais the set of admissible state-action pairs

m P: U xS—[0,1] is the transition probability function
specifying the one-step dynamics of the model

m R: V¥ — R is the expected reward function
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RL as a Category: MDP Homomorphisms

Original MDP
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L (Higher-Order) Category Theory

MDP Homomorphism

An MDP homomorphism from MDP M = (S5, A, ¥, P, R) to
M = (S, AV P RY), denoted h: M — M, is defined by
m A tuple of surjections (f, {gs|s € S})

m where f: S — S’,gs:As—»A}(s)

= h((s,3)) = (f(s),&(a)), for s€ S
m Stochastic substitution property and reward respecting
properties below are respected:
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L (Higher-Order) Category Theory

Pullback: Reasoning with Diagrams
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L (Higher-Order) Category Theory

Category of Causal Models

m Pullback, pushforward: joins and meets

m Initial and terminal objects: ), V
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L (Higher-Order) Category Theory

Two Functors from MDPs to Graphs

Build SR from
Environment

P
-

Identify
Sub-goals by Incremental
e clustering SR Learning
. Use optons and
actions to re-buikd
- better SR
Build Policies
for each
sub-goal
>
+
Use Options to
Solve a Collection
of Tasks

Figure 1: An overview of Successor Options Framework
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(Higher-Order) Category Theory

Le Lemme de la Gare du Nord: Yoneda Lemma

Hom¢ (X, Y) ~ Nat(Hom¢ (—, X), Home (—, Y))
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L(Higher»Order) Category Theory

Adjunctions
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L (Higher-Order) Category Theory

Higher-Order Category Theory
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L (Higher-Order) Category Theory

Simplicial Objects: Higher-Order Category Theory
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L (Higher-Order) Category Theory

Constructing Simplicial Objects from a Category

m The nerve of a category C is the set of composable
morphisms of length n, for n > 1. Let N,(C) denote the set of
sequences of composable morphisms of length n.

fa

{G A, G = ... LN Cn | Ciis an object in C, fiis a morphism in C}

m Theorem: The nerve functor N, : Cat — Set is fully
faithful. More specifically, there is a bijection 6 defined as:

0 : Cat(C,C') — Seta(No(C), No(C')



Universal Representations for Al

L (Higher-Order) Category Theory

Adjunctions between Categories and Simplicial Objects

5

Xo X X2

P
Xy —— X — X
—_ —_—

TN

m Category to Simplicial Object: Nerve functor is a full and
faithful embedding

m Simplicial object to Category: Lossy functor
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L(Higher»Order) Category Theory

Braided Monoidal Categories (Censi, Fong, Spivak)

dp: T x R —pes Bool
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L (Higher-Order) Category Theory

Category Theory and Language: Words and Meaning

https://www.math3ma.com/categories/category-theory
https://arxiv.org/abs/2106.07890
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\—(Higher»Order) Category Theory

Deciphering Ancient Language: Indus Script

© harappa.con
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L Universal Decision Models

Past vs. Future

We know the past but cannot
control it. We control the future but
cannot know it.

— Claude Shannen —

AZ QUOTES
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LUniversal Decision Models

Challenge: Universal Decision Making

m We reason causally to understand our world
m We compete to gain advantage in commerce, sports and war

m We often act without complete information, but try to make
better decisions over time
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LUniversal Decision Models

Adobe Experience Platform: Datamining the Past

AEP 2.0 Services

ADOBE APPLICATIONS

37 PARTY APPLICATIONS
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LUniversal Decision Models

Universal Decision Models: Controlling the Future

Player 1
Age
Player 2 Player N
Platelets
12 3 T O

> Covid

. . Game Theory
Reinforcement Learning

Admit

Causal Inference
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LUniversal Decision Models

Category of Decision Problems

m Define categories of decision objects: causal models, RL
models, Nash games, etc.

m Construct functors from one decision category to another

m Build universal representations for structure discovery
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LUniversal Decision Models

Universal Decision Models

Decision Objects: (A, (2, B, P), (U, Fa; Za)acA):
m A describes a finite universe of decision points (e.g., in RL,
causal inference, or Nash games)
m (Q, B, P) is a probability space
m (U,, Fo) is a measurable decision space from which a decision
u € U, is chosen by a.
m Policy of agent a:: any measurable function 7, : Hﬂ Ug — Us,.

m Each agent's policy is measurable from its information field
Z., a subfield of the overall product space ([]; Us, [15 F5).
to the o-algebra F.
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LUniversal Decision Models

Scaling by Exploiting Conditional Independence

m Markov property: the past is conditionally independent of the
future, given the current “state”

m Sufficient statistic: (6 AL X | T(X))

m Graphoids, Separoids, Imsets: See my Categoroids paper
Separoid (S, <, 1) is a join semi-lattice.

Pl: x 1L y|x

P2: xly|lz = ylx|z

P3: xly|z and w<y = xlw|z

Pd: xlly|z and w<y = xly]|(zVvw)

P5: x1ly|z and xlLlw]|(yvVz) = xldl(yvw) |z
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LUniversal Decision Models

Universal Causality

Pollution in New Delhi, India

ormal condition

Covid Lockdown

Pullback

Co-limit

Indexing Category of Abstract Diagrams Co-

Covid-19
Lockdown

Overpopulation Farming

Practices

Agricultural
Fires

Functor
| Asthma Lung Infections
1
1
1
1
Equalizer

Actual Causal Model
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LUniversal Decision Models

Yoneda Lemma Defines Universal Causality

Causal Reproducing Property: All causal influences between any
two objects X and Y'in a Universal Causal Model
M= (C,X,ZI,0,&) is reproducible from presheaf functor objects

Hom¢ (X, Y) ~ Nat(Hom¢(—, X), Hom¢(—, Y))
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LUniversal Decision Models

The Density Theorem in the Theory of Sheaves

Universal Causal Theorem: Given any universal causal model
defined as a tuple M = (C, X, Z, O, ), any causal inference in M
can be represented as a co-limit of a diagram of representable
objects in a unique way.
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L Structure Discovery as Horn Filling of Simplicial Objects

Structure Discovery by solving Lifting Problems

AP x A Lf X
lfH 7 [ 2 s
B-Y.Yy B——=Y
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L Structure Discovery as Horn Filling of Simplicial Objects

Lifting Problem in Causal Discovery
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L Structure Discovery as Horn Filling of Simplicial Objects

Predictive State Representations

Histories

Jo
p(t; Ihy )- «+ p(t; Ih )

p(t; b )e » « p(t; I, )
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L Structure Discovery as Horn Filling of Simplicial Objects

Predictive State Representations

Finite set of actions A and observations O.

A history: sequence of actions and observations
h= ai0q ...adkO0k.

A test: possible sequence of future actions and observations
t=ai101...an0p.

P(t|h) is a prediction test t will succeed from history h.
State 1: a vector of predictions of core tests {qi, ..., qx}-

The prediction vector ¥, = (P(q1|h) ... P(q|h)) is a sufficient
statistic. The predictive state of a PSR is denoted W.
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L Structure Discovery as Horn Filling of Simplicial Objects

Category of PSRs

A PSR homomorphism from a PSR ¥ to another PSR ¥’ is
defined as:

m A tuple of surjections (f, vy (a))

m where f: U — ¥ and v, : A — A’ for all prediction vectors
Pvevw

m such that

P |fy), vy (a)) = P(FH(¢) |, a) (3)
forall ¢/ € U ) € U, ae A
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L Structure Discovery as Horn Filling of Simplicial Objects

Category of Ordinal Numbers

Category A: objects are non-empty ordinals [n] = {0,1,...,n]

Arrows: non-decreasing maps f: [m] — [n].

Elementary injections d; : [n] — [n+ 1], which omits i € [n]

Elementary surjections s; : [n] — [n — 1], which repeats i € [n].
Fundamental simplex A([n]): Yoneda functor A(—, [n]).
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L Structure Discovery as Horn Filling of Simplicial Objects

Elementary Surjections and Injections
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L Structure Discovery as Horn Filling of Simplicial Objects

Simplicial Objects are Functors!

m Simplicial objects over sets: X[n| = X, : [n] = X

m Xp is a set of objects: f: [0] = {0} to X

m Arrows are in X;: functors mapping [1] = {0,1} and its
non-identity morphism 0 — 1 to X.

m 2-simplices X[2]: functor mapping [2] = {0, 1,2}, with its
non-identity morphisms 0 — 1,1 — 2,0 — 2 into a category.

m Yoneda Lemma: An n-simplex x € X, is defined by the
presheaf functor A[n] — X.
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L Structure Discovery as Horn Filling of Simplicial Objects

Structure Discovery by Filling Horns of Simplicial Objects

The Horn A7 : A% — Set is defined as
(A7) ([m]) = {a € Homa([m], [n]) : [n] Z a([m]) U {i}}

{0} {0} {0}

RN VRN 2N

5 G > {2} {1y —— {2} {1} —— {2}
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L Structure Discovery as Horn Filling of Simplicial Objects

Solving Lifting Problems with Kan Fibrations
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L Structure Discovery as Horn Filling of Simplicial Objects

Higher-Order Category Theory

m Weak Kan complexes
m Quasicategories

m oo-categories



Universal Representations for Al

L Structure Discovery as Horn Filling of Simplicial Objects

Universal PSR Theorems

Theorem: The nerve functor defined by a PSR
N, : Catpsr — Set is fully faithful. More specifically, there is a
bijection 6 defined as:

0 : Cat(Cpsr,C'psr) <> Seta(Ne(Cpsr), Ne(C'psr))

Theorem: The nerve functor defined by a PSR
N, : Catpsp — Set forms a quasicategory.
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Singular Homology Group Defined by a Topological Space

For any topological space X, the singular homology groups
H.(X;Z) are defined as the homology groups of a chain complex

. 5 7(Singy (X)) & Z(Sing, (X)) & Z(Singy (X))

where Z(Sing,(X)) denotes the free Abelian group generated by
the set Sing,(X) and the differential O is defined on the generators
by the formula
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L Structure Discovery as Horn Filling of Simplicial Objects

Classifying Space of a PSR

m The classifying space of a PSR C is the topological space
defined by its nerve functor |Ne(C)].

m For any topological space defined by a PSR |A,(C)|, the
singular homology groups H.(|Ne(C)|;Z) are defined as the
homology groups of a chain complex

o 2 Z(Sing, (INL(C)]) & Z(Sing, (INL(C)]) 2 Z(Sing, (IN.(C)])

where Z(Sing,(JNVe(C)|)) denotes the free Abelian group
generated by the set Sing,(JVe(C)|) and the differential 9 is
defined on the generators by the formula
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L Structure Discovery as Horn Filling of Simplicial Objects

Singular Homology Defined by a Causal Model

on: |A" = X where |A"] = {ty,... t,} €[0,1]" Zt,—l}
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L Structure Discovery as Horn Filling of Simplicial Objects

Summary: Universal Al

m How to unify different models of decision making?
m How to build universal representations?

m How to solve the universal structure discovery problem?

(Higher-order) category theory provides answers
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