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 Today’s talk: GAIA: A Generative Al Architecture beyond deep learning
 Tomorrow’s talk: Generative Al using Universal Coalgebras

 \WWednesday'’s talk: The (co)End of Generative Al Models



“I propose to consider the question, ‘Can machines think’?" — Alan Turing, Mind, Volume LIX, Issue
236, October 1950, Pages 433—460.
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ABSTRACT

In 1950, Alan Turing proposed a framework called an imitation game in which the participants are
to be classified Human or Machine solely from natural language interactions. Using mathematics
largely developed since Turing — category theory — we investigate a broader class of universal
imitation games (UIGs). Choosing a category means defining a collection of objects and a collection
of composable arrows between each pair of objects that represent “measurement probes” for solving
UIGs. The theoretical foundation of our paper rests on two celebrated results by Yoneda. The
first, called the Yoneda Lemma, discovered in 1954 — the year of Turing’s death — shows that
objects in categories can be identified up to isomorphism solely with measurement probes defined by
composable arrows. Yoneda embeddings are universal representers of objects in categories. A simple
yet general solution to the static UIG problem, where the participants are not changing during the
interactions, is to determine if the Yoneda embeddings are (weakly) isomorphic. A universal property
in category theory is defined by an initial or final object. A second foundational result of Yoneda from
1960 defines initial objects called coends and final objects called ends, which yields a categorical
“integral calculus” that unifies probabilistic generative models, distance-based kernel, metric and
optimal transport models, as well as topological manifold representations. When participants adapt
during interactions, we study two special cases: in dynamic UIGs, “learners” imitate “teachers”. We
contrast the initial object framework of passive learning from observation over well-founded sets
using inductive inference — extensively studied by Gold, Solomonoff, Valiant, and Vapnik — with the
final object framework of coinductive inference over non-well-founded sets and universal coalgebras,
which formalizes learning from active experimentation using causal inference or reinforcement
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GAIA: Generative Al Architecture

Beyond Deep Learning!
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News / Technology / Mark Zuckerberg explains tech layoffs, shares his views on Sam Altman’s $7 trillion Al chip venture

Mark Zuckerberg explains tech layofts,
shares his views on Sam Altman’s $7
trillion AI chip venture

In his latest interview, Zuckerberg shared his thoughts on what is causing the tech layoffs. He even
shared his opinions on OpenAl CEO Sam Altman.
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Published as a conference paper at ICLR 2023

NEURAL NETWORKS AND THE CHOMSKY HIERARCHY

Grégoire Delétang“' Anian Ruoss®' Jordi Grau-Moya' Tim Genewein' Li Kevin Wenliang'

Elliot Catt' Chris Cundy' Marcus Hutter- Shane Legg’ Joel Veness' Pedro A. Ortegal

ABSTRACT

Reliable generalization lies at the heart of safe ML and Al. However. understanding
when and how neural networks generalize remains one of the most important
unsolved problems in the field. In this work, we conduct an extensive empirical
study (20 910 models, 15 tasks) to mvestigate whether insights from the theory of
computation can predict the limits of neoral network gencralization in practice.
We demonstrate that grouping tasks according to the Chomsky hierarchy allows
us to forecast whether certain architectures will be able to generalize to out-of-
distribution inputs. This includes negative results where even extensive amounts
of data and training time never lead to any non-trivial generalization, despite
madels having sufficient capacity to fif the traimming data perfectly. Our results
show that, for our subset of tasks, RNNs and Transformers fail to generalize on
non-regular tasks, LSTMs can solve regular and counter-language tasks. and only
networks augmented with structured memory (such as a stack or memory tape) can
successfully generalize on context-free and context-sensitive tasks.

Theoretical Limitations of Self-Attention in Neural Sequence Models

Michael Hahn
Stanford University
mhahn2@stanford.edu

Abstract

Transformers are emerging as the new
workhorse of NLP, showing great success
across tasks. Unlike LSTMs, transform-
ers process input sequences entirely through
self-attention. Previous work has suggested
that the computational capabilities of self-
attention to process hierarchical structures
are limited. In this work, we mathematically
investigate the computational power of self-
attention to model formal languages. Across
both soft and hard attention, we show strong
theoretical limitations of the computational
abilities of self-attention, finding that it can-
not model periodic [inite-state languages,
nor hierarchical structure, unless the num-
ber of layers or heads increases with input
length. Thesc limitations sccm surprising
given the practical success of self-attention
and the prominent role assigned to hier-

chical structure and recursion. Hierarchical struc

ture is widely thought to be essential to model-
ing natural language, in particular its syntax (Ever-
aert et al., 2015). Consequently, many researchers
have studied the capability of recurrent neural net-
work models to capture context-free languages
(e.g., Kalinke and Lehmann (1998); Gers and
Schmidhuber (2001); Griining (2006); Weiss et al.
(2018); Sennhauser and Berwick (2018); Korsky
and Berwick (2019)) and linguistic phenomena in-
volving hierarchical structure (e.g.. Linzen et al.
(2016); Gulordava et al. (2018)). Some experi-
mental evidence suggests that transformers might
not be as strong as LSTMs at modeling hierarchi-
cal structure (Tran et al., 2018), though analysis
studies have shown that transformer-based mod-
els encode a good amount of syntactic knowledge

(e.g., Clark et al. (2019); Lin et al. (2019); Tenney
et al (2010))

CTT—

Transformers cannot solve simple problems:

parity, integer modulo arithmetic, balancing arithmetic expressions
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ABSTRACT

In this paper, we explore the categorical foundations of generative Al. Specifically, we investigate
a Generative Al Architecture (GAIA) that lies beyond backpropagation, the longstanding algorith-
F h . b k' mic workhorse of deep learning. Backpropagation is at its core a compositional framework for
Ort COm I ng OO . (un)supervised learning: it can be conceptualized as a sequence of modules, where each module
updates its parameters based on information it receives from downstream modules, and in turn, trans-
mits information back to upstream modules to guide their updates. GAIA 1s based on a fundamentally
different hierarchical model. Modules in GAIA are organized into a simplicial complex. Each
n-simplicial complex acts like a manager of a business unit: it receives updates from its superiors and
transmits information back to its n + 1 subsimplicial complexes that are its subordinates. To ensure
this simplicial generative Al organization behaves coherently, GAIA builds on the mathematics of
the higher-order category theory of simplicial sets and objects. Computations in GAIA, from query
answering to foundation model building, are posed in terms of lifting diagrams over simplicial objects.
The problem of machine learning in GAIA 1s modeled as “horn" extensions of simplicial sets: each
sub-simplicial complex tries to update its parameters in such a way that a lifting diagram is solved.
Traditional approaches used in generative Al using backpropagation can be used to solve “inner" horn
extension problems, but addressing “outer horn" extensions requires a more elaborate framework.
At the top level, GAIA uses the simplicial category of ordinal numbers with objects defined as
'n|,n = 0 and arrows defined as weakly order-preserving mappings f : [n| — [m/|, where f(i) <
f(j),i < j. This top-level structure can be viewed as a combinatorial “factory” for constructing,
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One formalism that explains it all!

Categories are directed graphs!
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An Impossibility Theorem for Clustering

Jon Kleinberg
Department of Computer Science

Cornell University e Three prOpertieS
Ithaca NY 14853

e Scale invariance
Abstract

Although the study of clustering is centered around an intuitively ¢ MonOtOn|C|ty
compelling goal, it has been very difhicult to develop a unified

framework for reasoning about it at a technical level, and pro-

foundly diverse approaches to clustering abound in the research ° SurjeCtiVity
community. Here we suggest a formal perspective on the difficulty

in finding such a unification, in the form of an impossibility theo-

rem: for a set of three simple properties, we show that there is no

clustering function satisfying all three. Relaxations of these prop-

erties expose some of the interesting (and unavoidable) trade-offs

at work in well-studied clustering techniques such as single-linkage,

sum-of-pairs, k-means, and k-median.
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Characterization, Stability and Convergence of Hierarchical

Clustering Methods

Gunnar Carlsson GUNNAR@MATH.STANFORD.EDU
Facundo Mémoli* MEMOLI@MATH.STANFORD.EDU
Department of Mathematics

Stanford University

Stanford, CA 94305

Editor: Ulrike von Luxburg

Abstract

We study hierarchical clustering schemes under an axiomatic view. We show that within this frame-
work, one can prove a theorem analogous to one of Kleinberg (2002), in which one obtains an
existence and uniqueness theorem instead of a non-existence result. We explore further properties
of this unique scheme: stability and convergence are established. We represent dendrograms as
ultrametric spaces and use tools from metric geometry, namely the Gromov-Hausdorfl distance, to
quantify the degree to which perturbations in the input metric space affect the result of hierarchical
methods.

Keywords: clustering, hierarchical clustering, stability of clustering, Gromov-Hausdorft distance



Quantum Computing in Categories

PICTURING
QUANTUM
PROCESSES

A First Course in Quantum Theory and
Diagrammatic Reasoning

BOB COECKE AND ALEKS KISSINGER

A categorical semantics of quantum protocols

Samson Abramsky and Bob Coecke

Oxford University Computing Laboratory,
Wolfson Building, Parks Road, Oxford OX1 3QD, UK.

samson.abramsky - bob.coecke@comlab.ox.ac.uk

Abstract

We study quantum information and computation from a
novel point of view. Qur approach is based on recasting
the standard axiomatic presentation of quantum mechan-

ics, due to von Neumann [28), at a more abstract level, of

compact closed categories with biproducts. We show how
the essential structures found in key quantum information
protocols such as teleportation |5], logic-gate teleportation
[12]), and entanglement swapping [29] can be captured at
this abstract level. Moreover, from the combination of the
— apparently purely qualitative — structures of compact
closure and biproducts there emerge ‘scalars’ and a ‘Born
rule’. This abstract and structural point of view opens up
new possibilities for describing and reasoning about quan-
tum systems. It also shows the degrees of axiomatic free-
dom: we can show what requirements are placed on the
(semi)ring of scalars C(1,1), where C is the category and
[ is the tensor unit, in order to perform various proto-
cols such as teleportation. Qur formalism captures both
the information-flow aspect of the protocols 8, 9], and the

tation [12], and entanglement swapping [29]. The i1deas
illustrated in these protocols form the basis for novel and
potentially very important applications to secure and fault-
tolerant communication and computation [7, 12, 20].

We now give a thumbnail sketch of teleportation to mo-
tivate our introductory discussion. (A more formal ‘stan-
dard’ presentation is given in Section 2. The — radically
different — presentation in our new approach appears in
Section 9.) Teleportation involves using an entangled pair
of qubits (¢4.¢p) as a kind of communication channel to
transmit an unknown qubit ¢ from a source A (‘Alice’) to a
remote target B (‘Bob’). A has ¢ and ¢4, while B has ¢p.
We firstly entangle g4 and ¢ at A (by performing a suitable
unitary operation on them), and then perform a measure-
ment on ¢4 and ¢." This forces a ‘collapse’ in ¢z because
of its entanglement with ¢4. We then send two classical
bits of information from A to B, which encode the four
possible results of the measurement we performed on ¢ and
qga. Based on this classical communication, B then per-
forms a ‘correction’ by applying one of four possible oper-
ations (unitary transformations) to ¢p, after which gp has
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DisCoPy

The Python toolkit for computing with string diagrams

DisCoPy is a Python toolkit for computing with string diagrams.

° Documentation: hitps://docs.discopy.org
. Repository: https://github.com/discopy/discopy
Why?
Applied category theory is information plumbing. It’s boring... but plumbers save more

lives than doctors.

As string diagrams become as ubiquitous as matrices, they need their own fundamental
package: DisCoPy.

How?

DisCoPy began as an implementation of:

@ DisCoCat (distributional compositional categorical) models,
° and QNLP (quantum natural language processing).

This application has now been packaged into its own library, lambeq.

Who?

° Giovanni de Felice (CEQ)

s Alexis Toumi (COQ)

s Richie Yeung (CFO)

= Boldizsar Poor (CTO)

s Bob Coecke (Honorary President)

Want to contribute or just ask us a question? Get in touch on Discord!
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Initial Object Final Object

A covariant functor F'  is representable iff A contravariant functor F'  is representable iff
its category of elements [ F' ~ / C(e,—) =~ ¢/C its category of elements [ F~ / C(-,c)

has an initial object has a final object

Category of Elements: For any set-valued functor F' : C — Set
Objects: (c, X), where c is a category object, and x is an element of Fc
Arrows: (c, X) —> (c’, y) where f: ¢ -> ¢’ is a morphism in C so that F(f)(x) = y (covariant)

Arrows: (c, X) —> (c’, y) and f: c-> ¢’ is a morphism in C so that F(f)(y) = x (contravariant)
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GAIA: A Higher-Order Categorical
Framework for Generative Al
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Simplicial Category A

 Objects: ordinal numbers
e [n]=1{0,1,....n—1}

e Arrows: 2

» f:[m] — [n] 1

C 1 < . then f() < fU)) 0 0

* All morphisms can be built out of primitive injections/surjections
e 0,:[n] = [n+ 1] : injection skipping i

» 0;:|n] = [n — 1], surjection repeating 1
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Simplicial Objects: One stop ML shopping center

Chicago Lectures in Mathematics Cambridge studics in advanced mathematics 188

From Categories to
Homotopy Theory

Simplicial
Objects In
Algebraic

Topology

J. Peter May
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Universal Causality

Sridhar Mahadevan

check for
updates

Cilalion: Mahedevan. S Universal

Adebe Research, 345 Park Avence, San Jase, (A 95111 LSA, smahadevi@adobe.com

Absltract: Universal Causalily is a mathemalical [ramework based on higher-order calegory theory,
which generalizes previous approaches based on directed graphs and regular categories, We present
a hierarchical [ramework called UCLA {(Universal Causality Layered Archileclure), where at the
top-mast level, caasal interventions are modeled as a higher-order category over simplicial sets
and objects. Simplicial sets are contravariant functors from the category of ordinal numbers A into

sets, and whose morphisms are order-preserving injections and surjections over [(inite ordered sels.

Non-random inlerventions on causal structures are modeled as [ace operalors thal map v-simplices
mto lower-level simplhices. At the second layer, causal madels are defined as a category, for example
defining the schema of a relaticnal causal model or a symmetne moneidal category representation
ol DAC models. The third laver corresponds lo the dala layer in causal inference, wherne each
causal object is mapped functorally into a set of instances using the category of sets and funchions
hetween sets. The fourth homotopy layer defines ways of abstractly characterizing causal models
in terms uf homotopy colimits, defined in terms of the nerve ot a category, a functor that converts
a causal (calegory) mocdel into a simplicial objecl. Each [unclor belween lavers is characlerized
by a universal arrow, which define universal elements and representations through the Yoneda
Lemma, and induces a Grothendieck category of elements that enables combining formal causal

models with data instances, and is related to the notion of greund graphs in relational causal models.

Causal inference between layers is delined as a lilling problem, a commulalive diagram whose
nkjects are categories, and whaose morphizms are functors that are characterized as ditterent types of
fibrations, We illustrate UCLA using a variety of representations, including causal relational models,
symmetric monoidal categorical variants ot DAG models, and non-graphical representations, such as
nleger-valued mullisels and separoids, and measure-ltheorelic and lopological models.

Kevwords: arhficial intelligence; higher-order eategory theory; causality; machine learming; statistics

Table 2. Each layer of UCLA represents a categorical abstraction of causal inference.

[ayer (Objects Morphisms Description
Simplicial [a) ={0,1,...;n} f=m]— [n] Category of interventions
Relational Vertices V, [idges L s;t: L=V Causal Model Category

Tabular Sets Functionsonsets f : S =+ T Category of instances
Homotopy Topological Spaces Causal cquivalence Causal homotopy

Quasinatagory of simplicial Layered Architecture for Universal Causality (UCLA)
objects (;7]

N
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Universal Arrovy Of Elemants
Category of causal objects
Grethendieck Category
Of Flements
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UNIFORM MANIFOLD

UMAP

APPROXIMATION & PROJECTION

How to Use UMAP

Basic UMAP Parameters

Plotting UMAP results

UMAP Reproducibility
Transforming New Data with UMAP

Inverse transforms

Parametric (neural network) Embedding

UMAP on sparse data

UMARP far Supervised Dimension
Reduction and Metric Learning

Using UMAP for Clustering
Outlier detection using UMAP
Combining multiple UMAP models

Better Preserving Local Density with
DensMAP

Improving the Separation Between
Similar Classes Using a Mutual k-NN
Graph

Document embedding usine UMAP

#  UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction
¢) Edit on GitHub

UNIFORM MANIFOLD

UMAP

APPROXIMATION & PROJECTION

UMAP: Uniform Manifold Approximation and
Projection for Dimension Reduction

Uniform Manifold Approximation and Projection (UMAP) is a dimension reduction technique that
can be used for visualisation similarly to t-SNE, but also for general non-linear dimension reduction.
The algorithm is founded on three assumptions about the data

1. The data is uniformly distributed on Riemannian manifold;

2. The Riemannian metric is locally constant (or can be approximated as such);

3. The manifold is locally connected.

From these assumptions it is possible to model the manifold with a fuzzy topological structure. The
embedding is found by searching for a low dimensional projection of the data that has the closest
possible equivalent fuzzy topological structure.

The details for the underlying mathematics can be found in our paper on ArXiv:

Mclnnes, L, Healy, J, UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction,
ArXiv e-prints 1802.03426, 2018

You can find the software on github.

Installation

Best data visualization
method in ML today

Scalable to millions of
data points

Used widely in biology
Based on higher-order

category theory of
simplicial sets & objects



GAIA: Categorical Foundations of Generative Al
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Simplicial framework for generative Al

Each directed
edge defines a morphism that

represents a generative Al method

i Each collection of

simplices can be "glued” on

to compatible simplices through
“ports” that define the components

of the simplex.

Simplicial learning is based on
extension problems of
inner and outer "horns” of

simplicial objects

2-simplices

3-simplex 1-simplices

?

O-simplices




Backprop as Functor:
A compositional perspective on supervised
learning

Brendan Fong David Spivak

Department of Mathematics,
Massachusetts Institute of Technology

Abstract—A supervised learning algorithm searches over a
set of functions A — B parametrised by a space P to find the
best approximation to some ideal function f: A — B. It does
this by taking examples (7, f(a)) € A X B, and updating the
parameter according to some rule. We define a category where
these update rules may be composed, and show that gradient
descent—with respect to a fixed step size and an error
function satisfying a certain property—defines a monoidal
functor from a category of parametrised functions to this
category of update rules. A key contribution is the notion
of request function. This provides a structural perspective
on backpropagation, giving a broad generalisation of neural
networks and linking it with structures from bidirectional
programming and open games.

Rémy Tuyéras

Computer Science and Artificial Intelligence Lab,
Massachusetts Institute of Technology

Consider a supervised learning algorithm. The goal
of a supervised learning algorithm is to find a suitable
approximation to a function f: A — B. To do so,
the supervisor provides a list of pairs (a,b) € A X B,
each of which is supposed to approximate the values
taken by f, i.e. b = f(a). The supervisor also defines
a space of functions over which the learning algorithm
will search. This is formalised by choosing a set P and
a function I: P Xx A — B. We denote the function at
parameter p € P as I(p,—): A — B. Then, given a pair
(a,b) € A X B, the learning algorithm takes a current
hypothetical approximation of f, say given by I(p, —),

- - - -
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Figure 10: A learner in the symmetric monoidal category Learn is defined as a morphism. Later in Section we will
see how to define learners as coalgebras instead.

Definition 3.

Fong et al.

l

2019] The symmetric monoidal category Learn is defined as a collection of objects that

define sets, and a collection of an equivalence class of learners. Each learner is defined by the following 4-tuple (see

Figure([10).

e A parameter space P

* An implementation function/ : P x A — B

e An update functionU : P x A x B — P

 Arequest functionr: P X A X B — A
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Sequential Composition

Parallel Composition



A (P,I,U,r) (Q,J,V,s)

s B >

The composite learner A — C'is defined as (P x Q,I-J,U -V, r - s), where the composite implementation function is

(L-J)(p.q.a) = J(g,I(p,a))

and the composite update function is

U-V(p,q,a,c):=(U(p,a,s(q,I(p,a),c)),V(q,I(p,a),c)

and the composite request function 1s

(r-8)(p,q,a,c) =r(p,a,s(q, I(p,a),c)).



NNet ——Mm 3 Learn
Backprop is a
Param functor!

UI(p? a, b) =P — GVPEI(p7 a, b)

'y (pa a, b) = fa(vaEl (p: , b))
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Nerve of a Category

Recall a category is defined as a collection of objects, and a collection of
arrows between any pair of objects

A simplicial set is a contravariant functor mapping the simplicial category
to the category of sets

Any category can be mapped onto a simplicial set by constructing its
nerve

Intuitively, consider all sequences of composable morphisms of length n!



Published as a conference paper at ICLR 2020

ARE TRANSFORMERS UNIVERSAL APPROXIMATORS
OF SEQUENCE-TO-SEQUENCE FUNCTIONS? Permutation-equivariant

functions

Chulhee Yun” Srinadh Bhojanapalli Ankit Singh Rawat
MIT Google Research NY Google Research NY
chulheey@mit.edu bsrinadh@google.com ankitsrawat@google.com
Sashank J. Reddi Sanjiv Kumar
Google Research NY Google Research NY
sashank@google.com sanjivk@google.com
f g
X > Y y 4
ABSTRACT

Despite the widespread adoption of Transformer models for NLP tasks, the ex-
pressive power of these models 1s not well-understood. In this paper, we establish P P P
that Transformer models are universal approximators of continuous permutation
equivariant sequence-to-sequence functions with compact support, which is quite

surprising given the amount of shared parameters in these models. Furthermore, M v e
using positional encodings, we circumvent the restriction of permutation equiv- X P N YP 3 Z P
ariance, and show that Transformer models can universally approximate arbitrary f g

continuous sequence-to-sequence functions on a compact domain. Interestingly,
our proof techniques clearly highlight the different roles of the self-attention and
the feed-forward layers in Transformers. In particular, we prove that fixed width
self-attention layers can compute contextual mappings of the input sequences,
playing a key role in the universal approximation property of Transformers. Based
on this insight from our analysis, we consider other simpler alternatives to self-
attention layers and empirically evaluate them.



h
Atn(X) = X+ WHW{X-o[WiX)TWhHX]
1=1

|
>
—
=

FE(X) (X) + Wa - ReLU(W; - Attn(X) + b11)

Definition 32. The category Cp of Transformer models 1s defined as follows:

* The objects Obj(C) are defined as vectors X € R*™ denoting n-length sequences of tokens of dimension d.

* The arrows or morphisms of the category Cr are defined as a family of sequence-to-sequence functions and
defined as:

Thmr = [ f . R 5 RY" | where f(X P) = X P, for some permutation matrix P}



Nerve of the Category of Transformers

e Since Transformers define a category over Euclidean spaces of
permutation-equivariant functions, we can construct its nerve

* Consider all compositions of Transformers building blocks of length n
* This construction maps the category of Transformers into a simplicial set
e |t is a full and faithful embedding of Transformers as simplicial sets

 However, simplicial sets cannot be faithfully mapped back to ordinary
categories



Simplicial Sets vs. Categories

Any category can be embedded faithfully into a simplicial set using its
nerve

The embedding is full and faithful (perfect reconstruction)
Unfortunately, the converse is not possible

Given a simplicial set, the left adjoint functor that maps it into a category
IS lossy!

GAIA (in theory!) is more powerful than existing generative Al formalisms



Summary

Deep learning faces an energy crisis

Architectures like Transformers are fundamentally limited!
We need a better framework: GAIA is one possible approach
Builds on higher-order category theory of simplicial sets

GAIA is a theoretical framework — not yet an actual working system!



