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More category theory!

o Category of coalgebras:
« Each object is defined as X —> F(X)
 Fis afunctor (e.g., powerset, automata, grammars, Transformers)

 Coinduction in category of coalgebras: new formulation of RL

e Universal constructions

 Pullback, pushforward, (co)limits



Bongard Problems with Machine Learning

(Mahadevan, M.Tech Thesis, lIT Kanpur, 1983)
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Predict the next element

¢« 0,1,2,3,4,...
¢« 1,2,3,5,7,11,13, ...

¢ 0,0,0,0,0,0,...
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Version Spaces

(Mitchell, 1975)



Inductive Inference

Theoretical foundation of ML (Gold, Solomonoff, Valiant, Vapnik, etc.)
Based on mathematical induction
Language identification in the limit

Many results over the past 60+ years!



Inductive Inference: Language ldentification in the Limit
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Table 3: Gold’s results on language 1dentification in the limit.

Model Languages Learnable?

Anomalous text Recursively enumerable  Yes
Recursive Yes

Informant Primitive Recursive Yes (not above)
Context-sensitive Yes
Context-free Yes
Regular Yes
Super-finite Yes

Text Finite Yes (not above)

Table 4: Gold, Information and Control, 1967




From Induction to Coinduction

Machine learning has traditionally been modeled as induction
Identification in the limit: Gold, Solomonoff

PAC Learning: Valiant, Vapnik

Algorithmic Information Theory: Chaitin, Koilmogorov

Occam’s Razor, Minimum Description Length



Coinduction: A New Paradigm for ML

 Generative Al is all about modeling infinite data streams
 Automata, Grammars, Markov processes, LLMs, diffusion models

* Infinite data streams define non-well-founded sets

* Final coalgebras generalize (greatest) fixed points

 Reinforcement learning is an example of coinduction in a coalgebra

 Causal inference is also usefully modeled in coalgebras
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Fundamental Study

Behavioural differential equations: a coinductive
Jan Rutten calculus of streams, automata, and power series™
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Abstract

We present a theory of streams (infinite sequences), automata and languages, and formal power
February 2019 series, in terms of the notions of homomorphism and bisimulation, which are the cornerstones
261 pages of the theory of (universal) coalgebra. This coalgebraic perspective leads to a unified theory, in
which the observation that each of the aforementioned sets carries a so-called final automaton
ISBN 978-90-6196-568-8 structure, plays a central role. Finality forms the basis for both definitions and proofs by coin-
duction, the coalgebraic counterpart of induction. Coinductive definitions take the shape of what
Publisher: CWI, Amsterdam, we have called behavioural differential equations, after Brzozowski’s notion of input derivative.
A calculus 1s developed for coinductive reasoning about all of the afore mentioned structures,

The Netherlands

closely resembling calculus from classical analysis.
(© 2002 Elsevier B.V. All rights reserved.




Conductive Inference

Based on non-well-founded sets
Uses the category-theoretic framework of universal coalgebras
Coinduction generalizes (greatest) fixed point analysis

Reinforcement learning: metric coinduction in stochastic coalgebras
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Universal coalgebra: a theory of systems

I.J.M M. Rutten
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Mathematics
Abstract of States and

In the semantics of programming. [inite data types such as {inite lists, have radivonally been *
modelled by initial algebras. Later linal coafyebray were used in order o deal with injiniie dala Obse rvn'lon
types. Coalgebras, which are the dual of algebras, turned out to be suited, marcaver, as mod-
¢ls for certain types of automata and mare gencrally, for (transition and dynamical) sysrems.
An important properly of initial algebras is that they satislv the [familiar principle ol induc-
tion. Such a principle was missing for coalgebras until the work of Aczel (Non-Well-Founded Bart Joc Ob$
sets, CSLIT Leethre Notes, Vol. 14, center for the study of Languages and information, Stan-
ford, 1988) on a theory of non-welltounded sets, in which he introduced a proof principle
nowadays called coinduction. 11 was [ormulated in terms ol bisinulalion, a notion originally
stemming from the world of concurrent programming languages. Using the notion of coalge-
hra homamaorphism, the definition of bisimulation on coalgebras can be shown to be formally
dual to that of congruence on algebras. Thus, the three basic notions of universal algebra:
algebra, homomorphism of algebras, and congruence, turn out to correspond to coalgebra, ho-
mamarphism ol coalgebras, and bisimulation, respectively, In this paper, Lhe latler are taken
as the basic ingredients of a theory called wuniversal coalgebra. Some standard results from
uiiversal algebra are retormulated (using the aforementioned correspondence) and proved for
a large class of coalgebras, leading 1o a sermies of resulls on, e.g., the lathices ol subcoalge-
bras and bisimulahons, simple coalgebras and coinduction, and a covancty theorem for coalpge-
bras similar to Birkhoff's variety theorem. () 2000 Elsevier Science B.V. All rights reserved.
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Coalgebra: X —> F(X) Algebra: F(X) —> X




Final Coalgebras

 In a category of coalgebras, where each object is X -> F(X), a final
coalgebra is an isomorphism X ~ F(X)

* Final coalgebra theorem (Aczel, Mendler): for a wide class of
endofunctors, final coalgebras exist (weak pullbacks)

 RL is essentially coinduction in a coalgebra

V® = R™ + yP*V™ = TXV)



Categorical Version Spaces

The G set and S set can be generalized using universal constructions
Limit: The terminal object in a category of cones
Colimit: The initial object in a category of cocones

In any complete and cocomplete category, we can design a
categorical version spaces using limits and colimits

UMAP is a special case of the categorical version spaces framework



Universal Constructions

Pullback

G

Limits: Products, Meets, Greatest Lower Bound, Kernels, Equalizers




Pullback Category of Elements



Universal Constructions

Colimits: Coproducts, Joins, Least upper Bounds, Coequalizers

F

G Pushforward




Colimits in UMAP

Merge datasets



Universal Causality

[Mahadevan, Entropy, 2023]
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Universal algebra

Universal coalgebra

(2-)algebra

coalgebra=system

algebra homomorphism

system homomorphism

substitutive relation

bisimulation relation

congruence bisimulation equivalence
subalgebra subsystem

minimal algebra
(no proper subalgebras) <
induction proof principle

minimal system
(no proper subsystems)

simple algebra
(no proper quotients)

initial algebra
(1s minimal, plus:
induction definition principle)

simple system
(no proper quolients) <
comduction prool principle
initial system
(often trivial)

[inal algebra
(often trivial)

[inal system
(1s simple, plus:
coinduction definition principle)

free algebra (used 1n
algebraic specification)

free system
(often trivial)

cofree algebra
(often trivial)

cofree system (used in
coalgebraic specification)

variety (closed under subalgebras,
quotients, and products) <=
definable by a quotient
of a free algebra

variely (closed under subsystems,
quotients, and products)

covariety (closed under subalgebras,
quotients, and coproducts)

covariety (closed under subsystems,
quotients, and coproducts) <
delinable by a subsystem
of a cofree system

[Rutten, 2000}



Lecture Notes

X = {x} X — F(x)

CENTER FOR THE STUDY
OF LANGUAGE
AND INFORMATION



Non-well-founded sets

Non-well-founded sets violate the ZFC+ axioms of set theory

In particular, the axiom of well-foundedness states that there cannot
be any infinite membership chains

Many sets in computer science are not well-founded
Infinite data structures: lists, trees, recursion, stacks
Many Al problems involve non-well-founded sets

« Common knowledge, causality with feedback, natural language



Backpropagation as a coalgebra

* |In the previous talk, we introduced backprop as a functor
 Note that backprop can also be modeled as a coalgebra X —> F(X)

 This alternative view gives us deeper insight into the convergence of
backpropation

e [t gives us more powerful tools to design new methods in GAIA



The Powerset Functor

 One of the simplest and most general coalgebras is from the
powerset functor

e X —> Pow(X)

X can be any (well-founded, non-well-founded) set



Labeled Transition Systems as Coalgebras

 Any automata (deterministic or stochastic) is a coalgebra

o Set of states S

» Transition relation - C S XA X §

» Here, s —“ tis the same as (s,a,1) € —
 Coalgebra of LTS defined by powerset functor L

e a¢: S = L(S),s = {(a,s)|s =5}



Homomorphisms of Coalgebras

Oty Ay

F(X) ) F(Y)

MDP homomorphisms are a special case of this framework
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Probabilistic systems coalgebraically: A survey

Ana Sokolova™

Department of Computer Stiences, University of Salzburg, Austria

ARTICLE INFO ABSTRACT
Keywrords: We survey the work an bath discrete and continuous-space prababilistic systems as
Probabilistic systems

coalegehras, starting with how probabilistic systems are modeled as coalgebras and
followed by a discussion of their hisimilarity and behavioral equivalence, mentioning
results thar follow from the coalgebraic treatment of prababilistic systems. Itis interesting
to note that, for different reasons, for both discrete and continuous probabilistic systems it
may be more convenient to work with behavioral equivalence than with hisimilarity.

© 2011 Elscvier B.V. Opea access uncer CC BY-NC-ND license.

Coalgebra
hMarkov chains
Markov processes

1. Introduction

Probabilistic systems are models of systems that involve quantitative information about uncertainty. They have been
extensively studied in the past two decades in the area of probabilistic verification and concurrency theory. The models
originate in the rich theory of Markov chains and Markov processes (see e.g. [4Y]) and 1n the early work on probabilistic
automata [63,61].

Discrete probabilistic systems, see e.g. [49,77,30,55,62,67,33,22.70] for an overview, are transition systems on discrete
state spaces and come in different flavors: fully probabilistic { Markov chains), labeled (with reactive or generative labels), or
combining non-determinism and probability. Probabilities in discrete probabilistic systems appear as labels on transitions
between states. For example, in a Markov chain a transition from one state to another is taken with a given probability.

Continuous probabilistic systems, see e.g. |7,23,26,11,21,45] as well as the recent hooks [59,27 28] that contain most of
the research on continuous probabilistic systems, are transition systems modeling probabilistic behavior on continuous state
spaces. The basic model is that of a Markov process. Central to continuous probabilistic systems 15 the notion of a probability
measure on a measurable space. Theretore, the state space of a cantinuous probahilistic system is equipped with a ¢ -algebra
and forms a measurable space. It is no langer the case that the probahility of moving fram one stare to another determines
the behavior of the system. Actually, the probability of reaching any single state from a given state may be zero while the
probability of reaching a subset of states is nonzero. A Markov process is specified by the probability of moving from any
source state to any measurable subset in the o -algehra, which is intuitively interpreted as the probability of moving from
the source state to some state in the subset.

Both discrete and continuous probabilistic systems can be modeled as coalgebras and coalgebra theory has proved a
useful and fruitful means to deal with probabilistic systems. In this paper, we give an overview of how to model probabilistic
systems as coalgebras and survey coalgebraic results on discrete and continuous probabilistic systems. Having modeled
probabilistic systems as coalgebras, there are two types of results where coalgebra meets probabilistic systems: (1) particular
problems for probabilistic systems have been solved using coalgebraic techniques, and (2) probabilistic systems appear
as popular examples on which generic coalgebraic results are instantiared. ‘The results of the second kind are nor ro be
considered of less importance: sometimes they lead to completely new results not known in the community of probabilistic




A. Sokolova / Theoretical Computer Science 412 (2011) 5095-5110

Coalgy F name for X — FX/reference
MC D Markov chains

DLTS ¢ +1)° deterministic automata
LTS PAx )= P non-deterministic automata, LTSs

React (D + 1D° reactive systems [55,30]
Gen DAx )+1 generative systems [30]
Str D+Ax )+1 stratified systems [30]
Alt D+ PAX ) alternating systems [33]
Var DAX )+ PAX ) Vardi systems [77]
SSeg PA X D) simple Segala systems [67,66]
Seg PDA X ) Segala systems [67,66]
Bun DPAx ) bundle systems [22]
PZ PDPA %X_) Pnueli-Zuck systems [62]
MG PDPA X ) most general systems

Fig. 1. Discrete probabilistic system types.

RL algorithms can be explored for these stochastic coalgebras!




MDP Coalgebras

Any (finite) MDP is defined as a tuple M = (S,A,R,P)
Given any action a, it induces a distribution on next states
Any fixed policy defines an induced Markov chain

Markov chains are coalgebras of the distribution functor D

. ayzS%M@(S)



Long-Term Values in
Markov Decision Processes, (Co)Algebraically

Frank M. V. Feys!, Helle Hvid Hansen!, and Lawrence S. Moss?

! Department of Engineering Systems and Services, TPM, Delft University of

Technology, Delft, The Netherlands {f.m.v.feys, h.h.hansen}@tudelft.nl ThiS paper can be
2 . . . i .
Department of Mathematics, Indiana University, Bloomington IN, 47405 USA
1sm@cs.indiana. edu GXtended to the RL

setting

Abstract. This paper studies Markov decision processes (MDPs) from
the categorical perspective of coalgebra and algebra. Probabilistic systems,
similar to MDI’s but without rewards, have been extensively studied,
also coalgebraically, from the perspective of program semantics. In this
paper, we focus on the role of MDPs as models in optimal planning,
where the reward structure is central. The main contributions of this
paper are (1) to give a coinductive explanation of policy improvement
using a new proof principle, based on Banach’s Fixpoint Theorem, that
we call contraction coinduction, and (ii) to show that the long-term value
function of a policy with respect to discounted sums can be obtained
via a generalized notion of corecursive algebra, which is designed to take
boundedness into account. We also explore boundedness features of the
Kantorovich lifting of the distribution monad to metric spaces.

Keywords: Markov decision process - long-term value - discounted sum
- coalgebra - algebra - corecursive algebra - fixpoint - metric space.



RL as Metric Coinduction

APPLICATTIONS OF METRIC COINDUCTION

DEXTER KOZEN AND NICHOLAS RUQZZI
Computer Scicnce Department, Cornell University, Ithaca, NY 14853-7501, USA

e-mail address: kozen@Qces.cornell.edu

Computer Science Department, Yale University, New Haven, CT 06520-8285, USA
e-mail address: Nicholas. Ruozzi@yale.erin

ABSTRACT. Metric coinduction is a furm of coinduction that can be used to establish
properties of objects constructec as a limit of finite approximations. One can prove a
coinduction step showing that some property is preservaed by one step of the approximation
process, then automatically infer by the coinduction principle that the property holds of the
limit object. This can often be used to avoid complicated analvtic arguments involving
linnits @nd convergence, replacing Lhern with simpler algebraic arguments. ThLis paper
examines the application of this principle in a variety of areas, including infinite streams,
Markov chaing, Markov decision processes, and non-well-founded sets. These results point
to the usefulness o cuinduction as a general prool technique.

1. INTRODUCTION

Mathematica! induction is firmly entrenched as a fundamental and ubiquitous proof
principle for proving properties of inductively defined objects. Mathematics and computer
science abound with such objects, and mathematica! induction is certainly one of the most
important tools, if not the most important, at our disposal,

Perhaps less well entrenched 15 the notion of coindnction. Despite recent interest,
coinduction is still not tully established in our collective mathematical consciousness. A
conlributing faclor is that coinduction is often presented in a relatively restricted [orm.
Coinduction is often considered synonymous with bisimulation and is used to establish
equality or other relations on infinite data ohjects such as streams [20] or recursive types

11].

Ju p(u Vu o(u) = o(H(u
p(u*

Contraction mapping convergence in MDPs

IS a special case of metric coinduction



Induction vs Coinduction

 Given the class of all (hon)well-founded sets
e X —> F(X) is the powerset coalgebra
e F(X) —> X is the powerset algebra
 The Initial object in the category of algebras is well-founded sets

 The final object in the category of coalgebras is non-well-founded
sets



Final Coalgebras

A final object In a category is defined as one for which there is a
unique morphism into it from any other object

In the category of coalgebras, the final object is called a final
coalgebra

Example: in the coalgebra of finite state automata, the final coalgebra
Is the smallest automaton accepting a language

Example: in the coalgebra of MDPs, the final coalgebra is the
smallest MDP that defines the optimal value function



Lambek’s Lemma

Definition 83. An F'-coalgebra (A, ) is a fixed point for F', written as A ~ F'(A) if «v is an isomorphism between A
and £'(A). That is, not only does there exist an arrow A — F'(A) by virtue of the coalgebra «, but there also exists its
inverse o~ ' : F(A) — A such that

o !l = idx 4y and a o =idy

The following lemma was shown by Lambek, and implies that the transition structure of a final coalgebra 1s an
1somorphism.

Theorem 23. Lambek: A final F'-coalgebra is a fixed point of the endofunctor F'.
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A general final coalgebra theorem

JIRI ADAMEK®, STEFAN MILIUS* and JIRI VELEBIL}

" Institute of Theoretical Computer Science, Technical University of Braunschweig, Germany
E-mail: {adamek,milius}@iti.cs.tu-bs.de
SFaculty of Electrical Engineering, Czech Technical University, Prague
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By the Final Coalgebra Theorem of Aczel and Mendler, every endofunctor of the category
of sets has a final coalgebra, which, however, may be a proper class. We generalise this to all
‘well-behaved’ categories .#". The role of the category of classes i1s played by a free
cocompletion 2™ of # under transfinite colimits, that 1s, colimits of ordinal-indexed
chains. Every endofunctor F of # has a canonical extension to an endofunctor F* of %2~
which 1s proved to have a final coalgebra (and an initial algebra). Based on this, we prove a
general solution theorem: for every endofunctor of a locally presentable category %" all
guarded equation-morphisms have unique solutions. The last result does not need the
extension % *: the solutions are always found within the category %



Occam's Razor Coalgebraically

 We can now define a coalgebraic version of Occam's Razor
 Given any category of coalgebras, where there is a final coalgebra

 Any other coalgebra must define a uniqgue morphism into the final
coalgebra

 [f this unique morphism is injective (or a monomorphism), the given
coalgebra must be minimal

« States of the final coalgebra define behaviors" (see Jacobs book)



Bisimulation for Imitation Games

S* RLT

|
|

OCS\ o 1ol J“T
|

F(S F(R F(1).
( )m (R) m (1)



Summary

Coalgebras provide a fundamental framework for modeling
generative Al

Each coalgebra is defined by a functor F: X —> F(X)
Coinduction is the principle of finding a final coalgebra

Reinforcement learning is the problem of finding final coalgebras In
the category of MDP coalgebras



