
GAIA: CATEGORICAL FOUNDATIONS OF GENERATIVE AI∗

A PREPRINT

Sridhar Mahadevan
Adobe Research and University of Massachusetts, Amherst

smahadev@adobe.com, mahadeva@umass.edu

February 16, 2024

ABSTRACT

In this paper, we explore the categorical foundations of generative AI. Specifically, we investigate
a Generative AI Architecture (GAIA) that lies beyond backpropagation, the longstanding algorith-
mic workhorse of deep learning. Backpropagation is at its core a compositional framework for
(un)supervised learning: it can be conceptualized as a sequence of modules, where each module
updates its parameters based on information it receives from downstream modules, and in turn, trans-
mits information back to upstream modules to guide their updates. GAIA is based on a fundamentally
different hierarchical model. Modules in GAIA are organized into a simplicial complex. Each
n-simplicial complex acts like a manager of a business unit: it receives updates from its superiors and
transmits information back to its n+ 1 subsimplicial complexes that are its subordinates. To ensure
this simplicial generative AI organization behaves coherently, GAIA builds on the mathematics of
the higher-order category theory of simplicial sets and objects. Computations in GAIA, from query
answering to foundation model building, are posed in terms of lifting diagrams over simplicial objects.
The problem of machine learning in GAIA is modeled as “horn" extensions of simplicial sets: each
sub-simplicial complex tries to update its parameters in such a way that a lifting diagram is solved.
Traditional approaches used in generative AI using backpropagation can be used to solve “inner" horn
extension problems, but addressing “outer horn" extensions requires a more elaborate framework.
At the top level, GAIA uses the simplicial category of ordinal numbers with objects defined as
[n], n ⩾ 0 and arrows defined as weakly order-preserving mappings f : [n] → [m], where f(i) ⩽
f(j), i ⩽ j. This top-level structure can be viewed as a combinatorial “factory" for constructing,
manipulating, and destructing complex objects that can be built out of modular components defined
over categories. The second layer of GAIA defines the building blocks of generative AI models
as universal coalgebras over categories that can be defined using current generative AI approaches,
including Transformers that define a category of permutation-equivariant functions on vector spaces,
structured state-space models that define a category over linear dynamical systems, or image diffusion
models that define a probabilistic coalgebra over ordinary differential equations. The third layer
in GAIA is a category of elements over a (relational) database that defines the data over which
foundation models are built. GAIA formulates the machine learning problem of building foundation
models as extending functors over categories, rather than interpolating functions on sets or spaces,
which yields canonical solutions called left and right Kan extensions. GAIA uses the metric Yoneda
Lemma to construct universal representers of objects in non-symmetric generalized metric spaces.
GAIA uses a categorical integral calculus of (co)ends to define two families of generative AI systems.
GAIA models based on coends correspond to topological generative AI systems, whereas GAIA
systems based on ends correspond to probabilistic generative AI systems.

Keywords Generative AI · Foundation Models · Higher-Order Category Theory ·Machine Learning

∗This is a preliminary draft of a forthcoming book. This draft may contain errors or omissions, and will be periodically updated.

A PREPRINT - FEBRUARY 16, 2024

Contents

1 Overview of the Paper 4

1.1 Roadmap to the Paper . 10

2 Backpropagation as a Functor: Compositional Learning 11

2.1 Category of Supervised Learning . 11

2.2 Backpropagation as a Functor . 14

3 Backpropagation as an Endofunctor: Generative AI using Universal Coalgebras 15

3.1 Non-Well-Founded Sets and Universal Coalgebras . 15

3.2 Backpropagation as a Coalgebra . 20

3.3 Zeroth-Order Deep Learning using Stochastic Approximation . 20

3.4 Lambek’s Theorem and Final Coalgebras: Analyzing the Convergence of Generative AI Algorithms . 21

3.5 Metric Coinduction for Generative AI . 23

4 Layer 1 of GAIA: Simplicial Sets for Generative AI 24

4.1 Simplicial Sets and Objects . 25

4.2 Hierarchical Learning in GAIA by solving Lifting Problems . 26

4.3 Simplicial Subsets and Horns in GAIA . 28

4.4 Higher-Order Categories . 29

5 Layer 2 of GAIA: Generative AI using Simplicial Categories 29

5.1 Categories as Building Blocks of GAIA . 29

5.2 A Categorical Theory of Transformer Models . 32

5.3 Constructing Simplicial Transformers from Transformer Categories 33

6 Layer 3 of GAIA: Universal Properties and the Category of Elements 34

6.1 Natural Transformations and Universal Arrows . 35

6.2 Yoneda Lemma . 35

6.3 Universal Arrows and Elements . 39

6.4 The Category of Elements . 39

6.5 Lifting Problems in Generative AI . 40

6.6 Kan Extension . 41

6.7 The Metric Yoneda Lemma . 42

6.8 Adjoint Functors . 45

7 The Coend and End of GAIA: Integral Calculus for Generative AI 48

7.1 Ends and Coends . 49

7.2 Sheaves and Topoi in GAIA . 50

7.3 Topological Embedding of Simplicial Sets . 55

7.4 The Geometric Transformer Model . 56

2

A PREPRINT - FEBRUARY 16, 2024

7.5 The End of GAIA: Monads and Categorical Probability . 56

8 Homotopy and Classifying Spaces of Generative AI Models 58

8.1 Homotopy in Categories . 58

8.2 The Category of Fractions: Localizing Invertible Morphisms in a Generative AI Category 59

8.3 Homotopy of Simplicial Generative AI Objects . 59

8.4 The Singular Homology of a Generative AI Model . 60

9 Summary and Future Work 61

3

A PREPRINT - FEBRUARY 16, 2024

1 Overview of the Paper

Simplicial Category of
Ordinal numbers

Category of Foundation
Models as Coalgebras

Category of Elements over
Relational Databases

Lifting Diagrams

Simplicial
Sets

Adjoint Functors

Adjoint Functors

BA

0

1

0,1

Deterministic finite state
automata

BA

0.2

0.8

0.5

0.5
Markov Chains

S

NP VP

Adj Noun

The dog ate the pizza

Verb NP

Adj Noun

Context-free grammars Models for
Generative AI

Transformer

Diffusion models

Figure 1: We propose a hierarchical Generative AI Architecture (GAIA) using higher-order category theory.

Generative AI has become a dominant paradigm for building intelligent systems in the last few years, ranging from
large language models developed with the widely used Transformer model Vaswani et al. [2017], or more recently
with the structured state space sequence models Gu et al. [2022], Yin et al. [2023], and with the growing use of image
diffusion algorithms Song and Ermon [2019], Yin et al. [2023]. We can broadly define the problem of generative
AI as the construction, maintenance, and deployment of foundation models Bommasani et al. [2022], a storehouse
of human knowledge that provides the basic infrastructure for AI across some set of applications. A fundamental
question, therefore, to investigate is to study the mathematical basis for foundation models. We propose a mathematical
framework for a Generative AI Architecture (GAIA) (see Figure 1) based on the hypothesis that category theory
MacLane [1971], Riehl [2017], Lurie [2009] provides a universal mathematical language for foundation models. In
particular, GAIA is based on simplicial learning, which is intended to generalize compositional learning frameworks
based on well-established machine learning algorithms, such as backpropagation Bengio [2009]. Category theory has
been called a “Rosetta Stone" Baez and Stay [2010], as it provides a universal language for defining interactions among
objects in all of mathematics, physics, computer science, and mathematical logic. Category theory has recently seen
increasing use in machine learning, including dimensionality reduction McInnes et al. [2018] and clustering Carlsson
and Memoli [2010]. One unique aspect of defining machine learning as extending functors in a category, in contrast to
the well-established previous approach of extending functions over sets or spaces Wagstaff et al. [2022], is that there
are two canonical solutions that emerge – the left and right Kan extensions MacLane [1971] – whereas there is no
corresponding canonical solution to the problem of learning functions over sets.

Current generative AI systems are built on the longstanding algorithmic workhorse of backpropagation Bengio [2009].
Backpropagation is fundamentally a compositional sequential framework, where each module updates its parameters
based on information it gets from its downstream modules, and in turn, transmits information back to upstream modules.
Fong et al. [2019] propose a categorical framework for backpropagation, which we review in Section 2. In this paper,
we will generalize this category-theoretic formalization of neural networks in several ways. As Figure 2 illustrates,
unlike traditional generative AI models, such as those developed with sequence models like Transformers or structured
state space sequence models, is not sequential, but rather simplicial. Each “face" of the n-simplex defines a “local"
Transformer model (or indeed, any type of machine learning model), which are then “stitched" together into the whole
structure using the mathematics of higher-order category theory of simplicial objects and sets May [1992].

4

A PREPRINT - FEBRUARY 16, 2024

Simplicial Complex of Gen AI Models in GAIASequential Generative AI Model

Figure 2: Traditional Generative AI models, such as Transformers, are based on a compositional sequential model.
GAIA is based on a simplicial model, where each “face" of the n-simplicial complex defines a generative model.

Decomposition of a 3-simplex into its parts

3-simplex

2-simplices

1-simplices

0-simplices

Figure 3: GAIA is based on a hierarchical framework, where each n-simplicial complex acts as a business unit in a
company: each n-simplex updates its parameters based on data it receives from its superiors, and it transmits guidelines
for its n+1 sub-simplicial complexes to help them with their updates. The mathematics for this hierarchical framework
is based on higher-order category theory of simplicial sets and objects.

Figure 4 illustrates a crucial conceptual perspective that forms the basis for the design of GAIA. A generative model
is, first and foremost, an algebraic structure of some kind. It may be a sequence, a directed graph, or as in our case,
a simplicial complex. This specification is akin to specifying the “skeleton" of the generative AI model. To give the
skeleton some “flesh and blood", it is necessary to map it into a parameter space (e.g., Euclidean space), through a
suitable functor. The actual process of building a foundation model occurs through implementing a learning method,
such as backpropagation, which Fong et al. [2019] model as a functor that maps from the space of parameters into the
category of learners. A crucial difference in our approach is that we model backpropagation not just as a functor, but
rather as an endofunctor on the category of parameters, as it must eventually result in a new set of parameters (see
Figure 5. This important difference in our approach makes it possible to apply the rich theory of universal coalgebras
over endofunctors Jacobs [2016], Rutten [2000] to analyze generative AI methods. We describe in detail in Section 2
one specific instantiation of this general perspective proposed by Fong et al. [2019]. In their case, the algebraic structure
is a symmetric monoidal category that defines the skeleton. Their parameter space is Euclidean space, and their category
of learners is defined by compositional learning using backpropagation. In GAIA, we make a more sophisticated
framework, where the algebraic structure is a simplicial set or category, the parameter space may be a sheaf in a topos
MacLane and leke Moerdijk [1994], and the category of learners is defined as horn extensions in a simplicial set.

5

A PREPRINT - FEBRUARY 16, 2024

Category of
Algebraic
Structures

Category of Parameters Category of Learners

Generative AI
Model Functor

Simplicial functor Backpropagation
Endofunctor

Figure 4: Crucial to the GAIA framework is understanding the separation between the algebraic structure of a generative
AI model, and the parameter space over which the model is defined, and how specific machine learning algorithms such
as backpropagation can be viewed as functors. Fong et al. [2019] defined backpropagation as a functor as shown from
the category Param of parameters to the category Learn of machine learners. Crucially, GAIA models backpropagation
as an endofunctor from the category Param back to itself, because every morphism in Learn must result in an update of
the parameters of the network, thus resulting in a new object in Param. Thus, in this paper, we “close the loop", opening
the rich theory of universal coalgebras defined by endofunctors Jacobs [2016], Rutten [2000] to analyze generative AI
methods, such as backpropagation.

U

r

P

A

P

A

B

Category of
Parameters

Category of
Learners

Backpropagation
Endofunctor

Backpropagation
Endofunctor

Figure 5: Left: In the categorical framework for deep learning proposed by Fong et al. [2019], a learner is a morphism in
the category Learn that acts sequentially on its input A to produce an output B, updating its parameters P , and sending
back a request A to an upstream module that represents “backpropagation". In GAIA, we view backpropagation as a
coalgebra Rutten [2000], defined by an endofunctor on the category of parameters, so that each step of backpropagation
is modeled as a dynamical system that maps some parameter object into a new parameter object.

GAIA is based on a hierarchical organization, much like the business units in a company. An n-simplex defines a
collection of n + 1 sub-simplicial sets (or object), and each n-simplex computes some function based on a set of
parameters, which it updates based on information it receives from its superiors. It then transmits guidelines to its n+ 1
subordinate sub-simplicial sets on how to update their parameters. We use the simplicial category ∆ at the top layer of
GAIA to define not just sequences of morphisms, each representing a layer of a generative AI network, but simplicial
complexes of them. One way to understand the connection between categories and simplicial sets is through the nerve
functor that maps sequences of morphisms – for example, each representing a Transformer block or a diffusion image
generation step – into a simplicial set. The n-simplices are defined by sequences of composable morphisms of length
n. It can be shown that the nerve functor is a full and faithful functor that fully captures the category structure as a
simplicial set Lurie [2009]. However, the left adjoint of the nerve functor is a “lossy" inverse, in that it only preserves
structure for n-simplices, where n ⩽ 2. GAIA defines generative AI over n-simplicial complexes that allow more
complex interactions among them than that which can be modeled by compositional learning frameworks, such as
backpropagation. Simplicial sets are defined as a graded set Sn, n ⩾ 0, where S0 represents “objects", S1 represent
morphisms (as in Fong et al. [2019]), S2 define triangles of composable morphisms that have to be filled in different

6

A PREPRINT - FEBRUARY 16, 2024

Simplicial framework for generative AI

Each directed
edge defines a morphism that

represents a generative AI method

Each collection of
simplices can be ``glued” on

to compatible simplices through
``ports” that define the components

of the simplex.

Simplicial learning is based on
extension problems of

inner and outer ``horns” of
simplicial objects

Figure 6: GAIA is based on a simplicial framework, where each generative AI method is modeled as a morphism
that maps between two objects. In the simplest case of compositional learning, a 1-simplex is defined as an “edge",
where its beginning and ending “vertices" represent data that flows into and out of a generative AI model, such as a
Transformer, or a structured state space sequence model, or a diffusion process. Backpropagation can be used to solve
compositional learning problems over such sequences of “edge" building blocks. GAIA generalizes this paradigm to
define “higher-order" simplicial objects where the interfaces between simplices can be more elaborate. Each n-simplex
is comprised of a family of n− 1 subsimplicial objects, each of which can be “glued" together to form the n-simplex.

ways, and constitute “inner" and “outer" horn extension problems Lurie [2009]. In summary, GAIA generalizes the
category-theoretic framework for deep learning in Fong et al. [2019] to a higher-order category of simplicial sets and
objects. Figure 6 illustrates the simplicial generative AI vision underlying GAIA.

Backpropagation can solve a wide range of generative AI problems defined as supervised learning problems, where
the task is to infer an unknown function f : A → C from samples (a, f(a)), where f is constructed as a sequential
composition of building block unknown functions that represent intermediate targets such as f ≃ g ◦h, and h : A→ B,
and g : B → C. Such problems are modeled in GAIA as “inner horn" extensions of simplicial objects. GAIA is able to
formulate “outer horn" extension problems, such as inferring unknown functions f : B → C from samples of unknown
functions g : A→ B and h : A→ C, or infer unknown functions f : A→ B given samples of unknown functions
g : A → C and h : B → C, which lie outside the scope of sequential compositional methods like backpropagation.
One example of a setting where both inner and outer horn extensions are solvable are in Kan complexes.

We can define the class of “horn extensions" of simplicial complexes, where each morphism might represent a generative
AI morphism (such as in the category Learn considered by Fong et al. [2019]), which is essentially all the ways of
composing 1-dimensional simplices to form a 2-dimensional simplicial object. Each simplicial subset of an n-simplex
induces a a horn Λn

k , where 0 ⩽ k ⩽ n. Intuitively, a horn Λn
k is a subset of a simplicial object that results from

removing the interior of the n-simplex and the face opposite the kth vertex. Consider the three horns defined below.
The dashed arrow 99K indicates edges of the 2-simplex ∆2 not contained in the horns.

{0}

{1} {2}

{0}

{1} {2}

{0}

{1} {2}

The inner horn Λ2
1 is the middle diagram above, and admits an easy solution to the “horn filling” problem of composing

the simplicial subsets. In defining a compositional category for neural networks and supervised learning, Fong et al.
[2019] only consider “inner horn" extension problems defined as how to compose two morphism in the category Learn.
In other words, if f : A → B and g : B → C are two functions to be learned from a database of samples, their
framework works out the updates to the composition g ◦ f : A→ C.

The two outer horns on either end pose a more difficult challenge. For example, filling the outer horn Λ2
0 when the

morphism between {0} and {1} is f and that between {0} and {2} is the identity 1 is tantamount to finding the left
inverse of f up to homotopy. Dually, in this case, filling the outer horn Λ2

2 is tantamount to finding the right inverse of f
up to homotopy. A considerable elaboration of the theoretical machinery in category theory is required to describe the
various solutions proposed, which led to different ways of defining higher-order category theory Boardman and Vogt
[1973], Joyal [2002], Lurie [2009].

7

A PREPRINT - FEBRUARY 16, 2024

S

S x [0,1]

S x [0]

p

g

i

h

E

B

h’

Figure 7: Lifting diagrams were originally studied in algebraic topology Gavrilovich [2017], and provide a concise
way to define diverse computational problems in GAIA. A map p : E → B is called a fibration if and only if for
any maps h and g that make this diagram “commute", there exists a diagonal map h′ that makes the whole diagram
commute. Fibrations have been used to formalize SQL queries in relational databases Spivak [2013] and causal
inference Mahadevan [2023], and are central to homotopy theory in higher-order category theory. Many universal
approximability results in deep learning Yarotsky [2018], Wagstaff et al. [2022], Yun et al. [2020] can be phrased in
terms of lifting diagrams.

As examples, consider a large language model (LLM) that is trained to output programs based on textual inputs. For
example, given data corresponding to possible textual descriptions of programs and actual code, a GitHub Copilot can
generate programs from textual inputs. An outer horn problem for this case would be to infer an unknown function
between two generated sample programs from their textual prompts as inputs. Similarly, for a generative AI program
that produces images by diffusion from textual inputs, the outer horn problem might correspond to learning an unknown
function between two generated images.

If we assume that the simplicial complex is a Kan complex Kan [1958], all horn extensions can be solved, which
intuitively can be understood as implying that the outer horn extension problems can be turned into inner horn extensions.
So, for example, we can solve the outer horn problem defined by the first diagram on the left above by assuming that
the morphism f : [0]→ [1] has an inverse f−1 : [1]→ [0], and hence turn the outer horn into an inner horn problem.
Similarly, for the outer horn problem on the right hand side of the above diagram, we can assume that morphism
f : [0]→ [2] has an inverse f−1 : [2]→ [0] that converts it back into an inner horn extension problem.

Note that neural networks that are trained through backpropagation are inherently directional: there is a well-defined
notion of an input and an output over which forward and backwards propagation occurs. In essence, what outer horn
extension problems imply is that if there exists a solution to a problem of inferring an unknown function f : A→ B from
samples (a, f(a)) ∈ A×B, does that imply a solution to the problem of inferring an inverse function f−1 : B → A?
Lastly, it must be noted that horn extensions can be more complex than the simple 2-simplex case described above. In
general, in a lifting diagram, defined below, we are asking if a solution exists to an arbitrary lifting problem in a certain
category?

We define the update process through lifting diagrams from algebraic topology Gavrilovich [2017] as a unifying
framework, from answering queries to building foundation models. A lifting diagram defines constraints between
different paths that lead from one category to another. They have been used to formulate queries in relational databases
Spivak [2013]. In our previous work, we used lifting diagrams to define queries for causal inference Mahadevan [2023].
Lifting problems define ways of decomposing structures into simpler pieces, and putting them back together again, and
thus play a central role in GAIA (see Figure 7.

Definition 1. Let C be a category. A lifting problem in C is a commutative diagram σ in C.

A X

B Y

f

µ

p

ν

8

A PREPRINT - FEBRUARY 16, 2024

Generative AI Models based on Coends

Generative AI Models based on Ends

<latexit sha1_base64="P8WuYNhEjkv8jKhjxRqte6il/KY=">AAAB9XicbVDLSgNBEOyNrxhfUY9eBoMQQcKuSPQYFMRjBPOAvJidTJIhs7PLTK8SQv7DiwdFvPov3vwbJ8keNLGgoajqprvLj6Qw6LrfTmpldW19I72Z2dre2d3L7h9UTRhrxisslKGu+9RwKRSvoEDJ65HmNPAlr/nDm6lfe+TaiFA94CjirYD2legJRtFK7aZQ2GbkNs/O2CnpZHNuwZ2BLBMvITlIUO5kv5rdkMUBV8gkNabhuRG2xlSjYJJPMs3Y8IiyIe3zhqWKBty0xrOrJ+TEKl3SC7UthWSm/p4Y08CYUeDbzoDiwCx6U/E/rxFj76o1FiqKkSs2X9SLJcGQTCMgXaE5QzmyhDIt7K2EDaimDG1QGRuCt/jyMqmeF7xioXh/kStdJ3Gk4QiOIQ8eXEIJ7qAMFWCg4Rle4c15cl6cd+dj3ppykplD+APn8weOYpFC</latexit>Z c

F (c, c)

<latexit sha1_base64="iLcqHmKJ2R/D4lxBq+dfFqdt6D0=">AAAB9XicbVDLSgNBEOz1GeMr6tHLYBAiSNgViR6DgniMYB6QrGG2M0mGzM4uM7NKCPkPLx4U8eq/ePNvnCR70MSChqKqm+6uIBZcG9f9dpaWV1bX1jMb2c2t7Z3d3N5+TUeJQlbFSESqEVDNBJesargRrBErRsNAsHowuJ749UemNI/kvRnGzA9pT/IuR2qs9NDi0rSR3BTwFE9IO5d3i+4UZJF4KclDiko799XqRJiETBoUVOum58bGH1FlOAo2zrYSzWKKA9pjTUslDZn2R9Orx+TYKh3SjZQtachU/T0xoqHWwzCwnSE1fT3vTcT/vGZiupf+iMs4MUzibFE3EcREZBIB6XDF0IihJRQVt7cS7FNF0digsjYEb/7lRVI7K3qlYunuPF++SuPIwCEcQQE8uIAy3EIFqoCg4Ble4c15cl6cd+dj1rrkpDMH8AfO5w+P75FD</latexit>Z

c

F (c, c)

Figure 8: We propose two families of GAIA models in this paper (see Section 7 for details), based on coends and
ends Loregian [2021]. In this diagram, the bifunctor F ∈ Cat(Cop × C,D) acts both contravariantly and covariantly
on objects in the category C. Coend and end objects correspond to objects in the category D. Coend GAIA models
are based on topological realizations of the simplicial model, whereas end GAIA models are based on probabilistic
generative models.

To understand the meaning of such a diagram for generative AI, let us consider the setting where every edge in the above
commutative diagram represents an instance of a Transformer module that maps a object x ∈ Rd×n into another using a
permutation-equivariant mapping. Yun et al. [2020] show that Transformers compute permutation-equivariant functions
and are nonetheless universal approximators in the space of all continuous functions on Rd×n due to their reliance on
absolute positional encoding Vaswani et al. [2017] to overcome the limitations imposed by permutation equivariance.
Permutation-equivariant functions are defined as f : Rd×n → Rd×n such that f(XP) = f(X)P for any X ∈ Rd×n

where P is a permutation matrix. It is straightforward to define a category of Transformer models, where the objects
are vectors X ∈ Rd×n and the arrows are permutation-invariant mappings. Similarly, diffusion models used in image
generation Song and Ermon [2019] can be viewed as a category of stochastic dynamical systems that can be viewed
as probabilistic coalgebras Sokolova [2011]. Rutten [2000] and Jacobs [2016] show that a wide class of dynamical
systems used in computer science can be expressed as categories of universal coalgebras. With this context, asking for
solutions to lifting problems is posing a question on the representational adequacy of a framework for generative AI.

Definition 2. Let C be a category. A solution to a lifting problem in C is a morphism h : B → X in C satisfying
p ◦ h = ν and h ◦ f = µ as indicated in the diagram below.

A X

B Y

f

µ

ph

ν

Although lifting diagrams have been proposed for deep learning architectures recently Papillon et al. [2023], it is
important to stress that the notion of simplicial complex used in this paper, as well as other notions used in computer
graphics is fundamentally different from our paper. In our case, simplicial complexes are directional, since each
edge is defined by a directional arrow, not an undirected arrow. The edges correspond to morphisms, and indeed, a
basic question that we will ask is under what circumstances can directional morphisms be inverted. This question
is fundamental to solving extension problems, and in really nice settings like Kan complexes, all morphisms can be
inverted since all inner and outer horn extension problems have solutions.

In the literature on higher-order category theory Joyal [2002], Lurie [2009, 2022] and homotopy theory Gabriel et al.
[1967], Richter [2020], Quillen [1967], lifting diagrams were used to define structures such as Kan complexes that
possess nice extension properties. For example, for any given topological space X , there is a functor that defines a
simplicial set Sing•(X) defined by all continuous functions from the topological simplex ∆n into the space X . The

9

A PREPRINT - FEBRUARY 16, 2024

simplicial set Sing•(X) is a Kan complex because all “horn extensions" of simplicial subsets can be solved. In practical
terms, this property explains the success of dimensionality reduction methods like UMAP McInnes et al. [2018],
which constructs functors from simplicial sets that represent data into topological spaces. The topological realization
of simplicial sets computed by UMAP is an example of a coend, a unifying “integral calculus" proposed originally
by Yoneda Yoneda [1960]. Loregian [2021] gives a detailed description of the integral calculus of (co)ends, which
provides a unifying way to design an entire spectrum of generative AI systems, where systems based on ends leads
to probabilistic generative models like Transformers, whereas models based on coends lead to topologically based
generative AI systems that have not been explored in the literature.

In this paper, we use the framework of lifting diagrams to both formulate queries as shown in Figure 1, but also to
define the problem of building foundation models from data. In particular, we build on the framework of simplicial
sets and objects, where we pose lifting diagram queries as solving “horn extension" problems Lurie [2009]. Formally,
we pose the problem of learning in a generative AI system in terms of properties such as Kan complexes May [1992],
which are ideal categories to solve lifting problems since there is a unique solution to all extension problems (inner and
outer horn extensions). As a concrete example, every topological space can be mapped into a simplicial set using the
singular functor, which was used in the UMAP McInnes et al. [2018] dimensionality reduction method, which can be
shown to form a Kan complex.

Beginning at the top layer, GAIA uses the simplicial category of ordinal numbers May [1992] as a way to build,
manipulate, and destroy compositional structures. The category of ordinal numbers ∆ includes a collection of objects
indexed by the ordinals [n], n ⩾ 0, where [n] = (0, 1, . . . , n) under the natural ordering <. The morphisms of ∆ are
order-preserving functions f : [n]→ [m] where f(i) ⩽ f(j), i ⩽ j, i, j ∈ [n]. The category ∆ has provided the basis
for a combinatorial approach to topology and also serves as the basis for higher-order category theory Joyal [2002],
Lurie [2009], Gabriel et al. [1967]. This category “comes to life" when it is functorially mapped to some other category,
such as Sets, when the resulting structure is called a simplicial set. The contravariant functor X : ∆op → Sets is
defined by viewing X([0]) as a set of “objects", X[1]) as a set of “arrows" representing pairwise interactions among the
objects, and in general, X([n]) – which is often simply written as Xn and consists of a set of n-simplices – defines
interactions of order n among the objects. Simplicial sets generalize directed graphs, partial orders, sequences, and in
fact, regular categories MacLane [1971] as well. There are constructor and destructor morphisms that map from X([n])
to X([n+ 1]) and X([n]) to X(n− 1]), which are usually denoted as degeneracy and face operators.

The second layer of GAIA defines a category of generative AI models, which can be composed of any of the standard
technologies used to build generative models, including finite and probabilistic automata, context-free grammars,
structured state-space sequence models Gu et al. [2022] or Transformer models Vaswani et al. [2017], or cellular
automata Vollmar [2006], Wolfram [2002]. We assume that each of these models defines a category whose objects and
arrows can be composed and otherwise manipulated by the simplicial category ∆.

The third layer of GAIA defines the category of (relational) databases out of which the category of foundation models is
build (e.g., such as by using one of the standard generative AI methods, such as self-attention Vaswani et al. [2017] or
structured state-space sequence models Gu et al. [2022]). Spivak and Kent [2012] has shown that categories provide a
foundation for defining relational databases, and that many common operations in databases can be defined in terms of
lifting diagrams in topology Gavrilovich [2017]. In particular, a fundamental premise of GAIA is that machine learning
is defined as the extension of functors on categories, not functions on sets Wagstaff et al. [2022]. The fundamental reason
to view machine learning as extending functors is that there are two canonical solutions to the problem of extending
functors, defined as left and right Kan extensions Kan [1958]. In contrast, there is no obvious or natural solution to the
problem of extending functions on sets, which has prompted an enormous literature in the field of machine learning over
many decades, and also in fields like information theory Chaitin [2002], Cover and Thomas [2006]. Lifting diagrams
provide an elegant and general framework to pose the problem of generalization for generative AI, based not just on
individual units of experience, but by providing a theoretically sound way to do generalization over arbitrary relational
structures. Much of the work in machine learning has focused on the ability to generalize propositional representations,
which also includes most of the work in statistics. To generalize over first-order relational structures requires bringing
in some powerful tools from algebraic topology and higher-order category theory, in particular the ability to do horn
filling of simplicial horns Lurie [2009].

1.1 Roadmap to the Paper

Given the length of this paper, a roadmap to its organization will be helpful to the reader. Keep in mind that this paper
is a condensed version of a forthcoming book, which is designed to provide a detailed tutorial level introduction to
category theory, in addition to illustrating its application to generative AI. With that mind, Section 2 begins us off with
a detailed look at a category theory of deep learning, building on the work of Fong et al. [2019]. The crucial idea of
separating the algebraic structure of a generative AI model from its parameterization, which in turn is independent of

10

A PREPRINT - FEBRUARY 16, 2024

the structure of a learning framework is crucial to our framework as well, although GAIA differs in many ways from
the approach proposed in Fong et al. [2019].

Section 3 gives our alternative view of backpropagation as an endofunctor, in particular a universal coalgebra of the
form X → F (X), where the endofunctor F maps objects X in a category C back to the same category. Universal
coalgebras Jacobs [2016], Rutten [2000] provide a rich language for specifying dynamical systems, and they have also
been extended to describe probabilistic generative models, such as Markov chains Sokolova [2011], Markov decision
processes Feys et al. [2018] and a wealth of programming-related abstractions Jacobs [2016].

Section 4 defines the simplicial layer of GAIA, which acts like a “combinatorial factory" that can assemble together
pieces of generative AI models. The heart of the GAIA framework is that the simplicial category allows a hierarchical
framework for generative AI, which we believe goes beyond the purely sequential framework thus far studied in
the literature. We illustrate how hierarchical learning works in GAIA in terms of lifting problems in simplicial sets.
Section 5 defines particular categories for generative AI, including the popular Transformer architecture as permutation
equivariant functions over Euclidean spaces. Section 6 defines universal properties and the Yoneda Lemma, which
are used to define universal parameterizations of generative AI models. In particular, we show that non-symmetric
generalized metric spaces can be studied with the metric Yoneda Lemma, which has applications in constructing
non-symmetric attention models for natural language.

Section 7 defines an abstract integral calculus for generative AI, based on Yoneda’s pioneering work Yoneda [1960].
Loregian [2021] gives a detailed textbook level account of (co)end calculus. We define two classes of generative AI
models, those based on coends and ends. We show that coend GAIA models lead to topological realizations, whereas
GAIA models based on ends lead to probabilistic generative AI models. We also introduce sheaves and topoi as
alternative parameterizations of generative AI models, which arise from the Yoneda Lemma, and can give additional
structure over simply using Euclidean spaces. Section 8 finally defines abstract notions of equivalence in category theory
for comparing two generative AI models. When can we say, for example, that a summarized document produced by a
generative AI copilot is actually faithful to the original document on which it was based? Homotopy theory provides
some answers to these questions, which have only been studied empirically in the literature. We introduce the notion of
a classifying space for generative AI models, and define their homotopy colimits.

The paper covers a great deal of abstract mathematics, but we have attempted to provide a range of concrete examples of
its application to the problem of generative AI. Many more examples can be given, but would significantly increase the
length of an already really long paper! Ultimately, as we conclude at the end, the real proof of the utility of GAIA will
come from its actual implementation as a working system, but we view that as a multi-year research problem. There are
many open problems that are remaining to be worked out, and we discuss a few of them in the paper at various places.

2 Backpropagation as a Functor: Compositional Learning

Our principal goal in this section to review the categorical framework for deep learning proposed in Fong et al. [2019],
which models backpropagation as a functor. In the next section, we will argue that backpropagation should be viewed
instead as an endufunctor on the category Param, which defines the space over which generative AI model are defined.

We first give a high-level introduction to generative AI, building on the framework of category theory (see Figure 9).
Category theory is intrinsically a framework for compositional structures, which generative AI exemplifies as well.
Excellent textbook length treatments are readily available and should be consulted for further background MacLane
[1971], MacLane and leke Moerdijk [1994], Riehl [2017], Richter [2020]. We summarize salient concepts from
category theory as and when needed. We define several types of categories in this section, beginning with a category for
supervised learning, and then other categories that represent machine learning algorithms, including the traditional
backpropagation algorithm, and zeroth-order optimization, as well as categories for specific deep learning architectures,
such as Transformers, structured state space sequence models, and diffusion models. We then introduce some key
ideas from category theory, including the fundamental Yoneda Lemma that shows all objects in a category can be
characterized in terms of their interactions.

2.1 Category of Supervised Learning

Fong et al. [2019] give an elegant characterization of the well-known backpropagation algorithm that serves as the
“workhorse" of deep learning as a functor over symmetric monoidal categories. In such categories, objects can be
“multiplied": for example, sets form a symmetric monoidal category as the Cartesian product of two sets defines a
multiplication operator. A detailed set of coherence axioms are defined for monoidal categories (see MacLane [1971]
for details), which we will not go through, but they ensure that multiplication is associative, as well as that there are
identity operators such that I ⊗A ≃ A for all objects A, where I is the identity object.

11

A PREPRINT - FEBRUARY 16, 2024

Category
Category

Functor

Figure 9: Categories are defined by collection of arbitrary objects that interact through morphisms (also called arrows).
Functors map objects from one category into another, but also map the arrows of the domain category into corresponding
arrows in the co-domain category. We define generative AI systems and learning algorithms as categories in GAIA.

U

r

P

A

P

A

B

Figure 10: A learner in the symmetric monoidal category Learn is defined as a morphism. Later in Section 3, we will
see how to define learners as coalgebras instead.

Definition 3. Fong et al. [2019] The symmetric monoidal category Learn is defined as a collection of objects that
define sets, and a collection of an equivalence class of learners. Each learner is defined by the following 4-tuple (see
Figure 10).

• A parameter space P

• An implementation function I : P ×A→ B

• An update function U : P ×A×B → P

• A request function r : P ×A×B → A

Note that it is the request function that allows learners to be composed, as each request function transmits information
back upstream to earlier learners what output they could have produced that would be more “desirable". This algebraic
characterization of the backpropagation algorithm clarifies its essentially compositional nature

Two learners (P, I, U,R) and (P ′, I ′, U ′, r′) are equivalent if there is a bijection f : P → P ′ such that the following
identities hold for each p ∈ P, a ∈ A and b ∈ B.

• I ′(f(p), a) = I(p, a).

• U ′(f(p), a, b) = f(U(p, a, b)).

• r′(f(p), a, b) = r(p, a, b)

Typically, in generative AI trained with neural networks, the parameter space P = RN where the neural network
has N parameters. The implementation function I represents the “feedforward" component, and the request function
represents the “backpropagation" component. The update function represents the change in parameters as a result
of processing a training example (a, f(a)) ∈ A×B. The main contribution of Fong et al. [2019] is in showing that
supervised learning can be defined as a compositional category under the sequential composition of morphisms defining
individual building blocks of learners.

12

A PREPRINT - FEBRUARY 16, 2024

I V, s

U, r

Q

P

A

C

Q

P

A

B

B

U,r

V,s

P

Q

A

C

B

D

P

Q

A

C

Figure 11: Sequential and parallel composition of two learners in the symmetric monoidal category Learn.

Fong et al. [2019] show that each learner can be combined in sequentially and in parallel (see Figure 11), both formally
using the operations of composition ◦ and tensor product⊗ in the symmetric monoidal category Learn, and equivalently
in terms of string diagrams. For clarity, let us write out the compositional rule for a pair of learners

A
(P,I,U,r)−−−−−−→ B

(Q,J,V,s)−−−−−−→ C

The composite learner A→ C is defined as (P ×Q, I · J, U · V, r · s), where the composite implementation function is

(I · J)(p, q, a) := J(q, I(p, a))

and the composite update function is

U · V (p, q, a, c) := (U(p, a, s(q, I(p, a), c)) , V (q, I(p, a), c)

and the composite request function is

(r · s)(p, q, a, c) := r(p, a, s(q, I(p, a), c)).

13

A PREPRINT - FEBRUARY 16, 2024

2.2 Backpropagation as a Functor

We can define the backpropagation procedure as a functor that maps from the category Para to the category Learn.
Functors can be viewed as a generalization of the notion of morphisms across algebraic structures, such as groups,
vector spaces, and graphs. Functors do more than functions: they not only map objects to objects, but like graph
homomorphisms, they need to also map each morphism in the domain category to a corresponding morphism in
the co-domain category. Functors come in two varieties, as defined below. The Yoneda Lemma, in its most basic
form, asserts that any set-valued functor F : C → Sets can be universally represented by a representable functor
C(−, x) : Cop → Sets.
Definition 4. A covariant functor F : C → D from category C to category D, and defined as the following:

• An object FX (also written as F (X)) of the category D for each object X in category C.

• An arrow F (f) : FX → FY in category D for every arrow f : X → Y in category C.

• The preservation of identity and composition: F idX = idFX and (Ff)(Fg) = F (g ◦ f) for any composable
arrows f : X → Y, g : Y → Z.

Definition 5. A contravariant functor F : C → D from category C to category D is defined exactly like the covariant
functor, except all the arrows are reversed.

The functoriality axioms dictate how functors have to be behave:

• For any composable pair f, g in category C, Fg · Ff = F (g · f).
• For each object c in C, F (1c) = 1Fc.

Note that the category Learn is ambivalent as to what particular learning method is used. To define a particular learning
method, such as backpropagation, we can define a category whose objects define the parameters of the particular
learning method, and then another category for the learning method itself. We can define a functor from the category
NNet to the category Learn that factors through the category Param. Later in the next section, we show how to generlize
this construction to simplicial sets.

NNet Learn

Param

F Lϵ,e

Definition 6. Fong et al. [2019] The category Param defines a strict symmetric monoidal category whose objects are
Euclidean spaces, and whose morphisms f : Rn → Rm are equivalence classes of differential parameterized functions.
In particular, (P, I) defines a Euclidean space P and I : P ×A→ B defines a differentiable parameterized function
A → B. Two such pairs (P, I), (P ′, I ′) are considered equivalent if there is a differentiable bijection f : P → P ′

such that for all p ∈ P , and a ∈ A, we have that I ′(f ′(p), a) = I(p, a). The composition of (P, I) : Rn → Rm and
(Q, J) : Rn → Rm is given as

(P ×Q, I · J) where (I · J)(p, q, a) = J(q, I(p, a))

The monoidal product of objects Rn and Rm is the object Rn+m, whereas the monoidal product of morphisms
(P, I) : Rm → Rm and (Q, J) : Rl → Rk is given as (P ×Q, I ∥ J), where

(I ∥ J)(p, q, a, c) = (I(p, a), J(q, c))

Symmetric monoidal categories can also be braided. In this case, the braiding Rm ∥ Rm → Rm ∥ Rn is given as
(R0, σ) where σ(a, b) = (b, a).

The backpropagation algorithm can itself be defined as a functor over symmetric monoidal categories

Lϵ,e : Param→ Learn

where ϵ > 0 is a real number defining the learning rate for backpropagation, and e(x, y) : R×R→ R is a differentiable
error function such that ∂e

∂x (x0,−) is invertible for each x0 ∈ R. This functor essentially defines an update procedure

14

A PREPRINT - FEBRUARY 16, 2024

for each parameter in a compositional learner. In other words, the functor Lϵ,e defined by backpropagation sends each
parameterized function I : P ×A→ B to the learner (P, I, UI , rI)

UI(p, a, b) := p− ϵ∇pEI(p, a, b)

rI(p, a, b) := fa(∇aEI(p, a, b))

where EI(p, a, b) :=
∑

j e(Ij(p, a), bj) and fa is a component-wise application of the inverse to ∂e
∂x (ai,−) for each i.

Note that we can easily define functors that define other ways of doing parameterized updates, such as a stochastic
approximation method Robbins and Monro [1951] that updates each parameter using only the (noisy) value of the
function at the current value of the parameter, and uses a gradual decay of the learning parameters to “simulate" the
process of taking gradients. These sort of stochastic approximation updates are now called “zeroth-order" optimization
in the deep learning literature.

3 Backpropagation as an Endofunctor: Generative AI using Universal Coalgebras

Our categorical framework for generative AI differs in crucial ways from the analysis in Fong et al. [2019] that defined
backpropagation as a functor, but not an endofunctor. In their framework, which we reviewed in the previous section,
backpropagation was modeled as a functor from the category Param to the cateory Learn, but that masks the simple
fact that the goal of learning is to produce a new set of parameters (i.e., construct a new object in Param). Once you
complete that loop, backpropagation becomes an endofunctor. This property allows bringing in the rich framework of
universal coalgebras Jacobs [2016], Rutten [2000] to analyze a whole family of endofunctors for generative AI.

As the ultimate goal of backpropagation at each step is to produce a new parameter, i.e. a new object in Param,
we argue that our endofunctor characterization provides a rich source of insight into the analysis of generative AI
methods. Accordingly, we review below the theory of universal coalgebras, and then show more formally how to model
backpropagation and other similiar generative AI methods as coalgebras.

3.1 Non-Well-Founded Sets and Universal Coalgebras

Participant A Participant B

Stream of tokens from A
Stream of tokens from B

Imitation game using Bisimulations

Evaluator

Figure 12: Generative models define an infinite stream of tokens. Solving an ‘imitation game" Turing [1950] that
involves comparing two infinite data streams involves the process of deciding if two non-well-founded sets are
categorically bisimulations of each otherAczel [1988], Rutten [2000].

To begin with, we present an elegant formalism for defining generative AI models as universal coalgebras Rutten [2000],
and non-well-founded sets Aczel [1988]. Figure 12 illustrates the main idea. We define the two participants in an
imitation game as universal coalgebras (or non-well-founded sets) and ask if there is a bisimulation relationship between

15

A PREPRINT - FEBRUARY 16, 2024

them. This characterization covers a wide range of probabilistic models, including Markov chains and Markov decision
processes Sutton and Barto [1998], and automata-theoretic models, as well as generative AI models Gu et al. [2023].

Generative AI has become popular recently due to the successes of neural and structured-state space sequence models
Gu et al. [2022], Vaswani et al. [2017] and text-to-image diffusion models Song and Ermon [2019]. The underlying
paradigm of building generative models has a long history in computer science and AI, and it is useful to begin with the
simplest models that have been studied for several decades, such as deterministic finite state machines, Markov chains,
and context-free grammars. We use category theory to build generative AI models and analyze them, which is one of
the unique and novel aspects of this paper. To explain briefly, we represent a generative model in terms of universal
coalgebras Rutten [2000] generated by an endofunctor F acting on a category C. Coalgebras provide an elegant way
to model dynamical systems, and capture the notion of state Jacobs [2016] in ways that provide new insight into the
design of AI and ML systems. Perhaps the simplest and in some ways, the most general, type of generative AI model
that is representable as a coalgebra is the powerset functor

F : S ⇒ P(S)

where S is any set (finite or not), and P(S) is the set of all subsets of S, that is:

P(S) = {A|A ⊆ S}

Notice in the specification of the powerset functor coalgebra, the same term S appears on both sides of the equation.
That is a hallmark of coalgebras, and it is what distinguishes coalgebras from algebras. Coalgebras generate search
spaces, whereas algebras compact search spaces and summarize them. This admittedly simple structure nonetheless is
extremely versatile and enables modeling a remarkably rich and diverse set of generative AI models, including the ones
listed in Figure 13. To explain briefly, we can model a context-free grammar as a mapping from a set S that includes all
the vertices in the context-free grammar graph shown in Figure 13 to the powerset of the set S. More specifically, if
S = N ∪ T is defined as the non-terminals N as well as the terminal symbols (the actual words) T , any context-free
grammar rule can be represented in terms of a power set functor. We will explain how this approach can be refined later
in this Section, and in much more detail in later sections of the paper. To motivate further why category theory provides
an elegant way to model generative AI systems, we look at some actual examples of generative AI systems to see why
they can be modeled as functors.

BA

0

1

0,1

Deterministic finite state
automata

BA

0.2

0.8

0.5

0.5
Markov Chains

S

NP VP

Adj Noun

The dog ate the pizza

Verb NP

Adj Noun

Context-free grammars
Models for

Generative AI
State space sequence models

Figure 13: In this paper, generative AI models, from the earliest models studied in computer science such as deterministic
finite state automata and context-free grammars, to models in statistics and information theory like Markov chains, and
lastly, sequence models can be represented as universal coalgebras.

To compare say two large language models, we need to compare two potentially infinite data streams of tokens (e.g.,
words, or in general, other forms of communication represented digitally by bits). Many problems in AI and ML
involve reasoning about circular phenomena. These include reasoning about common knowledge Barwise and Moss
[1996], Fagin et al. [1995] such as social conventions, dealing with infinite data structures such as lists or trees in

16

A PREPRINT - FEBRUARY 16, 2024

x
x = {x} x F(x)

Figure 14: Three representations of infinite data streams: non-well-founded set x = {x}: accessible pointed graphs
(AGPs), non-well-founded sets specified by systems of equations, and universal coalgebras. We can view these as
generative models of the recursive set {{{. . .}}}.

computer science, and causal inference in systems with feedback where part of the input comes from the output of the
system. In all these situations, there is an intrinsic problem of having to deal with infinite sets that are recursive and
violate a standard axiom called well-foundedness in set theory. First, we explain some of the motivations for including
non-well-founded sets in AI and ML, and then proceed to define the standard ZFC axiomatization of set theory and how
to modify it to allow circular sets. We build on the pioneering work of Peter Aczel on the anti-foundation-axiom in
modeling non-well-founded sets Aczel [1988], which has elaborated previously in other books as well Barwise and
Moss [1996], Jacobs [2016], although we believe this paper is perhaps one of the first to focus on the application of
non-well-founded sets and universal coalgebras to problems in AI and ML at a broad level.

Figure 14 illustrates three ways to represent an infinite object, as a directed graph, a (non-well-founded) set or as a
system of equations. We begin with perhaps the simplest approach introduced by Peter Aczel called accessible pointed
graphs (APGs) (see Figure 14), but also include the category-theoretic approach of using universal coalgebras Rutten
[2000], as well as systems of equations Barwise and Moss [1996].

We now turn to describing coalgebras, a much less familiar construct that will play a central role in the proposed
ML framework of coinductive inference. Coalgebras capture hidden state, and enable modeling infinite data streams.
Recall that in the previous Section, we explored non-well-founded sets, such as the set Ω = {Ω}, which gives rise to a
circularly defined object. As another example, consider the infinite data stream comprised of a sequence of objects,
indexed by the natural numbers:

X = (X0, X1, . . . , Xn, . . .)

We can define this infinite data stream as a coalgebra, comprised of an accessor function head that returns the head of
the list, and a destructor function that gives the tail of the list, as we will show in detail below.

To take another example, consider a deterministic finite state machine model defined as the tuple M = (X,A, δ),
where X is the set of possible states that the machine might be in, A is a set of input symbols that cause the machine
to transition from one state to another, and δ : X × A → X specifies the transition function. To give a coalgebraic
definition of a finite state machine, we note that we can define a functor F : X → P(A×X) that maps any given state
x ∈ X to the subset of possible future states y that the machine might transition to for any given input symbol a ∈ A.

We can now formally define F -coalgebras analogous to the definition of F -algebras given above.

Definition 7. Let F : C → C be an endofunctor on the category C. An F -coalgebra is defined as a pair (A,α)
comprised of an object A and an arrow α : A→ F (A).

The fundamental difference between an algebra and a coalgebra is that the structure map is reversed! This might seem
to be a minor distinction, but it makes a tremendous difference in the power of coalgebras to model state and capture
dynamical systems. Let us use this definition to capture infinite data streams, as follows.

Str : Set→ Set, Str(X) = N×X

Here, Str is defined as a functor on the category Set, which generates a sequence of elements. Let Nω denote the set of
all infinite data streams comprised of natural numbers:

17

A PREPRINT - FEBRUARY 16, 2024

Nω = {σ|σ : N→ N}

To define the accessor function head and destructor function tail alluded to above, we proceed as follows:

head : Nω → N tail : Nω → Nω (1)
head(σ) = σ(0) tail(σ) = (σ(1), σ(2), . . .) (2)

Another standard example that is often used to illustrate coalgebras, and provides a foundation for many AI and ML
applications, is that of a labelled transition system.

Definition 8. A labelled transition system (LTS) (S,→S , A) is defined by a set S of states, a transition relation
→S⊆ S ×A× S, and a set A of labels (or equivalently, “inputs" or “actions"). We can define the transition from state
s to s′ under input a by the transition diagram s

a−→ s′, which is equivalent to writing ⟨s, a, s′⟩ ∈→S . The F -coalgebra
for an LTS is defined by the functor

F(X) = P(A×X) = {V |V ⊆ A×X}

Just as before, we can also define a category of F -coalgebras over any category C, where each object is a coalgebra, and
the morphism between two coalgebras is defined as follows, where f : A→ B is any morphism in the category C.

Definition 9. Let F : C → C be an endofunctor. A homomorphism of F -coalgebras (A,α) and (B, β) is an arrow
f : A→ B in the category C such that the following diagram commutes:

A B

F (A) F (B)

f

α β

F (f)

For example, consider two labelled transition systems (S,A,→S) and (T,A,→T) over the same input set A, which
are defined by the coalgebras (S, αS) and (T, αT), respectively. An F -homomorphism f : (S, αS) → (T, αT) is a
function f : S → T such that F (f) ◦ αS = αT ◦ f . Intuitively, the meaning of a homomorphism between two labeled
transition systems means that:

• For all s′ ∈ S, for any transition s a−→S s
′ in the first system (S, αS), there must be a corresponding transition

in the second system f(s)
a−→T f(s;) in the second system.

• Conversely, for all t ∈ T , for any transition t a−→T t′ in the second system, there exists two states s, s′ ∈ S
such that f(s) = t, f(t) = t′ such that s a−→S s

′ in the first system.

If we have an F -homomorphism f : S → T with an inverse f−1 : T → S that is also a F -homomorphism, then the
two systems S ≃ T are isomorphic. If the mapping f is injective, we have a monomorphism. Finally, if the mapping f
is a surjection, we have an epimorphism.

The analog of congruence in universal algebras is bisimulation in universal coalgebras. Intuitively, bisimulation allows
us to construct a more “abstract" representation of a dynamical system that is still faithful to the original system. We
will explore many applications of the concept of bisimulation to AI and ML systems in this paper. We introduce the
concept in its general setting first, and then in the next section, we will delve into concrete examples of bisimulations.

Definition 10. Let (S, αS) and (T, αT) be two systems specified as coalgebras acting on the same category C. Formally,
a F -bisimulation for coalgebras defined on a set-valued functor F : Set → Set is a relation R ⊂ S × T of the
Cartesian product of S and T is a mapping αR : R → F (R) such that the projections of R to S and T form valid
F -homomorphisms.

R S

F (R) F (S)

π1

αR αS

F (π1)

18

A PREPRINT - FEBRUARY 16, 2024

S0 S1 S2

T0 T1 T2

s

t

a a a a

b b b
b

Coalgebra S Coalgebra T

Figure 15: A bisimulation among two coalgebras.

R T

F (R) F (T)

π2

αR αT

F (π2)

Here, π1 and π2 are projections of the relation R onto S and T , respectively. Note the relationships in the two
commutative diagrams should hold simultaneously, so that we get

F (π1) ◦ αR = αS ◦ π1
F (π2) ◦ αR = αT ◦ π2

Intuitively, these properties imply that we can “run" the joint systemR for one step, and then project onto the component
systems, which gives us the same effect as if we first project the joint system onto each component system, and then run
the component systems. More concretely, for two labeled transition systems that were considered above as an example
of an F -homomorphism, an F -bisimulation between (S, αS) and (T, αT) means that there exists a relation R ⊂ S × T
that satisfies for all ⟨s, t⟩ ∈ R

• For all s′ ∈ S, for any transition s a−→S s
′ in the first system (S, αS), there must be a corresponding transition

in the second system f(s)
a−→T f(s;) in the second system, so that ⟨s′, t′⟩ ∈ R

• Conversely, for all t ∈ T , for any transition t a−→T t′ in the second system, there exists two states s, s′ ∈ S
such that f(s) = t, f(t) = t′ such that s a−→S s

′ in the first system, and ⟨s′, t′⟩ ∈ R.

A simple example of a bisimulation of two coalgebras is shown in Figure 15.

There are a number of basic properties about bisimulations, which we will not prove, but are useful to summarize here:

• If (R,αR) is a bisimulation between systems S and T , the inverse R−1 of R is a bisimulation between systems
T and S.

• Two homomorphisms f : T → S and g : T → U with a common domain T define a span. The image of the
span ⟨f, g⟩(T) = {⟨f(t), g(t)⟩|t ∈ T} of f and g is also a bisimulation between S and U .

• The composition R ◦Q of two bisimulations R ⊆ S × T and Q ⊆ T × U is a bisimulation between S and U .
• The union ∪kRk of a family of bisimulations between S and T is also a bisimulation.
• The set of all bisimulations between systems S and T is a complete lattice, with least upper bounds and

greatest lower bounds given by:
∨

k

Rk =
⋃

k

Rk

∧

K

Rk =
⋃
{R|R is a bisimulation betweenS and T and R ⊆ ∩kRk}

• The kernel K(f) = {⟨s, s′⟩|f(s) = f(s′)} of a homomorphism f : S → T is a bisimulation equivalence.

19

A PREPRINT - FEBRUARY 16, 2024

3.2 Backpropagation as a Coalgebra

Finally, we return to the original goal of this section, which is to argue that any generative AI machine learning method
can be usefully modeled not just as a functor, but rather as an endofunctor that maps an object in a category Param
of parameters into a new object as a result of doing a machine learning step, such as a gradient update. We can now
formally define backpropagation as a coalgebra over the caetgory Param as follows.

Recall that the category Param defines a strict symmetric monoidal category whose objects are Euclidean spaces, and
whose morphisms f : Rn → Rm are equivalence classes of differential parameterized functions. To see why the
backpropagation algorithm can be defined as an endofunctor over the symmetric monoidal category Param, recall from
the previous section that backpropagation was viewed as a functor from the cateory Param to the cateogry Learn.

Lϵ,e : Param→ Learn

where ϵ > 0 is a real number defining the learning rate for backpropagation, and e(x, y) : R×R→ R is a differentiable
error function such that ∂e

∂x (x0,−) is invertible for each x0 ∈ R. This functor essentially defines an update procedure
for each parameter in a compositional learner. In other words, the functor Lϵ,e defined by backpropagation sends each
parameterized function I : P ×A→ B to the learner (P, I, UI , rI)

UI(p, a, b) := p− ϵ∇pEI(p, a, b)

rI(p, a, b) := fa(∇aEI(p, a, b))

where EI(p, a, b) :=
∑

j e(Ij(p, a), bj) and fa is a component-wise application of the inverse to ∂e
∂x (ai,−) for each i.

But a simpler and we argue more elegant characterization of backpropagation is to view it as a coalgebra or dynamical
system defined by an endofunctor on Param. Here, we view the inputs A and outputs B as the input “symbols" and
output produced by a dynamical system. The actual process of updating the parameters need not be defined as “gradient
descent", but it can involve any other functor (as we saw earlier, it could involve a stochastic approximation method
Borkar [2008]). Our revised definition of backpropagation as an endofunctor follows. Note that this definition is generic,
and applies to virtually any approach to building foundation models that updates each object to a new object in the
category Param as a result of processing a data instance.
Definition 11. Backpropagation defines an FB-coalgebra over the symmetric monoidal category Param, specified by
an endofunctor X → FB(X) defined as

FB(X) = A×B ×X
Note that in this definition, the endofunctor FB takes an object X of Param, which is a set of network weights of a
generative AI model, and produces a new set of weights, where A is the “input" symbol of the dynamical system and B
is the output symbol.

3.3 Zeroth-Order Deep Learning using Stochastic Approximation

To illustrate how the broader coalgebraic definition of backpropagation is more useful than the previous definition in
Fong et al. [2019], we describe a class of generative AI methods based on adapting stochastic approximation Robbins
and Monro [1951] to deep learning, which are popularly referred to zeroth-order optimization Liu et al. [2009] (see
Figure 16). A vast range of stochastic approximation methods have been explored in the literature (e.g., see Borkar
[2008], Kushner and Yin [2003]). For example, in random directions stochastic approximation, each parameter is
adjusted in a random direction by sampling from distribution, such as a multivariate normal, or a uniform distribution.
Any of these zeroth-order stochastic approximation algorithms can itself be defined as a functor over symmetric
monoidal categories

L0
ϵ : Param→ Learn

where ϵ > 0 is a real number defining a learning rate parameter that is gradually decayed. Notice now that the
error of the approximation with respect to the target plays no role in the update process itself. backpropagation, and
e(x, y) : R× R→ R is a differentiable error function such that ∂e

∂x (x0,−) is invertible for each x0 ∈ R. The functor
L0
ϵ defined by zeroth-order optimization sends each parameterized function I : P ×A→ B to the learner (P, I, U0

I , r
0
I)

20

A PREPRINT - FEBRUARY 16, 2024

First-order
oracle

Zeroth-
order
oracle

x x {f(x)}{f(x), f’(x)}

Figure 16: Zeroth-order optimization methods for generative AI are based on stochastic approximation, and average
noisy values of the function to approximate gradient steps. Such methods define probabilistic coalgebras Sokolova
[2011].

U0
I (p, a, b) := p− ϵI(p, a, b)

Here, the 1-point gradient estimate is approximated by the (noisy) sampled value, averaged over multiple steps using
a decaying learning rate as required by the convergence theorems of stochastic approximation Robbins and Monro
[1951], Kushner and Yin [2003]. The advantages of zeroth-order stochastic approximation methods are that it avoids
computing gradients over a very large number of parameters (which for state of the art generative AI models can be in
the billions or trillions of parameters), and it potentially helps avoid local minima by stochastically moving around in a
very high-dimensional space. The disadvantage is that it can be significantly slower than gradient-based methods for
well-behaved (convex) functions.

We can easily extend our previous definition of backpropagation as a coalgebra to capture zeroth-order optimization
methods which act like stochastic dynamical systems, where there is a distribution of possible “next" states that is
produced as a result of doing stochastic approximation updates.

Definition 12. Stochastic Backpropagation defines an FSGD-coalgebra over the symmetric monoidal category
Param, specified by an endofunctor X → FSGDB(X) defined as

FSGD(X) = A×B ×D(X)

where FSGD defines the variant of backpropagation defined by stochastic gradient descent, and D is the distribution
functor over X that defines a distribution over possible objects X in Param. There is a vast literature on stochastic
coalgebras that can be defined in terms of such distribution functors. Sokolova [2011] contains an excellent review of
this literature.

3.4 Lambek’s Theorem and Final Coalgebras: Analyzing the Convergence of Generative AI Algorithms

Another advantage modeling backpropagation as a coalgebra defined by an endofunctor is that it provides an elegant
way to analyze the problem of convergence of the algorithm to some (local) minimum solution. We explain the general
principle of using final coalgebras as a generalization of (greatest) fixed points in this section. Later in Section 6,
when we introduce the metric Yoneda Lemma, we will show how to use the metric coinduction property to analyze
convergence of backpropagation.

Let us illustrate the concept of final coalgebras defined by a functor that represents a monotone function over the
category defined by a preorder (S,⩽), where S is a set and ⩽ is a relation that is reflexive and transitive. That is,

21

A PREPRINT - FEBRUARY 16, 2024

a ⩽ a,∀a ∈ S, and if a ⩽ b, and b ⩽ c, for a, b, c ∈ S, then a ⩽ c. Note that we can consider (S,⩽) as a category,
where the objects are defined as the elements of S and if a ⩽ b, then there is a unique arrow a→ b.

Let us define a functor F on a preordered set (S,⩽) as any monotone mapping F : S → S, so that if a ⩽ b, then
F (a) ⩽ F (b). Now, we can define an F -algebra as any pre-fixed point x ∈ S such that F (x) ⩽ x. Similarly, we can
define any post-fixed point to be any x ∈ S such that x ⩽ F (x). Finally, we can define the final F -coalgebra to be the
greatest post-fixed point x ⩽ F (x), and analogously, the initial F -algebra to be the least pre-fixed point of F .

In this section, we give a detailed overview of the concept of final coalgebras in the category of coalgebras parameterized
by some endofunctor F . This fundamental notion plays a central role in the application of universal coalgebras to model
a diverse range of AI and ML systems. Final coalgebras generalize the concept of (greatest) fixed points in many areas
of application in AI, including causal inference, game theory and network economics, optimization, and reinforcement
learning among others. The final coalgebra, simply put, is just the final object in the category of coalgebras. From the
universal property of final objects, it follows that for any other object in the category, there must be a unique morphism
to the final object. This simple property has significant consequences in applications of the coalgebraic formalism to AI
and ML, as we will see throughout this paper.

An F -system (P, π) is termed final if for another F -system (S, αS), there exists a unique homomorphism fS :
(S, αS)→ (P, π). That is, (P, π) is the terminal object in the category of coalgebras SetF defined by some set-valued
endofunctor F . Since the terminal object in a category is unique up to isomorphism, any two final systems must be
isomorphic.
Definition 13. An F -coalgebra (A,α) is a fixed point for F , written as A ≃ F (A) if α is an isomorphism between A
and F (A). That is, not only does there exist an arrow A→ F (A) by virtue of the coalgebra α, but there also exists its
inverse α−1 : F (A)→ A such that

α ◦ α−1 = idF (A) and α−1 ◦ α = idA

The following lemma was shown by Lambek, and implies that the transition structure of a final coalgebra is an
isomorphism.
Theorem 1. Lambek: A final F -coalgebra is a fixed point of the endofunctor F .

Proof: The proof is worth including in this paper, as it provides a classic example of the power of diagram chasing.
Let (A,α) be a final F -coalgebra. Since (F (A), F (α) is also an F -coalgebra, there exists a unique morphism
f : F (A)→ A such that the following diagram commutes:

F (A) A

F (F (A)) F (A)

f

F (α) α

F (f)

However, by the property of finality, the only arrow from (A,α) into itself is the identity. We know the following
diagram also commutes, by virtue of the definition of coalgebra homomorphism:

A F (A)

F (A) F (F (A))

α

α α

F (α)

Combining the above two diagrams, it clearly follows that f ◦ α is the identity on object A, and it also follows that
F (α) ◦ F (f) is the identity on F (A). Therefore, it follows that:

α ◦ f = F (f) ◦ F (α) = F (f ◦ α) = F (idA) = idF (A)

By reversing all the arrows in the above two commutative diagrams, we get the easy duality that the initial object in an
F -algebra is also a fixed point.
Theorem 2. Dual to Lambek: The initial F -algebra (A,α), where α : F (A)→ A, in the category of F -algebras is a
fixed point of F .

The proof of the duality follows in the same way, based on the universal property that there is a unique morphism from
the initial object in a category to any other object.

22

A PREPRINT - FEBRUARY 16, 2024

Lambek’s lemma has many implications, one of which is that final coalgebras generalize the concept of a (greatest)
fixed point, which can be applied to analyze the convergence of generative AI methods, such as backpropagation.
Generally speaking, in optimization, we are looking to find a solution x ∈ X in some space X that minimizes a smooth
real-valued function f : X → R. Since f is smooth, a natural algorithm is to find its minimum by computing the
gradient ∇f over the space X . The function achieves its minimum if∇f = 0, which can be written down as a fixed
point equation.

3.5 Metric Coinduction for Generative AI

To make the somewhat abstract discussion of final coalgebras above a bit more concrete, we now briefly describe the
concept of metric coinduction Kozen and Ruozzi [2009], which is a special case of the general principle of coinduction
Aczel [1988], Rutten [2000]. The basic idea is simple to describe, and is based on viewing algorithms as forming
contraction mappings in a metric space. The novelty here for many readers is understanding how this well-studied
notion of contractive mappings is related to coinduction and coalgebras. One way to analyze the convergence of iterative
methods like backproapgation is to see if they can be shown to form contraction mappings in a metric space.

Consider a complete metric space (V, d) where d : V × V → (0, 1) is a symmetric distance function that satisfies the
triangle inequality, and all Cauchy sequences in V converge (We will see later that the property of completeness itself
follows from the Yoneda Lemma!). A function H : V → V is contractive if there exists 0 ⩽ c < 1 such that for all
u, v ∈ V ,

d(H(u), H(v)) ⩽ c · d(u, v)

In effect, applying the algorithm represented by the continuous mapping H causes the distances between u and v to
shrink, and repeated application eventually guarantees convergence to a fixed point. The novelty here is to interpret
the fixed point as a final coalgebra. We will later see that the concept of a (greatest) fixed point is generalized by the
concept of final coalgebras.

Definition 14. Metric Coinduction Principle Kozen and Ruozzi [2009]: If ϕ is a closed nonempty subset of a
complete metric space V , and if H is an eventually contractive map on V that preserves ϕ, then the unique fixed point
u∗ of H is in ϕ. In other words, we can write:

∃uϕ(u), ∀ϕ(u) ⇒ ϕ(H(u))

ϕ(u∗)

It should not be surprising to those familiar with contraction mapping style arguments that a large number of applica-
tions in AI and ML, including game theory, reinforcement learning and stochastic approximation involve proofs of
convergence that exploit properties of contraction mappings. What might be less familiar is how to think of this in
terms of the concept of coinductive inference. To explain this perspective briefly, let us introduce the relevant category
theoretic terminology.

Let us define a category C whose objects are nonempty closed subsets of V , and whose arrows are reverse set inclusions.
That is, there is a unique arrow ϕ1 → ϕ2 if ϕ1 ⊇ ϕ2. Then, we can define an endofunctor H̄ as the closure mapping
H̄(ϕ) = cl(H(ϕ)), where cl denotes the closure in the metric topology of V . Note that H̄ is an endofunctor on C
because H̄(ϕ1) ⊇ H̄(ϕ2) whenever ϕ1 ⊇ ϕ2.

Definition 15. An H̄-coalgebra is defined as the pair (ϕ, ϕ ⊇ H̄(ϕ)) (or equivalently, we can write ϕ ⊆ H(ϕ). The
final coalgebra is the isomorphism u∗ ≃ H̄(u∗) where u∗ is the unique fixed point of the mapping H . The metric
coinduction rule can be restated more formally in this case as:

ϕ ⊇ H(ϕ) ⇒ ϕ ⊇ H(u∗)

This result has deep significance, as we will see later, and provides an elegant way to prove contraction style arguments
in very general settings. In particular, it can be applied to analyze the convergence of machine learning methods for
GAIA models to see if they can be shown to convergence in a (generalized) metric space. We will postpone the details
of this analysis to a subsequent paper

23

A PREPRINT - FEBRUARY 16, 2024

<latexit sha1_base64="WoL00bFLbb4SnfRibC/gm+A3MFY=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cK9gPaUDbbTbt0dxN2J0IJ/QtePCji1T/kzX9j0uagrQ8GHu/NMDMviKWw6LrfTmltfWNzq7xd2dnd2z+oHh61bZQYxlsskpHpBtRyKTRvoUDJu7HhVAWSd4LJXe53nrixItKPOI25r+hIi1AwirnUHbiVQbXm1t05yCrxClKDAs1B9as/jFiiuEYmqbU9z43RT6lBwSSfVfqJ5TFlEzrivYxqqrj10/mtM3KWKUMSRiYrjWSu/p5IqbJ2qoKsU1Ec22UvF//zegmGN34qdJwg12yxKEwkwYjkj5OhMJyhnGaEMiOyWwkbU0MZZvHkIXjLL6+S9kXdu6p7D5e1xm0RRxlO4BTOwYNraMA9NKEFDMbwDK/w5ijnxXl3PhatJaeYOYY/cD5/ABBbjZk=</latexit>

X0
<latexit sha1_base64="FFh1EjDc75u7fVJjopk3Ut1uZC0=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cK9gPaUDbbSbt0dxN2N0IJ/QtePCji1T/kzX9j0uagrQ8GHu/NMDMviAU31nW/ndLa+sbmVnm7srO7t39QPTxqmyjRDFssEpHuBtSg4ApblluB3VgjlYHATjC5y/3OE2rDI/VopzH6ko4UDzmjNpe6A68yqNbcujsHWSVeQWpQoDmofvWHEUskKssENabnubH1U6otZwJnlX5iMKZsQkfYy6iiEo2fzm+dkbNMGZIw0lkpS+bq74mUSmOmMsg6JbVjs+zl4n9eL7HhjZ9yFScWFVssChNBbETyx8mQa2RWTDNCmebZrYSNqabMZvHkIXjLL6+S9kXdu6p7D5e1xm0RRxlO4BTOwYNraMA9NKEFDMbwDK/w5kjnxXl3PhatJaeYOYY/cD5/ABHgjZo=</latexit>

X1
<latexit sha1_base64="LOIzQ7YzatssR+ZiHb0YD8BuVpU=">AAAB63icbVBNS8NAEJ34WetX1aOXxSJ4KkkR9Vj04rGC/YA2lM120i7d3YTdjVBC/4IXD4p49Q9589+YtDlo64OBx3szzMwLYsGNdd1vZ219Y3Nru7RT3t3bPzisHB23TZRohi0WiUh3A2pQcIUty63AbqyRykBgJ5jc5X7nCbXhkXq00xh9SUeKh5xRm0vdQb08qFTdmjsHWSVeQapQoDmofPWHEUskKssENabnubH1U6otZwJn5X5iMKZsQkfYy6iiEo2fzm+dkfNMGZIw0lkpS+bq74mUSmOmMsg6JbVjs+zl4n9eL7HhjZ9yFScWFVssChNBbETyx8mQa2RWTDNCmebZrYSNqabMZvHkIXjLL6+Sdr3mXdW8h8tq47aIowSncAYX4ME1NOAemtACBmN4hld4c6Tz4rw7H4vWNaeYOYE/cD5/ABNljZs=</latexit>

X2

<latexit sha1_base64="B/sZzzLOOLr5w71iskFN0glTMwI=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU1GPRi8eK9gPaUDbbSbt0swm7G6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0O/VbT6g0j+WjGSfoR3QgecgZNVZ6aPfOe+WKW3VnIMvEy0kFctR75a9uP2ZphNIwQbXueG5i/Iwqw5nASambakwoG9EBdiyVNELtZ7NTJ+TEKn0SxsqWNGSm/p7IaKT1OApsZ0TNUC96U/E/r5Oa8NrPuExSg5LNF4WpICYm079JnytkRowtoUxxeythQ6ooMzadkg3BW3x5mTTPqt5l1bu/qNRu8jiKcATHcAoeXEEN7qAODWAwgGd4hTdHOC/Ou/Mxby04+cwh/IHz+QPf4Y2I</latexit>

X3
<latexit sha1_base64="Hat4jeynL6+0HQsxWpViy6lPoBM=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz00OnLfrniVt05yCrxclKBHI1++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzUKTmzyoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmvPYzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2nZEPwll9eJa2LqlereveXlfpNHkcRTuAUzsGDK6jDHTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwA5XI3D</latexit>

Xn

V1 V2

V2V1V7

V3

V4

V1 V1 V2

V2 V4

V1V7

V7 V7

V4 V5 V5 V6

V4

V7

V5 V6

V4

(A)

(B)

(C)

(D)

V7

V4 V5

V7

V4 V5

Figure 17: (A) GAIA is based on a hierarchical simplicial sets and objects. The base simplicial set X0 is a set of entities
that can be mapped to computational entities in generative AI, such as a tokens in a large language model, or images in
a diffusion based system. The set X1 defines a collection of morphisms between pairs of objects in X0, where each
morphism could define a deep learning module as explained in Section 2. (B) The first two sets X0 and X1 essentially
define what is possible with today’s compositionally based generative AI system using backpropagation, where learning
is conceived of as an entirely sequential process. (C) X2 and higher-level simplicial sets constitute the novel core of
GAIA: here, groups of sub-simplicial objects act like business units with a common objective. Each n-simplex has
n+ 1 sub-simplicial complexes, and information is transmitted hierarchically in GAIA from superior simplicial sets to
subordinate simplicial sets using lifting diagrams. (D) Solving “outer horn" extension problems is more challenging for
methods like deep learning with backpropagation, than solving “inner horn" extensions.

4 Layer 1 of GAIA: Simplicial Sets for Generative AI

Unlike earlier generative AI architectures, GAIA uses the paradigm of simplicial sets and objects as the basic building
blocks for generative AI (see Figure 3). We can still cast much of the earlier work described above in terms of GAIA, but
this flexibility gives us the power to also formulate generative AI approaches that lie beyond the scope of compositional
learning methods, such as backpropagation. As we illustrated in Figure 6, GAIA puts together building blocks of
generative AI methods as n-simplices of a simplicial set. In the simplest setting, these combine compositionally in
the way that Fong et al. [2019] defined for the category Learn that we discussed in detail in the previous section. It is
possible to take the category Learn and embed it in the category of simplicial sets using the nerve functor Lurie [2022],
which is a full and faithful embedding of the category as a simplicial set. Each n-simplex is then defined by n-length
sequences of a generative AI system, like a Transformer building block that computes a permutation-equivariant map.
But the left adjoint of the nerve functor that maps back from the simplicial set category is a “lossy" functor that does
not generate a full and faithful embedding, which shows why simplicial learning is more powerful in principle than
compositional learning.

The first layer of GAIA is based on the simplicial category ∆, which serves as a “combinatorial factory" for piecing
together building blocks of generative AI systems into larger units, and for decomposing complex systems into their
component subsystems. The category ∆ is defined over ordinal numbers [n], n ⩾ 0, but really “comes to life" when it
is plugged into some concrete category, such as the ones described in the previous section like Learn or Para. For
example, if the parameters of a learning method are defined over a category of Sets, then a contravariant functor from ∆
into sets is called a simplicial set May [1992]. We can also define functors from ∆ into some category of generative AI
models, like Transformers Vaswani et al. [2017] or structured state space sequence (S4) models Gu et al. [2022] or
diffusion models Song and Ermon [2019].

24

A PREPRINT - FEBRUARY 16, 2024

4.1 Simplicial Sets and Objects

As shown in Figure 17, a simplicial set can be viewed as a collection of sets, or a graded set, Sn, n ⩾ 0, where
S0 defines the primitive objects (which can be elements of the category Param defined in the previous section), S1

represents a collection of “edge" objects (which can be viewed as Learners as defined in the previous section), S2

represents simplices of three objects interacting, and in general, Sn defines a collection of objects that represents
interactions of order n. These higher-level simplicial sets act like “business units" in a company: they have a hierarchical
structure, receive inputs and outputs from higher-level superiors and lower-level subordinates, and adjust their internal
parameters. These n-simplicial sets are related to each other by degeneracy operators that map Sn into Sn+1 or face
operators that map Sn into Sn−1. Figure 6 shows an example of a 3-simplex. Note how in Figure 3, the simplicial set
X3 sends “back" information to X2 through four face operators. These exactly correspond to the four subsimplices of
each object in X3, as illustrated in Figure 3, because each 3-simplex has four faces. The crux of the GAIA framework
is to treat each such simplex as a building block of a generative AI system.

Simplicial sets are higher-dimensional generalizations of directed graphs, partially ordered sets, as well as regular
categories themselves. Importantly, simplicial sets and simplicial objects form a foundation for higher-order category
theory. Simplicial objects have long been a foundation for algebraic topology, and more recently in higher-order category
theory. The category ∆ has non-empty ordinals [n] = {0, 1, . . . , n] as objects, and order-preserving maps [m]→ [n] as
arrows. An important property in ∆ is that any many-to-many mapping is decomposable as a composition of an injective
and a surjective mapping, each of which is decomposable into a sequence of elementary injections δi : [n]→ [n+ 1],
called coface mappings, which omits i ∈ [n], and a sequence of elementary surjections σi : [n] → [n − 1], called
co-degeneracy mappings, which repeats i ∈ [n]. The fundamental simplex ∆([n]) is the presheaf of all morphisms
into [n], that is, the representable functor ∆(−, [n]). The Yoneda Lemma assures us that an n-simplex x ∈ Xn can be
identified with the corresponding map ∆[n]→ X . Every morphism f : [n]→ [m] in ∆ is functorially mapped to the
map ∆[m]→ ∆[n] in S.

Any morphism in the category ∆ can be defined as a sequence of co-degeneracy and co-face operators, where the
co-face operator δi : [n− 1]→ [n], 0 ⩽ i ⩽ n is defined as:

δi(j) =

{
j, for 0 ⩽ j ⩽ i− 1
j + 1 for i ⩽ j ⩽ n− 1

Analogously, the co-degeneracy operator σj : [n+ 1]→ [n] is defined as

σj(k) =

{
j, for 0 ⩽ k ⩽ j
k − 1 for j < k ⩽ n+ 1

Note that under the contravariant mappings, co-face mappings turn into face mappings, and co-degeneracy mappings
turn into degeneracy mappings. That is, for any simplicial object (or set) Xn, we have X(δi) := di : Xn → Xn−1, and
likewise, X(σj) := sj : Xn−1 → Xn.

The compositions of these arrows define certain well-known properties May [1992], Richter [2020]:

δj ◦ δi = δi ◦ δj−1, i < j

σj ◦ σi = σi ◦ σj+1, i ⩽ j

σj ◦ δi(j) =

{
σi ◦ σj+1, for i < j
1[n] for i = j, j + 1
σi−1 ◦ σj , for i > j + 1

Example 1. The “vertices” of a simplicial object Cn are the objects in C, and the “edges” of C are its arrows f : X → Y ,
where X and Y are objects in C. Given any such arrow, the degeneracy operators d0f = Y and d1f = X recover the
source and target of each arrow. Also, given an object X of category C, we can regard the face operator s0X as its
identity morphism 1X : X → X .
Example 2. Given a category C, we can identify an n-simplex σ of a simplicial set Cn with the sequence:

σ = Co
f1−→ C1

f2−→ . . .
fn−→ Cn

the face operator d0 applied to σ yields the sequence

d0σ = C1
f2−→ C2

f3−→ . . .
fn−→ Cn

where the object C0 is “deleted” along with the morphism f0 leaving it.

25

A PREPRINT - FEBRUARY 16, 2024

GAIA uses hierarchical simplicial learning

3-simplex

2-simplices

1-simplices

0-simplices

3-simplex

2-simplex 2-simplex 2-simplex 2-simplex

4-simplex4-simplex

1-simplex 1-simplex 1-simplex

0-simplex 0-simplex

Figure 18: Example of a “small business unit" in GAIA defined as a 3-simplex that maintains its set of internal
parameters, and updates them based on information it receives from its superiors and subordinates.

Example 3. Given a category C, and an n-simplex σ of the simplicial set Cn, the face operator dn applied to σ yields
the sequence

dnσ = C0
f1−→ C1

f2−→ . . .
fn−1−−−→ Cn−1

where the object Cn is “deleted” along with the morphism fn entering it. Note this face operator can be viewed as
analogous to interventions on leaf nodes in a causal DAG model.
Example 4. Given a category C, and an n-simplex σ of the simplicial set Cn the face operator di, 0 < i < n applied to
σ yields the sequence

diσ = C0
f1−→ C1

f2−→ . . . Ci−1
fi+1◦fi−−−−−→ Ci+1 . . .

fn−→ Cn

where the object Ci is “deleted” and the morphisms fi is composed with morphism fi+1. Note that this process can
be abstractly viewed as intervening on object Ci by choosing a specific value for it (which essentially “freezes” the
morphism fi entering object Ci to a constant value).
Example 5. Given a category C, and an n-simplex σ of the simplicial set Cn, the degeneracy operator si, 0 ⩽ i ⩽ n
applied to σ yields the sequence

siσ = C0
f1−→ C1

f2−→ . . . Ci

1Ci−−→ Ci
fi+1−−−→ Ci+1 . . .

fn−→ Cn

where the object Ci is “repeated” by inserting its identity morphism 1Ci .
Definition 16. Given a category C, and an n-simplex σ of the simplicial set Cn, σ is a degenerate simplex if some fi in
σ is an identity morphism, in which case Ci and Ci+1 are equal.

4.2 Hierarchical Learning in GAIA by solving Lifting Problems

As we mentioned earlier, a crucial difference between GAIA and earlier generative AI architectures is that it is based on
a hierarchical model of simplicial learning, rather than the standard compositional learning framework described in
Section 2. To understand how such a structure will work, we need to define some key ideas from higher-order category
theory below, but before we do that, we want to build up some intuition as to how this process will work at a more
informal level. Figure 18 illustrates the idea using the same figure we showed earlier as Figure 3, but here, we will use
it to illustrate the simplicial learning concept.

To understand how simplicial learning works, let us consider as an example the 3-simplex shown in Figure 18. We
generalize the earlier compositional model defined in Section 4, where in the category Learn (see Figure 10), each
learner was a morphism in the symmetric monoidal category. In that model, each learner morphism transmits information
downstream to its successors and upstream to its predecessors, but there is no hierarchical structure. Here, in Figure 18,
the simplicial structure defines a hierarchy of learners, so that each learner is not just a morphism anymore, but a
n-simplex that maintains its internal set of parameters that it then updates based on the information from its superiors

26

A PREPRINT - FEBRUARY 16, 2024

and subordinates. To define this more carefully, we can construct a functor that maps the algebraic structure of a
simplicial set ∆ into a suitable parameter space (e.g., a symmetric monoidal category like vector spaces), whereby each
n-simplex now becomes defined as a contravariant functor ∆op → Vect.

We can in fact use exactly the same updates defined earlier in Section 4, following Fong et al. [2019], with the crucial
difference being that the updates must be consistent across the hierarchical structure of the simplicial complex. So, each
n-simplex is updated based on data from its subordinate n−1 sub-simplicial complexes and its superior n+1-simplicial
complexes, but these need to be made consistent with each other. To solve this problem requires some additional
machinery from higher-order category theory, which we now introduce below.

Lifting problems provide elegant ways to define solutions to computational problems in category theory regarding
the existence of mappings. We will use these lifting diagrams later in this paper. For example, the notion of injective
and surjective functions, the notion of separation in topology, and many other basic constructs can be formulated as
solutions to lifting problems. Lifting problems define ways of decomposing structures into simpler pieces, and putting
them back together again.

Definition 17. Let C be a category. A lifting problem in C is a commutative diagram σ in C.

A X

B Y

f

µ

p

ν

Definition 18. Let C be a category. A solution to a lifting problem in C is a morphism h : B → X in C satisfying
p ◦ h = ν and h ◦ f = µ as indicated in the diagram below.

A X

B Y

f

µ

ph

ν

Definition 19. Let C be a category. If we are given two morphisms f : A→ B and p : X → Y in C, we say that f has
the left lifting property with respect to p, or that p has the right lifting property with respect to f if for every pair of
morphisms µ : A→ X and ν : B → Y satisfying the equations p ◦ µ = ν ◦ f , the associated lifting problem indicated
in the diagram below.

A X

B Y

f

µ

ph

ν

admits a solution given by the map h : B → X satisfying p ◦ h = ν and h ◦ f = µ.

Gavrilovich [2017] shows that a remarkable number of properties in mathematics can be defined as lifting problems.
Spivak [2013] showed that query answering in languages like SQL in relational databases can be formalized as lifting
problems. Mahadevan [2023] showed that causal inference could be posed in terms of lifting problems. At its heart, a
lifting problem defines a constrained search over a space of parameters, and it is that property that makes it so useful in
generative AI because in effect, methods like backpropagation can be viewed as solving lifting problems. As a simple
example to build intuition, here is a way any surjective (onto) function as a solution to a lifting problem.

Example 6. Given the paradigmatic non-surjective morphism f : ∅ → {•}, any morphism p that has the right lifting
property with respect to f is a surjective mapping. .

∅ X

{•} Y

f

µ

p
h

ν

Similarly, here is another lifting problem whose solution defines an 1− 1 injective function.

Example 7. Given the paradigmatic non-injective morphism f : {•, •} → {•}, any morphism p that has the right
lifting property with respect to f is an injective mapping. .

27

A PREPRINT - FEBRUARY 16, 2024

{•, •} X

{•} Y

f

µ

ph

ν

4.3 Simplicial Subsets and Horns in GAIA

To explain how lifting problems can be used for generative AI in GAIA, we need to define lifting problems over
n-simplicial complexes. The basic idea, as illustrated in Figure 18, is that we construct a solution to a lifting problem
by asking if a particular sub-simplicial complex can be “extended" into the whole complex. This extension process is
essentially what methods like backpropagation are doing, and universal approximation results for Transformers Yun
et al. [2020] are in effect saying that a solution to a lifting problem exists for a particular class of simplicial complexes
defined as n-length sequences of Transformer models.

We first describe more complex ways of extracting parts of categorical structures using simplicial subsets and horns.
These structures will play a key role in defining suitable lifting problems.

Definition 20. The standard simplex ∆n is the simplicial set defined by the construction

([m] ∈ ∆) 7→ Hom∆([m], [n])

By convention, ∆−1 := ∅. The standard 0-simplex ∆0 maps each [n] ∈ ∆op to the single element set {•}.
Definition 21. Let S• denote a simplicial set. If for every integer n ⩾ 0, we are given a subset Tn ⊆ Sn, such that the
face and degeneracy maps

di : Sn → Sn−1 si : Sn → Sn+1

applied to Tn result in
di : Tn → Tn−1 si : Tn → Tn+1

then the collection {Tn}n⩾0 defines a simplicial subset T• ⊆ S•

Definition 22. The boundary is a simplicial set (∂∆n) : ∆op → Set defined as

(∂∆n)([m]) = {α ∈ Hom∆([m], [n]) : α is not surjective}

Note that the boundary ∂∆n is a simplicial subset of the standard n-simplex ∆n.

Definition 23. The Horn Λn
i : ∆op → Set is defined as

(Λn
i)([m]) = {α ∈ Hom∆([m], [n]) : [n] ̸⊆ α([m]) ∪ {i}}

Intuitively, the Horn Λn
i can be viewed as the simplicial subset that results from removing the interior of the n-simplex

∆n together with the face opposite its ith vertex.

Consider the problem of composing 1-dimensional simplices to form a 2-dimensional simplicial object. Each simplicial
subset of an n-simplex induces a a horn Λn

k , where 0 ⩽ k ⩽ n. Intuitively, a horn is a subset of a simplicial object
that results from removing the interior of the n-simplex and the face opposite the ith vertex. Consider the three horns
defined below. The dashed arrow 99K indicates edges of the 2-simplex ∆2 not contained in the horns.

{0}

{1} {2}

{0}

{1} {2}

{0}

{1} {2}

The inner horn Λ2
1 is the middle diagram above, and admits an easy solution to the “horn filling” problem of composing

the simplicial subsets. The two outer horns on either end pose a more difficult challenge. For example, filling the outer
horn Λ2

0 when the morphism between {0} and {1} is f and that between {0} and {2} is the identity 1 is tantamount
to finding the left inverse of f up to homotopy. Dually, in this case, filling the outer horn Λ2

2 is tantamount to finding
the right inverse of f up to homotopy. A considerable elaboration of the theoretical machinery in category theory is
required to describe the various solutions proposed, which led to different ways of defining higher-order category theory
Boardman and Vogt [1973], Joyal [2002], Lurie [2009].

28

A PREPRINT - FEBRUARY 16, 2024

4.4 Higher-Order Categories

We now formally introduce higher-order categories, building on the framework proposed in a number of formalisms.
We briefly summarize various approaches to the horn filling problem in higher-order category theory.
Definition 24. Let f : X → S be a morphism of simplicial sets. We say f is a Kan fibration if, for each n > 0, and
each 0 ⩽ i ⩽ n, every lifting problem.

Λn
i X

∆n S

σ0

f
σ

σ̄

admits a solution. More precisely, for every map of simplicial sets σ0 : Λn
i → X and every n-simplex σ̄ : ∆n → S

extending f ◦ σ0, we can extend σ0 to an n-simplex σ : ∆n → X satisfying f ◦ σ = σ̄.
Example 8. Given a simplicial set X , then a projection map X → ∆0 that is a Kan fibration is called a Kan complex.
Example 9. Any isomorphism between simplicial sets is a Kan fibration.
Example 10. The collection of Kan fibrations is closed under retracts.
Definition 25. Lurie [2009] An∞-category is a simplicial object S• which satisfies the following condition:

• For 0 < i < n, every map of simplicial sets σ0 : Λn
i → S• can be extended to a map σ : ∆n → Si.

This definition emerges out of a common generalization of two other conditions on a simplicial set Si:

1. Property K: For n > 0 and 0 ⩽ i ⩽ n, every map of simplicial sets σ0 : Λn
i → S• can be extended to a map

σ : ∆n → Si.
2. Property C: for 0 < 1 < n, every map of simplicial sets σ0 : Λn

i → Si can be extended uniquely to a map
σ : ∆n → Si.

Simplicial objects that satisfy property K were defined above to be Kan complexes. Simplicial objects that satisfy
property C above can be identified with the nerve of a category, which yields a full and faithful embedding of a category
in the category of sets. definition 25 generalizes both of these definitions, and was called a quasicategory in Joyal
[2002] and weak Kan complexes in Boardman and Vogt [1973] when C is a category.

5 Layer 2 of GAIA: Generative AI using Simplicial Categories

The second layer of GAIA is based on defining generative models as universal coalgebras over some base category,
including the standard mathematical categories (Sets, measurable spaces Meas, topoogical spaces Top or Vector spaces
Vect). Existing approaches to generative AI, such as Transformers Vaswani et al. [2017], structured state-space models
Gu et al. [2022], or image diffusion models Song and Ermon [2019] can all be defined as (stochastic) coalgebras over
one of the base categories. We first introduce some basic categorical structures, and then define the category of universal
coalgebras over these. to define generative AI systems as coalgebras.

5.1 Categories as Building Blocks of GAIA

GAIA is built on the hypothesis that category theory provides a universal language for encoding foundation models. We
define a few salient aspects of category theory in this section, including showing how it can reveal surprising similarities
between algebraic structures that superficially look very different, such as metric spaces and partially ordered sets (see
Table 1). A key principle that is often exploited is to explicitly represent the structure in the collection of morphisms
between two objects. That is, for some category C, the HomC(a, b) between objects a and b might itself have some
additional structure beyond that of merely being a collection or a set. For example, in the category of vector spaces,
the set of morphisms (linear transformations) between two vector spaces U and V is itself a vector space. So-called
V-enriched categories signify cases when the Hom values are specified in some structure V. Examples include metric
spaces, where the Hom values are non-negative real numbers representing distances, and partially ordered sets (posets)
where the Hom values are Boolean.

The aim of category theory is to build a “unified field theory" of mathematics based on a simple model of objects that
interact with each other, analogous to directed graph representations. In graphs, vertices represent arbitrary entities, and

29

A PREPRINT - FEBRUARY 16, 2024

Table 1: Categories are defined as collections of objects and arrows between them.

C HomC values Composition and Domain Domain for
and identity law for composition for identity laws

General category Sets Functions Cartesian product One element set
Metric spaces Non-negative numbers ⩾ sum zero

Posets Truth values Entailment Conjunction true
V-enriched objects morphisms tensor product unit object for

category in V in V in V tensor product in V
F : Cop × C → D Bivalent functors Dinatural transformations Probabilities, distances Unit object

Coends, ends topological embeddings

the edges denote some form of (directional) interaction. In categories, there is no restriction on how many edges exist
between any two objects. In a locally small category, there is assumed to be a “set’s worth" of edges, meaning that it
could still be infinite! In addition, small categories are assumed to contain a set’s worth of objects (again, which might
not be finite). The framework is compositional, in that categories can be formed out of objects, arrows that define the
interaction between objects, or functors that define the interactions between categories. This compositionality gives us a
rich generative space of models that will be invaluable in modeling UIGs.

Category theory gives an exceptional set of “measuring tools" for modeling Transformers and other generative models
in AI. Choosing a category means selecting a collection of objects and a collection of composable arrows by which each
pair of objects interact. This choice of objects and arrows defines the measurement apparatus that is used in formulating
and solving an imitation game. A key result called the Yoneda Lemma shows that objects can be identified up to
isomorphism solely by their interactions with other objects. Category theory also embodies the principle of universality:
a property is universal if it defines an initial or final object in a category. Many approaches in generative AI, such
as probabilistic generative models or distance metrics, can be abstractly characterized as initial or final objects in a
category of wedges, where the objects are bifunctors and the arrows are dinatural transformations. Loregian [2021] has
an excellent treatment of the calculus of coends, which we will discuss in detail later in the paper. At a high level, the
notion of object isomorphism in category theory is defined as follows.

Definition 26. Two objects X and Y in a category C are deemed isomorphic, or X ∼= Y if and only if there is an
invertible morphism f : X → Y , namely f is both left invertible using a morphism g : Y → X so that g ◦ f = idX ,
and f is right invertible using a morphism h where f ◦ h = idY .

Category theory provides a rich language to describe how objects interact, including notions like braiding that plays
a key role in quantum computing Coecke et al. [2016]. The notion of isomorphism can be significantly weakened to
include notions like homotopy. This notion of homotopy generalizes the notion of homotopy in topology, which defines
why an object like a coffee cup is topologically homotopic to a doughnut (they have the same number of “holes”). In
the category Sets, two finite sets are considered isomorphic if they have the same number of elements, as it is then
trivial to define an invertible pair of morphisms between them. In the category Vectk of vector spaces over some field k,
two objects (vector spaces) are isomorphic if there is a set of invertible linear transformations between them. As we will
see below, the passage from a set to the “free” vector space generated by elements of the set is another manifestation of
the universal arrow property. In the category of topological spaces Top, two objects are isomorphic if there is a pair of
continuous functions that makes them homeomorphic May and Ponto [2012]. A more refined category is hTop, the
category defined by topological spaces where the arrows are now given by homotopy classes of continuous functions.

Definition 27. Let C and C ′ be a pair of objects in a category C. We say C is a retract of C ′ if there exists maps
i : C → C ′ and r : C ′ → C such that r ◦ i = idC .

Definition 28. Let C be a category. We say a morphism f : C → D is a retract of another morphism f ′ : C → D if
it is a retract of f ′ when viewed as an object of the functor category Hom([1], C). A collection of morphisms T of C is
closed under retracts if for every pair of morphisms f, f ′ of C, if f is a retract of f ′, and f ′ is in T , then f is also in T .

The point of these examples is to illustrate that choosing a category, which means choosing a collection of objects
and arrows, is like defining a measurement system for deciding if two objects are isomorphic. A richer model of
interaction is provided by simplicial sets May [1992], which is a graded set Sn, n ⩾ 0, where S0 represents a set of
non-interacting objects, S1 represents a set of pairwise interactions, S2 represents a set of three-way interactions, and so
on. We can map any category into a simplicial set by constructing sequences of length n of composable morphisms. For
example, we can model sequences of words in a language as composable morphisms, thereby constructing a simplicial
set representation of language-based interactions in an imitation game. Then, the corresponding notion of homotopy
between simplicial sets is defined as Richter [2020]:

30

A PREPRINT - FEBRUARY 16, 2024

Set theory Category theory
set object

subset subobject
truth values {0, 1} subobject classifier Ω

power set P (A) = 2A power object P (A) = ΩA

bijection isomorphims
injection monic arrow
surjection epic arrow

singleton set {∗} terminal object 1
empty set ∅ initial object 0

elements of a set X morphism f : 1→ X
- functors, natural transformations
- limits, colimits, adjunctions

Figure 19: Comparison of notions from set theory and category theory.

Definition 29. Let X and Y be simplicial sets, and suppose we are given a pair of morphisms f0, f1 : X → Y . A
homotopy from f0 to f1 is a morphism h : ∆1 ×X → Y satisfying f0 = h|0×X and f1 = h1×X .

A C

B

f g

h

Figure 20: Category theory is a compositional model of a system in terms of objects and their interactions.

Figure 19 compares the basic notions in set theory vs. category theory. Figure 20 illustrates a simple category of 3
objects: A, B, and C that interact through the morphisms f : A → B, g : B → C, and h : A → C. Categories
involve a fundamental notion of composition: the morphism h : A→ C can be defined as the composition g ◦ f of the
morphisms from f and g. What the objects and morphisms represent is arbitrary, and like the canonical directed graph
model, this abstractness gives category theory – like graph theory – a universal quality in terms of applicability to a
wide range of problems. While categories and graphs and intimately related, in a category, there is no assumption of
finiteness in terms of the cardinality of objects or morphisms. A category is defined to be small or locally small if there
is a set’s worth of objects and between any two objects, a set’s worth of morphisms, but of course, a set need not be
finite. As a simple example, the set of integers Z defines a category, where each integer z is an object and there is a
morphism f : a→ b between integers a and b if a ⩽ b. This example serves to immediately clarify an important point:
a category is only defined if both the objects and morphisms are defined. The category of integers Z may be defined in
many ways, depending on what the morphisms represent.

Briefly, a category is a collection of objects, and a collection of morphisms between pairs of objects, which are closed
under composition, satisfy associativity, and include an identity morphism for every object. For example, sets form a
category under the standard morphism of functions. Groups, modules, topological spaces and vector spaces all form
categories in their own right, with suitable morphisms (e.g, for groups, we use group homomorphisms, and for vector
spaces, we use linear transformations).

A simple way to understand the definition of a category is to view it as a “generalized" graph, where there is no
limitation on the number of vertices, or the number of edges between any given pair of vertices. Each vertex defines an
object in a category, and each edge is associated with a morphism. The underlying graph induces a “free” category
where we consider all possible paths between pairs of vertices (including self-loops) as the set of morphisms between

31

A PREPRINT - FEBRUARY 16, 2024

them. In the reverse direction, given a category, we can define a “forgetful” functor that extracts the underlying graph
from the category, forgetting the composition rule.

Definition 30. A graph G (sometimes referred to as a quiver) is a labeled directed multi-graph defined by a set O
of objects, a set A of arrows, along with two morphisms s : A → O and t : A → O that specify the domain and
co-domain of each arrow. In this graph, we define the set of composable pairs of arrows by the set

A×O A = {⟨g, f⟩| g, f ∈ A, s(g) = t(f)}

A category C is a graph G with two additional functions: id : O → A, mapping each object c ∈ C to an arrow idc and
◦ : A×O A→ A, mapping each pair of composable morphisms ⟨f, g⟩ to their composition g ◦ f .

It is worth emphasizing that no assumption is made here of the finiteness of a graph, either in terms of its associated
objects (vertices) or arrows (edges). Indeed, it is entirely reasonable to define categories whose graphs contain an
infinite number of edges. A simple example is the group Z of integers under addition, which can be represented as a
single object, denoted {•} and an infinite number of morphisms f : • → •, each of which represents an integer, where
composition of morphisms is defined by addition. In this example, all morphisms are invertible. In a general category
with more than one object, a groupoid defines a category all of whose morphisms are invertible. A central principle in
category theory is to avoid the use of equality, which is pervasive in mathematics, in favor of a more general notion of
isomorphism or weaker versions of it. Many examples of categories can be given that are relevant to specific problems
in AI and ML. Some examples of categories of common mathematical structures are illustrated below.

• Set: The canonical example of a category is Set, which has as its objects, sets, and morphisms are functions
from one set to another. The Set category will play a central role in our framework, as it is fundamental to the
universal representation constructed by Yoneda embeddings.

• Top: The category Top has topological spaces as its objects, and continuous functions as its morphisms.
Recall that a topological space (X,Ξ) consists of a set X , and a collection of subsets Ξ of X closed under
finite intersection and arbitrary unions.

• Group: The category Group has groups as its objects, and group homomorphisms as its morphisms.

• Graph: The category Graph has graphs (undirected) as its objects, and graph morphisms (mapping vertices
to vertices, preserving adjacency properties) as its morphisms. The category DirGraph has directed graphs as
its objects, and the morphisms must now preserve adjacency as defined by a directed edge.

• Poset: The category Poset has partially ordered sets as its objects and order-preserving functions as its
morphisms.

• Meas: The category Meas has measurable spaces as its objects and measurable functions as its morphisms.
Recall that a measurable space (Ω,B) is defined by a set Ω and an associated σ-field of subsets B that is closed
under complementation, and arbitrary unions and intersections, where the empty set ∅ ∈ B.

5.2 A Categorical Theory of Transformer Models

To illustrate the power of the simplicial sets and objects framework, we want to briefly explain how we can use it
to define a novel hierarchical framework for generative AI, where each morphism [m] → [n] can be mapped into a
Transformer module Vaswani et al. [2017]. It is straightforward to extend our discussion below to other building blocks
of generative AI systems, including structured state space sequence models Gu et al. [2022] or image diffusion models
Song and Ermon [2019]. As with all generative AI systems, the fundamental structure of a Transformer model is that
it is a compositional structure made up of modular components, each of which computes a permutation-equivariant
function over the vector space Rd×n of n-length sequences of tokens, each embedded in a space of dimension d. We
can define a commutative diagram showing the permutation equivariant property as shown below.

To begin with, following Fong et al. [2019], we can generically define a neural network layer of type (n1, n2) as a
subset C ⊆ [n1]× [n2] where n1, n2 ∈ N are natural numbers, and [n] = {1, . . . , n}. Notice how these can be viewed
as the objects of a simplicial category ∆. These numbers n1 and n2 serve to define the number of inputs and outputs of
each layer, C is a set of connections, and (i, j) ∈ C means that node i is connected to node j in the network diagram. It
is straightforward, but perhaps tedious, to define activation functions σ : R→ R for each layer, but essentially each
network layer defines a parameterized function I : R|C|+n2 × Rn1 → Rn2 , where the R|C| define the edge weights of
each network edge and the Rn2 factor encodes individual unit biases. We can specialize these to Transformer models,
in particular, noting that the Transfomer models compute specialized types of permutation-equivariant functions as
defined by the commutative diagram below.

32

A PREPRINT - FEBRUARY 16, 2024

X Y Z

XP Y P ZP

f

PP

f

g

g

P

In the above commutative diagram, vertices are objects, and arrows are morphisms that define the action of a Transformer
block. Here, X ∈ Rd×n is a n-length sequence of tokens of dimensionality d. P is a permutation matrix. The function
f computed by a Transformer block is such that f(XP) = f(X)P . This property is defined in the above diagram by
setting Y = f(X)P , which can be computed in two ways, either first by permuting the input by the matrix P , and then
applying f , or by

Let us understand the permutation equivariant property of the Transformer model in a bit more detail. Our notation for
the Transformer model is based on Yun et al. [2020], although there are countless variations in the literature that we do
not discuss further. These can be adapted into our categorical framework fairly straightforwardly based on the approach
outlined below. Transformer models are inherently compositional, which makes them particularly convenient to model
using category theory.
Definition 31. Yun et al. [2020], Vaswani et al. [2017] A Transformer block is a sequence-to-sequence function
mapping Rd×n → Rd×n. There are generally two layers: a self-attention layer Vaswani et al. [2017] and a token-wise
feedforward layer. We assume tokens are embedded in a space of dimension d. Specifically, we model the inputs
X ∈ Rd×n to a Transformer block as n-length sequences of tokens in d dimensions, where each block computes the
following function defined as th,m,r : Rd×n : Rd×n:

Attn(X) = X +

h∑

i=1

W i
OW

i
VX · σ[W i

KX)TW i
QX]

FF(X) = Attn(X) +W2 · ReLU(W1 · Attn(X) + b11
T
n ,

where W i
O ∈ Rd×n, W i

K ,W
i
Q,W

i
Q ∈ Rd×n, W2 ∈ Rd×r, W1 ∈ Rr×d, and b1 ∈ Rr. The output of a Transformer

block is FF (X). Following convention, the number of “heads" is h, and each “head" sizem are the principal parameters
of the attention layer, and the size of the “hidden" feed-forward layer is r.

Transformer models take as input objects X ∈ Rd×n representing n-length sequences of tokens in d dimensions, and
act as morphisms that represent permutation equivariant functions f : Rd×n → Rd×n such that f(XP) = f(X)P for
any permutation matrix. Yun et al. [2020] show that the actual function computed by the Transformer model defined
above is a permutation equivariant mapping.

Categories are compositional structures, which can be built out of smaller objects. Concretely, we define a category of
transformers CT where the objects are vectors x ∈ Rd×n representing sequences of d-dimensional tokens of length n,
and the composable arrows are permutation-invariant functions T h,m,r comprised of a composition of transformer
blocks th,m,r of h heads of size m each, and a feedforward layer of r hidden nodes. Objects in a category interact with
each other through arrows or morphisms. In the category CT of Transformer models, the morphisms are the equivariant
maps f by which one Transformer model block can be composed with another.
Definition 32. The category CT of Transformer models is defined as follows:

• The objects Obj(C) are defined as vectors X ∈ Rd×n denoting n-length sequences of tokens of dimension d.

• The arrows or morphisms of the category CT are defined as a family of sequence-to-sequence functions and
defined as:

Th,m,r := {f : Rd×n → Rd×n | where f(XP) = XP, for some permutation matrix P}

5.3 Constructing Simplicial Transformers from Transformer Categories

We now show how we can define a novel hierarchical theory of simplicial Transformers, first by embedding the category
of Transformers into a simplicial set by computing the nerve of a functor that maps CT into the simplicial set ST

• . The

33

A PREPRINT - FEBRUARY 16, 2024

nerve of a category C enables embedding C into the category of simplicial objects, which is a fully faithful embedding
Lurie [2009], Richter [2020].

Definition 33. Let F : C → D be a functor from category C to category D. If for all arrows f the mapping f → Ff

• injective, then the functor F is defined to be faithful.

• surjective, then the functor F is defined to be full.

• bijective, then the functor F is defined to be fully faithful.

Definition 34. The nerve of a category C is the set of composable morphisms of length n, for n ⩾ 1. Let Nn(C) denote
the set of sequences of composable morphisms of length n.

{Co
f1−→ C1

f2−→ . . .
fn−→ Cn | Ci is an object in C, fi is a morphism in C}

The set of n-tuples of composable arrows in C, denoted by Nn(C), can be viewed as a functor from the simplicial object
[n] to C. Note that any nondecreasing map α : [m]→ [n] determines a map of sets Nm(C)→ Nn(C). The nerve of a
category C is the simplicial set N• : ∆→ Nn(C), which maps the ordinal number object [n] to the set Nn(C).
The importance of the nerve of a category comes from a key result Lurie [2022], Richter [2020], showing it defines a
full and faithful embedding of a category:

Theorem 3. The nerve functor N• : Cat→ Set is fully faithful. More specifically, there is a bijection θ defined as:

θ : Cat(C, C′)→ Set∆(N•(C), N•(C′)

Unfortunately, the left adjoint to the nerve functor is not a full and faithful encoding of a simplicial set back into a
suitable category. Note that a functor G from a simplicial object X to a category C can be lossy. For example, we can
define the objects of C to be the elements of X0, and the morphisms of C as the elements f ∈ X1, where f : a→ b, and
d0f = a, and d1f = b, and s0a, a ∈ X as defining the identity morphisms 1a. Composition in this case can be defined
as the free algebra defined over elements of X1, subject to the constraints given by elements of X2. For example, if
x ∈ X2, we can impose the requirement that d1x = d0x ◦ d2x. Such a definition of the left adjoint would be quite
lossy because it only preserves the structure of the simplicial object X up to the 2-simplices. The right adjoint from a
category to its associated simplicial object, in contrast, constructs a full and faithful embedding of a category into a
simplicial set. In particular, the nerve of a category is such a right adjoint.

6 Layer 3 of GAIA: Universal Properties and the Category of Elements

A central and unifying principle in GAIA is that every pair of categorical layers is synchronized by a functor, along with
a universal arrow. In this section, we introduce some additional ideas from category theory, including the fundamental
Yoneda Lemma MacLane [1971] that states that all objects in a (generative AI) category can be defined in terms of their
interactions. To understand the significance of this powerful lemma, keep in mind that it applies to any (small) category.
In particular, we defined in Section 5 the category of Transformer models as equivariant functions over Euclidean
spaces. What the Yoneda Lemma implies here is that any Transformer model building block can be defined (upto
isomorphism) purely in terms of the interactions it makes with other Transformer building blocks. This somewhat
strange parameterization provides deep insight into how objects in categories behave. In a concrete sense, Transformer
models are based on defining words by their context in sentences, and an enriched form of the Yoneda Lemma can be
directly applied to model the statistical representations of words learned by Transformers Bradley et al. [2022].

The bottom layer of GAIA is a (Grothendieck) category of elements Riehl [2017] that essentially “grounds" out the
universal coalgebras at layer 2 of GAIA in terms of the concrete data that was used to build the foundation models in
GAIA. Intuitively, Layer 3 stores the “training data" in a general relational structure. We first define how to construct
the category of elements in a relational database. In particular, at the simplicial top layer, generative AI operators
such as face and degeneracy operators define “graph surgery" Pearl [2009] operations on generative AI models, or
in terms of “copy", “delete" operators in “string diagram surgery" defined on symmetric monoidal categories Jacobs
et al. [2019]. These “surgery" operations at the next level may translate down to operations on probability distributions,
measurable spaces, topological spaces, or chain complexes. This process follows a standard construction used widely in
mathematics, for example group representations associate with any group G, a left k-module M representation that
enables modeling abstract group operations by operations on the associated modular representation. These concrete
representations must satisfy the universal arrow property for them to be faithful.

34

A PREPRINT - FEBRUARY 16, 2024

6.1 Natural Transformations and Universal Arrows

Since we now can have multiple functors between the category Para and the category Learn, for example traditional
backpropagation or a stochastic approximation “zeroth-order" approximation, we can compare these two functors using
natural transformations. Given any two functors F : C → D and G : C → D between the same pair of categories,
we can define a mapping between F and G that is referred to as a natural transformation. These are defined through a
collection of mappings, one for each object c of C, thereby defining a morphism in D for each object in C.

Definition 35. Given categories C and D, and functors F,G : C → D, a natural transformation α : F ⇒ G is
defined by the following data:

• an arrow αc : Fc → Gc in D for each object c ∈ C, which together define the components of the natural
transformation.

• For each morphism f : c→ c′, the following commutative diagram holds true:

Fc Gc

Fc′ Gc′

αc

Ff

αc′

Gf

A natural isomorphism is a natural transformation α : F ⇒ G in which every component αc is an isomorphism.

A fundamental universal construction in category theory, called the universal arrow lies at the heart of many useful
results, principally the Yoneda lemma that shows how object identity itself emerges from the structure of morphisms
that lead into (or out of) it.

Definition 36. Given a functor S : D → C between two categories, and an object c of category C, a universal arrow
from c to S is a pair ⟨r, u⟩, where r is an object of D and u : c→ Sr is an arrow of C, such that the following universal
property holds true:

• For every pair ⟨d, f⟩ with d an object of D and f : c→ Sd an arrow of C, there is a unique arrow f ′ : r → d
of D with Sf ′ ◦ u = f .

Definition 37. If D is a category and H : D → Set is a set-valued functor, a universal element associated with the
functor H is a pair ⟨r, e⟩ consisting of an object r ∈ D and an element e ∈ Hr such that for every pair ⟨d, x⟩ with
x ∈ Hd, there is a unique arrow f : r → d of D such that (Hf)e = x.

Theorem 4. Given any functor S : D → C, the universal arrow ⟨r, u : c→ Sr⟩ implies a bijection exists between the
Hom sets

HomD(r, d) ≃ HomC(c, Sd)

A special case of this natural transformation that transforms the identity morphism 1r leads us to the Yoneda lemma.

6.2 Yoneda Lemma

The Yoneda Lemma states that the set of all morphisms into an object d in a category C, denoted as HomC(−, d) and
called the contravariant functor (or presheaf), is sufficient to define d up to isomorphism. The category of all presheaves
forms a category of functors, and is denoted Ĉ = SetC

op

.We will briefly describe two concrete applications of this lemma
to two important areas in AI and ML in this section: reasoning about causality and reasoning about distances. The
Yoneda lemma plays a crucial role in this paper because it defines the concept of a universal representation in category
theory. We first show that associated with universal arrows is the corresponding induced isomorphisms between Hom
sets of morphisms in categories. This universal property then leads to the Yoneda lemma.

D(r, r) C(c, Sr)

D(r, d) C(c, Sd)

D(r,f ′)

ϕr

C(c,Sf ′)

ϕd

35

A PREPRINT - FEBRUARY 16, 2024

As the two paths shown here must be equal in a commutative diagram, we get the property that a bijection between
the Hom sets holds precisely when ⟨r, u : c→ Sr⟩ is a universal arrow from c to S. Note that for the case when the
categories C and D are small, meaning their Hom collection of arrows forms a set, the induced functor HomC(c, S−)
to Set is isomorphic to the functor HomD(r,−). This type of isomorphism defines a universal representation, and is at
the heart of the causal reproducing property (CRP) defined below.

Lemma 1. Yoneda lemma: For any functor F : C → Set, whose domain category C is “locally small" (meaning that
the collection of morphisms between each pair of objects forms a set), any object c in C, there is a bijection

Hom(C(c,−), F) ≃ Fc

that defines a natural transformation α : C(c,−)⇒ F to the element αc(1c) ∈ Fc. This correspondence is natural in
both c and F .

There is of course a dual form of the Yoneda Lemma in terms of the contravariant functor C(−, c) as well using the
natural transformation C(−, c) ⇒ F . A very useful way to interpret the Yoneda Lemma is through the notion of
universal representability through a covariant or contravariant functor.

Definition 38. A universal representation of an object c ∈ C in a category C is defined as a contravariant functor
F together with a functorial representation C(−, c) ≃ F or by a covariant functor F together with a representation
C(c,−) ≃ F . The collection of morphisms C(−, c) into an object c is called the presheaf, and from the Yoneda
Lemma, forms a universal representation of the object.

Later in this paper, we will see how the Yoneda Lemma gives us a novel perspective on how to construct universal
representers in non-symmetric generalized metric spaces that are essential to defining “nonsymmetric attention" in large
language models.

A key distinguishing feature of category theory is the use of diagrammatic reasoning. However, diagrams are also
viewed more abstractly as functors mapping from some indexing category to the actual category. Diagrams are useful
in understanding universal constructions, such as limits and colimits of diagrams. To make this somewhat abstract
definition concrete, let us look at some simpler examples of universal properties, including co-products and quotients
(which in set theory correspond to disjoint unions). Coproducts refer to the universal property of abstracting a group of
elements into a larger one.

Before we formally the concept of limit and colimits, we consider some examples. These notions generalize the more
familiar notions of Cartesian products and disjoint unions in the category of Sets, the notion of meets and joins in the
category Preord of preorders, as well as the least upper bounds and greatest lower bounds in lattices, and many other
concrete examples from mathematics.

Example 11. If we consider a small “discrete” category D whose only morphisms are identity arrows, then the colimit
of a functor F : D → C is the categorical coproduct of F(D) for D, an object of category D, is denoted as

ColimitDF =
⊔

D

F(D)

In the special case when the category C is the category Sets, then the colimit of this functor is simply the disjoint union
of all the sets F (D) that are mapped from objects D ∈ D.

Example 12. Dual to the notion of colimit of a functor is the notion of limit. Once again, if we consider a small
“discrete” categoryD whose only morphisms are identity arrows, then the limit of a functorF : D → C is the categorical
product of F(D) for D, an object of category D, is denoted as

limitDF =
∏

D

F(D)

In the special case when the category C is the category Sets, then the limit of this functor is simply the Cartesian product
of all the sets F (D) that are mapped from objects D ∈ D.

Category theory relies extensively on universal constructions, which satisfy a universal property. One of the central
building blocks is the identification of universal properties through formal diagrams. Before introducing these definitions
in their most abstract form, it greatly helps to see some simple examples.

We can illustrate the limits and colimits in diagrams using pullback and pushforward mappings.

36

A PREPRINT - FEBRUARY 16, 2024

Z X

Y X ⊔ Y

R

p

q f
h

g

i

r

An example of a universal construction is given by the above commutative diagram, where the coproduct object X ⊔ Y
uniquely factorizes any mapping h : X → R, such that any mapping i : Y → R, so that h = r ◦ f , and furthermore
i = r ◦ g. Co-products are themselves special cases of the more general notion of co-limits. Figure 21 illustrates
the fundamental property of a pullback, which along with pushforward, is one of the core ideas in category theory.
The pullback square with the objects U,X, Y and Z implies that the composite mappings g ◦ f ′ must equal g′ ◦ f . In
this example, the morphisms f and g represent a pullback pair, as they share a common co-domain Z. The pair of
morphisms f ′, g′ emanating from U define a cone, because the pullback square “commutes” appropriately. Thus, the
pullback of the pair of morphisms f, g with the common co-domain Z is the pair of morphisms f ′, g′ with common
domain U . Furthermore, to satisfy the universal property, given another pair of morphisms x, y with common domain
T , there must exist another morphism k : T → U that “factorizes” x, y appropriately, so that the composite morphisms
f ′ k = y and g′ k = x. Here, T and U are referred to as cones, where U is the limit of the set of all cones “above” Z.
If we reverse arrow directions appropriately, we get the corresponding notion of pushforward. So, in this example, the
pair of morphisms f ′, g′ that share a common domain represent a pushforward pair. As Figure 21, for any set-valued
functor δ : S → Sets, the Grothendieck category of elements

∫
δ can be shown to be a pullback in the diagram of

categories. Here, Set∗ is the category of pointed sets, and π is a projection that sends a pointed set (X,x ∈ X) to its
underlying set X .

T

U X

Y Z

x

y

k

g′

f ′ f

g

T

∫
δ Set∗

S Set

x

y

k

δ′

πδ π

δ

Figure 21: (Left) Universal Property of pullback mappings. (Right) The Grothendieck category of elements
∫
δ of any

set-valued functor δ : S → Set can be described as a pullback in the diagram of categories. Here, Set∗ is the category of
pointed sets (X,x ∈ X), and π is the “forgetful" functor that sends a pointed set (X,x ∈ X) into the underlying set X .

We can now proceed to define limits and colimits more generally. We define a diagram F of shape J in a category C
formally as a functor F : J → C. We want to define the somewhat abstract concepts of limits and colimits, which will
play a central role in this paper in identifying properties of AI and ML techniques. A convenient way to introduce these
concepts is through the use of universal cones that are over and under a diagram.

For any object c ∈ C and any category J , the constant functor c : J → C maps every object j of J to c and every
morphism f in J to the identity morphisms 1c. We can define a constant functor embedding as the collection of constant
functors ∆ : C → CJ that send each object c in C to the constant functor at c and each morphism f : c → c′ to
the constant natural transformation, that is, the natural transformation whose every component is defined to be the
morphism f .

Definition 39. A cone over a diagram F : J → C with the summit or apex c ∈ C is a natural transformation
λ : c⇒ F whose domain is the constant functor at c. The components (λj : c→ Fj)j∈J of the natural transformation
can be viewed as its legs. Dually, a cone under F with nadir c is a natural transformation λ : F ⇒ c whose legs are
the components (λj : Fj → c)j∈J .

c Fj Fk

Fj Fk c

λj λk

Ff

Ff

λj λk

37

A PREPRINT - FEBRUARY 16, 2024

Cones under a diagram are referred to usually as cocones. Using the concept of cones and cocones, we can now formally
define the concept of limits and colimits more precisely.

Definition 40. For any diagram F : J → C, there is a functor

Cone(−, F) : Cop → Set

which sends c ∈ C to the set of cones over F with apex c. Using the Yoneda Lemma, a limit of F is defined as an
object limF ∈ C together with a natural transformation λ : limF → F , which can be called the universal cone
defining the natural isomorphism

C(−, limF) ≃ Cone(−, F)

Dually, for colimits, we can define a functor

Cone(F,−) : C → Set

that maps object c ∈ C to the set of cones under F with nadir c. A colimit of F is a representation for Cone(F,−). Once
again, using the Yoneda Lemma, a colimit is defined by an object ColimF ∈ C together with a natural transformation
λ : F → colimF , which defines the colimit cone as the natural isomorphism

C(colimF,−) ≃ Cone(F,−)

Limit and colimits of diagrams over arbitrary categories can often be reduced to the case of their corresponding diagram
properties over sets. One important stepping stone is to understand how functors interact with limits and colimits.

Definition 41. For any class of diagrams K : J → C, a functor F : C → D

• preserves limits if for any diagram K : J → C and limit cone over K, the image of the cone defines a limit
cone over the composite diagram FK : J → D.

• reflects limits if for any cone over a diagram K : J → C whose image upon applying F is a limit cone for the
diagram FK : J → D is a limit cone over K

• creates limits if whenever FK : J → D has a limit in D, there is some limit cone over FK that can be lifted
to a limit cone over K and moreoever F reflects the limits in the class of diagrams.

To interpret these abstract definitions, it helps to concretize them in terms of a specific universal construction, like the
pullback defined above c′ → c← c′′ in C. Specifically, for pullbacks:

• A functor F preserves pullbacks if whenever p is the pullback of c′ → c← c′′ in C, it follows that Fp is the
pullback of Fc′ → Fc← Fc′′ in D.

• A functor F reflects pullbacks if p is the pullback of c′ → c ← c′′ in C whenever Fp is the pullback of
Fc′ → Fc← Fc′′ in D.

• A functor F creates pullbacks if there exists some p that is the pullback of c′ → c← c′′ in C whenever there
exists a d such that d is the pullback of Fc′ → Fc← Fc′′ in F .

Universality of Diagrams

In the category Sets, we know that every object (i.e., a set) X can be expressed as a coproduct (i.e., disjoint union) of
its elements X ≃ ⊔x∈X{x}, where x ∈ X . Note that we can view each element x ∈ X as a morphism x : {∗} → X
from the one-point set to X . The categorical generalization of this result is called the density theorem in the theory of
sheaves. First, we define the key concept of a comma category.

Definition 42. Let F : D → C be a functor from category D to C. The comma category F ↓ C is one whose objects
are pairs (D, f), where D ∈ D is an object of D and f ∈ HomC(F (D), C), where C is an object of C. Morphisms in
the comma category F ↓ C from (D, f) to (D′, f ′), where g : D → D′, such that f ′ ◦ F (g) = f . We can depict this
structure through the following commutative diagram:

38

A PREPRINT - FEBRUARY 16, 2024

F (D)

F (D′) C

F (g)
f

f ′

We first introduce the concept of a dense functor:
Definition 43. Let D be a small category, C be an arbitrary category, and F : D → D be a functor. The functor F is
dense if for all objects C of C, the natural transformation

ψC
F : F ◦ U → ∆C , (ψC

F)(D,f) = f

is universal in the sense that it induces an isomorphism ColimitF↓CF ◦U ≃ C. Here, U : F ↓ C → D is the projection
functor from the comma category F ↓ C, defined by U(D, f) = D.

A fundamental consequence of the category of elements is that every object in the functor category of presheaves,
namely contravariant functors from a category into the category of sets, is the colimit of a diagram of representable
objects, via the Yoneda lemma. Notice this is a generalized form of the density notion from the category Sets.

Theorem 5. Universality of Diagrams: In the functor category of presheaves SetC
op

, every object P is the colimit of a
diagram of representable objects, in a canonical way.

6.3 Universal Arrows and Elements

We explore the universal arrow property more deeply in this section, showing how it provides the conceptual basis
behind the (metric) Yoneda Lemma, and Grothendieck’s category of elements.

A special case of the universal arrow property is that of universal element, which as we will see below plays an important
role in the GAIA architecture in defining a suitably augmented category of elements, based on a construction introduced
by Grothendieck.
Definition 44. If D is a category and H : D → Set is a set-valued functor, a universal element associated with the
functor H is a pair ⟨r, e⟩ consisting of an object r ∈ D and an element e ∈ Hr such that for every pair ⟨d, x⟩ with
x ∈ Hd, there is a unique arrow f : r → d of D such that (Hf)e = x.
Example 13. Let E be an equivalence relation on a set S, and consider the quotient set S/E of equivalence classes,
where p : S → S/E sends each element s ∈ S into its corresponding equivalence class. The set of equivalence classes
S/E has the property that any function f : S → X that respects the equivalence relation can be written as fs = fs′

whenever s ∼E s′, that is, f = f ′ ◦ p, where the unique function f ′ : S/E → X . Thus, ⟨S/E, p⟩ is a universal element
for the functor H .

6.4 The Category of Elements

We turn next to define the category of elements, based on a construction by Grothendieck, and illustrate how it can
serve as the basis for inference at each layer of the UCLA architecture. In particular, Spivak [2013] shows how the
category of elements can be used to define SQL queries in a relational database.
Definition 45. Given a set-valued functor δ : C → Set from some category C, the induced category of elements
associated with δ is a pair (

∫
δ, πδ), where

∫
δ ∈Cat is a category in the category of all categories Cat, and πδ :

∫
δ → C

is a functor that “projects" the category of elements into the corresponding original category C. The objects and arrows
of

∫
δ are defined as follows:

• Ob(
∫
δ) = {(s, x)|x ∈ Ob(⌋), x ∈ δs}.

• Hom∫
δ((s, x), (s

′, x′)) = {f : s→ s′|δf(x) = x′}
Example 14. To illustrate the category of elements construction, let us consider the toy climate change DAG model
shown in Figure 22. Let the category C be defined by this DAG model, where the objects Ob(C) are defined by the four
vertices, and the arrows HomC are defined by the four edges in the model. The set-valued functor δ : C → Set maps
each object (vertex) in C to a set of instances, thereby turning the causal DAG model into an associated set of tables.
For example, Climate Change is defined as a table of values, which could be modeled as a multinomial variable taking
on a set of discrete values, and for each of its values, the arrow from Climate Change to Rainfall maps each specific
value of Climate Change to a value of Rainfall, thereby indicating a causal effect of climate change on the amount of
rainfall in California. Im the figure, Climate Change is mapped to three discrete levels (marked 1, 2 and 3). Rainfall

39

A PREPRINT - FEBRUARY 16, 2024

amounts are discretized as well into low (marked "L"), medium (marked "M"), high (marked "H"), or extreme (marked
"E"). Wind speeds are binned into two levels (marked "W" for weak, and "S" for strong). Finally, the percentage of
California wildfires is binned between 5 to 30. Not all arrows that exist in the Grothendieck category of elements are
shown, for clarity.

Figure 22: A toy DAG model of climate change to illustrate the category of elements construction.

1 2 3

E W S

5 10 20

HML

30

Many properties of Grothendieck’s construction can be exploited (some of these are discussed in the context of relational
database queries in Spivak [2013]), but for our application, we are primarily interested in the associated class of lifting
problems that define queries in a generative AI model.

6.5 Lifting Problems in Generative AI

Definition 46. If S is a collection of morphisms in category C, a morphism f : A→ B has the left lifting property
with respect to S if it has the left lifting property with respect to every morphism in S. Analogously, we say a morphism
p : X → Y has the right lifting property with respect to S if it has the right lifting property with respect to every
morphism in S.

Many properties of Grothendieck’s construction can be exploited (some of these are discussed in the context of relational
database queries in Spivak [2013]), but for our application to generative AI, we are primarily interested in the associated
class of lifting problems that can be used to define queries and build foundation models.

Definition 47. If S is a collection of morphisms in category C, a morphism f : A→ B has the left lifting property
with respect to S if it has the left lifting property with respect to every morphism in S. Analogously, we say a morphism
p : X → Y has the right lifting property with respect to S if it has the right lifting property with respect to every
morphism in S.

We now turn to sketch some examples of the application of lifting problems for generative AI. Many problems in
causal inference on graphs involve some particular graph property. To formulate it as a lifting problem, we will use the
following generic template, following the initial application of lifting problems to database queries proposed by Spivak
[2013].

Q
∫
δ

R C
f

µ

ph

ν

Here, Q is a generic query that we want answered, which could range from a database query, as in the original setting
studied by Spivak [2013], but more interestingly, it could be a particular graph property relating to generative AI.
By suitably modifying the base category, the lifting problem formulation can be used to encode a diverse variety of
problems in generative AI inference. R represents a fragment of the complete generative AI model C, and δ is the
category of elements defined above. Finally, h gives all solutions to the lifting problem.

Example 15. Consider the category of directed graphs defined by the category G, where Ob(G) = {V, E}, and the
morphisms of G are given as HomG = {s, t}, where s : E → V and t : E → V define the source and terminal nodes of
each vertex. Then, the category of all directed graphs is precisely defined by the category of all functors δ : G → Set.
Any particular graph is defined by the functor X : G → Set, where the function X(s) : X(E) → X(V) assigns to
every edge its source vertex. For causal inference, we may want to check some property of a graph, such as the property
that every vertex in X is the source of some edge. The following lifting problem ensures that every vertex has a source

40

A PREPRINT - FEBRUARY 16, 2024

edge in the graph. The category of elements
∫
δ shown below refers to a construction introduced by Grothendieck,

which will be defined in more detail later.

V (•)
∫
δ

{E(•) s−→ V (•)} G

f

µ

p
h

ν

Example 16. As another example of the application of lifting problems to causal inference, let us consider the
problem of determining whether two causal DAGs, G1 and G2 are Markov equivalent Andersson et al. [1997]. A key
requirement here is that the immoralities of G1 and G2 must be the same, that is, if G1 has a collider A→ B ← C,
where there is no edge between A and C, then G2 must also have the same collider, and none others. We can formulate
the problem of finding colliders as the following lifting problem. Note that the three vertices A, B and C are bound to
an actual graph instance through the category of elements

∫
δ (as was illustrated above), using the top right morphism

µ. The bottom left morphism f binds these three vertices to some collider. The bottom right morphism ν requires
this collider to exist in the causal graph G with the same bindings as found by µ. The dashed morphisms h finds all
solutions to this lifting problem, that is, all colliders involving the vertices A, B and C.

{A(•), B(•), C(•)}
∫
δ

{A(•)→ B(•)← C(•)} G
f

µ

p
h

ν

If the category of elements is defined by a functor mapping a database schema into a table of instances, then the
associated lifting problem corresponds to familiar problems like SQL queries in relational databases Spivak [2013].
In our application, we can use the same machinery to formulate causal inference queries by choosing the categories
appropriately. To complete the discussion, we now make the connection between universal arrows and the core notion
of universal representations via the Yoneda Lemma.

6.6 Kan Extension

It is well known in category theory that ultimately every concept, from products and co-products, limits and co-limits,
and ultimately even the Yoneda Lemma (see below), can be derived as special cases of the Kan extension [MacLane,
1971]. Kan extensions intuitively are a way to approximate a functor F so that its domain can be extended from a
category C to another categoryD. Because it may be impossible to make commutativity work in general, Kan extensions
rely on natural transformations to make the extension be the best possible approximation to F along K. We want to
briefly show Kan extensions can be combined with the category of elements defined above to construct “migration
functors” that map from one generative AI model into another. These migration functors were originally defined
in the context of database migration Spivak [2013], but can also be applied to generative AI inference. By suitably
modifying the category of elements from a set-valued functor δ : C → Set, to some other category, such as the category
of topological spaces, namely δ : C → Top, we can extend the migration functors into solving more abstract generative
AI inference questions. Here, for simplicity, we restrict our focus to Kan extensions for migration functors over the
category of elements defined over instances of a generative AI model.

Definition 48. A left Kan extension of a functor F : C → E along another functor K : C → D, is a func-
tor LanKF : D → E with a natural transformation η : F → LanF ◦ K such that for any other such pair
(G : D → E , γ : F → GK), γ factors uniquely through η. In other words, there is a unique natural transformation
α : LanF =⇒ G.

C E

D

K

F

LanKF

G

∃!
η

41

A PREPRINT - FEBRUARY 16, 2024

A right Kan extension can be defined similarly. To understand the significance of Kan extensions for causal inference,
we note that under a causal intervention, when a causal category S gets modified to T , evaluating the modified generative
AI model over a database of instances can be viewed as an example of Kan extension.

Let δ : S → Set denote the original generative AI model defined by the category S with respect to some dataset. Let
ϵ : T → Set denote the effect of some change in the category S to T , such as deletion of a morphism, as illustrated in
Figure 23. Intuitively, we can consider three cases: the pullback ∆F along F , which maps the effect of a deletion back
to the original model, the left pushforward ΣF and the right pushforward

∏
F , which can be seen as adjoints to the

pullback ∆F .

B

A C

B

A C

Category of InstancesCategory of Instances

Original Causal Model S Causal Model under Intervention
Causal Migration Functors

Figure 23: Kan extensions are useful in modeling the effects of modifications of generative AI models, such as deletion
of morphisms, where in this toy example of a model over three objects A,B, and C, the object A is intervened upon,
eliminating the morphism into it from object B.

Following Spivak [2013], we can define three migration functors that evaluate the impact of a modification of a
generative AI model with respect to a dataset of instances.

1. The functor ∆F : ϵ→ δ sends the functor ϵ : T → Set to the composed functor δ ◦ F : S → Set.
2. The functor ΣF : δ → ϵ is the left Kan extension along F , and can be seen as the left adjoint to ∆F .

The functor
∏

F : δ → ϵ is the right Kan extension along F , and can be seen as the right adjoint to ∆F .

To understand how to implement these functors, we use the following proposition that is stated in Spivak [2013] in the
context of database queries, which we are restating in the setting of generative AI.
Theorem 6. Let F : S → T be a functor. Let δ : S → Set and ϵ : T → Set be two set-valued functors, which can be
viewed as two instances of a generative AI model defined by the category S and T . If we view T as the generative AI
category that results from a modification caused by some modification on S (e.g., deletion of an edge), then there is a
commutative diagram linking the category of elements between S and T .

∫
δ

∫
ϵ

S T

πδ πϵ

F

Proof. To check that the above diagram is a pullback, that is,
∫
δ ≃ S ×T

∫
δ, or in words, the fiber product, we can

check the existence of the pullback component wise by comparing the set of objects and the set of morphisms in
∫
δ

with the respective sets in S ×T

∫
ϵ.

For simplicity, we defined the migration functors above with respect to an actual dataset of instances. More generally,
we can compose the set-valued functor δ : S → Set with a functor T : Set→ Top to the category of topological
spaces to derive a Kan extension formulation of the definition of an intervention. We discuss this issue in Section 8 on
homotopy in generative AI.

6.7 The Metric Yoneda Lemma

One disadvantage of current generative AI systems, such as large language models, is that they are based a symmetric
model of distances. The Yoneda Lemma MacLane [1971], one of the most celebrated results in category theory, can be

42

A PREPRINT - FEBRUARY 16, 2024

used to build universal representers in non-symmetric generalized metric spaces, leading to a metric Yoneda Lemma
Bonsangue et al. [1998]. Stated in simple terms, the Yoneda Lemma states the mathematical objects are determined (up
to isomorphism) by the interactions they make with other objects in a category. We will show the surprising results of
applying this lemma to problems involving computing distances between objects in a metric space.

A general principle in machine learning (see Figure 24) to discriminate two objects (e.g., probability distributions,
images, text documents etc.) is to compare them in a suitable metric space. We now describe a category of generalized
metric spaces, where a metric form of the Yoneda Lemma gives us surprising insight. Often, in category theory, we
want to work in an enriched category. One of the most interesting ways to design categories for applications in AI and
ML is to look to augment the basic structure of a category with additional properties. For example, the collection of
morphisms from an object x to an object y in a category C often has additional structure, besides just being a set. Often,
it satisfies additional properties, such as forming a space of some kind such as a vector space or a topological space. We
can think of such categories as enriched categories that exploit some desirable properties. We will illustrate one such
example of primary importance to applications in AI and ML that involve measuring the distance between two objects.
A distance function is assumed to return some non-negative value between 0 and∞, and we will view distances as
defining enriched [0,∞] categories. We summarize some results here from Bonsangue et al. [1998].

Images, Text documents,
Probability Distributions…

Compute distances
between objects

Figure 24: Many algorithms in AI and ML involve computing distances between objects in a metric space. Interpreting
distances categorically leads to powerful ways to reason about generalized metric spaces.

Figure 24 illustrates a common motif among many AI and ML algorithms: define a problem in terms of computing
distances between a group of objects. Examples of objects include points in n-dimensional Euclidean space, probability
distributions, text documents represented as strings of tokens, and images represented as matrices. More abstractly, a
generalized metric space (X, d) is a set X of objects, and a non-negative function X(−,−) : X ×X → [0,∞] that
satisfies the following properties:

1. X(x, x) = 0: distance between the same object and itself is 0.
2. X(x, z) ⩽ X(x, y) +X(y, z): the famous triangle inequality posits that the distance between two objects

cannot exceed the sum of distances between each of them and some other intermediate third object.

In particular, generalized metric spaces are not required to be symmetric, or satisfy the property that if the distance
between two objects x and y is 0 implies x must be identical to y, or finally that distances must be finite. These
additional three properties listed below are what defines the usual notion of a metric space:

1. If X(x, y) = 0 and X(y, x) = 0 then x = y.
2. X(x, y) = X(y, x).
3. X(x, y) <∞.

43

A PREPRINT - FEBRUARY 16, 2024

In fact, we can subsume the previous discussion of causal inference under the notion of generalized metric spaces by
defining a category around preorders (P,⩽), which are relations that are reflexive and transitive, but not symmetric.
Causal inference fundamentally involves constructing a preorder over the set of variables in a domain. Here are some
examples of generalized metric spaces:

1. Any preorder (P,⩽) such that all p, q, r ∈ P , if p ⩽ q and q ⩽ r, then, p ⩽ r, and p ⩽ p, where

P (p, q) =

{
0 if p ⩽ q
∞ if p ̸⩽ q

}

2. The set of strings Σ∗ over some alphabet defined as the set Σ where the distance between two strings u and v
is defined as

Σ∗(u, v) =

{
0 if u is a prefix of v

2−n otherwise where n is the longest common prefix of u and v

}

3. The set of non-negative distances [0,∞] where the distance between two objects u and v is defined as

[0,∞](u, v) =

{
0 if u ⩾ v

v − u otherwise where r < s

}

4. The powerset P(X) of all subsets of a standard metric space, where the distance between two subsets
V,W ⊆ X is defined as

P(X)(V,W) = inf{ϵ > 0|∀v ∈ V,∃w ∈W,X(v, w) ⩽ ϵ}
which is often referred to as the non-symmetric Hausdorff distance.

Generalized metric spaces can be shown to be [0,∞]-enriched categories as the collection of all morphisms between
any two objects itself defines a category. In particular, the category [0,∞] is a complete and co-complete symmetric
monoidal category. It is a category because objects are the non-negative real numbers, including∞, and for two objects
r and s in [0,∞], there is an arrow from r to s if and only if r ⩽ s. It is complete and co-complete because all equalizers
and co-equalizers exist as there is at most one arrow between any two objects. The categorical product r ⊓ s of two
objects r and s is simply max{r, s}, and the categorical coproduct r ⊔ s is simply min{r, s}. More generally, products
are defined by supremums, and coproducts are defined by infimums. Finally, the monoidal structure is induced by
defining the tensoring of two objects through “addition":

+ : [0,∞]× [0,∞]→ [0,∞]

where r + s is simply their sum, and where as usual r +∞ =∞+ r =∞.

The category [0,∞] is also a compact closed category, which turns out to be a fundamentally important property, and
can be simply explained in this case as follows. We can define an “internal hom functor" [0,∞](−,−) between any
two objects r and s in [0,∞] the distance [0,∞] as defined above, and the co pre-sheaf [0,∞](t,−) is right adjoint to
t+− for any t ∈ [0,∞].

Theorem 7. For all r, s and t ∈ [0,∞],

t+ s ⩾ r if and only if s ⩾ [0,∞](t, r)

We will explain the significance of compact closed categories for reasoning about AI and ML systems in more detail
later, but in particular, we note that reasoning about feedback requires using compact closed categories to represent
“dual" objects that are diagrammatically represented by arrows that run in the “reverse" direction from right to left (in
addition to the usual convention of information flowing from left to right from inputs to outputs in any process model).

We can also define a category of generalized metric spaces, where each generalized metric space itself as an object, and
for the morphism between generalized metric spaces X and Y , we can choose a non-expansive function f : X → Y
which has the contraction property, namely

Y (f(x), f(y)) ⩽ c ·X(x, y)

44

A PREPRINT - FEBRUARY 16, 2024

where 0 < c < 1 is assumed to be some real number that lies in the unit interval. The category of generalized metric
spaces will turn out to be of crucial importance in this paper as we will use a central result in category theory – the
Yoneda Lemma – to give a new interpretation to distances.

Finally, let us state a “metric" version of the Yoneda Lemma specifically for the case of [0,∞]-enriched categories in
generalized metric spaces:
Theorem 8. Bonsangue et al. [1998] (Yoneda Lemma for generalized metric spaces): Let X be a generalized metric
space. For any x ∈ X , let

X(−, x) : Xop → [0,∞], y 7−→ X(y, x)

Intuitively, what the generalized metric version of the Yoneda Lemma is stating is that it is possible to represent an
element of a generalized metric space by its co-presheaf, exactly analogous to what we will see below in the next
section for causal inference! If we use the notation

X̂ = [0,∞]X
op

to indicate the set of all non-expansive functions from Xop to [0,∞], then the Yoneda embedding defined by y 7−→
X(y, x) is in fact a non-expansive function, and itself an element of X̂! Thus, it follows from the general Yoneda
Lemma that for any other element ϕ in X̂ ,

X̂(X(−, x), ϕ) = ϕ(x)

Another fundamental result is that the Yoneda embedding for generalized metric spaces is an isometry. Again, this is
exactly analogous to what we see below for causal inference, which we will denote as the causal reproducing property.

Theorem 9. The Yoneda embedding y : X → X̂ , defined for x ∈ X by y(x) = X(−, x) is isometric, that is, for all
x, x′ ∈ X , we have:

X(x, x′) = X̂(y(x), y(x′)) = X̂(X(−, x), X(−, x′))

Once again, we will see a remarkable resemblance of this result to the Causal Representer Theorem below. With the
metric Yoneda Lemma in hand, we can now define a framework for solving static UIGs in generalized metric spaces.
Definition 49. Two objects c and d are isomorphic in a generalized metric space category X if they are isometrically
mapped into the category X̂ by the Yoneda embedding c → X(−, c) and d → X(−, d) such that X(c, d) =

X̂(X(−, c), X(−, d)), where they can be defined isomorphically by a suitable pair of suitable natural transformations.

6.8 Adjoint Functors

Adjoint functors naturally arise in a number of contexts, among the most important being between “free" and “forgetful"
functors. Let us consider a canonical example that is of prime significance in many applications in AI and ML.

Figure 25 provides a high level overview of the relationship between a category of statistical generative AI models and
a category of causal generative AI models that can be seen as being related by a pair of adjoint “forgetful-free" functors.
A statistical model can be abstractly viewed in terms of its conditional independence properties. More concretely, the
category of separoids, defined in Section 2, consists of objects called separoids (S,⩽), which are semilattices with
a preordering ⩽ where the elements x, y, z ∈ S denote entities in a statistical model. We define a ternary relation
(• ⊥ •|•) ⊆ S × S × S, where (x ⊥ y|z) is interpreted as the statement x is conditionally independent of y given z
to denote a relationship between triples that captures abstractly the property that occurs in many applications in AI
and ML. For example, in statistical ML, a sufficient statistic T (X) of some dataset X , treated as a random variable, is
defined to be any function for which the conditional independence relationship (X ⊥ θ|T (X)), where θ ∈ Rk denotes
the parameter vector of some statistical model P (X) that defines the true distribution of the data. Similarly, in causal
inference, (x ⊥ y|z)⇒ p(x, y, z) = p(x|z)p(y|z) denotes a statement about the probabilistic conditional independence
of x and y given z. In causal inference, the goal is to recover a partial order defined as a directed acyclic graph (DAG)
that ascribes causality among a set of random variables from a dataset specifying a sample of their joint distribution. It
is well known that without non-random interventions, causality cannot be inferred uniquely, since because of Bayes
rule, there is no way to distinguish causal generative AI models such as x → y → z from the reverse relationship
z → y → x. In both these models, x ⊥ z|y and because of Bayes inversion, one model can be recovered from the other.

45

A PREPRINT - FEBRUARY 16, 2024

Figure 25: Adjoint functors provide an elegant characterization of the relationship between the category of statistical
generative AI models and that of causal generative AI models. Statistical models can be viewed as the result of applying
a “forgetful" functor to a causal model that drops the directional structure in a causal model, whereas causal models can
be viewed as “words" in a “free" algebra that results from the left adjoint functor to the forgetful functor.

Category of
Statistical
Models

Category of
Causal
Models

F

U

We can define a “free-forgetful" pair of adjoint functors between the category of conditional independence relationships,
as defined by separoid objects, and the category of causal generative AI models parameterized by DAG models.

We first review some basic material relating to adjunctions defined by adjoint functors, before proceeding to describe
the theory of monads, as the two are intimately related. Our presentation of adjunctions and monads is based on Riehl’s
excellent textbook on category theory Riehl [2017] to which the reader is referred to for a more detailed explanation.
Adjunctions are defined by an opposing pair of functors F : C ↔ D : G that can be defined more precisely as follows.

Definition 50. An adjunction consists of a pair of functors F : C → D and G : D → C, where F is often referred
to left adjoint and G is referred to as the right adjoint, that result in the following isomorphism relationship holding
between their following sets of homomorphisms in categories C and D:

D(Fc, d) ≃ C(c,Gd)

We can express the isomorphism condition more explicitly in the form of the following commutative diagram:

D(Fc, d) C(c,Gd)

D(Fc, d′) C(c,Gd′)

≃

k∗ Gk∗

≃

Here, k : d→ d′ is any morphism in D, and k∗ denotes the “pullback" of k with the mapping f : Fc→ d to yield the
composite mapping k ◦ f . The adjunction condition holds that the transpose of this composite mapping is equal to the
composite mapping g : c→ Gd with Gk : Gd→ Gd′. We can express this dually as well, as follows:

D(Fc, d) C(c,Gd)

D(Fc′, d) C(c′, Gd′)

≃

Fh∗ h∗

≃

where now h : c′ → c is a morphism in C, and h∗ denote the “pushforward" of h. Once again, the adjunction condition
is a statement that the transpose of the composite mapping f ◦ Fh : Fc′ → d is identical to the composite of the
mappings h : c→ c′ with f : c→ Gd.

It is common to denote adjoint functors in this turnstile notation, indicating that F : C → D is left adjoint to
G : D → C, or more simply as F ⊢ G.

46

A PREPRINT - FEBRUARY 16, 2024

D C.
G

F

⊣

We can use the concept of universal arrows introduced in Section 2 to give more insight into adjoint functors. The
adjunction condition for a pair of adjoint functors F ⊢ G

D(Fc, d) ≃ C(c,Gd)

implies that for any object c ∈ C, the object Fc ∈ D represents the functor C(c,G−) : D → Set. Recall from the
Yoneda Lemma that the natural isomorphism D(Fc,−) ≃ C(c,G−) is determined by an element of C(c,GFc), which
can be viewed as the transpose of 1Fc. Denoting such elements as ηc, they can be assembled jointly into the natural
transformation η : 1C → GF . Below we will see that this forms one of the conditions for an endofunctor to define a
monad.
Theorem 10. The unit η : 1C → GF is a natural transformation defined by an adjunction F ⊢ G, whose component
ηc : c→ GFc is defined to be the transpose of the identity morphism 1Fc.

Proof: We need to show that for every f : c→ c′, the following diagram commutes, which follows from the definition
of adjunction and the isomorphism condition that it imposes, as well as the obvious commutativity of the second
transposed diagram below the first one.

c GFc

c′ GFc′

ηc

f GFf

ηc′

Fc Fc

Fc′ Fc′

1Fc

Ff Ff

1Fc′

The dual of the above theorem leads to the second major component of an adjunction.
Theorem 11. The counit ϵ : FG⇒ 1D is a natural transformation defined by an adjunction F ⊢ G, whose components
ϵc : FGd→ d at d is defined to be the transpose of the identity morphism 1Gd.

Adjoint functors interact with universal constructions, such as limits and colimits, in ways that turn out to be important
for a variety of applications in AI and ML. We state the main results here, but refer the reader to Riehl [2017] for
detailed proofs. Before getting to the general case, it is illustrative to see the interaction of limits and colimits with
adjoint functors for preorders. Recall from above that separoids are defined by a preorder (S,⩽) on a join lattice
of elements from a set S. Given two separoids (S,⩽S) and (T,⩽T), we can define the functors F : S → T and
G : T → S to be order-preserving functions such that

Fa ⩽T b if and only if a ⩽S Gb

Such an adjunction between preorders is often called a Galois connection. For preorders, the limit is defined by the
meet of the preorder, and the colimit is defined by the join of the preorder. We can now state a useful result. For a fuller
discussion of preorders and their applications from a category theory perspective, see Fong and Spivak [2018].
Theorem 12. Right adjoints preserve meets in a preorder: Let f : P → Q be left adjoint to g : Q → P ,
where P,Q are both preorders, and f and g are monotone order-preserving functions. For any subset A ⊆ Q,
let g(A) = {g(a)|a ∈ Q}. If A has a meet

∧
A ∈ Q, then g(A) has a meet ∧g(A) ∈ P , and we can see that

g(∧A) ≃ ∧
g(A), that is, right adjoints preserve meets. Similarly, left adjoints preserve meets, so that if A ⊂ P such

that
∨
A ∈ P then f(A) has a join ∨f(A) ∈ Q and we can set f(∨A) ≃ ∨

f(A), so that left adjoints preserve joins.

Proof: The proof is not difficult in this special case of the category being defined as a preorder. If f : P → Q and
g : Q → P are monotone adjoint maps on preorders P,Q, and A ⊂ Q is any subset such that its meet is m = ∧A.
Since g is monotone, g(m) ⩽ g(a), ∀a ∈ A, hence it follows that g(m) ⩽ g(A). To show that g(m is the greatest
lower bound, if we take any other lower bound b ⩽ g(a), ∀a ∈ A, then we want to show that b ⩽ g(m). Since f and g
are adjoint, for every p ∈ P, q ∈ Q, we have

47

A PREPRINT - FEBRUARY 16, 2024

p ⩽ g(f(p)) and f(g(q)) ⩽ q

Hence, f(b) ⩽ a for all a ∈ A, which implies f(b) is a lower bound for A on Q. Since the meet m is the greatest lower
bound, we have f(b) ⩽ m. Using the Galois connection, we see that b ⩽ g(m), and hence showing that g(m) is the
greatest lower bound as required. An analogous proof follows to show that left adjoints preserve joins.

We can now state the more general cases for any pair of adjoint functors, as follows.
Theorem 13. A category C admits all limits of diagrams indexed by a small category J if and only if the constant
functor ∆ : C → CJ admits a right adjoint, and admits all colimits of J -indexed diagrams if and only if ∆ admits a
left adjoint.

By way of explanation, the constant functor c : J → C sends every object of J to c and every morphism of J to the
identity morphism 1c. Here, the constant functor ∆ sends every object c of C to the constant diagram ∆c, namely
the functor that maps each object i of J to the object c and each morphism of J to the identity 1c. The theorem
follows from the definition of the universal properties of colimits and limits. Given any object c ∈ C, and any diagram
(functor) F ∈ CJ , the set of morphisms CJ (∆c, F) corresponds to the set of natural transformations from the constant
J -diagram at c to the diagram F . These natural transformations precisely correspond to the cones over F with summit
c in the definition given earlier in Section 2. It follows that there is an object limF ∈ C together with an isomorphism

CJ (∆c, F) ≃ C(c, limF)

We can now state the more general result that we showed above for the special case of adjoint functors on preorders.
Theorem 14. Right adjoints preserve limits, whereas left adjoints preserve colimits.

7 The Coend and End of GAIA: Integral Calculus for Generative AI

In this section, we introduce a powerful abstract integral calculus for generative AI based on the theory of coends and
ends Yoneda [1960], Loregian [2021].

We build on two foundational results in category theory: the metric Yoneda Lemma Bonsangue et al. [1998] shows
how to construct universal representations of generative AI models in generalized metric spaces where symmetry does
not hold; and a categorical integral calculus also introduced by Yoneda Yoneda [1960] based on (co)ends, (initial)
final objects in a category of (co)wedges. Loregian [2021] provides an excellent book-length treatment of Yoneda’s
categorical integral calculus of (co)ends. We define two classes of generative AI modes based on coends and ends.
Coend generative AI models are defined by dinatural transformations between bifunctors F : Cop × C → D that
combine a contravariant and covariant action. Here, C represents a generic category of generative AI models, modeled
as a twisted arrow category. The co-domain category D is the category Meas of measurable spaces for generative
AI models based on ends, and the category Top of topological spaces for the generative AI models based on coends.
Recent theoretical results have shown that the traditional Transformer model is a universal approximator of sequences,
despite the restriction of permutation equivariance, due to the use of absolute positional encoding of input tokens, which
leads to poor generalization on long sequences. Modifications, such as relative positional encoding, impose limitations
on the universal approximability of the traditional Transformer. We conjecture that coend generative AI models provide
a non-symmetric measure of distance, and furthermore, capture higher-order interactions between tokens using the
structure of simplicial sets.

Figure 26 illustrates the two fundamental insights developed by Yoneda that form the theoretical core of our GAIA
framework. The celebrated Yoneda Lemma MacLane [1971] asserts that objects in a category C can be defined purely
in terms of their interactions with other objects. This interaction is modeled by contravariant or covariant functors:

C(−, x) : Cop → Sets, C(x,−) : C → Sets

The Yoneda embedding x→ C(−, x) is sometimes denoted asよ(x) for the Japanese Hiragana symbol for yo, serves
as a universal representer, and generalizes many other similar ideas in machine learning, such as representers K(−, x)
in kernel methods Schölkopf and Smola [2002] and representers of causal information Mahadevan [2023]. There are
many variants of the Yoneda Lemma, including versions that map the functors C(−, x) and C(x,−) into an enriched
category. In particular, Bradley et al. [2022] contains an extended discussion of the use of an enriched Yoneda Lemma
to model natural language interactions that result from using a large language model. In particular, we build on the
metric Yoneda Lemma Bonsangue et al. [1998] that defines a universal representer in generalized metric spaces, where

48

A PREPRINT - FEBRUARY 16, 2024

Final ObjectInitial Object

EndsCoends

<latexit sha1_base64="mGyGoRyPrwMgcXGB1KpI1Lqlsj0=">AAACtnicbVFdb9MwFHXC1yhfHTzyckVFNRB0zZC2PQ4qIR6HRLehplQ37k1q5tiZ7UxEUX4iL7zxb3DaII2NK1k6PvfjXB8nhRTWjce/g/DW7Tt3723d7z14+Ojxk/720xOrS8NpyrXU5ixBS1IomjrhJJ0VhjBPJJ0m55M2f3pJxgqtvriqoHmOmRKp4Og8tej/jBPKhKrpQqExWL1uenGe6B/1e+D6Eo1A5SAtFXfaNADDj0PY5IUFQ17KknLo1UCkaQNx3LULZ8FrUKZNBToFkpT7SutLYBgLP7SdZEVOF7C+Tnb4m7ev4C/Hdyd+WKe1QguoQCjhBErQyXfiroFeTGp5ZXPoLfqD8Wi8DrgJog4MWBfHi/6veKl52a7GJVo7i8aFm9donOCSvBelpQL5OWY081BhTnZer21v4KVnlpBq449/wZq92lFjbm2VJ74yR7ey13Mt+b/crHTp4bwWqigdKb4RSksJTkP7h7AUxhsgKw+QG28KB75Cg9z5n25NiK4/+SY42RtF+6P9z3uDow+dHVvsOXvBdljEDtgR+8SO2ZTx4F3wNUgCHh6G30IKs01pGHQ9z9g/ERZ/AK3h1Jg=</latexit>

A covariant functor F is representable i↵

its category of elements
R

F '
Z

C(c,�) ' c/C

has an initial object

<latexit sha1_base64="jzWsu1BqAY6EXlSBSFTDdQkgmfc=">AAACqnicbVFNb9NAEF2brxK+Ahy5jIgIBZXI7qFwLFSquCAVRJKiOIrG63GydL3r7q4rLCs/jr/AjX/TdeJDaRnJ0vPM2/fezqalFNZF0d8gvHX7zt17O/d7Dx4+evyk//TZxOrKcBpzLbU5TdGSFIrGTjhJp6UhLFJJ0/TsqJ1PL8hYodV3V5c0L3CpRC44Ot9a9H8nKS2FauhcoTFYv133kiLVv5qPwLVyBi/QCFQO8kpxp80aYHg8hC1HWDDk7Swph94RRJ6vIUk6CeEseB9aalODzoEkFZ5pPQWGifCirZIVBZ3D5vdo990ef+MFOv0VWkDIhUIJOv1J3Pl0pLIraaG36A+iUbQpuAniDgxYVyeL/p8k07xqo3CJ1s7iqHTzBo0TXJJ3qCyVyM9wSTMPFRZk581m1Wt45TsZ5Nr4zyfedK+eaLCwti5SzyzQrez1Wdv832xWufzDvBGqrBwpvjXKKwlOQ/tukAnj7y9rD5Ab4bMCX6FB7vzrtkuIr1/5Jpjsj+KD0cHX/cHhp24dO+wFe8l2Wczes0P2mZ2wMePB6+BLMAmm4V74LfwRzrbUMOjOPGf/VJhdAqwq0Lc=</latexit>

A contravariant functor F is representable i↵

its category of elements
R

F '
Z

C(�, c)

has a final object

<latexit sha1_base64="+kA51W4EFllXDOWAaPS3arCFGnA=">AAACV3icbZFNaxsxEIa1my/XSRunPfYiagqlB7Obg1NyCkkoPTpQJwGvY2blWVtEK22l2TZm2T9Zeslf6aWR7aWkSQcEL898aPQqLZR0FEX3QbixubW903rR3t17+Wq/c/D60pnSChwKo4y9TsGhkhqHJEnhdWER8lThVXp7tsxffUfrpNFfaVHgOIeZlpkUQB5NOjpJcSZ1hd80WAuLj3U7yVNzV53KrNSCjHU1T/jnY14lAhQ/q28qU3hEMkf3F/LEytmc/Ajzo4HnNW8nqKePRvP2pNONetEq+HMRN6LLmhhMOj+TqRFljpqEAudGcVTQuAJLUij0y5YOCxC3MMORlxr8VuNq5UvN33sy5Zmx/mjiK/q4o4LcuUWe+socaO6e5pbwf7lRSdmncSV1URJqsb4oKxUnw5cm86m0KEgtvABhpd+VizlYEOS/YmlC/PTJz8XlYS/u9/oXh92T08aOFnvL3rEPLGZH7IR9YQM2ZIL9Yr+DjWAzuA/+hNtha10aBk3PG/ZPhAcP6Au0VA==</latexit>

Bifunctors F : Cop ⇥ C ! D

Geometric
Models Probabilistic

 Models

<latexit sha1_base64="uP0YcmuERp/1K40WkS/F4ZhN2s0=">AAACGnicbVBNS8NAEN34WeNX1KOXxSJUkZL0UD0WBfFYwX5AW8tmO22XbjZxdyOU0N/hxb/ixYMi3sSL/8ZN20NtfTDweG+GmXl+xJnSrvtjLS2vrK6tZzbsza3tnV1nb7+qwlhSqNCQh7LuEwWcCahopjnUIwkk8DnU/MFV6tceQSoWijs9jKAVkJ5gXUaJNlLb8Zo+9JhI4EEQKcnwdGQ3mdD3FF/n6Bk9sZsgOjMutttO1s27Y+BF4k1JFk1RbjtfzU5I4wCEppwo1fDcSLcSIjWjHMy+WEFE6ID0oGGoIAGoVjJ+bYSPjdLB3VCaEhqP1dmJhARKDQPfdAZE99W8l4r/eY1Ydy9aCRNRrEHQyaJuzLEOcZoT7jAJVPOhIYRKZm7FtE8kodqkmYbgzb+8SKqFvFfMF28L2dLlNI4MOkRHKIc8dI5K6AaVUQVR9IRe0Bt6t56tV+vD+py0LlnTmQP0B9b3L49ln+s=</latexit>Z c

F (c, c)

<latexit sha1_base64="RoH33I3hcuQRNsP7MqV5y+2yZrE=">AAACGnicbVBNS8NAEN3Urxq/qh69LBahipSkh+qxKIjHCvYDmlI222m7dLOJuxuhhP4OL/4VLx4U8SZe/Ddu2h5q64OBx3szzMzzI86UdpwfK7Oyura+kd20t7Z3dvdy+wd1FcaSQo2GPJRNnyjgTEBNM82hGUkggc+h4Q+vU7/xCFKxUNzrUQTtgPQF6zFKtJE6Odfzoc9EAg+CSElGZ2PbY0J3KL4p0HN6ansgunMutju5vFN0JsDLxJ2RPJqh2sl9ed2QxgEITTlRquU6kW4nRGpGOZh9sYKI0CHpQ8tQQQJQ7WTy2hifGKWLe6E0JTSeqPMTCQmUGgW+6QyIHqhFLxX/81qx7l22EyaiWIOg00W9mGMd4jQn3GUSqOYjQwiVzNyK6YBIQrVJMw3BXXx5mdRLRbdcLN+V8pWrWRxZdISOUQG56AJV0C2qohqi6Am9oDf0bj1br9aH9TltzVizmUP0B9b3L5EDn+w=</latexit>Z

c

F (c, c)

Distances in generalized metric spaces

Figure 26: The theoretical foundation of GAIA is based on two celebrated results of Yoneda. The first (top row) shows
that Yoneda embeddingsよ(x) = C(−, x) are universal representers of objects in a category. We use this result to
define universal representers of generative AI models. The second (bottom row) is based on Yoneda’s categorical
“integral calculus" using coends and ends Yoneda [1960], which defines two classes of generative AI models ranging
from probabilistic models to topological models.

distances are non-symmetric. The second major insight from Yoneda Yoneda [1960] is based on a powerful concept of
the coend and end of a bifunctor F : Cop × C → D that combines both a contravariant and a covariant action. We
build on the insight that probabilistic generative models, or using distances in some metric space, correspond to final or
initial objects in a category of wedges, defined by bifunctors, and the arrows are dinatural transformations. These initial
or terminal objects correspond to coends and ends. Bifunctors F : Cop × C → D can be used to construct universal
representers of distance functions in generalized metric spaces leading to a “metric Yoneda Lemma" Bonsangue et al.
[1998].

Recent universal approximation results Yun et al. [2020] have shown that the category CT of transformers is dense
in the parent category of all permutation-equivariant functions on (compact) vector spaces CPE defined by vectors
x ∈ Rn×d over arbitrary continuous permutation equivariant functions. We define a twisted arrow category CTW

PE ,
which has as its objects the equivariant maps of CPE , and commutative diagrams over pairs of equivariant maps f, g
in CPE as its morphisms. To define the (co)ends of Transformer models, we define a category of wedges defined
by bifunctors F : (CTW

PE)op × CTW
PE → D that contravariantly and covariantly map Transformer models into D, the

codomain category, which may be the category Meas of measurable spaces, or the category of distances [0,∞] defined
by lp norms over permutation equivariant functions. We use the metric Yoneda Lemma to construct a universal
representer of Transformer models in a generalized metric space. Building on Yoneda’s categorical calculus of (co)ends,
we define the end

∫
c
F (c, c) of Transformer models as the final object in the category of wedges, whereas the coend∫ c

F (c, c) of Transformer modes are defined as the initial object in the category of cowedges, both defined over
dinatural transformations between bifunctors over transformer models. Ends induce probabilistic generative models
over sequences of tokens implemented as Transformer models, whereas coends lead to Geometric Transformer Models
(GTMs), a new class of generative sequence models defined by the topological embedding of (fuzzy) simplicial sets.

7.1 Ends and Coends

We will analyze generative AI models in the category of wedges, which are defined by a collection of objects comprised
of bifunctors F : Cop × C → D, and a collection of arrows between each pair of bifunctors F,G called a dinatural
transformation (as an abbreviation for diagonal natural transformation). We will see below that the initial and terminal
objects in the category of wedges correspond to a beautiful idea first articulated by Yoneda called the coend or end
Yoneda [1960]. Loregian [2021] has an excellent treatment of coend calculus, which we will use below.

Definition 51. Given a pair of bifunctors F,G : Cop × C → D, a dinatural transformation is defined as follows:

49

A PREPRINT - FEBRUARY 16, 2024

F (c′, c)

F (c, c) F (c′, c′)

G(c, c) G(c′, c′)

G(c, c′)

F (f,c) F (c′,f)

G(c,f) G(f,c)

As Loregian [2021] observes, just as a natural transformation interpolates between two regular functors F and G by
filling in the gap between their action on a morphism Ff and Fg on the codomain category, a dinatural transformation
“fills in the gap" between the top of the hexagon above and the bottom of the hexagon.

We can define a constant bifunctor ∆d : Cop × C → D by the object it maps everything to, namely the input pair of
objects (c, c′)→ d are both mapped to the object d ∈ D, and the two input morphisms (f, f ′)→ 1d are both mapped
to the identity morphism on d. We can now define wedges and cowedges.
Definition 52. A wedge for a bifunctor F : Cop × C ⇒ D is a dinatural transformation ∆d → F from the constant
functor on the object d ∈ D to F . Dually, we can define a cowedge for a bifunctor F by the dinatural transformation
P ⇒ ∆d.

We can now define a category of wedges, each of whose objects are wedges, and for arrows, we choose arrows in the
co-domain category that makes the diagram below commute.
Definition 53. Given a fixed bifunctor F : Cop × C → D, we define the category of wedgesW(F) where each object
is a wedge ∆d ⇒ F and given a pair of wedges ∆d ⇒ F and ∆′

d ⇒ F , we choose an arrow f : d→ d′ that makes the
following diagram commute:

d d′

F (c, c)

f

αcc α′
cc

Analogously, we can define a category of cowedges where each object is defined as a cowedge F ⇒ ∆d.

With these definitions in place, we can once again define the universal property in terms of initial and terminal objects.
In the category of wedges and cowedges, these have special significance for formulating and solving UIGs, as we will
see in the next section.
Definition 54. Given a bifunctor F : Cop × C → D, the end of F consists of a terminal wedge ω : end(F)⇒ F . The
object end(F) ∈ D is itself called the end. Dually, the coend of F is the initial object in the category of cowedges
F ⇒ coend(F), where the object coend(F) ∈ D is itself called the coend of F .

Remarkably, probabilities can be formally shown to define ends of a category Avery [2016], and topological embeddings
of datasets, as implemented in popular dimensionality reduction methods like UMAP McInnes et al. [2018], correspond
to coends MacLane [1971]. These connections suggest the canonical importance of the category of wedges and
cowedges in formulating and solving UIGs. First, we introduce another universal construction, the Kan extension,
which turns out to be the basis of every other concept in category theory.

7.2 Sheaves and Topoi in GAIA

So far, we have assumed that the parameter spaces for generative AI are vector spaces Rn, as is typically assumed in
deep learning Bengio [2009]. But there are excellent reasons to consider more abstract spaces, and in particular, we
describe here an important category of sheaves and topoi MacLane and leke Moerdijk [1994] where some of the most
interesting results in category theory, like the (metric) Yoneda Lemma, find their application.

50

A PREPRINT - FEBRUARY 16, 2024

In this section, we define an important categorical structure defined by sheaves and topoi MacLane and leke Moerdijk
[1994]. Yoneda embeddingsよ(x) : Cop → Sets define (pre)sheaves, which satisfy a number of crucial properties that
make it remarkably similar to the category of Sets. The sheaf condition plays an important role in many applications
of machine learning, from dimensionality reduction McInnes et al. [2018] to causal inference Mahadevan [2023].
MacLane and leke Moerdijk [1994] provides an excellent overview of sheaves and topoi, and how remarkably they
unify much of mathematics, from geometry to logic and topology. We will give only the briefest of overviews here, and
apply in the main ideas to the study of UIGs.

Figure 27: Two applications of sheaf theory in AI: (top) minimizing travel costs in weighted graphs satisfies the
sheaf principle, one example of which is the Bellman optimality principle in dynamic programming Bertsekas [2005]
and reinforcement learning Bertsekas [2019], Sutton and Barto [1998] (bottom): Approximating a function over a
topological space must satisfy the sheaf condition.

San Francisco

Chicago
New York

B

C

A

F(C)

F(A)

F(B)

Figure 27 gives two concrete examples of sheaves. In a minimum cost transportation problem, say using optimal
transport Villani [2003] or reinforcement learning Sutton and Barto [1998], any optimal solution has the property that
any restriction of the solution must also be optimal. In RL, this sheaf principle is codified by the Bellman equation,
and leads to the fundamental principle of dynamic programming Bertsekas [2005]. Consider routing candy bars from
San Francisco to New York city. If the cheapest way to route candy bars is through Chicago, then the restriction of the
overall route to the (sub) route from Chicago to New York City must also be optimal, otherwise it is possible to find a
shortest overall route by switching to a lower cost route. Similarly, in function approximation with real-valued functions
F : C → R, where C is the category of topological spaces, the (sub)functions F (A), F (B) and F (C) restricted to the
open sets A, B and C must agree on the values they map the elements in the intersections A ∩B, A ∩ C, A ∩B ∩ C
and so on. Similarly, in causal inference, any probability distribution that is defined over a causal generative AI model
must satisfy the sheaf condition in that any restriction of the causal model to a submodel must be consistent, so that two
causal submodels that overlap in their domains must agree on the common elements.

Sheaves can be defined over arbitrary categories, and we introduce the main idea by focusing on the category of sheaves
over Sets.
Definition 55. MacLane and leke Moerdijk [1994] A sheaf of sets F on a topological space X is a functor F : Oop →
Sets such that each open covering U =

⋃
i Ui, i ∈ I of an open set O of X yields an equalizer diagram

FU
e // ∏

i FUi

∏
i, F (Ui ∩ Uj)

p

q

The above definition succinctly captures what Figure 27 shows for the example of approximating functions: the value
of each subfunction must be consistent over the shared elements in the intersection of each open set.

51

A PREPRINT - FEBRUARY 16, 2024

Figure 28: Sieves are subobjects of ofよ(x) Yoneda embeddings of a category C, which generalizes the concept of
sheaves over sets in Figure 27.

Xf

g

Sieves are subobjects of
Yoneda embeddings

Definition 56. The category Sh(X) of sheaves over a space X is a full subcategory of the functor category SetsO(X)op .

Grothendieck Topologies

We can generalize the notion of sheaves to arbitrary categories using the Yoneda embeddingよ(x) = C(−, x). We
explain this generalization in the context of a more abstract topology on categories called the Grothendieck topology
defined by sieves. A sieve can be viewed as a subobject S ⊆よ(x) in the presheaf SetsC

op

, but we can define it more
elegantly as a family of morphisms in C, all with codomain x such that

f ∈ S =⇒ f ◦ g ∈ S

Figure 28 illustrates the idea of sieves. A simple way to think of a sieve is as a right ideal. We can define that more
formally as follows:
Definition 57. If S is a sieve on x, and h : D → x is any arrow in category C, then

h∗ = {g | cod(g) = D,hg ∈ S}
Definition 58. MacLane and leke Moerdijk [1994] A Grothendieck topology on a category C is a function J which
assigns to each object x of C a collection J(x) of sieves on x such that

1. the maximum sieve tx = {f |cod(f) = x} is in J(x).

2. If S ∈ J(x) then h∗(S) ∈ J(D) for any arrow h : D → x.

3. If S ∈ J(x) and R is any sieve on x, such that h∗(R) ∈ J(D) for all h : D → x, then R ∈ J(C).

We can now define categories with a given Grothendieck topology as sites.
Definition 59. A site is defined as a pair (C, J) consisting of a small category C and a Grothendieck topology J on C.

An intuitive way to interpret a site is as a generalization of the notion of a topology on a space X , which is defined as a
set X together with a collection of open sets O(X). The sieves on a category play the role of “open sets".

Exponential Objects and Cartesian Closed Categories

To define a topos, we need to understand the category of Sets a bit more. Clearly, the single point set {•} is a terminal
object for Sets, and the binary product of two sets A×B can always be defined. Furthermore, given two sets A and B,
we can define BA as the exponential object representing the set of all functions f : A→ B. We can define exponential
objects in any category more generally as follows.
Definition 60. Given any category C with products, for a fixed object x in C, we can define the functor

x×− :→ C

If this functor has a right adjoint, which can be denoted as

52

A PREPRINT - FEBRUARY 16, 2024

(−)x : C → C

then we say x is an exponentiable object of C.

Definition 61. A category C is Cartesian closed if it has finite products (which is equivalent to saying it has a terminal
object and binary products) and if all objects in C are exponentiable.

A result that is of foundational importance to this paper is that the category defined by Yoneda embeddings is Cartesian
closed.

Theorem 15. MacLane and leke Moerdijk [1994] For any small category C, the functor category SetsC
op

is Cartesian
closed

For a detailed proof, the reader is referred to MacLane and leke Moerdijk [1994]. A further result of significance is the
density theorem, which can be seen as the generalization of the simple result that any set S can be defined as the union
of single point sets

⋃
x∈S{x}.

Theorem 16. MacLane and leke Moerdijk [1994] In a functor category SetsC
op

, any object x is the colimit of a
diagram of representable objects in a canonical way.

Recall that an object is representable if it is isomorphic to a Yoneda embedding よ(x). This result has numerous
applications to AI and ML, among them to causal inference Mahadevan [2023] and universal decision models Mahadevan
[2021b].

Subobject Classifiers

A topos builds on the property of subobject classifiers in Sets. Given any subset S ⊂ X , we can define S as the monic
arrow S ↪→ X defined by the inclusion of S in X , or as the characteristic function ϕS that is equal to 1 for all elements
x ∈ X that belong to S, and takes the value 0 otherwise. We can define the set 2 = {0, 1} and treat true as the inclusion
{1} in 2. The characteristic function ϕS can then be defined as the pullback of true along ϕS .

S 1

X 2

m true

ϕS

We can now define subobject classifiers in a category C as follows.

Definition 62. In a category C with finite limits, a subobject classifier is a monic arrow true : 1→ Ω, such that to
every other monic arrow S ↪→ X in C, there is a unique arrow ϕ that forms the following pullback square:

S 1

X Ω

m true

ϕ

This definition can be rephrased as saying that the subobject functor is representable. In other words, a subobject of an
object x in a category C is an equivalence class of monic arrows m : S ↪→ x.

MacLane and leke Moerdijk [1994] provide many examples of subobject classifiers. Vigna [2003] gives a detailed
description of the topos of graphs.

Heyting Algebras

A truly remarkable finding is that the logic of topoi is not classical Boolean logic, but intuitionistic logic defined by
Heyting algebras.

53

A PREPRINT - FEBRUARY 16, 2024

Definition 63. A Heyting algebra is a poset with all finite products and coproducts, which is Cartesian closed. That
is, a Heyting algebra is a lattice with 0 and 1 which has to each pair of elements x and y an exponential yx. The
exponential is written x⇒ y, and defined as the adjunction

z ⩽ (x⇒ y) if and only if z ∧ x ⩽ y

Alternatively, x⇒ y is a least upper bound for all those elements z with z ∧ x ⩽ y. Therefore, for the particular case
of y, we get that y ⩽ (x⇒ y). In the figure below, the arrows show the partial ordering relationship. As a concrete
example, for a topological space X the set of open setx O(X) is a Heyting algebra. The binary intersections and unions
of open sets yield open sets. The empty set ∅ represents 0 and the complete set X represents 1. Given any two open
sets U and V , the exponential object U ⇒W is defined as the union

⋃
iWi of all open sets Wi for which W ∩U ⊂ V .

x⇒ y

x y

x ∧ y

Note that in a Boolean algebra, we define implication as the relationship

(x⇒ y) ≡ ¬x ∨ y

This property, which is sometimes referred to as the “law of the excluded middle" (because if x = y, then this translates
to ¬x ∨ x = true), does not hold in a Heyting algebra. For example, on a real line R, if we define the open sets by the
open intervals (a, b), a, b ∈ R, the complement of an open set need not be open.

We can now state what is a truly remarkable result about the subobjects of a (pre)sheaf.

Theorem 17. MacLane and leke Moerdijk [1994] For any functor category Ĉ = SetsC
op

of a small category C, the
partially ordered set SubĈ(x) of subobjects of x, for any object x of Ĉ is a Heyting algebra.

This result has deep implications for a lot of applications in AI and ML that are based modeling presheaves, including
causal inference and decision making. It implies that the proper logic to employ in these settings is intuitionistic logic,
not classical logic as is often used in AI Pearl [2009], Fagin et al. [1995], Halpern [2016].

Finally, we can now define the category of topoi.

Definition 64. A topos is a category E with

1. A pullback for every diagram X → B ← Y .

2. A terminal object 1.

3. An object Ω and a monic arrow true : 1 → Ω such that any monic m : S ↪→ B, there is a unique arrow
ϕ : B → Ω in E for which the following square is a pullback:

S 1

X Ω

m true

ϕ

4. To each object x an object Px and an arrow ϵx : x× Px→ Ω such that for every arrow f : x× y → Ω, there
is a unique arrow g : y → Px for which the following diagrams commute:

54

A PREPRINT - FEBRUARY 16, 2024

y x× y Ω

Px x× Px Ω

g

f

ϵx

1×g

7.3 Topological Embedding of Simplicial Sets

Simplicial sets can be embedded in a topological space using coends MacLane [1971], which is the basis for a popular
machine learning method for reducing the dimensionality of data called UMAP (Uniform Manifold Approximation and
Projection) McInnes et al. [2018].

Definition 65. The geometric realization |X| of a simplicial set X is defined as the topological space

|X| =
⊔

n⩾0

Xn ×∆n/ ∼

where the n-simplex Xn is assumed to have a discrete topology (i.e., all subsets of Xn are open sets), and ∆n denotes
the topological n-simplex

∆n = {(p0, . . . , pn) ∈ Rn+1 | 0 ⩽ pi ⩽ 1,
∑

i

pi = 1

The spaces ∆n, n ⩾ 0 can be viewed as cosimplicial topological spaces with the following degeneracy and face maps:

δi(t0, . . . , tn) = (t0, . . . , ti−1, 0, ti, . . . , tn) for 0 ⩽ i ⩽ n

σj(t0, . . . , tn) = (t0, . . . , tj + tj+1, . . . , tn) for 0 ⩽ i ⩽ n

Note that δi : Rn → Rn+1, whereas σj : Rn → Rn−1.

The equivalence relation ∼ above that defines the quotient space is given as:

(di(x), (t0, . . . , tn)) ∼ (x, δi(t0, . . . , tn))

(sj(x), (t0, . . . , tn)) ∼ (x, σj(t0, . . . , tn))

Topological Embeddings as Coends

We now bring in the perspective that topological embeddings can be interpreted as coends as well. Consider the functor

F : ∆o ×∆→ Top

where

F ([n], [m]) = Xn ×∆m

where F acts contravariantly as a functor from ∆ to Sets mapping [n] 7→ Xn, and covariantly mapping [m] 7→ ∆m as
a functor from ∆ to the category Top of topological spaces.

55

A PREPRINT - FEBRUARY 16, 2024

7.4 The Geometric Transformer Model

In this section, we define the Geometric Transformer Model (GTM), which arises as a coend object defined by the
topological embedding of a simplicial set defined over n-length sequences of tokens of dimension d. Given the
restrictions on space, we can only give a very brief explanation, and a more detailed analysis is the topic of a future
paper.

Given a category of generative AI models, such as Transformers defined as permutation equivariant functions over
Rd×n, it is possible to construct simplicial sets by constructing the nerve of the category. So, for example, the nerve of
the category CT of Transformers is a simplicial set Transformer•, comprised of a sequence of composable morphisms
of length n ⩾ 0, each defining a Transformer block. Given this simplicial set, we can now construct a topological
realization of it as a coend object

∫ n

(Transformer•n) ·∆n

where Transformer• : ∆op → CT is a contravariant functor from the simplicial category ∆ into the category of
Transformers, and ∆ : |∆| → Top is a functor from the topological n-simplex realization of the simplicial category
∆ into topological spaces Top. As MacLane [1971] explains it picturesquely, the “coend formula describes the
geometric realization in one gulp". The formula says essentially to take the disjoint union of affine n-simplices, one for
each t ∈ Transformers•n, and glue them together using the face and degeneracy operations defined as arrows of the
simplicial category ∆. In more concrete terms, this coend formula is essentially what the UMAP method implements
for point cloud data in Euclidean space. Here, we are generalizing this application to construct topological realization
of generative AI models, such as Transformers.

7.5 The End of GAIA: Monads and Categorical Probability

We now turn to discuss the ends of generative AI models, where we first show that categorically speaking, probabilities
are defined as end objects Avery [2016]. This notion requires defining particular tyoes of functors called monads more
formally, and relate them to adjoint functors. Categorically speaking, probabilities are essentially monads Avery [2016].
Like the case with coalgebras, which we discussed extensively in previous Sections, monads also are defined by an
endofunctor on a category, but one that has some special properties. These additional properties make monads possess
algebraic structure, which leads to many interesting properties. Monads provide a categorical foundation for probability,
based on the property that the set of all distributions on a measurable space is itself a measurable space. The well-known
Giry monad been also shown to arise as the codensity monad of a forgetful functor from the category of convex sets
with affine maps to the category of measurable spaces Avery [2016]. Our goal in this paper is to apply monads to shed
light into causal inference. We first review the basic definitions of monads, and then discuss monad algebras, which
provide ways of characterizing categories.

Consider the pair of adjoint free and forgetful functors between graphs and categories. Here, the domain category is
Cat, the category of all categories whose objects are categories and whose morphisms are functors. The co-domain
category is the category Graph of all graphs, whose objects are directed graphs, and whose morphisms are graph
homomorphisms. Here, a monad T = U ◦ F is induced by composing the “free" functor F that maps a graph into its
associated “free" category, and the “forgetful" functor U that maps a category into its associated graph. The monad T
in effect takes a directed graph G and computes its transitive closure Gtc. More precisely, for every (directed) graph G,
there is a universal arrow from G to the “forgetful" functor U mapping the category Cat of all categories to Graph, the
category of all (directed) graphs, where for any category C, its associated graph is defined by U(C).

To understand this functor, simply consider a directed graph U(C) as a category C forgetting the rule for composition.
That is, from the category C, which associates to each pair of composable arrows f and g, the composed arrow g ◦ f ,
we derive the underlying graph U(G) simply by forgetting which edges correspond to elementary functions, such as
f or g, and which are composites. The universal arrow from a graph G to the forgetful functor U is defined as a pair
⟨G, u : G → U(C)⟩, where u is a a graph homomorphism. This arrow possesses the following universal property:
for every other pair ⟨D, v : G → H⟩, where D is a category, and v is an arbitrary graph homomorphism, there is a
functor f ′ : C → D, which is an arrow in the category Cat of all categories, such that every graph homomorphism
ϕ : G → H uniquely factors through the universal graph homomorphism u : G → U(C) as the solution to the
equation ϕ = U(f ′) ◦ u, where U(f ′) : U(C)→ H (that is, H = U(D)). Namely, the dotted arrow defines a graph
homomorphism U(f ′) that makes the triangle diagram “commute", and the associated “extension" problem of finding
this new graph homomorphism U(f ′) is solved by “lifting" the associated category arrow f ′ : C → D. In causal
inference using graph-based models, the transitive closure graph is quite important in a number of situations. It can
be the initial target of a causal discovery algorithm that uses conditional independence oracles. It is also common in

56

A PREPRINT - FEBRUARY 16, 2024

graph-based causal inference Pearl [2009] to model causal effects through a directed acyclic graph (DAG) G, which
specifies its algebraic structure, and through a set of probability distributions on G that specifies its semantics P (G).
Often, reasoning about causality in a DAG requires examining paths that lead from some vertex x, representing a causal
variable, to some other vertex y. The process of constructing the transitive closure of a DAG provides a simple example
of a causal monad.

Definition 66. A monad on a category C consists of

• An endofunctor T : C → C

• A unit natural transformation η : 1C ⇒ T

• A multiplication natural transformation µ : T 2 → T

such that the following commutative diagram in the category CC commutes (notice the arrows in this diagram are
natural transformations as each object in the diagram is a functor).

T 3 T 2

T 2 T

Tµ

µT

µ

µ

T T 2 T

T

Tη

µ

ηT

1T

1T

It is useful to think of monads as the “shadow" cast by an adjunction on the category corresponding to the co-domain of
the right adjoint G. Consider the following pair of adjoint functors F ⊢ G.

C D.
F

G

⊣

η : 1C ⇒ UF, ϵ : FU ⇒ 1D

In the language of ML, if we treat category C as representing “labeled training data" where we have full information,
and category D as representing a new domain for which we have no labels, what can we conclude about category D
from the information we have from the adjunction? The endofunctor UF on C is of course available to us, as is the
natural transformation η : 1C ⇒ UF . The map ϵA : FGA→ A for any object A ∈ D is an endofunctor on D, about
which we have no information. However, the augmented natural transformation UϵFA : GFGFA→ GFA can be
studied in category C. From this data, what can we conclude about the objects in category D? In response to the natural
question of whether every monad can be defined by a pair of adjoint functors, two solutions arose that came about from
two different pairs of adjoint functors. These are referred to as the Eilenberg-Moore category and the Kleisli category
MacLane [1971].

Codensity Monads and Probability

A striking recent finding is that categorical probability structures, such as Giry monads, are in essence codensity monads
that result from extending a certain functor along itself Avery [2016].

Definition 67. A codensity monad TF of a functor F is the right Kan extension of F along itself (if it exists). The
codensity monad inherits the university property from the Kan extension.

57

A PREPRINT - FEBRUARY 16, 2024

C E

E

F

F

TF
η

Codensity monads can also be written using Yoneda’s abstract integral calculus as ends:

TFe =

∫

c∈C

[E(e,Fc),Fc]

Here, the notation [A,m], where A is any set, and m is any object of a categoryM, denotes the product inM of A
copies of m.
Definition 68. A convex set c is a convex subset of a real vector space, where for all x, y ∈ c, and for all r ∈ [0, 1], the
convex combination rx+ (1− r)y ∈ c. An affine map h : c→ c′ is a function such that h(x+r y) = h(x) +r h(y)
where x+r y = rx+ (1− r)y, r ∈ [0, 1].

To define categorical probability as codensity monads, we need to define forgetful functors from the category C′ of
compact convex subsets of Rn with affine maps to the category Meas of measurable spaces and measurable functions.
In addition, let D′ be the category C′ with the object d0 adjoined, where d0 is the convex set of convergent sequences in
the unit interval I = [0, 1].
Theorem 18. Avery [2016] The C′ be the category of compact convex subsets of Rn for varying n with affine maps
between them, and let D′ be the same with the object d0 adjoined. Then, the codensity monads of the forgetful functors
U ′ : C′ →Meas and V ′ : D′ →Meas are the finitely additive Giry monad and the Giry monad respectively.

The well-known Giry monad defines probabilities in both the discrete case and the continuous case (over Polish spaces)
in terms of endofunctor on the category of measurable spaces. We can view Transformers as essentially defining a
Giri monad over the space of all sequences of tokens representing strings of words in natural language. In effect,
Transformers are an end, and there is much more to be described here than we have space in this paper. The complete
analysis of the ends of GAIA models is the topic of a subsequent paper.

8 Homotopy and Classifying Spaces of Generative AI Models

In this section, we introduce the concept of a classifying space of a generative AI model, such as a Transformer network
or a stable diffusion step or a structured state space sequence model. Each of these define composable morphisms. The
sequence of such composable morphisms defines a simplicial set through the nerve functor, and the classifying space
corresponds to the topological realization of the simplicial set. This construction of a classifying space is an example of
homotopy theory in categories Richter [2020], which gives us ways to abstractly compare generative AI models.

8.1 Homotopy in Categories

To motivate the need to consider homotopical equivalence, we consider the following problem: a generative AI system
can be used to construct summaries of documents, which raises the question of how to decide if a document summary
reflects the actual document. If we view a document as an object in a category, then the question becomes one of
deciding object equivalence in a looser sense of homotopy, namely is there an invertible transformation between the
original document and its summary? We discuss how to construct the topological embedding of an arbitrary category
by embedding it into a simplicial set by constructing its nerve, and then finding the topological embedding of the
nerve using the homotopy colimit Richter [2020]. First, we discuss the topological embedding of a simplicial set, and
formulate it in terms of computing a coend. As another example, causal generative AI models can only be determined
up to some equivalence class from data, and while many causal discovery algorithms assume arbitrary interventions can
be carried out to discover the unique structure, such interventions are generally impossible to do in practical applications.
The concept of essential graph Andersson et al. [1997] is based on defining a “quotient space” of graphs, but similar
issues arise more generally for non-graph based models as well. Thus, it is useful to understand how to formulate the
notion of equivalent classes of causal generative AI models in an arbitrary category. For example, given the conditional
independence structure A ⊥⊥ B|C, there are at least three different symmetric monoidal categorical representations that
all satisfy this conditional independence Fong [2012], Jacobs et al. [2019], Fritz and Klingler [2023], and we need to
define the quotient space over all such equivalent categories.

58

A PREPRINT - FEBRUARY 16, 2024

In our previous work on causal homotopy Mahadevan [2021a], we exploited the connection between causal DAG
graphical models and finite topological spaces. In particular, for a DAG model G = (V,E), it is possible to define a
finite space topology T = (V,O), whose open sets O are subsets of the vertices V such that each vertex x is associated
with an open set Ux defined as the intersection of all open sets that contain x. This structure is referred to an Alexandroff
topology, which can be shown to emerge from universal representers defined by Yoneda embeddings in generalized
metric spaces. An intuitive way to construct an Alexandroff topology is to define the open set for each variable x by
the set of its ancestors Ax, or by the set of its descendants Dx. This approach transcribes a DAG graph into a finite
topological space, upon which the mathematical tools of algebraic topology can be applied to construct homotopies
among equivalent causal generative AI models. Our approach below generalizes this construction to simplicial objects,
as well as general categories.

8.2 The Category of Fractions: Localizing Invertible Morphisms in a Generative AI Category

One way to pose the question of homotopy is to ask whether a category can be reduced in some way such that all
invertible morphisms can be “localized" in some way. The problem of defining a category with a given subclass of
invertible morphisms, called the category of fractions [Gabriel et al., 1967], is another concrete illustration of the close
relationships between categories and graphs. Borceux [1994] has a detailed discussion of the “calculus of fractions”,
namely how to define a category where a subclass of morphisms are to be treated as isomorphisms. The formal definition
is as follows:

Definition 69. Consider a category C and a class Σ of arrows of C. The category of fractions C(Σ−1) is said to exist
when a category C(Σ−1) and a functor ϕ : C → C(Σ−1) can be found with the following properties:

1. ∀f, ϕ(f) is an isomorphism.

2. If D is a category, and F : C → D is a functor such that for all morphisms f ∈ Σ, F (f) is an isomorphism,
then there exists a unique functor G : C(Σ−1)→ D such that G ◦ ϕ = F .

A detailed construction of the category of fractions is given in Borceux [1994], which uses the underlying directed
graph skeleton associated with the category.

8.3 Homotopy of Simplicial Generative AI Objects

We will discuss homotopy in categories more generally now. This notion of homotopy generalizes the notion of
homotopy in topology, which defines why an object like a coffee cup is topologically homotopic to a doughnut (they
have the same number of “holes”).

Definition 70. Let C and C ′ be a pair of objects in a category C. We say C is a retract of C ′ if there exists maps
i : C → C ′ and r : C ′ → C such that r ◦ i = idC .

Definition 71. Let C be a category. We say a morphism f : C → D is a retract of another morphism f ′ : C → D if
it is a retract of f ′ when viewed as an object of the functor category Hom([1], C). A collection of morphisms T of C is
closed under retracts if for every pair of morphisms f, f ′ of C, if f is a retract of f ′, and f ′ is in T , then f is also in T .

Definition 72. Let X and Y be simplicial sets, and suppose we are given a pair of morphisms f0, f1 : X → Y . A
homotopy from f0 to f1 is a morphism h : ∆1 ×X → Y satisfying f0 = h|0×X and f1 = h1×X .

Classifying Spaces and Homotopy Colimits of Generative AI Models

Building on the intuition proposed above, we now introduce a construction of a topological space associated with
the nerve of a category. As we saw above, the nerve of a category is a full and faithful embedding of a category as a
simplicial object.

Definition 73. The classifying space of a category C is the topological space associated with the nerve of the category
|N•C|

To understand the classifying space |N•C| of a category C, let us go over some simple examples to gain some insight.

Example 17. For any set X , which can be defined as a discrete category CX with no non-trivial morphisms, the
classifying space |N•CX | is just the discrete topology over X (where the open sets are all possible subsets of X).

Example 18. If we take a partially ordered set [n], with its usual order-preserving morphisms, then the nerve of [n] is
isomorphic to the representable functor δ(−, [n]), as shown by the Yoneda Lemma, and in that case, the classifying
space is just the topological space ∆n defined above.

59

A PREPRINT - FEBRUARY 16, 2024

Definition 74. The homotopy colimit of the nerve of the category of elements associated with the set-valued functor
δ : C → Set mapping the category C into the category of Sets, namely N•

(∫
δ
)
.

We can extend the above definition straightforwardly to these cases using an appropriate functor T : Set→ Top, or
alternativelyM: Set→Meas. These augmented constructions can then be defined with respect to a more general
notion called the homotopy colimit Richter [2020] of a generative AI model.

Definition 75. The topological homotopy colimit hocolimT ◦δ of a category C, along with its associated category of
elements associated with a set-valued functor δ : C → Set, and a topological functor T : Set→ Top is isomorphic to
topological space associated with the nerve of the category of elements, that is hocolimT ◦δ ≃ |N•

(∫
δ
)
|.

8.4 The Singular Homology of a Generative AI Model

Our goal is to define an abstract notion of an object in terms of its underlying classifying space as a category, and
show how it can be useful in defining homotopy. We will also clarify how it relates to determining equivalences among
objects, namely homotopical invariance, and also how it sheds light on UIGs. We build on the topological realization of
n-simplices defined above. Define the set of all morphisms Singn(X) = HomTop(∆n, |N•(C)|) as the set of singular
n-simplices of |N•(C)|.
Definition 76. For any topological space defined by |N•(C)|, the singular homology groups H∗(|N•(C)|;Z) are
defined as the homology groups of a chain complex

. . .
∂−→ Z(Sing2(|N•(C)|)) ∂−→ Z(Sing1(|N•(C)|)) ∂−→ Z(Sing0(|N•(C)|))

where Z(Singn(|N•(C)|)) denotes the free Abelian group generated by the set Singn(|N•(C)|) and the differential ∂ is
defined on the generators by the formula

∂(σ) =

n∑

i=0

(−1)idiσ

Intuitively, a chain complex builds a sequence of vector spaces that can be used to construct an algebraic invariant of a
generative AI model from its classifying space by choosing the left k module Z to be a vector space. Each differential ∂
then becomes a linear transformation whose representation is constructed by modeling its effect on the basis elements
in each Z(Singn(X)).

Example 19. Let us illustrate the singular homology groups defined by an integer-valued multiset Studeny [2010]
used to model conditional independence. Imsets over a DAG of three variables N = {a, b, c} can be viewed as a finite
discrete topological space. For this topological space X , the singular homology groups H∗(X;Z) are defined as the
homology groups of a chain complex

Z(Sing3(X))
∂−→ Z(Sing2(X))

∂−→ Z(Sing1(X))
∂−→ Z(Sing0(X))

where Z(Singi(X)) denotes the free Abelian group generated by the set Singi(X) and the differential ∂ is defined on
the generators by the formula

∂(σ) =

4∑

i=0

(−1)idiσ

The set Singn(X) is the set of all morphisms HomTop(|∆n|, X). For an imset over the three variables N = {a, b, c},
we can define the singular n-simplex σ as:

σ : |∆4| → X where |∆n| = {t0, t1, t2, t3 ∈ [0, 1]4 : t0 + t1 + t2 + t3 = 1}

The n-simplex σ has a collection of faces denoted as d0σ, d1σ, d2σ and d3σ. If we pick the k-left module Z as the
vector space over real numbers R, then the above chain complex represents a sequence of vector spaces that can be used
to construct an algebraic invariant of a topological space defined by the integer-valued multiset. Each differential ∂ then
becomes a linear transformation whose representation is constructed by modeling its effect on the basis elements in
each Z(Singn(X)). An alternate approach to constructing a chain homology for an integer-valued multiset is to use
Möbius inversion to define the chain complex in terms of the nerve of a category (see our recent work on categoroids
[Mahadevan, 2022] for details).

60

A PREPRINT - FEBRUARY 16, 2024

9 Summary and Future Work

In this paper, we proposed a theoretical blueprint for a “next-generation" Generative AI Architecture (GAIA) that
potentially lie beyond the scope of what is achievable with compositional learning methods such as backpropagation,
the longstanding algorithmic workhorse of deep learning. Backpropagation can be conceptualized as a sequence of
modules, where each module updates its parameters based on information it receives from downstream modules, and
in turn, transmits information back to upstream modules to guide their updates. GAIA is based on a fundamentally
different hierarchical model. Modules in GAIA are organized into a simplicial complex, much like business units
in a company. Each n-simplicial complex acts like a manager: it receives updates from its superiors and transmits
information back to its n+ 1 subsimplicial complexes that are its subordinates. To ensure this simplicial generative AI
organization behaves coherently, GAIA builds on the mathematics of the higher-order category theory of simplicial
sets and objects. Computations in GAIA, from query answering to foundation model building, are posed in terms of
lifting diagrams over simplicial objects. The problem of machine learning in GAIA is modeled as “horn" extensions
of simplicial sets: each sub-simplicial complex tries to update its parameters in such a way that a lifting diagram is
solved. Traditional approaches used in generative AI using backpropagation can be used to solve “inner" horn extension
problems, but addressing “outer horn" extensions requires a more elaborate framework.

At the top level, GAIA uses the simplicial category of ordinal numbers with objects defined as [n], n ⩾ 0 and arrows
defined as weakly order-preserving mappings f : [n]→ [m], where f(i) ⩽ f(j), i ⩽ j. This top-level structure can be
viewed as a combinatorial “factory" for constructing, manipulating, and destructing complex objects that can be built
out of modular components defined over categories. The second layer of GAIA defines the building blocks of generative
AI models as universal coalgebras over categories that can be defined using current generative AI approaches, including
Transformers that define a category of permutation-equivariant functions on vector spaces, structured state-space models
that define a category over linear dynamical systems, or image diffusion models that define a probabilistic coalgebra
over ordinary differential equations. The third layer in GAIA is a category of elements over a (relational) database that
defines the data over which foundation models are built. GAIA formulates the machine learning problem of building
foundation models as extending functors over categories, rather than interpolating functions on sets or spaces, which
yields canonical solutions called left and right Kan extensions. GAIA uses the metric Yoneda Lemma to construct
universal representers of objects in non-symmetric generalized metric spaces. GAIA uses a categorical integral calculus
of (co)ends to define two families of generative AI systems. GAIA models based on coends correspond to topological
generative AI systems, whereas GAIA systems based on ends correspond to probabilistic generative AI systems.

Much of this paper has been devoted to a theoretical study of the GAIA framework for generative AI. Of course, the
actual implementation and testing of GAIA is ultimately the only proof of its practical utility as a computing framework
for generative AI. We anticipate the problem of designing GAIA systems is a multi-year (possibly multi-decade!)
project, since it requires harnessing many sophisticated mathematical ideas into practical algorithms and hardware
implementations. What makes this challenge feasible is the existence of algorithms that solve very restricted types
of machine learning problems that are already using similar technology such as used in GAIA. UMAP McInnes et al.
[2018] is an elegant dimensionality reduction that constructs a simplicial set from high-dimensional image or textual
data, and then constructs functors that map the data into a topological space. In effect, McInnes et al. [2018] construct a
coend, although that is not the way the paper describes it. But as MacLane [1971] makes clear, topological realizations
are in fact coend objects. The algorithm in UMAP works on data in Rn and it transparently extends to sequence data
used by Transformer models, which lie in Rd×n. There are interesting questions in how to extend UMAP into a full
GAIA model by using simplicial learning, which is a topic of a future paper.

61

A PREPRINT - FEBRUARY 16, 2024

References
P. Aczel. Non-Well-Founded Sets. CSLI Lecture Notes, Palo Alto, CA, USA, 1988.
S. A. Andersson, D. Madigan, and M. D. Perlman. A characterization of Markov equivalence classes for acyclic

digraphs. The Annals of Statistics, 25(2):505 – 541, 1997. doi:10.1214/aos/1031833662. URL https://doi.org/
10.1214/aos/1031833662.

T. Avery. Codensity and the giry monad. Journal of Pure and Applied Algebra, 220(3):1229–1251, Mar. 2016. ISSN
0022-4049. doi:10.1016/j.jpaa.2015.08.017. URL http://dx.doi.org/10.1016/j.jpaa.2015.08.017.

J. Baez and M. Stay. Physics, topology, logic and computation: A rosetta stone. In New Structures for Physics, pages
95–172. Springer Berlin Heidelberg, 2010. doi:10.1007/978-3-642-12821-9_2. URL https://doi.org/10.1007%
2F978-3-642-12821-9_2.

J. Barwise and L. S. Moss. Vicious circles - on the mathematics of non-wellfounded phenomena, volume 60 of CSLI
lecture notes series. CSLI, 1996. ISBN 978-1-57586-009-1.

Y. Bengio. Learning deep architectures for AI. Foundations and Trends in Machine Learning, 2(1):1–127, 2009.
D. Bertsekas. Reinforcement Learning and Optimal Control. Athena Scientific, 2019.
D. P. Bertsekas. Dynamic programming and optimal control, 3rd Edition. Athena Scientific, 2005. ISBN 1886529264.

URL https://www.worldcat.org/oclc/314894080.
M. Boardman and R. Vogt. Homotopy invariant algebraic structures on topological spaces. Springer, Berlin, 1973.
R. Bommasani, D. A. Hudson, E. Adeli, R. Altman, S. Arora, S. von Arx, M. S. Bernstein, J. Bohg, A. Bosselut,

E. Brunskill, E. Brynjolfsson, S. Buch, D. Card, R. Castellon, N. Chatterji, A. Chen, K. Creel, J. Q. Davis, D. Demszky,
C. Donahue, M. Doumbouya, E. Durmus, S. Ermon, J. Etchemendy, K. Ethayarajh, L. Fei-Fei, C. Finn, T. Gale,
L. Gillespie, K. Goel, N. Goodman, S. Grossman, N. Guha, T. Hashimoto, P. Henderson, J. Hewitt, D. E. Ho,
J. Hong, K. Hsu, J. Huang, T. Icard, S. Jain, D. Jurafsky, P. Kalluri, S. Karamcheti, G. Keeling, F. Khani, O. Khattab,
P. W. Koh, M. Krass, R. Krishna, R. Kuditipudi, A. Kumar, F. Ladhak, M. Lee, T. Lee, J. Leskovec, I. Levent,
X. L. Li, X. Li, T. Ma, A. Malik, C. D. Manning, S. Mirchandani, E. Mitchell, Z. Munyikwa, S. Nair, A. Narayan,
D. Narayanan, B. Newman, A. Nie, J. C. Niebles, H. Nilforoshan, J. Nyarko, G. Ogut, L. Orr, I. Papadimitriou, J. S.
Park, C. Piech, E. Portelance, C. Potts, A. Raghunathan, R. Reich, H. Ren, F. Rong, Y. Roohani, C. Ruiz, J. Ryan,
C. Ré, D. Sadigh, S. Sagawa, K. Santhanam, A. Shih, K. Srinivasan, A. Tamkin, R. Taori, A. W. Thomas, F. Tramèr,
R. E. Wang, W. Wang, B. Wu, J. Wu, Y. Wu, S. M. Xie, M. Yasunaga, J. You, M. Zaharia, M. Zhang, T. Zhang,
X. Zhang, Y. Zhang, L. Zheng, K. Zhou, and P. Liang. On the opportunities and risks of foundation models, 2022.

M. Bonsangue, F. van Breugel, and J. Rutten. Generalized metric spaces: Completion, topology, and pow-
erdomains via the yoneda embedding. Theoretical Computer Science, 193(1):1–51, 1998. ISSN 0304-
3975. doi:https://doi.org/10.1016/S0304-3975(97)00042-X. URL https://www.sciencedirect.com/science/
article/pii/S030439759700042X.

F. Borceux. Handbook of Categorical Algebra, volume 1 of Encyclopedia of Mathematics and its Applications.
Cambridge University Press, 1994. doi:10.1017/CBO9780511525858.

V. S. Borkar. Stochastic Approximation: A Dynamical Systems Viewpoint. Cambridge University Press, 2008.
T. Bradley, J. Terilla, and Y. Vlassopoulos. An enriched category theory of language: From syntax to semantics. La

Matematica, 1:551–580, 2022.
G. Carlsson and F. Memoli. Classifying clustering schemes, 2010. URL http://arxiv.org/abs/1011.5270. cite

arxiv:1011.5270.
G. J. Chaitin. Exploring RANDOMNESS. Discrete mathematics and theoretical computer science. Springer, 2002.

ISBN 978-1-85233-417-8.
B. Coecke, T. Fritz, and R. W. Spekkens. A mathematical theory of resources. Information and Computation, 250:

59–86, oct 2016. doi:10.1016/j.ic.2016.02.008. URL https://doi.org/10.1016%2Fj.ic.2016.02.008.
T. M. Cover and J. A. Thomas. Elements of Information Theory 2nd Edition (Wiley Series in Telecommunications and

Signal Processing). Wiley-Interscience, July 2006. ISBN 0471241954.
R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning About Knowledge. MIT Press, 1995. ISBN

9780262562003. doi:10.7551/MITPRESS/5803.001.0001. URL https://doi.org/10.7551/mitpress/5803.
001.0001.

F. Feys, H. H. Hansen, and L. S. Moss. Long-Term Values in Markov Decision Processes, (Co)Algebraically. In
C. Cîrstea, editor, 14th International Workshop on Coalgebraic Methods in Computer Science (CMCS), volume LNCS-
11202 of Coalgebraic Methods in Computer Science, pages 78–99, Thessaloniki, Greece, Apr. 2018. Springer Inter-
national Publishing. doi:10.1007/978-3-030-00389-0_6. URL https://inria.hal.science/hal-02044650.

62

https://doi.org/10.1214/aos/1031833662
https://doi.org/10.1214/aos/1031833662
https://doi.org/10.1214/aos/1031833662
https://doi.org/10.1016/j.jpaa.2015.08.017
http://dx.doi.org/10.1016/j.jpaa.2015.08.017
https://doi.org/10.1007/978-3-642-12821-9_2
https://doi.org/10.1007%2F978-3-642-12821-9_2
https://doi.org/10.1007%2F978-3-642-12821-9_2
https://www.worldcat.org/oclc/314894080
https://doi.org/https://doi.org/10.1016/S0304-3975(97)00042-X
https://www.sciencedirect.com/science/article/pii/S030439759700042X
https://www.sciencedirect.com/science/article/pii/S030439759700042X
https://doi.org/10.1017/CBO9780511525858
http://arxiv.org/abs/1011.5270
https://doi.org/10.1016/j.ic.2016.02.008
https://doi.org/10.1016%2Fj.ic.2016.02.008
https://doi.org/10.7551/MITPRESS/5803.001.0001
https://doi.org/10.7551/mitpress/5803.001.0001
https://doi.org/10.7551/mitpress/5803.001.0001
https://doi.org/10.1007/978-3-030-00389-0_6
https://inria.hal.science/hal-02044650

A PREPRINT - FEBRUARY 16, 2024

B. Fong. Causal theories: A categorical perspective on bayesian networks, 2012.

B. Fong and D. I. Spivak. Seven Sketches in Compositionality: An Invitation to Applied Category Theory. Cambridge
University Press, 2018.

B. Fong, D. I. Spivak, and R. Tuyéras. Backprop as functor: A compositional perspective on supervised learning. In
34th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2019, Vancouver, BC, Canada, June 24-27,
2019, pages 1–13. IEEE, 2019. doi:10.1109/LICS.2019.8785665. URL https://doi.org/10.1109/LICS.2019.
8785665.

T. Fritz and A. Klingler. The d-separation criterion in categorical probability. Journal of Machine Learning Research,
24(46):1–49, 2023. URL http://jmlr.org/papers/v24/22-0916.html.

P. Gabriel, P. Gabriel, and M. Zisman. Calculus of Fractions and Homotopy Theory. Calculus of Fractions and
Homotopy Theory. Springer-Verlag, 1967. ISBN 9780387037776. URL https://books.google.com/books?
id=UEQZAQAAIAAJ.

M. Gavrilovich. The unreasonable power of the lifting property in elementary mathematics, 2017. URL https:
//arxiv.org/abs/1707.06615.

A. Gu, K. Goel, and C. Ré. Efficiently modeling long sequences with structured state spaces. In The Tenth International
Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net, 2022. URL
https://openreview.net/forum?id=uYLFoz1vlAC.

A. Gu, I. Johnson, A. Timalsina, A. Rudra, and C. Ré. How to train your HIPPO: state space models with generalized
orthogonal basis projections. In The Eleventh International Conference on Learning Representations, ICLR 2023,
Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023. URL https://openreview.net/pdf?id=klK17OQ3KB.

J. Y. Halpern. Actual Causality. MIT Press, 2016. ISBN 978-0-262-03502-6.

B. Jacobs. Introduction to Coalgebra: Towards Mathematics of States and Observation, volume 59 of Cam-
bridge Tracts in Theoretical Computer Science. Cambridge University Press, 2016. ISBN 9781316823187.
doi:10.1017/CBO9781316823187. URL https://doi.org/10.1017/CBO9781316823187.

B. Jacobs, A. Kissinger, and F. Zanasi. Causal inference by string diagram surgery, 2019.

A. Joyal. Quasi-categories and kan complexes. Journal of Pure and Applied Algebra, 175(1):207–222, 2002. ISSN 0022-
4049. doi:https://doi.org/10.1016/S0022-4049(02)00135-4. URL https://www.sciencedirect.com/science/
article/pii/S0022404902001354. Special Volume celebrating the 70th birthday of Professor Max Kelly.

D. Kan. Adjoint functors. Transactions of the American Mathematical Society, 87(2):294–329, 1958. URL https:
//doi.org/10.2307/1993102.

D. Kozen and N. Ruozzi. Applications of metric coinduction. Log. Methods Comput. Sci., 5(3), 2009. URL
http://arxiv.org/abs/0908.2793.

H. Kushner and G. Yin. Stochastic Approximation and Recursive Algorithms and Applications. Stochastic Modelling
and Applied Probability. Springer New York, 2003. ISBN 9780387008943. URL https://books.google.com/
books?id=_0bIieuUJGkC.

J. Liu, J. Chen, and J. Ye. Large-scale sparse logistic regression. In Proceedings of the 15th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 547–556. ACM, 2009.

F. Loregian. (Co)end Calculus. London Mathematical Society Lecture Note Series. Cambridge University Press, 2021.
doi:10.1017/9781108778657.

J. Lurie. Higher Topos Theory. Annals of mathematics studies. Princeton University Press, Princeton, NJ, 2009. URL
https://cds.cern.ch/record/1315170.

J. Lurie. Kerodon. https://kerodon.net, 2022.

S. MacLane. Categories for the Working Mathematician. Springer-Verlag, New York, 1971. Graduate Texts in
Mathematics, Vol. 5.

S. MacLane and leke Moerdijk. Sheaves in Geometry and Logic: A First Introduction to Topos Theory. Springer, 1994.

S. Mahadevan. Causal homotopy, 2021a. URL https://arxiv.org/abs/2112.01847.

S. Mahadevan. Universal decision models. CoRR, abs/2110.15431, 2021b. URL https://arxiv.org/abs/2110.
15431.

S. Mahadevan. Categoroids: Universal conditional independence, 2022. URL https://arxiv.org/abs/2208.
11077.

63

https://doi.org/10.1109/LICS.2019.8785665
https://doi.org/10.1109/LICS.2019.8785665
https://doi.org/10.1109/LICS.2019.8785665
http://jmlr.org/papers/v24/22-0916.html
https://books.google.com/books?id=UEQZAQAAIAAJ
https://books.google.com/books?id=UEQZAQAAIAAJ
https://arxiv.org/abs/1707.06615
https://arxiv.org/abs/1707.06615
https://openreview.net/forum?id=uYLFoz1vlAC
https://openreview.net/pdf?id=klK17OQ3KB
https://doi.org/10.1017/CBO9781316823187
https://doi.org/10.1017/CBO9781316823187
https://doi.org/https://doi.org/10.1016/S0022-4049(02)00135-4
https://www.sciencedirect.com/science/article/pii/S0022404902001354
https://www.sciencedirect.com/science/article/pii/S0022404902001354
https://doi.org/10.2307/1993102
https://doi.org/10.2307/1993102
http://arxiv.org/abs/0908.2793
https://books.google.com/books?id=_0bIieuUJGkC
https://books.google.com/books?id=_0bIieuUJGkC
https://doi.org/10.1017/9781108778657
https://cds.cern.ch/record/1315170
https://kerodon.net
https://arxiv.org/abs/2112.01847
https://arxiv.org/abs/2110.15431
https://arxiv.org/abs/2110.15431
https://arxiv.org/abs/2208.11077
https://arxiv.org/abs/2208.11077

A PREPRINT - FEBRUARY 16, 2024

S. Mahadevan. Universal causality. Entropy, 25(4):574, 2023. doi:10.3390/E25040574. URL https://doi.org/10.
3390/e25040574.

J. May. Simplicial Objects in Algebraic Topology. University of Chicago Press, 1992.

J. May and K. Ponto. More Concise Algebraic Topology: Localization, Completion, and Model Categories. Chicago
Lectures in Mathematics. University of Chicago Press, 2012. ISBN 9780226511788. URL https://books.
google.com/books?id=SHhmxUPskFwC.

L. McInnes, J. Healy, and J. Melville. Umap: Uniform manifold approximation and projection for dimension reduction,
2018. URL https://arxiv.org/abs/1802.03426.

M. Papillon, S. Sanborn, M. Hajij, and N. Miolane. Architectures of topological deep learning: A survey on topological
neural networks, 2023.

J. Pearl. Causality: Models, Reasoning and Inference. Cambridge University Press, USA, 2nd edition, 2009. ISBN
052189560X.

D. G. Quillen. Homotopical algebra. Springer, 1967.

B. Richter. From Categories to Homotopy Theory. Cambridge Studies in Advanced Mathematics. Cambridge University
Press, 2020. ISBN 9781108479622. URL https://books.google.com/books?id=pnzUDwAAQBAJ.

E. Riehl. Category Theory in Context. Aurora: Dover Modern Math Originals. Dover Publications, 2017. ISBN
9780486820804. URL https://books.google.com/books?id=6B9MDgAAQBAJ.

H. Robbins and S. Monro. A Stochastic Approximation Method. The Annals of Mathematical Statistics, 22(3):400 –
407, 1951. doi:10.1214/aoms/1177729586. URL https://doi.org/10.1214/aoms/1177729586.

J. Rutten. Universal coalgebra: a theory of systems. Theoretical Computer Science, 249(1):3 – 80, 2000. ISSN
0304-3975. doi:http://dx.doi.org/10.1016/S0304-3975(00)00056-6. URL http://www.sciencedirect.com/
science/article/pii/S0304397500000566. Modern Algebra.

B. Schölkopf and A. J. Smola. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and
Beyond. MIT Press, 2002.

A. Sokolova. Probabilistic systems coalgebraically: A survey. Theoretical Computer Science, 412(38):5095–5110,
2011. ISSN 0304-3975. doi:https://doi.org/10.1016/j.tcs.2011.05.008. URL https://www.sciencedirect.com/
science/article/pii/S0304397511003902. CMCS Tenth Anniversary Meeting.

Y. Song and S. Ermon. Generative modeling by estimating gradients of the data distribution. In H. M. Wallach,
H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. B. Fox, and R. Garnett, editors, Advances in Neural Information
Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019,
December 8-14, 2019, Vancouver, BC, Canada, pages 11895–11907, 2019. URL https://proceedings.neurips.
cc/paper/2019/hash/3001ef257407d5a371a96dcd947c7d93-Abstract.html.

D. I. Spivak. Database queries and constraints via lifting problems. Mathematical Structures in Computer Science, 24
(6), oct 2013. doi:10.1017/s0960129513000479. URL https://doi.org/10.1017%2Fs0960129513000479.

D. I. Spivak and R. E. Kent. Ologs: A categorical framework for knowledge representation. PLoS ONE, 7(1):e24274,
jan 2012. doi:10.1371/journal.pone.0024274.

M. Studeny. Probabilistic Conditional Independence Structures. Information Science and Statistics. Springer London,
2010. ISBN 9781849969482. URL https://books.google.com.gi/books?id=bGFRcgAACAAJ.

R. S. Sutton and A. G. Barto. Reinforcement learning - an introduction. Adaptive computation and machine learning.
MIT Press, 1998. ISBN 978-0-262-19398-6. URL https://www.worldcat.org/oclc/37293240.

A. Turing. Computing machinery and intelligence. Mind, 49:433–460, 1950.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin. Attention
is all you need. In I. Guyon, U. von Luxburg, S. Bengio, H. M. Wallach, R. Fergus, S. V. N. Vishwanathan, and
R. Garnett, editors, Advances in Neural Information Processing Systems 30: Annual Conference on Neural Informa-
tion Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pages 5998–6008, 2017. URL https:
//proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html.

S. Vigna. A guided tour in the topos of graphs, 2003.

C. Villani. Topics in Optimal Transportation. American Mathematical Society, 2003.

R. Vollmar. John von neumann and self-reproducing cellular automata. J. Cell. Autom., 1(4):353–
376, 2006. URL http://www.oldcitypublishing.com/journals/jca-home/jca-issue-contents/
jca-volume-1-number-4-2006/jca-1-4-p-353-376/.

64

https://doi.org/10.3390/E25040574
https://doi.org/10.3390/e25040574
https://doi.org/10.3390/e25040574
https://books.google.com/books?id=SHhmxUPskFwC
https://books.google.com/books?id=SHhmxUPskFwC
https://arxiv.org/abs/1802.03426
https://books.google.com/books?id=pnzUDwAAQBAJ
https://books.google.com/books?id=6B9MDgAAQBAJ
https://doi.org/10.1214/aoms/1177729586
https://doi.org/10.1214/aoms/1177729586
https://doi.org/http://dx.doi.org/10.1016/S0304-3975(00)00056-6
http://www.sciencedirect.com/science/article/pii/S0304397500000566
http://www.sciencedirect.com/science/article/pii/S0304397500000566
https://doi.org/https://doi.org/10.1016/j.tcs.2011.05.008
https://www.sciencedirect.com/science/article/pii/S0304397511003902
https://www.sciencedirect.com/science/article/pii/S0304397511003902
https://proceedings.neurips.cc/paper/2019/hash/3001ef257407d5a371a96dcd947c7d93-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/3001ef257407d5a371a96dcd947c7d93-Abstract.html
https://doi.org/10.1017/s0960129513000479
https://doi.org/10.1017%2Fs0960129513000479
https://doi.org/10.1371/journal.pone.0024274
https://books.google.com.gi/books?id=bGFRcgAACAAJ
https://www.worldcat.org/oclc/37293240
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
http://www.oldcitypublishing.com/journals/jca-home/jca-issue-contents/jca-volume-1-number-4-2006/jca-1-4-p-353-376/
http://www.oldcitypublishing.com/journals/jca-home/jca-issue-contents/jca-volume-1-number-4-2006/jca-1-4-p-353-376/

A PREPRINT - FEBRUARY 16, 2024

E. Wagstaff, F. B. Fuchs, M. Engelcke, M. A. Osborne, and I. Posner. Universal approximation of functions on sets. J.
Mach. Learn. Res., 23:151:1–151:56, 2022. URL http://jmlr.org/papers/v23/21-0730.html.

S. Wolfram. A new kind of science. Wolfram-Media, 2002. ISBN 978-1-57955-008-0.
D. Yarotsky. Universal approximations of invariant maps by neural networks. CoRR, abs/1804.10306, 2018. URL
http://arxiv.org/abs/1804.10306.

T. Yin, M. Gharbi, R. Zhang, E. Shechtman, F. Durand, W. T. Freeman, and T. Park. One-step diffusion with distribution
matching distillation, 2023.

N. Yoneda. On ext and exact sequences. J. Fac. Sci. Univ. Tokyo, Sect. I 8:507–576, 1960.
C. Yun, S. Bhojanapalli, A. S. Rawat, S. J. Reddi, and S. Kumar. Are transformers universal approximators of sequence-

to-sequence functions? In 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020. OpenReview.net, 2020. URL https://openreview.net/forum?id=ByxRM0Ntvr.

65

http://jmlr.org/papers/v23/21-0730.html
http://arxiv.org/abs/1804.10306
https://openreview.net/forum?id=ByxRM0Ntvr

	Overview of the Paper
	Roadmap to the Paper

	Backpropagation as a Functor: Compositional Learning
	Category of Supervised Learning
	Backpropagation as a Functor

	Backpropagation as an Endofunctor: Generative AI using Universal Coalgebras
	Non-Well-Founded Sets and Universal Coalgebras
	Backpropagation as a Coalgebra
	Zeroth-Order Deep Learning using Stochastic Approximation
	Lambek's Theorem and Final Coalgebras: Analyzing the Convergence of Generative AI Algorithms
	Metric Coinduction for Generative AI

	Layer 1 of GAIA: Simplicial Sets for Generative AI
	Simplicial Sets and Objects
	Hierarchical Learning in GAIA by solving Lifting Problems
	Simplicial Subsets and Horns in GAIA
	Higher-Order Categories

	Layer 2 of GAIA: Generative AI using Simplicial Categories
	Categories as Building Blocks of GAIA
	A Categorical Theory of Transformer Models
	Constructing Simplicial Transformers from Transformer Categories

	Layer 3 of GAIA: Universal Properties and the Category of Elements
	Natural Transformations and Universal Arrows
	Yoneda Lemma
	Universal Arrows and Elements
	The Category of Elements
	Lifting Problems in Generative AI
	Kan Extension
	The Metric Yoneda Lemma
	Adjoint Functors

	The Coend and End of GAIA: Integral Calculus for Generative AI
	Ends and Coends
	Sheaves and Topoi in GAIA
	Topological Embedding of Simplicial Sets
	The Geometric Transformer Model
	The End of GAIA: Monads and Categorical Probability

	Homotopy and Classifying Spaces of Generative AI Models
	Homotopy in Categories
	The Category of Fractions: Localizing Invertible Morphisms in a Generative AI Category
	Homotopy of Simplicial Generative AI Objects
	The Singular Homology of a Generative AI Model

	Summary and Future Work

