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Abstract

Reinforcement learning is a simple, and yet, comprehensive theory of

learning that simultaneously models the adaptive behavior of artifi-

cial agents, such as robots and autonomous software programs, as well

as attempts to explain the emergent behavior of biological systems.

It also gives rise to computational ideas that provide a powerful tool

to solve problems involving sequential prediction and decision mak-

ing. Temporal difference learning is the most widely used method to

solve reinforcement learning problems, with a rich history dating back

more than three decades. For these and many other reasons, devel-

1 This article is currently not under review for the journal Foundations and Trends in ML,
but will be submitted for formal peer review at some point in the future, once the draft
reaches a stable “equilibrium” state.
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oping a complete theory of reinforcement learning, one that is both

rigorous and useful has been an ongoing research investigation for sev-

eral decades. In this paper, we set forth a new vision of reinforcement

learning developed by us over the past few years, one that yields math-

ematically rigorous solutions to longstanding important questions that

have remained unresolved: (i) how to design reliable, convergent, and

robust reinforcement learning algorithms (ii) how to guarantee that

reinforcement learning satisfies pre-specified “safely” guarantees, and

remains in a stable region of the parameter space (iii) how to design

“off-policy” temporal difference learning algorithms in a reliable and

stable manner, and finally (iv) how to integrate the study of reinforce-

ment learning into the rich theory of stochastic optimization. In this

paper, we provide detailed answers to all these questions using the

powerful framework of proximal operators.

The most important idea that emerges is the use of primal dual spaces

connected through the use of a Legendre transform. This allows tem-

poral difference updates to occur in dual spaces, allowing a variety of

important technical advantages. The Legendre transform, as we show,

elegantly generalizes past algorithms for solving reinforcement learn-

ing problems, such as natural gradient methods, which we show re-

late closely to the previously unconnected framework of mirror descent

methods. Equally importantly, proximal operator theory enables the

systematic development of operator splitting methods that show how

to safely and reliably decompose complex products of gradients that

occur in recent variants of gradient-based temporal difference learn-

ing. This key technical innovation makes it possible to finally design

“true” stochastic gradient methods for reinforcement learning. Finally,

Legendre transforms enable a variety of other benefits, including mod-

eling sparsity and domain geometry. Our work builds extensively on

recent work on the convergence of saddle-point algorithms, and on the

theory of monotone operators in Hilbert spaces, both in optimization

and for variational inequalities. The latter framework, the subject of

another ongoing investigation by our group, holds the promise of an

even more elegant framework for reinforcement learning. Its explica-

tion is currently the topic of a further monograph that will appear in

due course.
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Algorithm 1 TD (1984)

(1) δt = rt + γφ′t
T θt − φTt θt

(2) θt+1 = θt + βtδt

Algorithm 2 GTD2-MP (2014)
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2
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θt+ 1

2
= proxαth
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)
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2
− φTt θt+ 1
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(3)
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2
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2
)φt ,
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1

Introduction

In this chapter, we lay out the elements of our novel framework for

reinforcement learning [1], based on doing temporal difference learning

not in the primal space, but in a dual space defined by a so-called mir-

ror map. We show how this technical device holds the fundamental key

to solving a whole host of unresolved issues in reinforcement learning,

from designing stable and reliable off-policy algorithms, to making al-

gorithms achieve safety guarantees, and finally to making them scalable

in high dimensions. This new vision of reinforcement learning developed

by us over the past few years yields mathematically rigorous solutions

to longstanding important questions in the field, which have remained

unresolved for almost three decades. We introduce the main concepts

in this chapter, from proximal operators to the mirror descent and the

extragradient method and its non-Euclidean generalization, the mirror-

prox method. We introduce a powerful decomposition strategy based

on operator splitting, exploiting deep properties of monotone operators

in Hilbert spaces. This technical device, as we show later, is fundamen-

tal in designing “true” stochastic gradient methods for reinforcement

learning, as it helps to decompose the complex product of terms that oc-

cur in recent work on gradient temporal difference learning. We provide

1



2 Introduction

examples of the benefits of our framework, showing each of the four key

pieces of our solution: the improved performance of our new off-policy

temporal difference methods over previous gradient TD methods, like

TDC and GTD2 [2]; how we are able to generalize natural gradient ac-

tor critic methods using mirror maps, and achieve safety guarantees to

control learning in complex robots; and finally, elements of our saddle

point reformulation of temporal difference learning. The goal of this

chapter is to lay out the sweeping power of our primal dual framework

for reinforcement learning. The details of our approach, including tech-

nical proofs, algorithms, and experimental validations are relegated to

future chapters.

1.1 Elements of the Overall Framework

1.1.1 Primal Dual Mirror Maps

In this section, we provide a succinct explanation of the overall frame-

work, leaving many technical details to future chapters. Central to the

proposed framework is the notion of mirror maps, which facilitates do-

ing temporal learning updates not just in the usual primal space, but

also in a dual space. More precisely, Φ : D → R for some domain D is

a mirror map if it is strongly convex, differentiable, and the gradient

of Φ has the range Rn (i.e., takes on all possible vector values). Instead

of doing gradient updates in the primal space, we do gradient updates

in the dual space, which correspond to:

∇Φ(y) = ∇Φ(x)− α∇f(x)

The step size or learning rate α is a tunable parameter. To get back

to the primal space, we use the conjugate mapping ∇Φ∗, which can be

shown to also correspond to the inverse mapping (∇Φ)−1, where the

conjugate of a function f(x) is defined as

f∗(y) = sup
x

(〈x, y〉 − f(x)) .

Here 〈x, y〉 = xT y, the standard inner product on Rn. When f(x)

is differentiable and smooth, the conjugate function f∗(y) achieves the

maximum value at x∗ = ∇f(x). This is a special instance of the “Leg-



1.1. Elements of the Overall Framework 3

endre” transform [3]. To achieve “safety” guarantees in reinforcement

learning, such as ensuring a robot learning a task never moves into

dangerous values of the parameter space, we need to ensure that when

domain constraints are not violated. We use Bregman divergences [4]

to ensure that safety constraints are adhered to, where the projection

is defined as:

ΠΦ
X (y) = argminX∩DDΦ(x, y).

A distance generating function Φ(x) is defined as a strongly convex

function which is differentiable. Given such a function Φ, the Bregman

divergence associated with it is defined as:

DΦ(x, y) = Φ(x)− Φ(y)− 〈∇Φ(y), x− y〉

Intuitively, the Bregman divergence measures the difference between

the value of a strongly convex function Φ(x) and the estimate derived

from the first-order Taylor series expansion at Φ(y). Many widely used

distance measures turn out to be special cases of Bregman divergences,

such as Euclidean distance (where Φ(x) = 1
2‖x‖2 ) and Kullback Liebler

divergence (where Φ(x) =
∑

i xi log2 xi, the negative entropy function).

In general, Bregman divergences are non-symmetric, but projections

onto a convex set with respect to a Bregman divergence is well-defined.

1.1.2 Mirror Descent, Extragradient, and Mirror Prox
Methods

The framework of mirror descent [5, 6] plays a central role in our

framework, which includes not just the original mirror descent method,

but also the mirror-prox method [7], which generalizes the extragradi-

ent method to non-Euclidean geometries [8]. Figure 1.1 illustrates the

mirror descent method, and Figure 1.2 illustrates the extragradient

method.

The extragradient method was developed to solve variational in-

equalities (VIs), a beautiful generalization of optimization. Variational

inequalities, in the infinite-dimensional setting, were originally pro-

posed by Hartman and Stampacchia [10] in the mid-1960s in the
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Fig. 1.1: The mirror descent method. This figure is adapted from [9].

context of solving partial differential equations in mechanics. Finite-

dimensional VIs rose in popularity in the 1980s partly as a result of

work by Dafermos [11], who showed that the traffic network equilibrium

problem could be formulated as a finite-dimensional VI. This advance

inspired much follow-on research, showing that a variety of equilib-

rium problems in economics, game theory, sequential decision-making

etc. could also be formulated as finite-dimensional VIs – the books by

Nagurney [12] and Facchinei and Pang [13] provide a detailed intro-

duction to the theory and applications of finite-dimensional VIs. While

we leave the full explication of the VI approach to reinforcement learn-

ing to a subsequent monograph, we discuss in the last chapter a few

intriguing aspects of this framework that is now the subject of another

investigation by our group. A VI(F,K) is specified by a vector field F

and a feasible set K. Solving a VI means finding an element x∗ within

the feasible set K where the vector field F (x∗) is pointed inwards and

makes an acute angle with all vectors x − x∗. Equivalently, −F (x∗)

belongs in the normal cone of the convex feasible set K at the point

x∗. Any optimization problem reduces to a VI, but the converse is only

true for vector fields F whose Jacobians are symmetric. A more de-

tailed discussion of VIs is beyond the scope of this paper, but a longer
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summary is given in Chapter 7.

In Figure 1.2, the concept of extragradient is illustrated. A simple

way to understand the figure is to imagine the vector field F here is

defined as the gradient ∇f(x) of some function being minimized. In

that case, the mapping −F (xk) points as usual in the direction of the

negative gradient. However, the clever feature of extragradient is that

it moves not in the direction of the negative gradient at xk, but rather

in the direction of the negative gradient at the point yk, which is the

projection of the original gradient step onto the feasible set K. We will

see later how this property of extragradient makes its appearance in

accelerating gradient temporal difference learning algorithms, such as

TDC [2].

xk

�F(xk)

�F(yk)
yk

xk+1

K

Fig. 1.2: The extragradient method.

The mirror-prox method generalizes the extragradient method to

non-Euclidean geometries, analogous to the way mirror descent gener-

alizes the regular gradient method. The mirror-prox algorithm (MP)

[7] is a first-order approach that is able to solve saddle-point problems

at a convergence rate of O(1/t). The MP method plays a key role in

our framework as our approach extensively uses the saddle point re-

formulation of reinforcement learning developed by us [14]. Figure 1.3

illustrates the mirror-prox method.
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Fig. 1.3: The mirror prox method. This figure is adapted from [9].

1.1.3 Proximal Operators

We now review the concept of proximal mappings, and then describe

its relation to the mirror descent framework. The proximal mapping

associated with a convex function h is defined as:

proxh(x) = argminu∈X

(
h(u) +

1

2
‖u− x‖2

)
If h(x) = 0, then proxh(x) = x, the identity function. If h(x) =

IC(x), the indicator function for a convex set C, then proxIC (x) =

ΠC(x), the projector onto set C. For learning sparse representations,

the case when h(w) = λ‖w‖1 (the L1 norm of w) is particularly impor-

tant. In this case:

proxh(w)i =


wi − λ, if wi > λ

0, if |wi| ≤ λ
wi + λ, otherwise

An interesting observation follows from noting that the projected sub-

gradient method can be written equivalently using the proximal map-
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ping as:

wk+1 = argminw∈X

(
〈w, ∂f(wk)〉+

1

2αk
‖w − wk‖2

)
where X is a closed convex set. An intuitive way to understand this

equation is to view the first term as requiring the next iterate wk+1

to move in the direction of the (sub) gradient of f at wk, whereas the

second term requires that the next iterate wk+1 not move too far away

from the current iterate wk.

With this introduction, we can now introduce the main concept

of mirror descent, which was originally proposed by Nemirovksi and

Yudin [5]. We follow the treatment in [6] in presenting the mirror de-

scent algorithm as a nonlinear proximal method based on a distance

generator function that is a Bregman divergence [4]. The general mirror

descent procedure can thus be defined as:

wk+1 = argminw∈X

(
〈w, ∂f(wk)〉+

1

αk
Dψ(w,wk)

)
The solution to this optimization problem can be stated succinctly as

the following generalized gradient descent algorithm, which forms the

core procedure in mirror descent:

wk+1 = ∇ψ∗ (∇ψ(wk)− αk∂f(wk))

An intuitive way to understand the mirror descent procedure speci-

fied in Equation 1.1.3 is to view the gradient update in two stages: in

the first step, the gradient is computed in the dual space using a set

of auxiliary weights θ, and subsequently the updated auxilary weights

are mapped back into the primal space w. Mirror descent is a pow-

erful first-order optimization method that is in some cases “optimal”

in that it leads to low regret. One of the earliest and most success-

ful applications of mirror descent is Positron Emission Tomography

(PET) imaging, which involves minimizing a convex function over the

unit simplex X. It is shown in [15] that the mirror descent procedure

specified in Equation 1.1.3 with the Bregman divergence defined by

the p-norm function [16] can outperform regular projected subgradient

method by a factor n
logn where n is the dimensionality of the space. For
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high-dimensional spaces, this ratio can be quite large. We will discuss

below specific choices of Bregman divergences in the target application

of this framework to reinforcement learning.

1.1.4 Operator Splitting Strategies

In our framework, a key insight used to derive a true stochastic gradient

method for reinforcement learning is based on the powerful concept of

operator splitting [17, 18]. Figure 1.4 illustrates this concept for the con-

vex feasibility problem, where we are given a collection of convex sets,

and have to find a point in their intersection. This problem originally

motivated the development of Bregman divergences [4]. The convex fea-

sibility problem is an example of many real-world problems, such as 3D

voxel reconstruction in brain imaging [15], a high-dimensional problem

that mirror descent was originally developed for. To find an element

in the common intersection of two sets A and B in Figure 1.4, a stan-

dard method called alternating projections works as follows. Given an

initial point x0, the first step projects it to one of the two convex sets,

say A, giving the point ΠA(x0). Since A is convex, this is a uniquely

defined point. The next step is to project the new point on the sec-

ond set B, giving the next point ΠB(ΠA(x0)). The process continues,

ultimately leading to the desired point common to the two sets. Oper-

ator splitting studies a generalized version of this problem, where the

projection problem is replaced by the proximal operator problem, as

described above. Many different operator splitting strategies have been

developed, such as Douglas Rachford splitting [18], which is a general-

ization of widely used distributed optimization methods like Alternat-

ing Direction Method of Multipliers [19]. We will see later that using

a sophisticated type of operator splitting strategy, we can address the

problem of off-policy temporal difference learning.

1.2 Illustrating the Solution

Now that we have described the broad elements of our framework, we

give a few select examples of the tangible solutions that emerge to the

problem of designing safe, reliable, and stable reinforcement learning

algorithms. We pick three cases: how to design a “safe” reinforcement
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A

B

x0
⇧A(x0)

⇧B(⇧A(x0))

Fig. 1.4: Operator splitting strategy for the convex feasibility problem.

learning method; how to design a “true” stochastic gradient reinforce-

ment learning method; and finally, how to design a “robust” reinforce-

ment learning method that does not overfit its training experience.

1.3 Safe Reinforcement Learning

Figure 1.5 shows a complex high-degree of freedom humanoid robot.

Teaching robots complex skills is a challenging problem, particularly

since reinforcement learning not only may take a long time, but also

because it may cause such robots to operate in dangerous regions of

the parameter space. Our proposed framework solves this problem by

establishing a key technical result, stated below, between mirror de-

scent and the well-known, but previously unrelated, class of algorithms

called natural gradient [22]. We develop the projected natural actor

critic (PNAC) algorithm, a policy gradient method that exploits this

equivalence to yield a safe method for training complex robots using

reinforcement learning. We explain the significance of the below re-

sult connecting mirror descent and natural gradient methods later in

this paper when we describe a novel class of methods called projected

natural actor critic (PNAC).
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Fig. 1.5: The uBot-5 is a 11 degree of freedom mobile manipulator devel-

oped at the Laboratory of Perceptual Robotics (LPR) at the University

of Massachusetts, Amherst [20, 21]. How can we design a “safe” rein-

forcement learning algorithm which is guaranteed to ensure that policy

learning will not violate pre-defined constraints such that such robots

will operate in dangerous regions of the control parameter space? Our

framework provides a key solution, based on showing an equivalence

between mirror descent and a previously well-studied but unrelated

algorithm called natural gradient [22].

Theorem 1.3.1. The natural gradient descent update at step k with

metric tensor Gk , G(xk):

xk+1 = xk − αkG−1
k ∇f(xk),

is equivalent to the mirror descent update at step k, with ψk(x) =

(1/2)xᵀGkx.



1.4. True Stochastic Gradient Reinforcement Learning 11

1.4 True Stochastic Gradient Reinforcement Learning

First-order temporal difference learning is a widely used class of tech-

niques in reinforcement learning. Although many more sophisticated

methods have been developed over the past three decades, such as

least-squares based temporal difference approaches, including LSTD

[23], LSPE [24] and LSPI [25], first-order temporal difference learning

algorithms may scale more gracefully to high dimensional problems.

Unfortunately, the initial class of TD methods was known to converge

only when samples are drawn “on-policy”. This motivated the devel-

opment of the gradient TD (GTD) family of methods [26]. A crucial

step in the development of our framework was the development of a

novel saddle-point framework for sparse regularized GTD [14]. How-

ever, there have been several unresolved questions regarding the current

off-policy TD algorithms. (1) The first is the convergence rate of these

algorithms. Although these algorithms are motivated from the gradient

of an objective function such as mean-squared projected Bellman error

(MSPBE) and NEU [26], they are not true stochastic gradient meth-

ods with respect to these objective functions, as pointed out in [27],

which make the convergence rate and error bound analysis difficult,

although asymptotic analysis has been carried out using the ODE ap-

proach. (2) The second concern is regarding acceleration. It is believed

that TDC performs the best so far of the GTD family of algorithms.

One may intuitively ask if there are any gradient TD algorithms that

can outperform TDC. (3) The third concern is regarding compactness

of the feasible set θ. The GTD family of algorithms all assume that

the feasible set θ is unbounded, and if the feasible set θ is compact,

there is no theoretical analysis and convergence guarantee. (4) The

fourth question is on regularization: although the saddle point frame-

work proposed in [14] provides an online regularization framework for

the GTD family of algorithms, termed as RO-TD, it is based on the

inverse problem formulation and is thus not quite explicit. One fur-

ther question is whether there is a more straightforward algorithm, e.g,

the regularization is directly based on the MSPBE and NEU objective

functions.

Biased sampling is a well-known problem in reinforcement learning.
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Biased sampling is caused by the stochasticity of the policy wherein

there are multiple possible successor states from the current state where

the agent is. If it is a deterministic policy, then there will be no biased

sampling problem. Biased sampling is often caused by the product of

the TD errors, or the product of TD error and the gradient of TD

error w.r.t the model parameter θ. There are two ways to avoid the bi-

ased sampling problem, which can be categorized into double sampling

methods and two-time-scale stochastic approximation methods.

In this paper, we propose a novel approach to TD algorithm design

in reinforcement learning, based on introducing the proximal splitting

framework [28]. We show that the GTD family of algorithms are true

stochastic gradient descent (SGD) methods, thus making their conver-

gence rate analysis available. New accelerated off-policy algorithms are

proposed and their comparative study with RO-TD is carried out to

show the effectiveness of the proposed algorithms. We also show that

primal-dual splitting is a unified first-order optimization framework to

solve the biased sampling problem. Figure 1.6 compares the perfor-

mance of our newly designed off-policy methods compared to previous

methods, like TDC and GTD2 on the classic 5-state Baird counterex-

ample. Note the significant improvement of TDC-MP over TDC: the

latter converges much more slowly, and has much higher variance. This

result is validated not only by experiments, but also by a detailed theo-

retical analysis of sample convergence, which goes beyond the previous

asymptotic convergence analysis of off-policy methods.

1.5 Sparse Reinforcement Learning using Mirror Descent

How can we design reinforcement learning algorithms that are robust

to overfitting? In this paper we explore a new framework for (on-policy

convergent) TD learning algorithms based on mirror descent and re-

lated algorithms. Mirror descent can be viewed as an enhanced gradi-

ent method, particularly suited to minimization of convex functions in

high-dimensional spaces. Unlike traditional temporal difference learn-

ing methods, mirror descent temporal difference learning undertakes

updates of weights in both the dual space and primal space, which

are linked together using a Legendre transform. Mirror descent can be
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Fig. 1.6: Off-Policy Convergence Comparison. Our proposed methods,

TDC-MP and GTD2-MP, appear to significantly outperform previous

methods, like TDC and GTD2 on a simple benchmark MDP.

viewed as a proximal algorithm where the distance-generating function

used is a Bregman divergence. We will present a new class of proximal-

gradient based temporal-difference (TD) methods based on different

Bregman divergences, which are more powerful than regular TD learn-

ing. Examples of Bregman divergences that are studied include p-norm

functions, and Mahalanobis distance based on the covariance of sample

gradients. A new family of sparse mirror-descent reinforcement learn-

ing methods are proposed, which are able to find sparse fixed-point of

an l1-regularized Bellman equation at significantly less computational

cost than previous methods based on second-order matrix methods.

Figure 1.7 illustrates a sample result, showing how the mirror descent

variant of temporal difference learning results in faster convergence,

and much lower variance (not shown) on the classic mountain car task

[1].

1.6 Summary

We provided a brief overview of our proposed primal-dual framework

for reinforcement learning. The fundamentally new idea underlying the
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Fig. 1.7: Comparing mirror-descent TD using the p-norm link function

with 16 tunable Fourier bases with regular TD for the mountain car

task.

approach is the systematic use of mirror maps to carry out temporal

difference updates, not in the original primal space, but rather in a dual

space. This technical device, as we will show in subsequent chapters,

provides for a number of significant advantages. By choosing the mirror

map carefully, we can generalize popular methods like natural gradi-

ent based actor-critic methods, and provide safety guarantees. We can

design more robust temporal difference learning methods that are less

prone to overfitting the experience of an agent. Finally, we can exploit

proximal mappings to design a rich variety of true stochastic gradi-

ent methods. These advantages, when combined, provide a compelling

case for the fundamental correctness of our approach. However, much

remains to be done in more fully validating the proposed framework on

large complex real-world applications, as well as doing a deeper theo-

retical analysis of our proposed approach. These extensions will be the

subject of ongoing research by us in the years ahead.
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Background

In this chapter we introduce relevant background material that form

the two cornerstones of this paper: reinforcement learning and first-

order stochastic composite optimization. The Markov decision process

(MDP) model, value function approximation and some basics of rein-

forcement learning are also introduced. For stochastic composite op-

timization, we first introduce the problem formulation, and then in-

troduce some tools such as proximal gradient method, mirror descent,

etc.

2.1 Reinforcement Learning

2.1.1 MDP

The learning environment for decision-making is generally modeled by

the well-known Markov Decision Process[29] M = (S,A, P,R, γ),

which is derived from a Markov chain.

Definition 2.1.1. (Markov Chain): A Markov Chain is a stochastic

process defined as M = (S, P ). At each time step t = 1, 2, 3, · · · , the

agent is in a state st ∈ S, and the state transition probability is given

15
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by the state transition kernel P : S × S → R satisfying ||P ||∞ = 1,

where P (st|st−1) is the state-transition probability from state st−1 at

time step t− 1 to the state st at time step st.

A Markov decision process (MDPs) is comprised of a set of states S,

a set of (possibly state-dependent) actions A (As), a dynamical sys-

tem model comprised of the transition probabilities P ass′ specifying the

probability of transition to state s′ from state s under action a, and a

reward model R.

Definition 2.1.2. (Markov Decision Process)[29]: A Markov Decision

Process is a tuple (S,A, P,R, γ) where S is a finite set of states, A is

a finite set of actions, P : S × A × S → [0, 1] is the transition kernel,

where P (s, a, s′) is the probability of transmission from state s to state

s′ given action a, and reward r : S × A → R+ is a reward function,

0 ≤ γ < 1 is a discount factor.

2.1.2 Basics of Reinforcement Learning

A policy π : S → A is a deterministic (stochastic) mapping from states

to actions.

Definition 2.1.3. (Policy): A deterministic stationary policy π : S →
A assigns an action to each state of the Markov decision process. A

stochastic policy π : S ×A→ [0, 1].

Value functions are used to compare and evaluate the performance of

policies.

Definition 2.1.4. (Value Function): A value function w.r.t a policy π

termed as V π : S → R assigns each state the expected sum of discounted

rewards

V π = E

[
t∑
i=1

γi−1ri

]
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The goal of reinforcement learning is to find a (near-optimal) policy

that maximizes the value function. V π is a fixed-point of the Bellman

equation

V π(st) = E [r(st, π(st)) + γV π(st+1)]

Equation (2.1.2) can be written in a concise form by introducing the

Bellman operator T π w.r.t a policy π and denoting the reward vector

as Rπ ∈ Rn where Rπi = E[r(si, π(si))].

V π = T π(V π) = Rπ + γP πV π

Any optimal policy π∗ defines the unique optimal value function V ∗

that satisfies the nonlinear system of equations:

V
∗
(s) = max

a

∑
s′

P ass′
(
Rass′ + γV ∗(s′)

)

2.1.3 Value Function Approximation

The most popular and widely used RL method is temporal difference

(TD) learning [30]. TD learning is a stochastic approximation approach

to solving Equation (2.1.2). The state-action value Q∗(s, a) represents

a convenient reformulation of the value function, defined as the long-

term value of performing a first, and then acting optimally according

to V ∗:

Q∗(s, a) = E
(
rt+1 + γmax

a′
Q∗(st+1, a

′)|st = s, at = a

)
where rt+1 is the actual reward received at the next time step, and

st+1 is the state resulting from executing action a in state st. The (op-

timal) action value formulation is convenient because it can be approx-

imately solved by a temporal-difference (TD) learning technique called

Q-learning [31]. The simplest TD method, called TD(0), estimates the

value function associated with the fixed policy using a normal stochas-

tic gradient iteration, where δt is called temporal difference error:

Vt+1(st) = Vt(st) + αtδt
δt = rt + γVt(st+1)− Vt(st)
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TD(0) converges to the optimal value function V π for policy π as

long as the samples are “on-policy”, namely following the stochastic

Markov chain associated with the policy; and the learning rate αt is

decayed according to the Robbins-Monro conditions in stochastic ap-

proximation theory:
∑

t αt = ∞,∑t α
2
t < ∞ [32]. When the set of

states S is large, it is often necessary to approximate the value func-

tion V using a set of handcrafted basis functions (e.g., polynomials,

radial basis functions, wavelets etc.) or automatically generated basis

functions [33]. In linear value function approximation, the value func-

tion is assumed to lie in the linear spanning space of the basis function

matrix Φ of dimension |S|×d, where it is assumed that d� |S|. Hence,

V π ≈ Vθ = Φθ

The equivalent TD(0) algorithm for linear function approximated value

functions is given as:

θt+1 = θt + αtδtφ(st)

δt = rt + γφ(st+1)T θt − φ(st)
T θt

2.2 Stochastic Composite Optimization

2.2.1 Stochastic Composite Optimization Formulation

Stochastic optimization explores the use of first-order gradient methods

for solving convex optimization problems. We first give some definitions

before moving on to introduce stochastic composite optimization.

Definition 2.2.1. (Lipschitz-continuous Gradient): The gradient of a

closed convex function f(x) is L-Lipschitz continuous if ∃L, ||∇f(x)−
∇f(y)|| ≤ L||x− y||, ∀x, y ∈ X.

Definition 2.2.2. (Strong Convexity): A convex function

is µ−strongly convex if ∃µ, µ
2 ||x − y||2 ≤ f(y) − f(x) −

〈∇f(x), y − x〉 , ∀x, y ∈ X.
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Remark: If f(x) is both with L-Lipschitz continuous gradient and

µ-strongly convex, then we have ∀x, y ∈ X,

µ

2
||x− y||2 ≤ f(y)− f(x)− 〈∇f(x), y − x〉 ≤ L

2
||x− y||2

Definition 2.2.3. (Stochastic Subgradient) : The stochastic subgradi-

ent for closed convex function f(x) at x is defined as g(x, ξt) satisfying

E[g(x, ξt)] = ∇f(x) ∈ ∂f(x). Further, we assume that the variance is

bounded ∃σ > 0 such that

∀x ∈ X,E[||g(x, ξt)−∇f(x)||2∗] ≤ σ2

Here we define the problem of Stochastic Composite Optimization

(SCO)[34]:

Definition 2.2.4. (Stochastic Composite Optimization): A stochastic

composite optimization problem F(L,M, µ, σ) : Ψ(x) on a closed con-

vex set X is defined as

min
x∈X

Ψ(x)
def
= f(x) + h(x)

f(x) is a convex function with L-Lipschitz continuous gradient and

h(x) is a convex Lipschitz continuous function such that

|h(x)− h(y)| ≤M ||x− y||,∀x, y ∈ X

g(x, ξt) is the stochastic subgradient of Ψ(x) defined above with vari-

ance bound σ. Such Ψ(x) is termed as a F(L,M, µ, σ) problem.

2.2.2 Proximal Gradient Method and Mirror Descent

Before we move on to introduce mirror descent, we first introduce some

definitions and notations.
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Definition 2.2.5. (Distance-generating Function)[35]: A distance-

generating function ψ(x) is defined as a continuously differentiable µ-

strongly convex function. ψ∗ is the Legendre transform of ψ, which is

defined as ψ∗(y) = sup
x∈X

(〈x, y〉 − ψ(x)).

Definition 2.2.6. (Bregman Divergence)[35]: Given distance-

generating function ψ, the Bregman divergence induced by ψ is

defined as:

Dψ(x, y) = ψ(x)− ψ(y)− 〈∇ψ(y), x− y〉

Legendre transform and Bregman divergence have the following

properties

• ∇ψ∗ = (∇ψ)−1

• Dψ(u, v) = Dψ∗(∇ψ(u),∇ψ(v))
• ∇Dψ(u, v) = ∇ψ(u)−∇ψ(v)

An interesting choice of the link function ψ(·) is the (q − 1)-

strongly convex function ψ(θ) = 1
2‖θ‖2q , and ψ∗(θ̃) = 1

2 ||θ̃||2p. Here,

‖θ‖q =
(∑

j |θj |q
) 1
q
, and p and q are conjugate numbers such that

1
p + 1

q = 1 [36]. θ and θ̃ are conjugate variables in primal space and

dual space, respectively .

∇ψ
θ→θ̃

(θ)j =
sign(θj)|θj |q−1

||θ||q−2
q

∇ψ
θ̃→θ

∗(θ̃)j =
sign(θ̃j)|θ̃j |p−1

||θ̃||p−2
p

Also it is worth noting that when p = q = 2, the Legendre transform

is the identity mapping.

We now introduce the concept of proximal mapping, and then describe

the mirror descent framework. The proximal mapping associated with
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a convex function h(x) is defined as:

proxh(x) = arg min
u∈X

(h(u) +
1

2
‖u− x‖2)

In the case of h(x) = ρ‖x‖1(ρ > 0), which is particularly important for

sparse feature selection, the proximal operator turns out to be the soft-

thresholding operator Sρ(·), which is an entry-wise shrinkage operator

that moves a point towards zero, i.e.,

proxh(x)i = Sρ(x)i = sign(xi) max(|xi − ρ|, 0)

where i is the index, and ρ is a threshold. With this background, we

now introduce the proximal gradient method. At each iteration, the

optimization sub-problem of Equation (2.2.4) can be rewritten as

xt+1 = arg min
u∈X

(h(u) + 〈∇ft, u〉+
1

2αt
‖u− xt‖2)

If computing proxh is not expensive, then computation of Equation

(2.2.4) is of the following formulation, which is called the proximal

gradient method

xt+1 = proxαth (xt − αt∇f(xt))

where αt > 0 is stepsize, constant or determined by line search. The

mirror descent [35] algorithm is a generalization of classic gradient de-

scent, which has led to developments of new more powerful machine

learning methods for classification and regression. Mirror descent can

be viewed as an enhanced gradient method, particularly suited to min-

imization of convex functions in high-dimensional spaces. Unlike tra-

ditional gradient methods, mirror descent undertakes gradient updates

of weights in the dual space, which is linked together with the primal

space using a Legendre transform. Mirror descent can be viewed as a

proximal algorithm where the distance-generating function used is a

Bregman divergence w.r.t the distance-generating function ψ, and thus

the optimization problem is

proxh(x) = arg min
u∈X

(h(u) +Dψ(u, x))
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The solution to this optimization problem of Equation (2.2.2) forms

the core procedure of mirror descent as a generalization of Equation

(2.2.2)

xt+1 = arg min
u∈X

(h(u) + 〈∇ft, u〉+
1

αt
Dψ(u, xt))

which is a nonlinear extension of Equation(2.2.2)

xt+1 = ∇ψ∗ (proxαth (∇ψ(xt)− αt∇f(xt)))

Mirror descent has become the cornerstone of many online l1 regular-

ization approaches such as in [37], [38] and [39].

2.2.3 Dual Averaging

Regularized dual averaging (RDA) [38] is a variant of Dual averaging

(DA) with “simple” regularizers, such as l1 regularization. DA method

is strongly related to cutting-plane methods. Cutting-plane methods

formulate a polyhedral lower bound model of the objective function

where each gradient from past iterations contributes a supporting hy-

perplane w.r.t its corresponding previous iteration, which is often ex-

pensive to compute. The DA method approximates this lower bound

model with an approximate (possibly not supporting) lower bound hy-

perplane with the averaging of all the past gradients [40].

We now explain RDA from the proximal gradient perspective. Thus

far, the proximal gradient methods we have described in Equation

(2.2.2) adjust the weights to lie in the direction of the current gradient

∇ft. Regularized dual averaging methods (RDA) uses a (weighted) av-

eraging of gradients, which explain their name. Compared with Equa-

tion (2.2.2), the main difference is the average (sub)gradient ∇f̄t is

used, where ∇f̄t = 1
t

t∑
i=1
∇fi. The equivalent space-efficient recursive

representation is

∇f̄t =
t− 1

t
∇f̄t−1 +

1

t
∇ft

The generalized mirror-descent proximal gradient formulation of RDA

iteratively solves the following optimization problem at each step:
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xt+1 = arg min
x∈X

{〈
x,∇f̄t

〉
+ h(x) +

1

αt
Dψ(x)

}
Note that different from Equation (2.2.2), besides the averaging

gradient ∇f̄t is used instead of ∇ft, a global origin-centered stabilizer

Dψ(x) is used. RDA with local stabilizer can be seen in [41]. There are

several advantages of RDA over other competing methods in regres-

sion and classification problems. The first is the sparsity of solution

when the penalty term is h(x) = ρ||x||1. Compared with other first-

order l1 regularization algorithms of the mirror-descent type, includ-

ing truncated gradient method [42] and SMIDAS [43], RDA tends to

produce sparser solutions in that the RDA method is more aggressive

on sparsity than many other competing approaches. Moreover, many

optimization problems can be formulated as composite optimization,

e.g., a smooth objective component in conjunction with a global non-

smooth regularization function. It is worth noting that problems with

non-smooth regularization functions often lead to solutions that lie on

a low-dimensional supporting data manifold, and regularized dual av-

eraging is capable of identifying this manifold, and thus bringing the

potential benefit of accelerating convergence rate by searching on the

low-dimensional manifold after it is identified, as suggested in [44].

Moreover, the finite iteration behavior of RDA is much better than

SGD in practice.

2.2.4 Extragradient

The extragradient method was first proposed by Korpelevich[8] as a

relaxation of ordinary gradient descent to solve variational inequality

(VI) problems. Conventional ordinary gradient descent can be used to

solve VI problems only if some strict restrictions such as strong mono-

tonicity of the operator or compactness of the feasible set are satisfied.

The extragradient method was proposed to solve VIs to relax the afore-

mentioned strict restrictions. The essence of extragradient methods is

that instead of moving along the steepest gradient descent direction

w.r.t the initial point in each iteration, two steps, i.e., a extrapolation

step and a gradient descent step, are taken. In the extrapolation step,
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a step is made along the steepest gradient descent direction of the ini-

tial point, resulting in an intermediate point which is used to compute

the gradient. Then the gradient descent step is made from the initial

point in the direction of the gradient w.r.t the intermediate point. The

extragradient take steps as follows

xt+ 1
2

= ΠX (xt − αt∇f(xt))

xt+1 = ΠX

(
xt − αt∇f(xt+ 1

2
)
)

ΠX(x) = argminy∈X‖x−y‖2 is the projection onto the convex setX,

and αt is a stepsize. Convergence of the iterations of Equation (2.2.4)

is guaranteed under the constraints 0 < αt <
1√
2L

[7], where L is the

Lipschitz constant for ∇f(x).

2.2.5 Accelerated Gradient

Nesterov’s seminal work on accelerated gradient (AC) enables deter-

ministic smooth convex optimization to reach its optimal convergence

rate O( L
N2 ). The AC method consists of three major steps: an inter-

polation step, a proximal gradient step and a weighted averaging step.

During each iteration,

yt = αtxt−1 + (1− αt)zt−1

xt = arg min
x

{
〈x,∇f(yt)〉+ h(x) +

1

βt
Dψ(x, xt−1)

}
zt = αtxt + (1− αt)zt−1

It is worth noting that in the proximal gradient step, the stabilizer

makes xt start from xt−1, and go along the gradient descent direction

of ∇f(yt), which is quite similar to extragradient. The essence of Nes-

terov’s accelerated gradient method is to carefully select the prox-center

for proximal gradient step, and the selection of two stepsize sequences

{αt, βt} where αt is for interpolation and averaging, βt is for proximal

gradient. Later work and variants of Nesterov’s method utilizing the

strong convexity of the loss function with Bregman divergence are sum-

marized in [45]. Recently, the extension of accelerated gradient method
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from deterministic smooth convex optimization to stochastic composite

optimization, termed as AC-SA, is studied in [34].

2.3 Subdifferentials and Monotone Operators

We introduce the important concept of a subdifferential.

Definition 2.1. The subdifferential of a convex function f is defined

as the set-valued mapping ∂f :

∂f(x) = {v ∈ Rn : f(z) ≥ f(x) + vT (z − x),∀z ∈ dom(f)

A simple example of a subdifferential is the normal cone, which is the

subdifferential of the indicator function IK of a convex set K (defined

as 0 within the set and +∞ outside). More formally, the normal cone

NK(x∗) at the vector x∗ of a convex set K is defined as NK(x∗) = {y ∈
Rn|yT (x − x∗) ≤ 0,∀x ∈ K}. Each vector v ∈ ∂f(x) is referred to as

the subgradient of f at x.

An important property of closed proper convex functions is that

their subdifferentials induce a relation on Rn called a maximal mono-

tone operator [17, 46].

Definition 2.2. A relation F on Rn is monotone if

(u− v)T (x− y) ≥ 0 for all (x, u), (y, v) ∈ F
F is maximal monotone is there is no monotone operator that properly

contains it.

The subdifferential ∂f of a convex function f is a canonical example

of a maximal monotone operator. A very general way to formulate

optimization problems is monotone inclusion:

Definition 2.3. Given a monotone operator F , the monotone inclu-

sion problem is to find a vector x such that 0 ∈ F (x). For example,

given a (subdifferentiable) convex function f , finding a vector x∗ that

minimizes f is equivalent to solving the monotone inclusion problem

0 ∈ ∂f(x∗).
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2.4 Convex-concave Saddle-Point First Order Algorithms

A key novel contribution of our paper is a convex-concave saddle-point

formulation for reinforcement learning. A convex-concave saddle-point

problem is formulated as follows. Let x ∈ X, y ∈ Y , where X,Y are

both nonempty closed convex sets, and f(x) : X → R be a convex

function. If there exists a function ϕ(·, ·) such that f(x) can be rep-

resented as f(x) := supy∈Y ϕ(x, y), then the pair (ϕ, Y ) is referred

as the saddle-point representation of f . The optimization problem of

minimizing f over X is converted into an equivalent convex-concave

saddle-point problem SadV al = infx∈Xsupy∈Y ϕ(x, y) of ϕ on X×Y . If

f is non-smooth yet convex and well structured, which is not suitable

for many existing optimization approaches requiring smoothness, its

saddle-point representation ϕ is often smooth and convex. The convex-

concave saddle-point problems are, therefore, usually better suited for

first-order methods [47]. A comprehensive overview on extending con-

vex minimization to convex-concave saddle-point problems with unified

variational inequalities is presented in [48]. As an example, consider

f(x) = ||Ax− b||m which admits a bilinear minimax representation

f(x) := ‖Ax− b‖m = max
‖y‖n<1

(〈y,Ax− b〉)

where m,n are conjugate numbers. Using the approach in [49], Equa-

tion (2.4) can be solved as

xt+1 = xt − αt 〈yt, A〉 , yt+1 = Π‖yt‖n≤1(yt + αt(Axt − b))

where Π‖yt‖n≤1 is the projection operator of yt onto the unit-ln ball

‖y‖n ≤ 1,which is defined as

Π‖y‖n≤1y = min(1, 1/‖y‖n)y, n = 2,
(

Π‖y‖n≤1y
)
i

= min(1,
1

|yi|
)yi, n =∞

and Π‖y‖∞≤1y is an entrywise operator.
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2.5 Abstraction through Proximal Operators

A general procedure for solving the monotone inclusion problem, the

proximal point algorithm [50], uses the following identities:

0 ∈ ∂f(x)↔ 0 ∈ α∂f(x)↔ x ∈ (I + α∂(x))↔ x = (I + α∂f)−1(x)

Here, α > 0 is any real number. The proximal point algorithm is based

on the last fixed point identity, and consists of the following iteration:

xk+1 ← (I + αk∂f)−1(xk)

Interestingly, the proximal point method involves the computation of

the so-called resolvent of a relation, defined as follows:

Definition 2.4. The resolvent of a relation F is given as the relation

RF = (I + λF )−1, where λ > 0.

In the case where the relation R = ∂f of some convex function f , the

resolvent can be shown to be the proximal mapping [51], a crucially

important abstraction of the concept of projection, a cornerstone of

constrained optimization.

Definition 2.5. The proximal mapping of a vector v with respect to

a convex function f is defined as the minimization problem:

proxf (v) = argminx∈K(f(x) + ‖v − x‖22)

In the case where f(x) = IK(x), the indicator function for a convex

set K, the proximal mapping reduces to the projection ΠK . While the

proximal point algorithm is general, it is not very effective for problems

in high-dimensional machine learning that involve minimizing a sum of

two or more functions, one or more of which may not be differentiable.

A key extension of the proximal point algorithm is through a general

decomposition principle called operator splitting, reviewed below.
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2.6 Decomposition through Operator Splitting

Operator splitting [17, 18] is a generic approach to decomposing com-

plex optimization and variational inequality problems into simpler ones

that involve computing the resolvents of individual relations, rather

than sums or other compositions of relations. For example, given a

monotone inclusion problem of the form:

0 ∈ A(x) +B(x)

for two relations A and B, how can we find the solution x∗ without

computing the resolvent (I +λ(A+B))−1, which may be complicated,

but rather only compute the resolvents of A and B individually? There

are several classes of operator splitting schemes. We will primarily focus

on the Douglas Rachford algorithm [18] specified in Figure 2.1, because

it leads to a widely used distributed optimization method called Al-

ternating Direction Method of Multipliers (ADMM) [19]. The Douglas

Rachford method is based on the “damped iteration” given by:

zk+1 =
1

2
(I + CACB)(zk)

where CA = 2RA + I and CB = 2RB + I are the “reflection” or Cay-

ley operators associated with the relations A and B. Note that the

Cayley operator is defined in terms of the resolvent, so this achieves

the necessary decomposition. When A = ∂f and B = ∂g, two convex

functions, the Douglas Rachford algorithm becomes the well-known

Alternating Direction Method of Multipliers (ADMM) method, as de-

scribed in Figure 2.1, where the resolvent of A and B turn into prox-

imal minimization steps. The ADMM algorithm has been extensively

studied in optimization; a detailed review is available in the tutorial

paper by Boyd and colleagues [19], covering both its theoretical prop-

erties, operator splitting origins, and applications to high-dimensional

data mining. ADMMs have also recently been studied for spectroscopic

data, in particular hyperspectral unmixing [52].

2.6.1 Forward Backwards Splitting

In this section we will give a brief overview of proximal splitting algo-

rithms [28]. The two key ingredients of proximal splitting are proximal
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Algorithm 3 Douglas

Rachford method.
INPUT: Given A(x), B(X)

and a scalar λ > 0.

1: Set k = 0 and initial vec-

tor zk = 0.

2: repeat

3: Set xk+ 1
2
← RB(zk)

4: Set zk+ 1
2
← 2xk+ 1

2
−

zk
5: Set xk+1 ← RA(zk+ 1

2
)

6: Set zk+1 ← zk +

xk+1 − xk+ 1
2

7: until zk+1 < ε

8: Return xk+1

Algorithm 4 Alternating Direction

Method of Multipliers.

INPUT: Given sub-differentiable con-

vex functions f(x), g(x) and a scalar

λ > 0.

1: Set k = 0 and initial vector zk = 0.

2: repeat

3: Set xk+ 1
2
← argminx(f(x) +

1
2λ‖x− zk‖22)

4: Set zk+ 1
2
← 2xk+ 1

2
− zk

5: Set xk+1 ← argminx(g(x) +
1

2λ‖x− xk+ 1
2
‖22)

6: Set zk+1 ← zk + xk+1 − xk+ 1
2

7: until zk+1 < ε

8: Return xk+1

Fig. 2.1: Operator splitting is a generic framework for decomposing a

composite objective function into simpler components.

operators and operator splitting. Proximal methods [53, 54], which are

widely used in machine learning, signal processing, and stochastic op-

timization, provide a general framework for large-scale optimization.

The proximal mapping associated with a convex function h is defined

as:

proxh(x) = arg min
u

(h(u) +
1

2
‖u− x‖2)

Operator splitting is widely used to reduce the computational com-

plexity of many optimization problems, resulting in algorithms such as

sequential non-iterative approach (SNIA), Strang splitting, and sequen-

tial iterative approach (SIA). Proximal splitting is a technique that

combines proximal operators and operator splitting, and deals with

problems where the proximal operator is difficult to compute at first,

yet is easier to compute after decomposition. The very basic scenario
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is Forward-Backward Splitting (FOBOS) [55]

min
θ

(Ψ(θ) = f(θ) + h(θ))

where f(x) is a convex, continuously differentiable function with L-

Lipschitz-continuous bounded gradients, i.e. ∀x, y, ||∇f(x)−∇f(y)|| ≤
L||x−y||, and h(θ) is a convex (possibly not smooth) function. FOBOS

solves this problem via the following proximal gradient method

θt+1 = proxαth(θt − αt∇f(θt))

An extension of FOBOS is when the objective function is separable,

i.e.,

min
θ

m∑
i=1

fi(θ)

where computing prox m∑
i=1

fi
(·) is difficult, yet for each i, proxfi(·) is

easy to compute. To solve this problem, Douglas-Rachford splitting

[28] and Alternating Direction of Multiple Multipliers (ADMM) can be

used. Recently, ADMM has been used proposed for sparse RL [56].

2.6.2 Nonlinear Primal Problem Formulation

In this paper we will investigate a scenario of proximal splitting that is

different from the problem formulation in Section (2.6.1), namely the

nonlinear primal form

min
θ

(Ψ(θ) = F (K(θ)) + h(θ))

where F (·) is a lower-semicontinuous (l.s.c) nonlinear convex function,

K is a linear operator, the induced norm is ||K||. In the following, we

will denote F (K(θ)) as F ◦K(θ). The proximal operator of this problem

is

θt+1 = arg min
θ
{Ψ(θ) +

1

2αt
||θ − θt||22} = proxαt (F◦K+h)(θt)
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In many cases, although proxαtF and proxαtK are easy to compute,

proxαtF◦K is often difficult to compute. For the NEU case, we have

K(θ) = E[φtδt] = ΦTΞ(TVθ − Vθ) = ΦTΞ(R+ γΦ
′
θ − Φθ), F (·) = 1

2 || · ||22

It is straightforward to verify that proxαtF , proxαtK are easy to com-

pute, but proxαtF◦K is not easy to compute since it involves the biased

sampling problem as indicated in Equation (6.3). To solve this problem,

we transform the problems formulation to facilitate operator splitting,

i.e., which only uses proxαtF , proxαtK ,proxαth and avoids computing

proxαtF◦K directly. We will use the primal-dual splitting framework to

this end.

2.6.3 Primal-Dual Splitting

The corresponding primal-dual formulation [57, 28, 58] of Section

(2.6.2) is

min
θ∈X

max
y∈Y

(L(θ, y) = 〈K(θ), y〉 − F ∗(y) + h(θ))

where F ∗(·) is the Legendre transform of the convex nonlinear function

F (·), which is defined as F ∗(y) = supx∈X(〈x, y〉−F (x)). The proximal

splitting update per iteration is written as

yt+1 = arg min
y∈Y
〈−Kt(θt), y〉+ F ∗(y) + 1

2αt
||y − yt||2

θt+1 = arg min
θ∈X
〈Kt(θ), yt〉+ h(θ) + 1

2αt
||θ − θt||2

Thus we have the general update rule as

yt+1 = yt + αtKt(θt)− αt∇F ∗t (y) , θt+1 = proxαth(θt − αt∇Kt(θt)yt)

However, in stochastic learning setting, we do not have knowledge of

the exact Kt(θt), ∇F ∗t (y) and ∇Kt(θt)yt, whereas a stochastic oracle

SO is able to provide unbiased estimation of them.

2.7 Natural Gradient Methods

Consider the problem of minimizing a differentiable function f : Rn →
R. The standard gradient descent approach is to select an initial x0 ∈
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Rn, compute the direction of steepest descent, −∇f(x0), and then move

some amount in that direction (scaled by a stepsize parameter, α0).

This process is then repeated indefinitely: xk+1 = xk−αk∇f(xk), where

{αk} is a stepsize schedule and k ∈ {1, . . .}. Gradient descent has been

criticized for its low asymptotic rate of convergence. Natural gradients

are a quasi-Newton approach to improving the convergence rate of

gradient descent.

When computing the direction of steepest descent, gradient descent

assumes that the vector xk resides in Euclidean space. However, in

several settings it is more appropriate to assume that xk resides in a

Riemannian space with metric tensor G(xk), which is an n × n posi-

tive definite matrix that may vary with xk [22]. In this case, the di-

rection of steepest descent is called the natural gradient and is given

by −G(xk)
−1∇f(xk) [59]. In certain cases, (which include our policy

search application), following the natural gradient is asymptotically

Fisher-efficient [22].

2.8 Summary

We provided a brief overview of some background material in rein-

forcement learning and optimization in this chapter. The subsequent

chapters contain further elaboration of this material as it is required.

The overall goal of our work is to bring reinforcement learning into the

main fabric of modern stochastic optimization theory. As we show in

subsequent chapters, accomplishing this goal gives us access to many

advanced algorithms and analytical tools. It is worth noting that we

make little use of classical stochastic approximation theory, which has

traditionally been used to analyze reinforcement learning methods (as

discussed in detail in books such as [32]). Classical stochastic approx-

imation theory provides only asymptotic convergence bounds, for the

most part. We are interested, however, in getting tighter sample com-

plexity bounds, which stochastic optimization provides.
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Sparse Temporal Difference Learning in Primal
Dual Spaces

In this chapter we explore a new framework for (on-policy conver-

gent) TD learning algorithm based on mirror descent and related

algorithms.1 Mirror descent can be viewed as an enhanced gradient

method, particularly suited to minimization of convex functions in

high-dimensional spaces. Unlike traditional gradient methods, mirror

descent undertakes gradient updates of weights in both the dual space

and primal space, which are linked together using a Legendre trans-

form. Mirror descent can be viewed as a proximal algorithm where

the distance-generating function used is a Bregman divergence. A new

class of proximal-gradient based temporal-difference (TD) methods are

presented based on different Bregman divergences, which are more pow-

erful than regular TD learning. Examples of Bregman divergences that

are studied include p-norm functions, and Mahalanobis distance based

on the covariance of sample gradients. A new family of sparse mirror-

descent reinforcement learning methods are proposed, which are able to

find sparse fixed-point of an l1-regularized Bellman equation at signifi-

cantly less computational cost than previous methods based on second-

1 This chapter is based on the paper “Sparse Q-learning with Mirror Descent” published in
UAI 2012.

33
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order matrix methods.

3.1 Problem Formulation

The problem formulation in this chapter is based on the Lasso-TD

objective defined as follows, which is used in LARS-TD and LCP-TD.

We first define l1-regularized Projection, and then give the definition

of Lasso-TD objective function.

Definition 3.1.1. [60] (l1-regularized Projection): Πl1 is the l1-

regularized projection defined as:

Πl1y = Φθ, θ = arg min
w
‖y − Φw‖2 + ρ‖w‖1

which is a non-expansive mapping w.r.t weighted l2 norm, as proven in

[60].

Lemma 3.1.1. [60]: Πρ is a non-expansive mapping such that

∀x, y ∈ Rd, ||Πρx−Πρy||2 ≤ ||x− y||2 − ||x− y − (Πρx−Πρy)||2

Definition 3.1.2. [60] (Lasso-TD) Lasso-TD is a fixed-point equation

w.r.t l1 regularization with parameter ρ, which is defined as

θ = f(θ) = argminu∈Rd
(
||TΦθ − Φu||2 + ρ||u||1

)
= argminu∈Rd

(
||Rπ + γP πΦθ − Φu||2 + ρ||u||1

)
The properties of Lasso-TD is discussed in detail in [60]. Note that

the above l1 regularized fixed-point is not a convex optimization prob-

lem but a fixed-point problem. Several prevailing sparse RL meth-

ods use Lasso-TD as the objective function, such as SparseTD[61],

LARS-TD[62] and LCP-TD[63]. The advantage of LARS-TD comes

from LARS in that it computes a homotopy path of solutions with dif-

ferent regularization parameters, and thus offers a rich solution family.
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The major drawback comes from LARS, too. To maintain the LARS

criteria wherein each active variable has the same correlation with the

residual, variables may be added and dropped several times, which is

computationally expensive. In fact, the computational complexity per

iteration is O(Ndk2) where k is the cardinality of the active feature set.

Secondly, LARS-TD requires the A matrix to be a P -matrix(a square

matrix which does not necessarily to be symmetric, but all the principal

minors are positive), which poses extra limitation on applications. The

author of LARS-TD claims that this seems never to be a problem in

practice, and given on-policy sampling condition or given large enough

ridge regression term, P -matrix condition can be guaranteed. LCP-

TD [12] formulates LASSO-TD as a linear complementarity problem

(LCP), which can be solved by a variety of available LCP solvers.

We then derive the major step by formulating the problem as a

forward-backward splitting problem (FOBOS) as in [55],

θt+ 1
2

= θt − αtgt
θt+1 = arg min

θ

{
1
2 ||θ − θt+ 1

2
||22 + αth(θ)

}
This is equivalent to the formulation of proximal gradient method

θt+1 = arg min
θ

{
〈gt, θ〉+ h(θ) +

1

2αt
||θ − θt||22

}
Likewise, we could formulate the sparse TD algorithm as

θt+ 1
2

= θt − αt
2 ∇MSE(θ)

θt+1 = arg min
θ

{
1
2 ||θt − θt+ 1

2
||22 + αth(θ)

}
And this can be formulated as

θt+1 = arg min
θ

{〈
1

2
∇MSE(θ), θ

〉
+ h(θ) +

1

2αt
||θ − θt||22

}
3.2 Mirror Descent RL

Algorithm 1 describes the proposed mirror-descent TD(λ) method.2

Unlike regular TD, the weights are updated using the TD error in the

2 All the algorithms described extend to the action-value case where φ(s) is replaced by
φ(s, a).
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Algorithm 5 Adaptive Mirror Descent TD(λ)

Let π be some fixed policy for an MDP M, and s0 be the initial state.

Let Φ be some fixed or automatically generated basis.

1: repeat

2: Do action π(st) and observe next state st+1 and reward rt.

3: Update the eligibility trace et ← et + λγφ(st)

4: Update the dual weights θt for a linear function approximator:

θt+1 = ∇ψt(wt) + αt(rt + γφ(st+1)Twt − φ(st)
Twt)et

where ψ is a distance generating function.

5: Set wt+1 = ∇ψ∗t (θt+1) where ψ∗ is the Legendre transform of ψ.

6: Set t← t+ 1.

7: until done.

Return V̂ π ≈ Φwt as the value function associated with policy π

for MDP M .

dual space by mapping the primal weights w using a gradient of a

strongly convex function ψ. Subsequently, the updated dual weights

are converted back into the primal space using the gradient of the

Legendre transform of ψ, namely ∇ψ∗. Algorithm 1 specifies the mirror

descent TD(λ) algorithm wherein each weight wi is associated with an

eligibility trace e(i). For λ = 0, this is just the features of the current

state φ(st), but for nonzero λ, this corresponds to a decayed set of

features proportional to the recency of state visitations. Note that the

distance generating function ψt is a function of time.

3.2.1 Choice of Bregman Divergence

We now discuss various choices for the distance generating function

in Algorithm 1. In the simplest case, suppose ψ(w) = 1
2‖w‖22, the

Euclidean length of w. In this case, it is easy to see that mirror de-

scent TD(λ) corresponds to regular TD(λ), since the gradients ∇ψ
and ∇ψ∗ correspond to the identity function. A much more interesting

choice of ψ is ψ(w) = 1
2‖w‖2q , and its conjugate Legendre transform
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ψ∗(w) = 1
2‖w‖2p. Here, ‖w‖q =

(∑
j |wj |q

) 1
q
, and p and q are conju-

gate numbers such that 1
p + 1

q = 1. This ψ(w) leads to the p-norm link

function θ = f(w) where f : Rd → Rd [16]:

fj(w) =
sign(wj)|wj |q−1

‖w‖q−2
q

, f−1
j (θ) =

sign(θj)|θj |p−1

‖θ‖p−2
p

The p-norm function has been extensively studied in the literature on

online learning [16], and it is well-known that for large p, the corre-

sponding classification or regression method behaves like a multiplica-

tive method (e.g., the p-norm regression method for large p behaves

like an exponentiated gradient method (EG) [64, 65]).

Another distance generating function is the negative entropy func-

tion ψ(w) =
∑

iwi logwi, which leads to the entropic mirror descent

algorithm [6]. Interestingly, this special case has been previously ex-

plored [66] as the exponentiated-gradient TD method, although the

connection to mirror descent and Bregman divergences were not made

in this previous study, and EG does not generate sparse solutions [37].

We discuss EG methods vs. p-norm methods in Section 3.6.

3.2.2 Sparse Learning with Mirror Descent TD

Algorithm 2 describes a modification to obtain sparse value func-

tions resulting in a sparse mirror-descent TD(λ) algorithm. The main

difference is that the dual weights θ are truncated according to Equa-

tion 1.1.3 to satisfy the l1 penalty on the weights. Here, β is a sparsity

parameter. An analogous approach was suggested in [37] for l1 penal-

ized classification and regression.

3.2.3 Composite Mirror Descent TD

Another possible mirror-descent TD algorithm uses as the distance-

generating function a Mahalanobis distance derived from the subgra-

dients generated during actual trials. We base our derivation on the

composite mirror-descent approach proposed in [67] for classification

and regression. The composite mirror-descent solves the following op-
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Algorithm 6 Sparse Mirror Descent TD(λ)

1: repeat

2: Do action π(st) and observe next state st+1 and reward rt.

3: Update the eligibility trace et ← et + λγφ(st)

4: Update the dual weights θt:

θ̃t+1 = ∇ψt(wt) + αt
(
rt + γφ(st+1)Twt − φ(st)

Twt
)
et

(e.g., ψ(w) = 1
2‖w‖2q is the p-norm link function).

5: Truncate weights:

∀j, θt+1
j = sign(θ̃t+1

j ) max(0, |θ̃t+1
j | − αtβ)

6: wt+1 = ∇ψ∗t (θt+1) (e.g., ψ∗(θ) = 1
2‖θ‖2p and p and q are dual

norms such that 1
p + 1

q = 1).

7: Set t← t+ 1.

8: until done.

Return V̂ π ≈ Φwt as the l1 penalized sparse value function associ-

ated with policy π for MDP M .

timization problem at each step:

wt+1 = argminx∈X (αt〈x, ∂ft〉+ αtµ(x) +Dψt(x,wt))

Here, µ serves as a fixed regularization function, such as the l1 penalty,

and ψt is the time-dependent distance generating function as in mirror

descent. We now describe a different Bregman divergence to be used

as the distance generating function in this method. Given a positive

definite matrix A, the Mahalanobis norm of a vector x is defined as

‖x‖A =
√
〈x,Ax〉. Let gt = ∂f(st) be the subgradient of the function

being minimized at time t, and Gt =
∑

t gtg
T
t be the covariance ma-

trix of outer products of the subgradients. It is computationally more

efficient to use the diagonal matrix Ht =
√

diag(Gt) instead of the full

covariance matrix, which can be expensive to estimate. Algorithm 3

describes the adaptive subgradient mirror descent TD method.
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Algorithm 7 Composite Mirror Descent TD(λ)

1: repeat

2: Do action π(st) and observe next state st+1 and reward rt.

3: Set TD error δt = rt + γφ(st+1)Twt − φ(st)
Twt

4: Update the eligibility trace et ← et + λγφ(st)

5: Compute TD update ξt = δtet.

6: Update feature covariance

Gt = Gt−1 + φ(st)φ(st)
T

7: Compute Mahalanobis matrix Ht =
√

diag(Gt).

8: Update the weights w:

wt+1,i = sign(wt,i −
αtξt,i
Ht,ii

)(|wt,i −
αtξt,i
Ht,ii

| − αtβ

Ht,ii
)

9: Set t← t+ 1.

10: until done.

Return V̂ π ≈ Φwt as the l1 penalized sparse value function associ-

ated with policy π for MDP M .

3.3 Convergence Analysis

Definition 2 [60]: Πl1 is the l1-regularized projection defined as:

Πl1y = Φα such that α = arg minw‖y − Φw‖2 +β‖w‖1, which is a non-

expansive mapping w.r.t weighted l2 norm induced by the on-policy

sample distribution setting, as proven in [60]. Let the approximation

error f(y, β) = ‖y −Πl1y‖2.

Definition 3 (Empirical l1-regularized projection): Π̂l1 is the empiri-

cal l1-regularized projection with a specific l1 regularization solver, and

satisfies the non-expansive mapping property. It can be shown using a

direct derivation that Π̂l1ΠT is a γ-contraction mapping. Any unbiased

l1 solver which generates intermediate sparse solution before conver-

gence, e.g., SMIDAS solver after t-th iteration, comprises an empirical

l1-regularized projection.
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Fig. 3.1: Error Bound and Decomposition

Theorem 1 The approximation error ||V − V̂ || of Algorithm 2 is

bounded by (ignoring dependence on π for simplicity):

||V − V̂ || ≤ 1
1−γ×(

‖V −ΠV ‖+ f(ΠV, β) + (M − 1)P (0) + ‖w∗‖21 M
αtN

)
where V̂ is the approximated value function after N -th iteration,

i.e., V̂ = ΦwN , M = 2
2−4αt(p−1)e , αt is the stepsize, P (0) =

1
N

N∑
i=1
‖ΠV (si)‖22, si is the state of i-th sample, e = d

p
2 , d is the number

of features, and finally, w∗ is l1-regularized projection of ΠV such that

Φw∗ = Πl1ΠV .
Proof: In the on-policy setting, the solution given by Algorithm 2 is the
fixed point of V̂ = Π̂l1ΠT V̂ and the error decomposition is illustrated
in Figure 3.1. The error can be bounded by the triangle inequality

||V − V̂ || = ||V −ΠTV ||+ ||ΠTV − Π̂l1ΠTV ||+ ||Π̂l1ΠTV − V̂ ||

Since Π̂l1ΠT is a γ-contraction mapping, and V̂ = Π̂l1ΠT V̂ , we have

||Π̂l1ΠTV − V̂ || = ||Π̂l1ΠTV − Π̂l1ΠT V̂ || ≤ γ||V − V̂ ||

So we have

(1− γ)||V − V̂ || ≤ ||V −ΠTV ||+ ||ΠTV − Π̂l1ΠTV ||

‖V −ΠTV ‖ depends on the expressiveness of the basis Φ, where if V

lies in span(Φ), this error term is zero. ||ΠTV − Πl1Π̂TV || is further
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bounded by the triangle inequality

||ΠTV − Π̂l1ΠTV || ≤
||ΠTV −Πl1ΠTV ||+ ||Πl1ΠTV − Π̂l1ΠTV ||

where ‖ΠTV −Πl1ΠTV ‖ is controlled by the sparsity parameter β, i.e.,

f(ΠTV, β) = ||ΠTV −Πl1ΠTV ||, where ε = ||Π̂l1ΠTV −Πl1ΠTV || is

the approximation error depending on the quality of the l1 solver em-

ployed. In Algorithm 2, the l1 solver is related to the SMIDAS l1 reg-

ularized mirror-descent method for regression and classification [37].

Note that for a squared loss function L(〈w, xi〉 , yi) = || 〈w, xi〉 − yi||22,

we have |L′|2 ≤ 4L. Employing the result of Theorem 3 in [37], after

the N -th iteration, the l1 approximation error is bounded by

ε ≤ (M − 1)P (0) + ||w∗||21
M

αtN
,M =

2

2− 4αt(p− 1)e

By rearranging the terms and applying V = TV , Equation (3.3) can

be deduced.

3.4 Experimental Results: Discrete MDPs

Figure 3.2 shows that mirror-descent TD converges more quickly with

far smaller Bellman errors than LARS-TD [68] on a discrete “two-

room” MDP [69]. The basis matrix Φ was automatically generated

as 50 proto-value functions by diagonalizing the graph Laplacian of

the discrete state space connectivity graph[69]. The figure also shows

that Algorithm 2 (sparse mirror-descent TD) scales more gracefully

than LARS-TD. Note LARS-TD is unstable for γ = 0.9. It should be

noted that the computation cost of LARS-TD is O(Ndm3), whereas

that for Algorithm 2 is O(Nd), where N is the number of samples, d

is the number of basis functions, and m is the number of active basis

functions. If p is linear or sublinear w.r.t d, Algorithm 2 has a significant

advantage over LARS-TD.

Figure 3.3 shows the result of another experiment conducted to test

the noise immunity of Algorithm 2 using a discrete 10× 10 grid world

domain with the goal set at the upper left hand corner. For this prob-

lem, 50 proto-value basis functions were automatically generated, and

450 random Gaussian mean 0 noise features were added. The sparse



42 Sparse Temporal Difference Learning in Primal Dual Spaces

0 5 10 15 20 25 30 35 40 45
0

500

1000

1500

2000

2500

Iterations

Convergence of LARS−TD and Mirror−Descent Q

 

 
l2
lmax

Mirror−Descent Q

LARS−TD

0 5 10 15 20 25
0

50

100

150

200

250

300

350

400

450

Iterations

Convergence of LARS−TD vs. Mirror−Descent Q

 

 
l2
lmax

LARS−TD

Mirror−Descent Q

1 1.5 2 2.5 3 3.5 4
0

50

100

150

200

250

300

350

MDP State Space: 81 to 169 states

Tim
es 

in S
eco

nds

Speed of LARS−TD and Mirror−Descent Q

 

 

Mirror Descent Q
LARS−TD

Fig. 3.2: Mirror-descent Q-learning converges significantly faster than

LARS-TD on a “two-room” grid world MDP for γ = 0.9 (top left) and

γ = 0.8 (top right). The y-axis measures the l2 (red curve) and l∞
(blue curve) norm difference between successive weights during policy

iteration. Bottom: running times for LARS-TD (blue solid) and mirror-

descent Q (red dashed). Regularization β = 0.01.

mirror descent TD algorithm was able to generate a very good ap-

proximation to the optimal value function despite the large number of

irrelevant noisy features, and took a fraction of the time required by

LARS-TD.

Figure 3.4 compares the performance of mirror-descent Q-learning

with a fixed p-norm link function vs. a decaying p-norm link function

for a 10×10 discrete grid world domain with the goal state in the upper

left-hand corner. Initially, p = O(log d) where d is the number of fea-

tures, and subsequently p is decayed to a minimum of p = 2. Varying

p-norm interpolates between additive and multiplicative updates. Dif-
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Fig. 3.3: Sensitivity of sparse mirror-descent TD to noisy features in

a grid-world domain. Left: basis matrix with the first 50 columns rep-

resenting proto-value function bases and the remainder 450 bases rep-

resenting mean-0 Gaussian noise. Right: Approximated value function

using sparse mirror-descent TD.

ferent values of p yield an interpolation between the truncated gradient

method [42] and SMIDAS [43].
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Fig. 3.4: Left: convergence of mirror-descent Q-learning with a fixed

p-norm link function. Right: decaying p-norm link function.

Figure 3.5 illustrates the performance of Algorithm 3 on the two-

room discrete grid world navigation task.
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Fig. 3.5: Left: Convergence of composite mirror-descent Q-learning on

two-room gridworld domain. Right: Approximated value function, us-

ing 50 proto-value function bases.

3.5 Experimental Results: Continuous MDPs

Figure 3.6 compares the performance of Q-learning vs. mirror-descent

Q-learning for the mountain car task, which converges more quickly

to a better solution with much lower variance. Figure 3.7 shows that

mirror-descent Q-learning with learned diffusion wavelet bases con-

verges quickly on the 4-dimensional Acrobot task. We found in our

experiments that LARS-TD did not converge within 20 episodes (its

curve, not shown in Figure 3.6, would be flat on the vertical axis at

1000 steps). Finally, we tested the mirror-descent approach on a more
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Fig. 3.6: Top: Q-learning; Bottom: mirror-descent Q-learning with p-

norm link function, both with 25 fixed Fourier bases [70] for the moun-

tain car task.

complex 8-dimensional continuous MDP. The triple-link inverted pen-

dulum [71] is a highly nonlinear time-variant under-actuated system,
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Fig. 3.7: Mirror-descent Q-learning on the Acrobot task using auto-

matically generated diffusion wavelet bases averaged over 5 trials.

which is a standard benchmark testbed in the control community. We

base our simulation using the system parameters described in [71], ex-

cept that the action space is discretized because the algorithms de-

scribed here are restricted to policies with discrete actions. There are

three actions, namely {0, 5Newton,−5Newton}. The state space is 8-

dimensional, consisting of the angles made to the horizontal of the

three links in the arm as well as their angular velocities, the position

and velocity of the cart used to balance the pendulum. The goal is to

learn a policy that can balance the system with the minimum number

of episodes. A run is successful if it balances the inverted pendulum

for the specified number of steps within 300 episodes, resulting in a

reward of 0. Otherwise, this run is considered as a failure and yields a

negative reward −1. The first action is chosen randomly to push the

pendulum away from initial state. Two experiments were conducted on

the triple-link pendulum domain with 20 runs for each experiment. As

Table 1 shows, Mirror Descent Q-learning is able to learn the policy

with fewer episodes and usually with reduced variance compared with

regular Q-learning.

The experiment settings are Experiment 1: Zero initial state and

the system receives a reward 1 if it is able to balance 10,000 steps.

Experiment 2: Zero initial state and the system receives a reward 1 if

it is able to balance 100,000 steps. Table 1 shows the comparison result

between regular Q-learning and Mirror Descent Q-learning.
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# of Episodes\Experiment 1 2

Q-learning 6.1± 5.67 15.4± 11.33

Mirror Descent Q-learning 5.7± 9.70 11.8± 6.86

Table 3.1: Results on Triple-Link Inverted Pendulum Task.

3.6 Comparison of Link Functions

The two most widely used link functions in mirror descent are the

p-norm link function [6] and the relative entropy function for exponen-

tiated gradient (EG) [64]. Both of these link functions offer a multi-

plicative update rule compared with regular additive gradient methods.

The differences between these two are discussed here. Firstly, the loss

function for EG is the relative entropy whereas that of the p-norm

link function is the square l2-norm function. Second and more impor-

tantly, EG does not produce sparse solutions since it must maintain

the weights away from zero, or else its potential (the relative entropy)

becomes unbounded at the boundary.

Another advantage of p-norm link functions over EG is that the

p-norm link function offers a flexible interpolation between additive

and multiplicative gradient updates. It has been shown that when the

features are dense and the optimal coefficients θ∗ are sparse, EG con-

verges faster than the regular additive gradient methods [64]. However,

according to our experience, a significant drawback of EG is the over-

flow of the coefficients due to the exponential operator. To prevent

overflow, the most commonly used technique is rescaling: the weights

are re-normalized to sum to a constant. However, it seems that this

approach does not always work. It has been pointed out [66] that in

the EG-Sarsa algorithm, rescaling can fail, and replacing eligible traces

instead of regular additive eligible traces is used to prevent overflow.

EG-Sarsa usually poses restrictions on the basis as well. Thanks to

the flexible interpolation capability between multiplicative and addi-

tive gradient updates, the p-norm link function is more robust and

applicable to various basis functions, such as polynomial, radial basis

function (RBF), Fourier basis [70], proto-value functions (PVFs), etc.
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3.7 Summary

We proposed a novel framework for reinforcement learning using

mirror-descent online convex optimization. Mirror Descent Q-learning

demonstrates the following advantage over regular Q learning: faster

convergence rate and reduced variance due to larger stepsizes with the-

oretical convergence guarantees [72]. Compared with existing sparse

reinforcement learning algorithms such as LARS-TD, Algorithm 2 has

lower sample complexity and lower computation cost, advantages ac-

crued from the first-order mirror descent framework combined with

proximal mapping [37]. There are many promising future research top-

ics along this direction. We are currently exploring a mirror-descent

fast-gradient RL method, which is both convergent off-policy and

quicker than fast gradient TD methods such as GTD and TDC [2]. To

scale to large MDPs, we are investigating hierarchical mirror-descent

RL methods, in particular extending SMDP Q-learning. We are also

undertaking a more detailed theoretical analysis of the mirror-descent

RL framework, building on existing analysis of mirror-descent methods

[67, 37]. Two types of theoretical investigations are being explored: re-

gret bounds of mirror-descent TD methods, extending previous results

[73] and convergence analysis combining robust stochastic approxima-

tion [72] and RL theory [32, 74].



4

Regularized Off-Policy Temporal Difference
Learning

In the last chapter we proposed an on-policy convergent sparse TD

learning algorithm. Although TD converges when samples are drawn

“on-policy” by sampling from the Markov chain underlying a policy

in a Markov decision process (MDP), it can be shown to be divergent

when samples are drawn “off-policy”.

In this chapter, the off-policy TD learning problem is formulated

from the stochastic optimization perspective. 1 A novel objective func-

tion is proposed based on the linear equation formulation of the TDC

algorithm. The optimization problem underlying off-policy TD meth-

ods, such as TDC, is reformulated as a convex-concave saddle-point

stochastic approximation problem, which is both convex and incre-

mentally solvable. A detailed theoretical and experimental study of the

RO-TD algorithm is presented.

1 This chapter is based on the paper ”Regularized Off-Policy TD-Learning” published in
NIPS 2012.

48
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4.1 Introduction

4.1.1 Off-Policy Reinforcement Learning

Off-policy learning refers to learning about one way of behaving, called

the target policy, from sample sets that are generated by another policy

of choosing actions, which is called the behavior policy, or exploratory

policy. As pointed out in [75], the target policy is often a deterministic

policy that approximates the optimal policy, and the behavior policy is

often stochastic, exploring all possible actions in each state as part of

finding the optimal policy. Learning the target policy from the samples

generated by the behavior policy allows a greater variety of exploration

strategies to be used. It also enables learning from training data gen-

erated by unrelated controllers, including manual human control, and

from previously collected data. Another reason for interest in off-policy

learning is that it enables learning about multiple target policies (e.g.,

optimal policies for multiple sub-goals) from a single exploratory pol-

icy generated by a single behavior policy, which triggered an interesting

research area termed as “parallel reinforcement learning”. Besides, off-

policy methods are of wider applications since they are able to learn

while executing an exploratory policy, learn from demonstrations, and

learn multiple tasks in parallel [76]. Sutton et al. [26] introduced conver-

gent off-policy temporal difference learning algorithms, such as TDC,

whose computation time scales linearly with the number of samples

and the number of features. Recently, a linear off-policy actor-critic

algorithm based on the same framework was proposed in [76].

4.1.2 Convex-concave Saddle-point First-order Algorithms

The key novel contribution of this chapter is a convex-concave saddle-

point formulation for regularized off-policy TD learning. A convex-

concave saddle-point problem is formulated as follows. Let x ∈ X, y ∈
Y , where X,Y are both nonempty bounded closed convex sets, and

f(x) : X → R be a convex function. If there exists a function ϕ(·, ·) such

that f(x) can be represented as f(x) := supy∈Y ϕ(x, y), then the pair

(ϕ, Y ) is referred as the saddle-point representation of f . The optimiza-

tion problem of minimizing f over X is converted into an equivalent
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convex-concave saddle-point problem SadV al = infx∈Xsupy∈Y ϕ(x, y)

of ϕ on X × Y . If f is non-smooth yet convex and well structured,

which is not suitable for many existing optimization approaches re-

quiring smoothness, its saddle-point representation ϕ is often smooth

and convex. Thus, convex-concave saddle-point problems are, there-

fore, usually better suited for first-order methods [47]. A comprehensive

overview on extending convex minimization to convex-concave saddle-

point problems with unified variational inequalities is presented in [48].

As an example, consider f(x) = ||Ax − b||m which admits a bilinear

minimax representation

f(x) := ‖Ax− b‖m = max
‖y‖n≤1

yT (Ax− b)

where m,n are conjugate numbers. Using the approach in [49], Equa-

tion (4.1.2) can be solved as

xt+1 = xt − αtAT yt, yt+1 = Πn(yt + αt(Axt − b))

where Πn is the projection operator of y onto the unit ln-ball ‖y‖n ≤
1,which is defined as

Πn(y) = min(1, 1/‖y‖n)y, n = 2, 3, · · · ,Π∞(yi) = min(1, 1/|yi|)yi

and Π∞ is an entrywise operator.

4.2 Problem Formulation

4.2.1 Objective Function Formulation

Now let’s review the concept of MSPBE. MSPBE is defined as

MSPBE(θ)

= ‖Φθ −ΠT (Φθ)‖2Ξ
= (ΦTΞ(TΦθ − Φθ))T (ΦTΞΦ)−1ΦTΞ(TΦθ − Φθ)

= E[δt(θ)φt]
TE[φtφ

T
t ]−1E[δt(θ)φt]

To avoid computing the inverse matrix (ΦTΞΦ)−1 and to avoid the

double sampling problem [1] in (4.2.1), an auxiliary variable w is defined

w = E[φtφ
T
t ]−1E[δt(θ)φt] = (ΦTΞΦ)−1ΦTΞ(TΦθ − Φθ)
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Thus we can have the following linear inverse problem

E[δt(θ)φt] = E[φtφ
T
t ]w = (ΦTΞΦ)w = ΦTΞ(TΦθ − Φθ)

By taking gradient w.r.t θ for optimum condition ∇MSPBE(θ) = 0

and utilizing Equation (4.2.1), we have

E[δt(θ)φt] = γE[φ′tφ
T
t ]w

Rearranging the two equality of Equation (4.2.1,4.2.1), we have the

following linear system equation[
ηΦTΞΦ ηΦTΞ(Φ− γΦ′)

γΦ
′T

ΞΦ ΦTΞ(Φ− γΦ′)

] [
w

θ

]
=

[
ηΦTΞR

ΦTΞR

]
The stochastic gradient version of the above equation is as follows,

where

A = E[At], b = E[bt], x = [w; θ]

At =

[
ηφtφt

T ηφt(φt − γφ′t)T
γφ′tφt

T φt(φt − γφ′t)T

]
, bt =

[
ηrtφt
rtφt

]
Following [26], the TDC algorithm solution follows from the linear

equation Ax = b, where a single iteration gradient update would be

xt+1 = xt − αt(Atxt − bt)
where xt = [wt; θt]. The two time-scale gradient descent learning

method TDC [26] is

θt+1 = θt + αtδtφt − αtγφt′(φTt wt), wt+1 = wt + βt(δt − φTt wt)φt

where −αtγφt′(φTt wt) is the term for correction of gradient descent

direction, and βt = ηαt, η > 1.

There are some issues regarding the objective function, which arise

from the online convex optimization and reinforcement learning per-

spectives, respectively. The first concern is that the objective function

should be convex and stochastically solvable. Note that A,At are nei-

ther PSD nor symmetric, and it is not straightforward to formulate a
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• Ξ is a diagonal matrix whose entries ξ(s) are given

by a positive probability distribution over states. Π =

Φ(ΦTΞΦ)−1ΦTΞ is the weighted least-squares projection

operator.
• A square root of A is a matrix B satisfying B2 = A and

B is denoted as A
1
2 . Note that A

1
2 may not be unique.

• [·, ·] is a row vector, and [·; ·] is a column vector.
• For the t-th sample, φt (the t-th row of Φ), φ′t (the t-th

row of Φ′) are the feature vectors corresponding to st, s
′
t,

respectively. θt is the coefficient vector for t-th sample in

first-order TD learning methods, and δt = (rt + γφ
′T
t θt)−

φTt θt is the temporal difference error. Also, xt = [wt; θt],

αt is a stepsize, βt = ηαt, η > 0.
• m,n are conjugate numbers if 1

m + 1
n = 1,m ≥ 1, n ≥ 1.

||x||m = (
∑

j |xj |m)
1
m is the m-norm of vector x.

• ρ is l1 regularization parameter, λ is the eligibility trace

factor, N is the sample size, d is the number of basis func-

tions, k is the number of active basis functions.

Fig. 4.1: Notations and Definitions.

convex objective function based on them. The second concern is that

since we do not have knowledge of A, the objective function should

be separable so that it is stochastically solvable based on At, bt. The

other concern regards the sampling condition in temporal difference

learning: double-sampling. As pointed out in [1], double-sampling is a

necessary condition to obtain an unbiased estimator if the objective

function is the Bellman residual or its derivatives (such as projected

Bellman residual), wherein the product of Bellman error or projected

Bellman error metrics are involved. To overcome this sampling con-

dition constraint, the product of TD errors should be avoided in the

computation of gradients. Consequently, based on the linear equation
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formulation in (4.2.1) and the requirement on the objective function

discussed above, we propose the regularized loss function as

L(x) = ‖Ax− b‖m + h(x)

Here we also enumerate some intuitive objective functions and give

a brief analysis on the reasons why they are not suitable for regular-

ized off-policy first-order TD learning. One intuitive idea is to add a

sparsity penalty on MSPBE, i.e., L(θ) = MSPBE(θ)+ρ‖θ‖1. Because

of the l1 penalty term, the solution to ∇L = 0 does not have an an-

alytical form and is thus difficult to compute. The second intuition

is to use the online least squares formulation of the linear equation

Ax = b. However, since A is not symmetric and positive semi-definite

(PSD), A
1
2 does not exist and thus Ax = b cannot be reformulated

as minx∈X ||A
1
2x−A− 1

2 b||22. Another possible idea is to attempt to find

an objective function whose gradient is exactly Atxt − bt and thus the

regularized gradient is proxαth(xt)(Atxt − bt). However, since At is not

symmetric, this gradient does not explicitly correspond to any kind of

optimization problem, not to mention a convex one2.

4.2.2 Squared Loss Formulation

It is also worth noting that there exists another formulation of the

loss function different from Equation (4.2.1) with the following convex-

concave formulation as in [77, 47],

min
x

1

2
‖Ax− b‖22 + ρ‖x‖1 = max

‖AT y‖∞≤1
(bT y − ρ

2
yT y)

= min
x

max
‖u‖∞≤1,y

(
xTu+ yT (Ax− b)− ρ

2
yT y

)

Here we give the detailed deduction of formulation in Equation

(4.1). First, using the dual norm representation, the standard LASSO

problem formulation is reformulated as

2 Note that the A matrix in GTD2’s linear equation representation is symmetric, yet is not
PSD, so it cannot be formulated as a convex problem.
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f(x) =
1

2
‖Ax− b‖22 + ρ‖x‖1 = max

y,‖AT y‖∞≤1

[
〈b/ρ, y〉 − 1

2
yT y

]
Then3

〈b, y〉 − 1
2y

T y = 〈b, y〉 − 1
2y

T y +
〈
x,AT y

〉
− 〈y,Ax〉

= 〈y, b−Ax〉 − 1
2y

T y +
〈
x,AT y

〉
which can be solved iteratively without the proximal gradient step

as follows, which serves as a counterpart of Equation (4.3),

xt+1 = xt − αtρ(ut +At
T yt) , yt+1 = yt +

αt
ρ

(Atxt − bt − ρyt)

ut+ 1
2

= ut +
αt
ρ
xt , ut+1 = Π∞(ut+ 1

2
)

4.3 Algorithm Design

4.3.1 RO-TD Algorithm Design

In this section, the problem of (4.2.1) is formulated as a convex-concave

saddle-point problem, and the RO-TD algorithm is proposed. Analo-

gous to (4.1.2), the regularized loss function can be formulated as

‖Ax− b‖m + h(x) = max
‖y‖n≤1

yT (Ax− b) + h(x)

Similar to (2.4), Equation (4.3.1) can be solved via an iteration proce-

dure as follows, where xt = [wt; θt].

xt+ 1
2

= xt − αtATt yt , yt+ 1
2

= yt + αt(Atxt − bt)
xt+1 = proxαth(xt+ 1

2
) , yt+1 = Πn(yt+ 1

2
)

3 Let w = −y, then we will have the same formulation as in Nemirovski’s tutorial in

COLT2012.

Φ(x,w) = 〈w,Ax− b〉 −
1

2
wTw −

〈
x,ATw

〉
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The averaging step, which plays a crucial role in stochastic optimization

convergence, generates the approximate saddle-points [47, 78]

x̄t =
(∑t

i=0
αi

)−1∑t

i=0
αixi, ȳt =

(∑t

i=0
αi

)−1∑t

i=0
αiyi

Due to the computation of At in (4.3) at each iteration, the compu-

tation cost appears to be O(Nd2), where N, d are defined in Figure

4.1. However, the computation cost is actually O(Nd) with a linear

algebraic trick by computing not At but yTt At, Atxt − bt. Denoting

yt = [y1,t; y2,t], where y1,t; y2,t are column vectors of equal length, we

have

yTt At =
[
ηφTt (yT1,tφt) + γφTt (yT2,tφ

′
t) (φt − γφ′t)T (ηyT1,t + yT2,t)φt

]
Atxt − bt can be computed according to Equation (4.2.1) as follows:

Atxt − bt =
[
−η(δt − φTt wt)φt; γ(φTt wt)φt

′ − δtφt
]

Both (4.3.1) and (4.3.1) are of linear computational complexity. Now

we are ready to present the RO-TD algorithm:

There are some design details of the algorithm to be elaborated.

First, the regularization term h(x) can be any kind of convex regu-

larization, such as ridge regression or sparsity penalty ρ||x||1. In case

of h(x) = ρ||x||1, proxαth(·) = Sαtρ(·). In real applications the sparsi-

fication requirement on θ and auxiliary variable w may be different,

i.e., h(x) = ρ1‖θ‖1 + ρ2‖w‖1, ρ1 6= ρ2, one can simply replace the

uniform soft thresholding Sαtρ by two separate soft thresholding op-

erations Sαtρ1 , Sαtρ2 and thus the third equation in (4.3) is replaced by

the following,

xt+ 1
2

=
[
wt+ 1

2
; θt+ 1

2

]
, θt+1 = Sαtρ1(θt+ 1

2
), wt+1 = Sαtρ2(wt+ 1

2
)

Another concern is the choice of conjugate numbers (m,n). For ease of

computing Πn, we use (2, 2)(l2 fit), (+∞, 1)(uniform fit) or (1,+∞).

m = n = 2 is used in the experiments below.
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Algorithm 8 RO-TD

Let π be some fixed policy of an MDP M , and let the sample set

S = {si, ri, si′}Ni=1. Let Φ be some fixed basis.

(1) REPEAT

(2) Compute φt, φt
′ and TD error δt = (rt + γφ

′T
t θt)− φTt θt

(3) Compute yT
t
At, Atxt − bt in Equation (4.3.1) and (4.3.1).

(4) Compute xt+1, yt+1 as in Equation (4.3)

(5) Set t← t+ 1;

(6) UNTIL t = N ;

(7) Compute x̄N , ȳN as in Equation (4.3.1) with t = N .

4.3.2 RO-GQ(λ) Design

GQ(λ)[79] is a generalization of the TDC algorithm with eligibility

traces and off-policy learning of temporally abstract predictions, where

the gradient update changes from Equation (4.2.1) to

θt+1 = θt +αt[δtet− γ(1−λ)wt
T etφ̄t+1], wt+1 = wt + βt(δtet−wTt φtφt)

The central element is to extend the MSPBE function to the case where

it incorporates eligibility traces. The objective function and correspond-

ing linear equation component At, bt can be written as follows:

L(θ) = ||Φθ −ΠT πλΦθ||2Ξ

At =

[
ηφtφt

T ηet(φt − γφ̄t+1)
T

γ(1− λ)φ̄t+1e
T
t et(φt − γφ̄t+1)

T

]
, bt =

[
ηrtet
rtet

]
Similar to Equation (4.3.1) and (4.3.1), the computation of yT

t
At, Atxt−

bt is

yT
t
At =

[
ηφTt (yT1,tφt) + γ(1− λ)eTt (yT2,tφ̄t+1) (φt − γφ̄t+1)T (ηyT1,t + yT2,t)et

]
Atxt − bt =

[
−η(δtet − φTt wtφt); γ(1− λ)(eTt wt)φ̄t+1 − δtet

]
where eligibility traces et, and φ̄t, T

πλ are defined in [79]. Algorithm 9,

RO-GQ(λ), extends the RO-TD algorithm to include eligibility traces.
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Algorithm 9 RO-GQ(λ)

Let π be some fixed policy of an MDP M . Let Φ be some fixed basis.

Starting from s0.

(1) REPEAT

(2) Compute φt, φ̄t+1 and TD error δt = (rt + γφ̄Tt+1θt)− φTt θt
(3) Compute yT

t
At, Atxt − bt in Equation (4.4).

(4) Compute xt+1, yt+1 as in Equation (4.3)

(5) Choose action at, and get st+1

(6) Set t← t+ 1;

(7) UNTIL st is an absorbing state;

(8) Compute x̄t, ȳt as in Equation (4.3.1)

4.4 Theoretical Analysis

The theoretical analysis of RO-TD algorithm can be seen in the Ap-

pendix.

4.5 Empirical Results

We now demonstrate the effectiveness of the RO-TD algorithm against

other algorithms across a number of benchmark domains. LARS-TD

[62], which is a popular second-order sparse reinforcement learning al-

gorithm, is used as the baseline algorithm for feature selection and TDC

is used as the off-policy convergent RL baseline algorithm, respectively.

4.5.1 MSPBE Minimization and Off-Policy Convergence

This experiment aims to show the minimization of MSPBE and off-

policy convergence of the RO-TD algorithm. The 7 state star MDP is

a well known counterexample where TD diverges monotonically and

TDC converges. It consists of 7 states and the reward w.r.t any tran-

sition is zero. Because of this, the star MDP is unsuitable for LSTD-

based algorithms, including LARS-TD since ΦTR = 0 always holds.

The random-walk problem is a standard Markov chain with 5 states

and two absorbing state at two ends. Three sets of different bases Φ
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Fig. 4.2: Illustrative examples of the convergence of RO-TD using the

Star and Random-walk MDPs.
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are used in [26], which are tabular features, inverted features and de-

pendent features respectively. An identical experiment setting to [26]

is used for these two domains. The regularization term h(x) is set to

0 to make a fair comparison with TD and TDC. α = 0.01, η = 10 for

TD, TDC and RO-TD. The comparison with TD, TDC and RO-TD

is shown in the left sub-figure of Figure 4.2, where TDC and RO-TD

have almost identical MSPBE over iterations. The middle sub-figure

shows the value of yT
t

(Axt − b) and ‖Axt − b‖2, wherein ‖Axt − b‖2 is

always greater than the value of yT
t

(Axt − b). Note that for this prob-

lem, the Slater condition is satisfied so there is no duality gap between

the two curves. As the result shows, TDC and RO-TD perform equally

well, which illustrates the off-policy convergence of the RO-TD algo-

rithm. The result of random-walk chain is averaged over 50 runs. The

rightmost sub-figure of Figure 4.2 shows that RO-TD is able to reduce

MSPBE over successive iterations w.r.t three different basis functions.

4.5.2 Feature Selection

In this section, we use the mountain car example with a variety of bases

to show the feature selection capability of RO-TD. The Mountain car

is an optimal control problem with a continuous two-dimensional state

space. The steep discontinuity in the value function makes learning

difficult for bases with global support. To make a fair comparison, we

use the same basis function setting as in [62], where two dimensional

grids of 2, 4, 8, 16, 32 RBFs are used so that there are totally 1365 basis

functions. For LARS-TD, 500 samples are used. For RO-TD and TDC,

3000 samples are used by executing 15 episodes with 200 steps for each

episode, stepsize αt = 0.001, and ρ1 = 0.01, ρ2 = 0.2. We use the

result of LARS-TD and l2 LSTD reported in [62]. As the result shows

in Table 4.1, RO-TD is able to perform feature selection successfully,

whereas TDC and TD failed. It is worth noting that comparing the

performance of RO-TD and LARS-TD is not the major focus here,

since LARS-TD is not convergent off-policy and RO-TD’s performance

can be further optimized using the mirror-descent approach with the

Mirror-Prox algorithm [47] which incorporates mirror descent with an

extragradient [8], as discussed below.
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Algorithm LARS-TD RO-TD l2 LSTD TDC TD

Success(20/20) 100% 100% 0% 0% 0%

Steps 142.25± 9.74 147.40± 13.31 - - -

Table 4.1: Comparison of TD, LARS-TD, RO-TD, l2 LSTD, TDC and

TD

Experiment\Method RO-GQ(λ) GQ(λ) LARS-TD

Experiment 1 6.9± 4.82 11.3± 9.58 -

Experiment 2 14.7± 10.70 27.2± 6.52 -

Table 4.2: Comparison of RO-GQ(λ), GQ(λ), and LARS-TD on Triple-

Link Inverted Pendulum Task

4.5.3 High-dimensional Under-actuated Systems

The triple-link inverted pendulum [71] is a highly nonlinear under-

actuated system with 8-dimensional state space and discrete action

space. The state space consists of the angles and angular velocity of

each arm as well as the position and velocity of the car. The discrete

action space is {0, 5Newton,−5Newton}. The goal is to learn a policy

that can balance the arms for Nx steps within some minimum number

of learning episodes. The allowed maximum number of episodes is 300.

The pendulum initiates from zero equilibrium state and the first action

is randomly chosen to push the pendulum away from initial state. We

test the performance of RO-GQ(λ), GQ(λ) and LARS-TD. Two ex-

periments are conducted with Nx = 10, 000 and 100, 000, respectively.

Fourier basis [80] with order 2 is used, resulting in 6561 basis functions.

Table 4.2 shows the results of this experiment, where RO-GQ(λ) per-

forms better than other approaches, especially in Experiment 2, which

is a harder task. LARS-TD failed in this domain, which is mainly not

due to LARS-TD itself but the quality of samples collected via random

walk.

To sum up, RO-GQ(λ) tends to outperform GQ(λ) in all aspects,

and is able to outperform LARS-TD based policy iteration in high di-
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mensional domains, as well as in selected smaller MDPs where LARS-

TD diverges (e.g., the star MDP). It is worth noting that the compu-

tation cost of LARS-TD is O(Ndk2), where that for RO-TD is O(Nd).

If k is linear or sublinear w.r.t d, RO-TD has a significant advantage

over LARS-TD. However, compared with LARS-TD, RO-TD requires

fine tuning the parameters of αt, ρ1, ρ2 and is usually not as sample

efficient as LARS-TD. We also find that tuning the sparsity parameter

ρ2 generates an interpolation between GQ(λ) and Q-learning, where a

large ρ2 helps eliminate the correction term of TDC update and make

the update direction more similar to the TD update.

4.6 Summary

In this chapter we present a novel unified framework for designing

regularized off-policy convergent RL algorithms combining a convex-

concave saddle-point problem formulation for RL with stochastic first-

order methods. A detailed experimental analysis reveals that the pro-

posed RO-TD algorithm is both off-policy convergent and robust to

noisy features.



5

Safe Reinforcement Learning using Projected
Natural Actor Critic

Natural actor-critics form a popular class of policy search algorithms

for finding locally optimal policies for Markov decision processes. In this

paper we address a drawback of natural actor-critics that limits their

real-world applicability—their lack of safety guarantees. We present

a principled algorithm for performing natural gradient descent over a

constrained domain 1. In the context of reinforcement learning, this al-

lows for natural actor-critic algorithms that are guaranteed to remain

within a known safe region of policy space. While deriving our class

of constrained natural actor-critic algorithms, which we call Projected

Natural Actor-Critics (PNACs), we also elucidate the relationship be-

tween natural gradient descent and mirror descent.

5.1 Introduction

Natural actor-critics form a class of policy search algorithms for find-

ing locally optimal policies for Markov decision processes (MDPs) by

approximating and ascending the natural gradient [59] of an objective

1 This paper is a revised version of the paper “Projected Natural Actor-Critic” that was
published in NIPS 2013.
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function. Despite the numerous successes of, and the continually grow-

ing interest in, natural actor-critic algorithms, they have not achieved

widespread use for real-world applications. A lack of safety guarantees is

a common reason for avoiding the use of natural actor-critic algorithms,

particularly for biomedical applications. Since natural actor-critics are

unconstrained optimization algorithms, there are no guarantees that

they will avoid regions of policy space that are known to be dangerous.

For example, proportional-integral-derivative controllers (PID con-

trollers) are the most widely used control algorithms in industry, and

have been studied in depth [81]. Techniques exist for determining the

set of stable gains (policy parameters) when a model of the system

is available [82]. Policy search can be used to find the optimal gains

within this set (for some definition of optimality). A desirable property

of a policy search algorithm in this context would be a guarantee that

it will remain within the predicted region of stable gains during its

search.

Consider a second example: functional electrical stimulation (FES)

control of a human arm. By selectively stimulating muscles using sub-

cutaneous probes, researchers have made significant strides toward re-

turning motor control to people suffering from paralysis induced by

spinal cord injury [83]. There has been a recent push to develop con-

trollers that specify how much and when to stimulate each muscle in a

human arm to move it from its current position to a desired position

[84]. This closed-loop control problem is particularly challenging be-

cause each person’s arm has different dynamics due to differences in, for

example, length, mass, strength, clothing, and amounts of muscle atro-

phy, spasticity, and fatigue. Moreover, these differences are challenging

to model. Hence, a proportional-derivative (PD) controller, tuned to a

simulation of an ideal human arm, required manual tuning to obtain

desirable performance on a human subject with biceps spasticity [85].

Researchers have shown that policy search algorithms are a viable

approach to creating controllers that can automatically adapt to an in-

dividual’s arm by training on a few hundred two-second reaching move-

ments [86]. However, safety concerns have been raised in regard to both

this specific application and other biomedical applications of policy

search algorithms. Specifically, the existing state-of-the-art gradient-
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based algorithms, including the current natural actor-critic algorithms,

are unconstrained and could potentially select dangerous policies. For

example, it is known that certain muscle stimulations could cause the

dislocation of a subject’s arm. Although we lack an accurate model of

each individual’s arm, we can generate conservative safety constraints

on the space of policies. Once again, a desirable property of a policy

search algorithm would be a guarantee that it will remain within a

specified region of policy space (known-safe policies).

In this paper we present a class of natural actor-critic algorithms

that perform constrained optimization—given a known safe region of

policy space, they search for a locally optimal policy while always re-

maining within the specified region. We call our class of algorithms

Projected Natural Actor-Critics (PNACs) since, whenever they gener-

ate a new policy, they project the policy back to the set of safe policies.

The interesting question is how the projection can be done in a princi-

pled manner. We show that natural gradient descent (ascent), which is

an unconstrained optimization algorithm, is a special case of mirror de-

scent (ascent), which is a constrained optimization algorithm. In order

to create a projected natural gradient algorithm, we add constraints

in the mirror descent algorithm that is equivalent to natural gradient

descent. We apply this projected natural gradient algorithm to policy

search to create the PNAC algorithms, which we validate empirically.

5.2 Related Work

Researchers have addressed safety concerns like these before [87]. Ben-

drahim and Franklin [88] showed how a walking biped robot can switch

to a stabilizing controller whenever the robot leaves a stable region of

state space. Similar state-avoidant approaches to safety have been pro-

posed by several others [89, 90, 91]. These approaches do not account for

situations where, over an unavoidable region of state space, the actions

themselves are dangerous. Kuindersma et al. [92] developed a method

for performing risk-sensitive policy search, which models the variance

of the objective function for each policy and permits runtime adjust-

ments of risk sensitivity. However, their approach does not guarantee

that an unsafe region of state space or policy space will be avoided.
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Bhatnagar et al. [93] presented projected natural actor-critic al-

gorithms for the average reward setting. As in our projected natural

actor-critic algorithms, they proposed computing the update to the

policy parameters and then projecting back to the set of allowed policy

parameters. However, they did not specify how the projection could be

done in a principled manner. We show in Section 5.5 that the Euclidean

projection can be arbitrarily bad, and argue that the projection that we

propose is particularly compatible with natural actor-critics (natural

gradient descent).

Duchi et al. [94] presented mirror descent using the Mahalanobis

norm for the proximal function, which is very similar to the proximal

function that we show to cause mirror descent to be equivalent to nat-

ural gradient descent. However, their proximal function is not identical

to ours and they did not discuss any possible relationship between mir-

ror descent and natural gradient descent.

5.3 Equivalence of Natural Gradient Descent and Mirror De-
scent

We begin by showing an important relationship between natural gra-

dient methods and mirror descent.

Theorem 5.3.1. The natural gradient descent update at step k with

metric tensor Gk , G(xk):

xk+1 = xk − αkG−1
k ∇f(xk), (5.1)

is equivalent to the mirror descent update at step k, with ψk(x) =

(1/2)xᵀGkx.

Proof. First, notice that ∇ψk(x) = Gkx. Next, we derive a closed-form

for ψ∗k:

ψ∗k(y) = max
x∈Rn

{
xᵀy − 1

2
xᵀGkx

}
. (5.2)

Since the function being maximized on the right hand side is strictly

concave, the x that maximizes it is its critical point. Solving for this
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critical point, we get x = G−1
k y. Substituting this into (5.2), we find

that ψ∗k(y) = (1/2)yᵀG−1
k y. Hence, ∇ψ∗k(y) = G−1

k y. Using the defini-

tions of ∇ψk(x) and ∇ψ∗k(y), we find that the mirror descent update

is

xk+1 =G−1
k (Gkxk − αk∇f(xk)) = xk − αkG−1

k ∇f(xk),

which is identical to (5.1). �
Although researchers often use ψk that are norms like the p-norm

and Mahalanobis norm, notice that the ψk that results in natural gra-

dient descent is not a norm. Also, since Gk depends on k, ψk is an

adaptive proximal function [94].

5.4 Projected Natural Gradients

When x is constrained to some set, X, ψk in mirror descent is aug-

mented with the indicator function IX , where IX(x) = 0 if x ∈ X, and

+∞ otherwise. The ψk that was shown to generate an update equiva-

lent to the natural gradient descent update, with the added constraint

that x ∈ X, is ψk(x) = (1/2)xᵀGkx + IX(x). Hereafter, any references

to ψk refer to this augmented version.

For this proximal function, the subdifferential of ψk(x) is ∇ψk(x) =

Gk(x) + N̂X(x) = (Gk + N̂X)(x), where N̂X(x) , ∂IX(x) and, in

the middle term, Gk and N̂X are relations and + denotes Minkowski

addition.2 N̂X(x) is the normal cone of X at x if x ∈ X and ∅ otherwise

[95].

∇ψ∗k(y) = (Gk + N̂X)−1(y). (5.3)

Let ΠGk
X (y), be the set of x ∈ X that are closest to y, where the

length of a vector, z, is (1/2)zᵀGkz. More formally,

ΠGk
X (y) , arg min

x∈X

1

2
(y − x)ᵀGk(y − x). (5.4)

2 Later, we abuse notation and switch freely between treating Gk as a matrix and a relation.
When it is a matrix, Gkx denotes matrix-vector multiplication that produces a vector.
When it is a relation, Gk(x) produces the singleton {Gkx}.
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Lemma 5.4.1. ΠGk
X (y) = (Gk + N̂X)−1(Gky).

Proof. We write (5.4) without the explicit constraint that x ∈ X by

appending the indicator function:

ΠGk
X (y) = arg min

x∈Rn
hy(x),

where hy(x) = (1/2)(y−x)ᵀGk(y−x)+IX(x). Since hy is strictly convex

over X and +∞ elsewhere, its critical point is its global minimizer. The

critical point satisfies

0 ∈ ∇hy(x) = −Gk(y) +Gk(x) + N̂X(x).

The globally minimizing x therefore satisfies Gky ∈ Gk(x) + N̂X(x) =

(Gk + N̂X)(x). Solving for x, we find that x = (Gk + N̂X)−1(Gky). �
Combining Lemma 5.4.1 with (5.3), we find that ∇ψ∗(y) =

ΠGk
X (G−1

k y). Hence, mirror descent with the proximal function that

produces natural gradient descent, augmented to include the constraint

that x ∈ X, is:

xk+1 =ΠGk
X

(
G−1
k

(
(Gk + N̂X)(xk)− αk∇f(xk)

))
=ΠGk

X

(
(I +G−1

k N̂X)(xk)− αkG−1
k ∇f(xk)

)
,

where I denotes the identity relation. Since xk ∈ X, we know that

0 ∈ N̂X(xk), and hence the update can be written as

xk+1 = ΠGk
X

(
xk − αkG−1

k ∇f(xk)
)
, (5.5)

which we call projected natural gradient (PNG).

5.5 Compatibility of Projection

The standard projected subgradient (PSG) descent method follows the

negative gradient (as opposed to the negative natural gradient) and

projects back to X using the Euclidean norm. If f and X are convex

and the stepsize is decayed appropriately, it is guaranteed to converge

to a global minimum, x∗ ∈ X. Any such x∗ is a fixed point. This means
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that a small step in the negative direction of any subdifferential of f

at x∗ will project back to x∗.

Our choice of projection, ΠGk
X , results in PNG having the same fixed

points (see Lemma 5.5.1). This means that, when the algorithm is at

x∗ and a small step is taken down the natural gradient to x′, ΠGk
X will

project x′ back to x∗. We therefore say that ΠGk
X is compatible with

the natural gradient. For comparison, the Euclidean projection of x′

will not necessarily return x′ to x∗.

Lemma 5.5.1. The sets of fixed points for PSG and PNG are equiv-

alent.

Proof. A necessary and sufficient condition for x to be a fixed point of

PSG is that −∇f(x) ∈ N̂X(x) [96]. A necessary and sufficient condition

for x to be a fixed point of PNG is

x =ΠGk
X

(
x− αkG−1

k ∇f(x)
)

= (Gk + N̂X)−1
(
Gk
(
x− αkG−1

k ∇f(x)
) )

=(Gk + N̂X)−1 (Gkx− αk∇f(x))

⇔Gkx− αk∇f(x) ∈ Gk(x) + N̂X(x)

⇔−∇f(x) ∈ N̂X(x). �

To emphasize the importance of using a compatible projection,

consider the following simple example. Minimize the function f(x) =

xᵀAx+ bᵀx, where A = diag(1, 0.01) and b = [−0.2,−0.1]ᵀ, subject to

the constraints ‖x‖1 ≤ 1 and x ≥ 0. We implemented three algorithms,

and ran each for 1000 iterations using a fixed stepsize:

(1) PSG - projected subgradient descent using the Euclidean

projection.
(2) PNG - projected natural gradient descent using ΠGk

X .
(3) PNG-Euclid - projected natural gradient descent using the

Euclidean projection.

The results are shown in Figure 1. Notice that PNG and PSG converge

to the optimal solution, x∗. From this point, they both step in different

directions, but project back to x∗. However, PNG-Euclid converges to
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Fig. 5.1: The thick diago-

nal line shows one constraint

and dotted lines show pro-

jections. Solid arrows show

the directions of the nat-

ural gradient and gradi-

ent at the optimal solution,

x∗. The dashed blue ar-

rows show PNG-Euclid’s pro-

jections, and emphasize the

the projections cause PNG-

Euclid to move away from

the optimal solution.

a suboptimal solution (outside the domain of the figure). If X were a

line segment between the point that PNG-Euclid and PNG converge

to, then PNG-Euclid would converge to the pessimal solution within

X, while PSG and PNG would converge to the optimal solution within

X. Also, notice that the natural gradient corrects for the curvature

of the function and heads directly towards the global unconstrained

minimum. Since the natural methods in this example use metric tensor

G = A, which is the Hessian of f , they are essentially an incremental

form of Newton’s method. In practice, the Hessian is usually not known,

and an estimate thereof is used.

5.6 Natural Actor-Critic Algorithms

An MDP is a tuple M = (S,A,P,R, d0, γ), where S is a set of states,

A is a set of actions, P(s′|s, a) gives the probability density of the

system entering state s′ when action a is taken in state s, R(s, a) is the

expected reward, r, when action a is taken in state s, d0 is the initial

state distribution, and γ ∈ [0, 1) is a reward discount parameter. A

parameterized policy, π, is a conditional probability density function—

π(a|s, θ) is the probability density of action a in state s given a vector

of policy parameters, θ ∈ Rn.
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Let J(θ) = E
[∑∞

t=0 γ
trt|θ

]
be the discounted-reward objective or the

average reward objective function with J(θ) = limn→∞
1
nE [

∑n
t=0 rt|θ].

Given an MDP, M , and a parameterized policy, π, the goal is to find

policy parameters that maximize one of these objectives. When the

action set is continuous, the search for globally optimal policy param-

eters becomes intractable, so policy search algorithms typically search

for locally optimal policy parameters.

Natural actor-critics, first proposed by Kakade [97], are algorithms

that estimate and ascend the natural gradient of J(θ), using the average

Fisher information matrix as the metric tensor:

Gk = G(θk) = Es∼dπ ,a∼π

[(
∂

∂θk
log π(a|s, θk)

)(
∂

∂θk
log π(a|s, θk)

)ᵀ]
,

where dπ is a policy and objective function-dependent distribution over

the state set [98].

There are many natural actor-critics, including Natural policy gra-

dient utilizing the Temporal Differences (NTD) algorithm [99], Natu-

ral Actor-Critic using LSTD-Q(λ) (NAC-LSTD) [100], Episodic Nat-

ural Actor-Critic (eNAC) [100], Natural Actor-Critic using Sarsa(λ)

(NAC-Sarsa) [101], Incremental Natural Actor-Critic (INAC) [102], and

Natural-Gradient Actor-Critic with Advantage Parameters (NGAC)

[93]. All of them form an estimate, typically denoted wk, of the natural

gradient of J(θk). That is, wk ≈ G(θk)
−1∇J(θk). They then perform

the policy parameter update, θk+1 = θk + αkwk.

5.7 Projected Natural Actor-Critics

If we are given a closed convex set, Θ ⊆ Rn, of admissible policy pa-

rameters (e.g., the stable region of gains for a PID controller), we may

wish to ensure that the policy parameters remain within Θ. The natural

actor-critic algorithms described in the previous section do not provide

such a guarantee. However, their policy parameter update equations,

which are natural gradient ascent updates, can easily be modified to

the projected natural gradient ascent update in (5.5) by projecting the

parameters back onto Θ using Π
G(θk)
Θ :

θk+1 = Π
G(θk)
Θ (θk + αkwk) .
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Many of the existing natural policy gradient algorithms, including

NAC-LSTD, eNAC, NAC-Sarsa, and INAC, follow biased estimates of

the natural policy gradient [103]. For our experiments, we must use an

unbiased algorithm since the projection that we propose is compatible

with the natural gradient, but not necessarily biased estimates thereof.

NAC-Sarsa and INAC are equivalent biased discounted-reward nat-

ural actor-critic algorithms with per-time-step time complexity linear

in the number of features. The former was derived by replacing the

LSTD-Q(λ) component of NAC-LSTD with Sarsa(λ), while the latter

is the discounted-reward version of NGAC. Both are similar to NTD,

which is a biased average-reward algorithm. The unbiased discounted -

reward form of NAC-Sarsa was recently derived [103]. References to

NAC-Sarsa hereafter refer to this unbiased variant. In our case studies

we use the projected natural actor-critic using Sarsa(λ) (PNAC-Sarsa),

the projected version of the unbiased NAC-Sarsa algorithm.

Notice that the projection, Π
G(θk)
Θ , as defined in (5.4), is not merely

the Euclidean projection back onto Θ. For example, if Θ is the set of

θ that satisfy Aθ ≤ b, for some fixed matrix A and vector b, then the

projection, Π
G(θk)
Θ , of y onto Θ is a quadratic program,

minimize f(θ) =− yᵀG(θk)θ +
1

2
θᵀG(θk)θ, s.t. Aθ ≤ b.

In order to perform this projection, we require an estimate of the

average Fisher information matrix, G(θk). If the natural actor-critic

algorithm does not already include this (like NAC-LSTD and NAC-

Sarsa do not), then an estimate can be generated by selecting G0 = βI,

where β is a positive scalar and I is the identity matrix, and then

updating the estimate with

Gt+1 = (1− µt)Gt + µt

(
∂

∂θk
log π(at|st, θk)

)(
∂

∂θk
log π(at|st, θk)

)ᵀ
,

where {µt} is a stepsize schedule [93]. Notice that we use t and k

subscripts since many time steps of the MDP may pass between updates

to the policy parameters.
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5.8 Case Study: Functional Electrical Stimulation

In this case study, we searched for proportional-derivative (PD) gains to

control a simulated human arm undergoing FES. We used the Dynamic

Arm Simulator 1 (DAS1) [104], a detailed biomechanical simulation of a

human arm undergoing functional electrical stimulation. In a previous

study, a controller created using DAS1 performed well on an actual

human subject undergoing FES, although it required some additional

tuning in order to cope with biceps spasticity [85]. This suggests that

it is a reasonably accurate model of an ideal arm.

The DAS1 model, depicted in Figure 2a, has state st =

(φ1, φ2, φ̇1, φ̇2, φ
target
1 , φtarget2 ), where φtarget1 and φtarget2 are the desired

joint angles, and the desired joint angle velocities are zero. The goal is

to, during a two-second episode, move the arm from its random initial

state to a randomly chosen stationary target. The arm is controlled

by providing a stimulation in the interval [0, 1] to each of six muscles.

The reward function used was similar to that of Jagodnik and van den

Bogert [85], which punishes joint angle error and high muscle stimu-

lation. We searched for locally optimal PD gains using PNAC-Sarsa

where the policy was a PD controller with Gaussian noise added for

exploration.

Although DAS1 does not model shoulder dislocation, we added

safety constraints by limiting the l1-norm of certain pairs of gains. The

constraints were selected to limit the forces applied to the humerus.

These constraints can be expressed in the form Aθ ≤ b, where A is a

matrix, b is a vector, and θ are the PD gains (policy parameters). We

compared the performance of three algorithms:

(1) NAC: NAC-Sarsa with no constraints on θ.
(2) PNAC: PNAC-Sarsa using the compatible projection,

Π
G(θk)
Θ .

(3) PNAC-E: PNAC-Sarsa using the Euclidean projection.

Since we are not promoting the use of one natural actor-critic over

another, we did not focus on finely tuning the natural actor-critic nor

comparing the learning speeds of different natural actor-critics. Rather,

we show the importance of the proper projection by allowing PNAC-

Sarsa to run for a million episodes (far longer than required for con-
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vergence), after which we plot the mean sum of rewards during the

last quarter million episodes. Each algorithm was run ten times, and

the results averaged and plotted in Figure 2b. Notice that PNAC per-

forms worse than the unconstrained NAC. This happens because NAC

leaves the safe region of policy space during its search, and converges

to a dangerous policy—one that reaches the goal quickly and with low

total muscle force, but which can cause large, short, spikes in muscle

forces surrounding the shoulder, which violates our safety constraints.

We suspect that PNAC converges to a near-optimal policy within the

region of policy space that we have designated as safe. PNAC-E con-

verges to a policy that is worse than that found by PNAC because it

uses an incompatible projection.

5.9 Case Study: uBot Balancing

In the previous case study, the optimal policy lay outside the designated

safe region of policy space (this is common when a single failure is

so costly that adding a penalty to the reward function for failure is

impractical, since a single failure is unacceptable). We present a second

case study in which the optimal policy lies within the designated safe

region of policy space, but where an unconstrained search algorithm

may enter the unsafe region during its search of policy space (at which

point large negative rewards return it to the safe region).

The uBot-5, shown in Figure 5.2, is an 11-DoF mobile manipulator

developed at the University of Massachusetts Amherst [20, 21]. During

experiments, it often uses its arms to interact with the world. Here, we

consider the problem faced by the controller tasked with keeping the

robot balanced during such experiments. To allow for results that are

easy to visualize in 2D, we use a PD controller that observes only the

current body angle, its time derivative, and the target angle (always

vertical). This results in the PD controller having only two gains (tun-

able policy parameters). We use a crude simulation of the uBot-5 with

random upper-body movements, and search for the PD gains that min-

imize a weighted combination of the energy used and the mean angle

error (distance from vertical).

We constructed a set of conservative estimates of the region of stable
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(Figure 2a) DAS1, the two-joint, six-
muscle biomechanical model used. An-
tagonistic muscle pairs are as follows,
listed as (flexor, extensor): monoarticu-
lar shoulder muscles (a: anterior deltoid,
b: posterior deltoid); monoarticular el-
bow muscles (c: brachialis, d: triceps
brachii (short head)); biarticular mus-
cles (e: biceps brachii, f: triceps brachii
(long head)).
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(Figure 2b) Mean return during the
last 250,000 episodes of training using
thee algorithms. Standard deviation er-
ror bars from the 10 trials are provided.
The NAC bar is red to emphasize that
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gains, with which the uBot-5 should never fall, and used PNAC-Sarsa

and NAC-Sarsa to search for the optimal gains. Each training episode

lasted 20 seconds, but was terminated early (with a large penalty)

if the uBot-5 fell over. Figure 5.2 (middle) shows performance over

100 training episodes. Using NAC-Sarsa, the PD weights often left the

conservative estimate of the safe region, which resulted in the uBot-5
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Fig. 5.2: Left: uBot-5 holding a ball. Middle: Mean (over 20-trials)

returns over time using PNAC-Sarsa and NAC-Sarsa on the simulated

uBot-5 balancing task. The shaded region depicts standard deviations.

Right: Trace of the two PD gains, θ1 and θ2, from a typical run of

PNAC-Sarsa and NAC-Sarsa. A marker is placed for the gains after

each episode, and red markers denote episodes where the simulated

uBot-5 fell over.

falling over. Figure 5.2 (right) shows one trial where the uBot-5 fell

over four times (circled in red). The resulting large punishments cause

NAC-Sarsa to quickly return to the safe region of policy space. Using

PNAC-Sarsa, the simulated uBot-5 never fell. Both algorithms converge

to gains that reside within the safe region of policy space. We selected

this example because it shows how, even if the optimal solution resides

within the safe region of policy space (unlike the in the previous case

study), unconstrained RL algorithms may traverse unsafe regions of

policy space during their search.

5.10 Summary

We presented a class of algorithms, which we call projected natural

actor-critics (PNACs). PNACs are the simple modification of existing

natural actor-critic algorithms to include a projection of newly com-

puted policy parameters back onto an allowed set of policy parameters

(e.g., those of policies that are known to be safe). We argued that a

principled projection is the one that results from viewing natural gra-

dient descent, which is an unconstrained algorithm, as a special case of
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mirror descent, which is a constrained algorithm.

We show that the resulting projection is compatible with the natural

gradient and gave a simple empirical example that shows why a com-

patible projection is important. This example also shows how an incom-

patible projection can result in natural gradient descent converging to

a pessimal solution in situations where a compatible projection results

in convergence to an optimal solution. We then applied a PNAC algo-

rithm to a realistic constrained control problem with six-dimensional

continuous states and actions. Our results support our claim that the

use of an incompatible projection can result in convergence to inferior

policies. Finally, we applied PNAC to a simulated robot and showed its

substantial benefits over unconstrained natural actor-critic algorithms.
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True Stochastic Gradient Temporal Difference
Learning Algorithms

We now turn to the solution of a longstanding puzzle: how to design a

“true” gradient method for reinforcement learning? We address long-

standing questions in reinforcement learning: (1) Are there any first-

order reinforcement learning algorithms that can be viewed as “true”

stochastic gradient methods? If there are, what are their objective func-

tions and what are their convergence rates? (2) What is the general

framework for avoiding biased sampling (instead of double-sampling,

which is a stringent sampling requirement) in reinforcement learning?

To this end, we introduce a novel primal-dual splitting framework for

reinforcement learning, which shows that the GTD family of algorithms

are true stochastic algorithms with respect to the primal-dual formu-

lation of the objective functions such as NEU and MSPBE, which fa-

cilitates their convergence rate analysis and regularization. We also

propose operator splitting as a unified framework to avoid bias sam-

pling in reinforcement learning. We present an illustrative empirical

study on simple canonical problems validating the effectiveness of the

proposed algorithms compared with previous approaches.

77
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6.1 Introduction

First-order temporal difference (TD) learning is a widely used class

of techniques in reinforcement learning. Although least-squares based

temporal difference approaches, such as LSTD [23], LSPE [24] and LSPI

[25] perform well with moderate size problems, first-order temporal dif-

ference learning algorithms scale more gracefully to high dimensional

problems. The initial class of TD methods was known to converge only

when samples are drawn “on-policy”. This motivated the development

of the gradient TD (GTD) family of methods [26]. A novel saddle-point

framework for sparse regularized GTD was proposed recently [14]. How-

ever, there have been several questions regarding the current off-policy

TD algorithms. (1) The first is the convergence rate of these algorithms.

Although these algorithms are motivated from the gradient of an ob-

jective function such as MSPBE and NEU, they are not true stochastic

gradient methods with respect to these objective functions, as pointed

out in [27], which make the convergence rate and error bound analysis

difficult, although asymptotic analysis has been carried out using the

ODE approach. (2) The second concern is regarding acceleration. It

is believed that TDC performs the best so far of the GTD family of

algorithms. One may intuitively ask if there are any gradient TD algo-

rithms that can outperform TDC. (3) The third concern is regarding

compactness of the feasible set θ. The GTD family of algorithms all

assume that the feasible set θ is unbounded, and if the feasible set θ

is compact, there is no theoretical analysis and convergence guarantee.

(4) The fourth question is on regularization: although the saddle point

framework proposed in [14] provides an online regularization framework

for the GTD family of algorithms, termed as RO-TD, it is based on

the inverse problem formulation and is thus not quite explicit. One fur-

ther question is whether there is a more straightforward algorithm, e.g,

the regularization is directly based on the MSPBE and NEU objective

functions.

Biased sampling is a well-known problem in reinforcement learning.

Biased sampling is caused by the stochasticity of the policy wherein

there are multiple possible successor states from the current state where

the agent is. If it is a deterministic policy, then there will be no biased
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sampling problem. Biased sampling is often caused by the product of

the TD errors, or the product of TD error and the gradient of TD

error w.r.t the model parameter θ. There are two ways to avoid the bi-

ased sampling problem, which can be categorized into double sampling

methods and two-time-scale stochastic approximation methods.

In this paper, we propose a novel approach to TD algorithm design

in reinforcement learning, based on introducing the proximal splitting

framework [28]. We show that the GTD family of algorithms are true

stochastic gradient descent (SGD) methods, thus making their conver-

gence rate analysis available. New accelerated off-policy algorithms are

proposed and their comparative study with RO-TD is carried out to

show the effectiveness of the proposed algorithms. We also show that

primal-dual splitting is a unified first-order optimization framework to

solve the biased sampling problem.

Here is a roadmap to the rest of the chapter. Section 2 reviews re-

inforcement learning and the basics of proximal splitting formulations

and algorithms. Section 3 introduces a novel problem formulation which

we investigate in this paper. Section 4 proposes a series of new algo-

rithms, demonstrates the connection with the GTD algorithm family,

and also presents accelerated algorithms. Section 5 presents theoretical

analysis of the algorithms. Finally, empirical results are presented in

Section 6 which validate the effectiveness of the proposed algorithmic

framework. Abbreviated technical proofs of the main theoretical results

are provided in a supplementary appendix.

6.2 Background

6.2.1 Markov Decision Process and Reinforcement Learning

In linear value function approximation, a value function is assumed

to lie in the linear span of a basis function matrix Φ of dimension

|S| × d, where d is the number of linear independent features. Hence,

V ≈ Vθ = Φθ. For the t-th sample, φt (the t-th row of Φ), φ′t (the

t-th row of Φ′) are the feature vectors corresponding to st, s
′
t, respec-

tively. θt is the weight vector for t-th sample in first-order TD learning

methods, and δt = (rt+γφ
′T
t θt)−φTt θt is the temporal difference error.

TD learning uses the following update rule θt+1 = θt + αtδtφt, where
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αt is the stepsize. However, TD is only guaranteed to converge in the

on-policy setting, although in many off-policy situations, it still has

satisfactory performance [105]. To this end, Sutton et al. proposed a

family of off-policy convergent algorithms including GTD, GTD2 and

TD with gradient correction (TDC). GTD is a two-time-scale stochas-

tic approximation approach which aims to minimize the norm of the

expected TD update (NEU), which is defined as

NEU(θ) = E[δt(θ)φt]
TE[δt(θ)φt].

TDC [26] aims to minimize the mean-square projected Bellman error

(MSPBE) with a similar two-time-scale technique, which is defined as

MSPBE(θ) =

‖Φθ −ΠT (Φθ)‖2Ξ = (ΦTΞ(TΦθ − Φθ))T (ΦTΞΦ)−1ΦTΞ(TΦθ − Φθ),

where Ξ is a diagonal matrix whose entries ξ(s) are given by a positive

probability distribution over states.

6.3 Problem Formulation

Biased sampling is a well-known problem in reinforcement learning. Bi-

ased sampling is caused by E[φ
′T
t φ

′
t] or E[φ

′
tφ
′T
t ], where φ

′
t is the feature

vector for state s
′
t in sample (st, at, rt, s

′
t). Due to the stochastic nature

of the policy, there may be many s′t w.r.t the same st, thus E[φ
′T
t φ

′
t]

or E[φ
′
tφ
′T
t ] cannot be consistently estimated via a single sample. This

problem hinders the objective functions to be solved via stochastic

gradient descent (SGD) algorithms. As pointed out in [27], although

many algorithms are motivated by well-defined convex objective func-

tions such as MSPBE and NEU, due to the biased sampling problem,

the unbiased stochastic gradient is impossible to obtain, and thus the

algorithms are not true SGD methods w.r.t. these objective functions.

The biased sampling is often caused by the product of the TD errors,

or the product of TD error and the derivative of TD error w.r.t. the

parameter θ. There are two ways to avoid the biased sampling problem,

which can be categorized into double sampling methods and stochastic

approximation methods. Double sampling, which samples both s′ and
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s′′ and thus requires computing φ′ and φ′′, is possible in batch rein-

forcement learning, but is usually impractical in online reinforcement

learning. The other approach is stochastic approximation, which intro-

duces a new variable to estimate the part containing φ
′
t, thus avoiding

the product of φ
′
t and φ

′′
t . Consider, for example, the NEU objective

function in Section (6.2.1). Taking the gradient w.r.t. θ, we have

−1

2
NEU(θ) = E[(φt − γφ′t)φTt ]E[δt(θ)φt]

If the gradient can be written as a single expectation value, then it is

straightforward to use a stochastic gradient method, however, here we

have a product of two expectations, and due to the correlation between

(φt− γφ′t)φTt and δt(θ)φt, the sampled product is not an unbiased esti-

mate of the gradient. In other words, E[(φt−γφ′t)φTt ] and E[δt(θ)φt] can

be directly sampled, yet E[(φt − γφ′t)φTt ]E[δt(θ)φt] can not be directly

sampled. To tackle this, the GTD algorithm uses the two-time-scale

stochastic approximation method by introducing an auxiliary variable

wt, and thus the method is not a true stochastic gradient method w.r.t.

NEU(θ) any more. This auxiliary variable technique is also used in [56].

The other problem for first-order reinforcement learning algorithms

is that it is difficult to define the objective functions, which is also

caused by the biased sampling problem. As pointed out in [27], although

the GTD family of algorithms are derived from the gradient w.r.t. the

objective functions such as MSPBE and NEU, because of the biased-

sampling problem, these algorithms cannot be formulated directly as

SGD methods w.r.t. these objective functions.

In sum, due to biased sampling, the RL objective functions cannot

be solved via a stochastic gradient method, and it is also difficult to

find objective functions of existing first-order reinforcement learning

algorithms. Thus, there remains a large gap between first-order rein-

forcement learning algorithms and stochastic optimization, which we

now show how to bridge.
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6.4 Algorithm Design

In what follows, we build on the operator splitting methods introduced

in Section 2.6.3, which should be reviewed before reading the section

below.

6.4.1 NEU Objective Function

The primal-dual formulation of the NEU defined in Section (6.2.1) is

as follows:

min
θ∈X

(
1

2
NEU(θ) + h(θ)

)
= min

θ∈X
max
y

(
〈ΦTΞ(R+ γΦ

′
θ − Φθ), y〉 − 1

2
||y||22 + h(θ)

)
We have K(θ) = ΦTΞ(R + γΦ

′
θ − Φθ) , and F (·) = 1

2 || · ||22 , thus the

Legendre transform is F ∗(·) = F (·) = 1
2 || · ||22. Thus the update rule is

yt+1 = yt + αt(δtφt − yt), θt+1 = proxαth
(
θt + αt(φt − γφ′t)(yTt φt)

)
Note that if h(θ) = 0 andX = Rd, then we will have the GTD algorithm

proposed in [106].

6.4.2 MSPBE Objective Function

Based on the definition of MSPBE in Section (6.2.1), we can reformu-

late MSPBE as

MSPBE(θ) = ||ΦTΞ(TVθ − Vθ)||2(ΦTΞΦ)−1

The gradient of MSPBE is correspondingly computed as

−1

2
MSPBE(θ) = E[(φt − γφ

′
t)φ

T
t ]E[φtφ

T
t

]−1E[δt(θ)φt]

As opposed to computing the NEU gradient, computing Equation

(6.4.2) involves computing the inverse matrix E[φtφ
T
t

]−1, which imposes

extra difficulty. To this end, we propose another primal-dual splitting

formulation with weighted Euclidean norm as follows,

min
x∈X

1

2
||x||2M−1 = min

x∈X
max
w
〈x,w〉 − 1

2
||w||2M
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where M = ΦTΞΦ, and the dual variable is denoted as wt to differen-

tiate it from yt used for the NEU objective function. Then we have

min
θ∈X

1

2
MSPBE(θ)+h(θ) = min

θ∈X
max
w
〈ΦTΞ(R+ γΦ

′
θ − Φθ), w〉−1

2
||w||2M+h(θ)

Note that the nonlinear convex F (·) = 1
2 ||·||2M−1 , and thus the Legendre

transform is F ∗(·) = 1
2 || · ||2M . We can see that by using the primal-dual

splitting formulation, computing the inverse matrix M−1 is avoided.

Thus the update rule is as follows:

wt+1 = wt + αt(δt − φTt wt)φt, θt+1 = proxαth
(
θt + αt(φt − γφ′t)(wTt φt)

)
Note that if h(θ) = 0 and X = Rd, then we will have the GTD2 algo-

rithm proposed in [26]. It is also worth noting that the TDC algorithm

seems not to have an explicit proximal splitting representation, since it

incorporates wt(θ) = E[φtφ
T
t

]−1E[δt(θ)φt] into the update of θt, a quasi-

stationary condition which is commonly used in two-time-scale stochas-

tic approximation approaches. An intuitive answer to the advantage of

TDC over GTD2 is that the TDC update of θt can be considered as

incorporating the prior knowledge into the update rule: for a stationary

θt, if the optimal wt(θt) (termed as w∗t (θt)) has a closed-form solution or

is easy to compute, then incorporating this w∗t (θt) into the update rule

tends to accelerate the algorithm’s convergence performance. For the

GTD2 update in Equation (6.4.2), note that there is a sum of two terms

where wt appears: which are (φt−γφ′t)(wTt φt) = φt(w
T
t φt)−γφ′t(wTt φt).

Replacing wt in the first term with w∗t (θ) = E[φtφ
T
t

]−1E[δt(θ)φt], we

have the update rule as follows

wt+1 = wt + αt(δt − φTt wt)φt , θt+1 = proxαth
(
θt + αt(φt − γφ′t)(φTt wt)

)
Note that if h(θ) = 0 and X = Rd, then we will have TDC algorithm

proposed in [26]. Note that this technique does not have the same

convergence guarantee as the original objective function. For example,

if we use a similar trick on the GTD update with the optimal yt(θt)

(termed as y∗t (θt)) where y∗t (θ) = E[δt(θ)φt], then we can have

θt+1 = proxαth

(
θt + αtδt(φt − γφ

′
t)
)
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which is the update rule of residual gradient [107], and is proven not

to converge to NEU any more.1

6.5 Accelerated Gradient Temporal Difference Learning Al-
gorithms

In this section we will discuss the acceleration of GTD2 and TDC. The

acceleration of GTD is not discussed due to space consideration, which

is similar to GTD2. A comprehensive overview of the convergence rate

of different approaches to stochastic saddle-point problems is given

in [108]. In this section we present accelerated algorithms based on

the Stochastic Mirror-Prox (SMP) Algorithm [47, 109]. Algorithm 11,

termed as GTD2-MP, is accelerated GTD2 with extragradient. Algo-

rithm 12, termed as TDC-MP, is accelerated TDC with extragradient.

Algorithm 10 Algorithm Template

Let π be some fixed policy of an MDP M , Φ be some fixed ba-

sis.

1: repeat

2: Compute φt, φt
′ and TD error δt = rt + γφt

′T θt − φTt θt
3: Compute θt+1, wt+1 according to each algorithm update rule

4: until t = N ;

5: Compute primal average θ̄N = 1
N

N∑
i=1

θi, w̄N = 1
N

N∑
i=1

wi

6.6 Theoretical Analysis

In this section, we discuss the convergence rate and error bound of

GTD, GTD2 and GTD2-MP.

6.6.1 Convergence Rate

Proposition 1 The convergence rates of the GTD/GTD2 algorithms

with primal average are O(LF∗+LK+σ√
N

), where LK = ||ΦTΞ(Φ −

1 It converges to mean-square TD error (MSTDE), as proven in [75].
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Algorithm 11 GTD2-MP

(1) wt+ 1
2

= wt + βt(δt − φTt wt)φt,
θt+ 1

2
= proxαth

(
θt + αt(φt − γφt′)(φTt wt)

)
(2) δt+ 1

2
= rt + γφt

′T θt+ 1
2
− φTt θt+ 1

2

(3)
wt+1 = wt + βt(δt+ 1

2
− φTt wt+ 1

2
)φt ,

θt+1 = proxαth

(
θt + αt(φt − γφt′)(φTt wt+ 1

2
)
)

Algorithm 12 TDC-MP

(1) wt+ 1
2

= wt + βt(δt − φTt wt)φt,
θt+ 1

2
= proxαth

(
θt + αtδtφt − αtγφt′(φTt wt)

)
(2) δt+ 1

2
= rt + γφt

′T θt+ 1
2
− φTt θt+ 1

2

(3)
wt+1 = wt + βt(δt+ 1

2
− φTt wt+ 1

2
)φt ,

θt+1 = proxαth

(
θt + αtδt+ 1

2
φt − αtγφt′(φTt wt+ 1

2
)
)

γΦ
′T )||2, for GTD, LF ∗ = 1 and for GTD2, LF ∗ = ||ΦTΞΦ||2, σ is

defined in the Appendix due to space limitations.

Now we consider the convergence rate of GTD2-MP.

Proposition 2 The convergence rate of the GTD2-MP algorithm

is O(LF∗+LK
N + σ√

N
).

See supplementary materials for an abbreviated proof. Remark:

The above propositions imply that when the noise level is low, the

GTD2-MP algorithm is able to converge at the rate of O( 1
N ), whereas

the convergence rate of GTD2 is O( 1√
N

). However, when the noise level

is high, both algorithms’ convergence rates reduce to O( σ√
N

).

6.6.2 Value Approximation Error Bound

Proposition 3: For GTD/GTD2, the prediction error of ||V − Vθ|| is

bounded by ||V − Vθ||∞ ≤
LΞ
φ

1−γ · O
(
LF∗+LK+σ√

N

)
; For GTD2-MP, it
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is bounded by ||V − Vθ||∞ ≤
LΞ
φ

1−γ · O
(
LF∗+LK

N + σ√
N

)
, where LΞ

φ =

maxs||(ΦTΞΦ)−1φ(s)||1.

Proof : see Appendix.

6.6.3 Related Work

Here we will discuss previous related work. To the best of our knowl-

edge, the closest related work is the RO-TD algorithm, which first in-

troduced the convex-concave saddle-point framework to regularize the

TDC family of algorithms. 2 The major difference is that RO-TD is

motivated by the linear inverse problem formulation of TDC algorithm

and uses its dual norm representation as the objective function, which

does not explore the auxiliary variable wt. In contrast, by introducing

the operator splitting framework, we demonstrate that the GTD family

of algorithms can be nicely explained as a “true” SGD approach, where

the auxiliary variable wt has a nice explanation.

Another interesting question is whether ADMM is suitable for the

operator splitting algorithm here. Let’s take NEU for example. The

ADMM formulation is as follows, where we assume K(θ) = Kθ for

simplicity, and other scenarios can be derived similarly,

min
θ,z

(F (z) + h(θ)) s.t.z = Kθ

The update rule is as follows, where αt is the stepsize

θt+1 = arg min
θ

(
h(θ) + 〈yt,Kθ − zt〉+ 1

2 ||Kθ − zt||2
)

zt+1 = arg min
z

(
F (z) + 〈yt,Kθt+1 − z〉+ 1

2 ||Kθt+1 − z||2
)

yt+1 = yt + αt(Kθt+1 − zt+1)

At first glance the operator of F (·) and Kθ seem to be split, however,

if we compute the closed-form update rule of θt, we can see that the

update of θt includes (KTK)−1, which involves both biased-sampling

and computing the inverse matrix, thus regular ADMM does not seem

to be practical for this first-order reinforcement learning setting. How-

ever, using the pre-conditioning technique introduced in [110], ADMM

2 Although only regularized TDC was proposed in [14], the algorithm can be easily extended
to regularized GTD and GTD2.
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Fig. 6.1: Off-Policy Convergence Comparison

can be reduced to the primal-dual splitting method as pointed out in

[58].

6.7 Experimental Study

6.7.1 Off-Policy Convergence: Baird Example

The Baird example is a well-known example where TD diverges and

TDC converges. The stepsizes are set to be constants where βt = µαt
as shown in Figure 6.1. From Figure 6.1, we can see that GTD2-MP

and TDC-MP have a significant advantage over the GTD2 and TDC

algorithms wherein both the MSPBE and the variance are substantially

reduced.

6.7.2 Regularization Solution Path: Two-State Example

Now we consider the two-state MDP in [111]. The transition ma-

trix and reward vector are [0, 1; 0, 1] and R = [0,−1]T , γ = 0.9,

and a one-feature basis Φ = [1, 2]T . The objective function are θ =

arg min
θ

(
1
2L(θ) + ρ||θ||1

)
, where L(θ) is NEU(θ) and MSPBE(θ). The

objective functions are termed as l1-NEU and l1-MSPBE for short.

In Figure 6.2, both l1-NEU and l1-MSPBE have well-defined solution
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Fig. 6.2: Solution Path Comparison

paths w.r.t ρ, whereas Lasso-TD may have multiple solutions if the

P -matrix condition is not satisfied [62].

6.7.3 On-Policy Performance: 400-State Random MDP

In this experiment we compare the on-policy performance of the four

algorithms. We use the random generated MDP with 400 states and 10

actions in [112]. Each state is represented by a feature vector with 201

features, where 200 features are generated by sampling from a uniform

distribution the 201-th feature is a constant. The stepsizes are set to

be constants where βt = µαt as shown in Figure 6.3. The parameters of

each algorithm are chosen via comparative studies similar to [112]. The

result is shown in Figure 6.3. The results for each algorithm are aver-

aged on 100 runs, and the parameters of each algorithm are chosen via

experiments. TDC shows high variance and chattering effect of MSPBE

curve on this domain. Compared with GTD2, GTD2-M1P is able to

reduce the MSPBE significantly. Compared with TDC, TDC-MP not

only reduces the MSPBE, but also the variance and the ”chattering”

effect.

6.8 Summary

This chapter shows that the GTD/GTD2 algorithms are true stochas-

tic gradient methods w.r.t. the primal-dual formulation of their cor-

responding objective functions, which enables their convergence rate

analysis and regularization. Second, it proposes operator splitting as a
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Fig. 6.3: Comparison of 400-State Random MDP

broad framework to solve the biased-sampling problem in reinforcement

learning. Based on the unified primal-dual splitting framework, it also

proposes accelerated algorithms with both rigorous theoretical analysis

and illustrates their improved performance w.r.t. previous methods. Fu-

ture research is ongoing to explore other operator splitting techniques

beyond primal-dual splitting as well as incorporating random projec-

tions [113], and investigating kernelized algorithms [114, 115]. Finally,

exploring the convergence rate of the TDC algorithm is also important

and interesting.
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Variational Inequalities: The Emerging Frontier
of Machine Learning

This paper describes a new framework for reinforcement learning based

on primal dual spaces connected by a Legendre transform. The ensuing

theory yields surprising and beautiful solutions to several important

questions that have remained unresolved: (i) how to design reliable,

convergent, and stable reinforcement learning algorithms (ii) how to

guarantee that reinforcement learning satisfies pre-specified “safety”

guarantees, and remains in a stable region of the parameter space (iv)

how to design “off-policy” TD-learning algorithms in a reliable and

stable manner, and finally, (iii) how to integrate the study of reinforce-

ment learning into the rich theory of stochastic optimization. In this pa-

per, we gave detailed answers to all these questions using the powerful

framework of proximal operators. The single most important idea that

emerges is the use of primal dual spaces connected through the use of a

Legendre transform. This allows temporal-difference updates to occur in

dual spaces, allowing a variety of important technical advantages. The

Legendre transform, as we show, elegantly generalizes past algorithms

for solving reinforcement learning problems, such as natural gradient

methods, which we show relate closely to the previously unconnected

framework of mirror descent methods. Equally importantly, proximal

90
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operator theory enables the systematic development of operator split-

ting methods that show how to safely and reliably decompose complex

products of gradients that occur in recent variants of gradient-based

temporal-difference learning. This key technical contribution makes it

possible to finally show to design “true” stochastic gradient methods for

reinforcement learning. Finally, Legendre transforms enable a variety of

other benefits, including modeling sparsity and domain geometry. Our

work builds extensively on recent work on the convergence of saddle-

point algorithms, and on the theory of monotone operators in Hilbert

spaces, both in optimization and for variational inequalities. The latter

represents possibly the most exciting future research direction, and we

give a more detailed description of this ongoing research thrust.

7.1 Variational Inequalities

Our discussion above has repeatedly revolved around the fringes of

variational inequality theory. Methods like extragradient [8] and the

mirror-prox algorithm were originally proposed to solve variational in-

equalities and related saddle point problems. We are currently engaged

in redeveloping the proposed ideas more fully within the fabric of vari-

ational inequality (VI). Accordingly, we briefly describe the framework

of VIs, and give the reader a brief tour of this fascinating extension of

the basic underlying framework of optimization. We lack the space to

do a thorough review. That is the topic of another monograph to be

published at a later date, and several papers on this topic are already

under way.

At the dawn of a new millennium, the Internet dominates our eco-

nomic, intellectual and social lives. The concept of equilibrium plays

a key role in understanding not only the Internet, but also other net-

worked systems, such as human migration [116], evolutionary dynamics

and the spread of infectious diseases [117], and social networks [118].

Equilibria are also a central idea in game theory [119, 120], economics

[121], operations research [29], and many related areas. We are currently

exploring two powerful mathematical tools for the study of equilibria –

variational inequalities (VIs) and projected dynamical systems (PDS)

[12, 122] – in developing a new machine learning framework for solving
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equilibrium problems in a rich and diverse range of practical applica-

tions. As Figure 7.1 illustrates, finite-dimensional VIs provide a math-

ematical framework that unifies many disparate equilibrium problems

of significant importance, including (convex) optimization, equilibrium

problems in economics, game theory and networks, linear and nonlin-

ear complementarity problems, and solutions of systems of nonlinear

equations.

Normal Cone

-F(x*)

F(x*)

x*x x-x*

Feasible set K

Optimization

Game theory

Nonlinear equation
solving

Complementarity
problems

Variational Inequalities

Traffic equilibrium
problem

Fig. 7.1: A variety of real-world problems can be modeled as solving

variational inequalities.

Variational inequalities (VIs), in the infinite-dimensional setting,

were originally proposed by Hartman and Stampacchia [10] in the mid-

1960s in the context of solving partial differential equations in mechan-

ics. Finite-dimensional VIs rose in popularity in the 1980s partly as a

result of work by Dafermos [11]. who showed that the traffic network

equilibrium problem could be formulated as a finite-dimensional VI.

This advance inspired much follow-on research, showing that a variety

of equilibrium problems in economics, game theory, sequential decision-

making etc. could also be formulated as finite-dimensional VIs – the
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books by Nagurney [12] and Facchinei and Pang [13] provide a de-

tailed introduction to the theory and applications of finite-dimensional

VIs. Projected dynamical systems (PDS) [122] are a class of ordinary

differential equations (ODEs) with a discontinuous right-hand side. As-

sociated with every finite-dimensional VI is a PDS, whose stationary

points are the solutions of the VI. While VIs provide a static analysis

of equilibria, PDS enable a microscopic examination of the dynamic

processes that lead to or away from stable equilibria. . There has been

longstanding interest in AI in the development of gradient-based learn-

ing algorithms for finding Nash equilibria in multiplayer games, e.g.

[123, 119, 124]. A gradient method for finding Nash equilibria can be

formalized by a set of ordinary differential equations, whose phase space

portrait solution reveals the dynamical process of convergence to an

equilibrium point, or lack thereof. A key complication in this type of

analysis is that the classical dynamical systems approach does not allow

incorporating constraints on values of variables, which are omnipresent

in equilibria problems, not only in games, but also in many other ap-

plications in economics, network flow, traffic modeling etc. In contrast,

the right-hand side of a PDS is a discontinuous projection operator

that allows enabling constraints to be modeled.

One of the original algorithms for solving finite-dimensional VIs

is the extragradient method proposed by Korpelevich [125]. It has

been applied to structured prediction models in machine learning by

Taskar et al. [126]. Bruckner et al. [127] use a modified extragradient

method for solving the spam filtering problem modeled as a prediction

game. We are developing a new family of extragradient-like methods

based on well-known numerical methods for solving ordinary differen-

tial equations, specifically the Runge Kutta method [128]. In optimiza-

tion, the extragradient algorithm was generalized to the non-Euclidean

case by combining it with the mirror-descent method [5], resulting in

the so-called “mirrror-prox” algorithm [129, 130]. We have extended

the mirror-prox method by combining it with Runge-Kutta methods

for solving high-dimensional VI problems over the simplex and other

spaces. We show the enhanced performance of Runge-Kutta extragra-

dient methods on a range of benchmark variational inequalities drawn
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Normal Cone

-F(x*)

F(x*)

x*x x-x*

Feasible set K

Fig. 7.2: This figure provides a geometric interpretation of the varia-

tional inequality V I(F,K). The mapping F defines a vector field over

the feasible set K such that at the solution point x∗, the vector field

F (x∗) is directed inwards at the boundary, and −F (x∗) is an element

of the normal cone C(x∗) of K at x∗.

from standard problems in the optimization literature.

7.1.1 Definition

The formal definition of a VI as follows:1

Definition 7.1. The finite-dimensional variational inequality problem

VI(F,K) involves finding a vector x∗ ∈ K ⊂ Rn such that

〈F (x∗), x− x∗〉 ≥ 0, ∀x ∈ K
where F : K → Rn is a given continuous function and K is a given

closed convex set, and 〈., .〉 is the standard inner product in Rn.

Figure 7.2 provides a geometric interpretation of a variational in-

equality. 2 The following general result characterizes when solutions to

VIs exist:

1 Variational problems can be defined more abstractly in Hilbert spaces. We confine our

discussion to n-dimensional Euclidean spaces.
2 In Figure 7.2, the normal cone C(x∗) at the vector x∗ of a convex set K is defined as
C(x∗) = {y ∈ Rn|〈y, x− x∗〉 ≤ 0,∀x ∈ K}.
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Theorem 7.1. Suppose K is compact, and that F : K → Rn is con-

tinuous. Then, there exists a solution to VI(F,K).

As Figure 7.2 shows, x∗ is a solution to V I(F,K) if and only if the

angle between the vectors F (x∗) and x − x∗, for any vector x ∈ K, is

less than or equal to 900. To build up some intuition, the reduction of

a few well-known problems to a VI is now provided.

Theorem 7.2. Let x∗ be a solution to the optimization problem

of minimizing a continuously differentiable function f(x), subject to

x ∈ K, where K is a closed and convex set. Then, x∗ is a solution to

V I(∇f,K), such that 〈∇f(x∗), x− x∗〉 ≥ 0, ∀x ∈ K.

Proof: Define φ(t) = f(x∗ + t(x− x∗)). Since φ(t) is minimized at

t = 0, it follows that 0 ≤ φ′(0) = 〈∇f(x∗), x − x∗〉 ≥ 0, ∀x ∈ K, that

is x∗ solves the VI.

Theorem 7.3. If f(x) is a convex function, and x∗ is the solution of

V I(∇f,K), then x∗ minimizes f .

Proof: Since f is convex, it follows that any tangent lies below the

function, that is f(x) ≥ f(x∗) + 〈∇f(x∗), x− x∗〉, ∀x ∈ K. But, since

x∗ solves the VI, it follows that f(x∗) is a lower bound on the value of

f(x) everywhere, or that x∗ minimizes f .

A rich class of problems called complementarity problems (CPs)

also can be reduced to solving a VI. When the feasible set K is a cone,

meaning that if x ∈ K, then αx ∈ K,α ≥ 0, then the VI becomes a

CP.

Definition 7.2. Given a cone K ⊂ Rn, and a mapping F : K → Rn,

the complementarity problem CP(F,K) is to find an x ∈ K such that

F (x) ∈ K∗, the dual cone to K, and 〈x, F (x)〉 ≥ 0. 3

3 Given a cone K, the dual cone K∗ is defined as K∗ = {y ∈ Rn|〈y, x〉 ≥ 0, ∀x ∈ K}.
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A number of special cases of CPs are important. The nonlinear

complementarity problem (NCP) is to find x∗ ∈ Rn+ (the non-negative

orthant) such that F (x∗) ≥ 0 and 〈F (x∗), x∗〉 = 0. The solution to

an NCP and the corresponding V I(F,Rn+) are the same, showing that

NCPs reduce to VIs. In an NCP, whenever the mapping function F is

affine, that is F (x) = Mx + b, where M is an n × n matrix, then the

corresponding NCP is called a linear complementarity problem (LCP)

[131]. Recent work on learning sparse models using L1 regularization

has exploited the fact that the standard LASSO objective [132] of L1

penalized regression can be reduced to solving an LCP [133]. This re-

duction to LCP has been used in recent work on sparse value function

approximation as well in a method called LCP-TD [134]. A final crucial

property of VIs is that they can be formulated as finding fixed points.

Theorem 7.4. The vector x∗ is the solution of VI(F,K) if and only if,

for any γ > 0, x∗ is also a fixed point of the map x∗ = ΠK(x∗−γF (x∗)),

where ΠK is the projector onto convex set K.

In terms of the geometric picture of a VI illustrated in Figure 7.2.

this property means that the solution of a VI occurs at a vector x∗

where the vector field F (x∗) induced by F on K is normal to the

boundary of K and directed inwards, so that the projection of x∗ −
γF (x∗) is the vector x∗ itself. This property forms the basis for the

projection class of methods that solve for the fixed point.

7.1.2 Equilibrium Problems in Game Theory

The VI framework provides a mathematically elegant approach to

model equilibrium problems in game theory [119, 120]. A Nash game

consists of m players, where player i chooses a strategy xi belong-

ing to a closed convex set Xi ⊂ Rn. After executing the joint action,

each player is penalized (or rewarded) by the amount Fi(x1, . . . , xm),

where Fi : Rni → R is a continuously differentiable function. A set of

strategies x∗ = (x∗1, . . . , x
∗
m) ∈∏M

i=1Xi is said to be in equilibrium if no

player can reduce the incurred penalty (or increase the incurred reward)

by unilaterally deviating from the chosen strategy. If each Fi is convex
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on the set Xi, then the set of strategies x∗ is in equilibrium if and only

if 〈(xi − x∗i ),∇iFi(x∗i )〉 ≥ 0. In other words, x∗ needs to be a solution

of the VI 〈(x − x∗), f(x∗)〉 ≥ 0, where f(x) = (∇F1(x), . . . ,∇Fm(x)).

Nash games are closely related to saddle point problems [129, 130, 135].

where we are given a function F : X × Y → R, and the objective is to

find a solution (x∗, y∗) ∈ X × Y such that

F (x∗, y) ≤ F (x∗, y∗) ≤ F (x, y∗), ∀x ∈ X, ∀y ∈ Y

Here, F is convex in x for each fixed y, and concave in y for each fixed

x. Many equilibria problems in economics can be modeled using VIs

[12].

7.2 Algorithms for Variational Inequalities

We briefly describe two algorithms for solving variational inequalities

below: the projection method and the extragradient method. We con-

clude with a brief discussion of how these relate to reinforcement learn-

ing.

7.2.1 Projection-Based Algorithms for VIs

The basic projection-based method (Algorithm 1) for solving VIs is

based on Theorem 7.4 introduced earlier.

Algorithm 13 The Basic Projection Algorithm for solving VIs.

INPUT: Given VI(F,K), and a symmetric positive definite matrix D.

1: Set k = 0 and xk ∈ K.

2: repeat

3: Set xk+1 ← ΠK,D(xk −D−1F (xk)).

4: Set k ← k + 1.

5: until xk = ΠK,D(xk −D−1F (xk)).

6: Return xk

Here, ΠK,D is the projector onto convex set K with respect to the

natural norm induced by D, where ‖x‖2D = 〈x,Dx〉. It can be shown

that the basic projection algorithm solves any V I(F,K) for which the
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mapping F is strongly monotone 4 and Lipschitz.5A simple strategy

is to set D = αI, where α > L2

2µ , and L is the Lipschitz smooth-

ness constant, and µ is the strong monotonicity constant. The basic

projection-based algorithm has two critical limitations: it requires that

the mapping F be strongly monotone. If, for example, F is the gradi-

ent map of a continuously differentiable function, strong monotonicity

implies the function must be strongly convex. Second, setting the pa-

rameter α requires knowing the Lipschitz smoothness L and the strong

monotonicity parameter µ. The extragradient method of Korpolevich

[125] addresses some of these concerns, and is defined as Algorithm 2

below.

Algorithm 14 The Extragradient Algorithm for solving VIs.

INPUT: Given VI(F,K), and a scalar α.

1: Set k = 0 and xk ∈ K.

2: repeat

3: Set yk ← ΠK(xk − αF (xk)).

4: Set xk+1 ← ΠK(xk − αF (yk)).

5: Set k ← k + 1.

6: until xk = ΠK(xk − αF (xk)).

7: Return xk

Figure 7.3 shows a simple example where Algorithm 1 fails to con-

verge, but Algorithm 2 does. If the initial point x0 is chosen to be on the

boundary of X, using Algorithm 1, it stays on it and fails to converge

to the solution of this VI (which is at the origin). If x0 is chosen to be

in the interior of K, Algorithm 1 will move towards the boundary. In

contrast, using Algorithm 2, the solution can be found for any starting

point. The extragradient algoriithm derives its name from the property

that it requires an “extra gradient” step (step 4 in Algorithm 2), unlike

the basic projection algorithm given earlier as Algorithm 1. The prin-

cipal advantage of the extragradient method is that it can be shown

to converge under a considerably weaker condition on the mapping F ,

4 A mapping F is strongly monotone if 〈F (x)−F (y), x− y〉 ≥ µ‖x− y‖22, µ > 0, ∀x, y ∈ K.
5 A mapping F is Lipschitz if ‖F (x)− F (y)‖2 ≤ L‖x− y‖2,∀x, y ∈ K.
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which now has to be merely monotonic: 〈F (x)− F (y), x− y〉 ≥ 0. The

earlier Lipschitz condition is still necessary for convergence.

Y

X

zz� ⌧F(z)

⇧K(z� ⌧F(z))

1

1

K = {x|kxk2  1}
F(x,y) = {y,�x}

xk

�F(xk)

�F(yk)
yk

xk+1

K

Fig. 7.3: Left: This figure illustrates a VI where the basic projection

algorithm (Algorithm 1) fails, but the extragradient algorithm (Algo-

rithm 2) succeeds [136]. Right: One iteration of the extradient algo-

rithm.

The extragradient algorithm has been the topic of much attention

in optimization since it was proposed, e.g., see [137, 138, 139, 140, 141,

142]. Khobotov [138] proved that the extragradient method converges

under the weaker requirement of pseudo-monotone mappings, 6 when

the learning rate is automatically adjusted based on a local measure

of the Lipschitz constant. Iusem [137] proposed a variant whereby the

current iterate was projected onto a hyperplane separating the current

iterate from the final solution, and subsequently projected from the

hyperplane onto the feasible set. Solodov and Svaiter [142] proposed

another hyperplane method, whereby the current iterate is projected

onto the intersection of the hyperplane and the feasible set. Finally,

the extragradient method was generalized to the non-Euclidean case

by combining it with the mirror-descent method [5], resulting in the

so-called “mirrror-prox” algorithm [129].

6 A mapping F is pseudo-monotone if 〈F (y), x− y〉 ≥ 0⇒ 〈F (x), x− y〉 ≥ 0, ∀x, y ∈ K.
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7.2.2 Variational Inequaities and Reinforcement Learning

Variational inequalities also provide a useful framework for reinforce-

ment learning [32, 1]. In this case, it can be shown that the mapping

F for the VI defined by reinforcement learning is affine and represents

a (linear) complementarity problem. For this case, a number of special

properties can be exploited in designing a faster more scalable class of

algorithms. Recall from Theorem 7.4 that each VI(F,K) corresponds to

solving a particular fixed point problem x∗ = ΠK(x∗− γF (x∗)), which

led to the projection algorithm (Algorithm 1). Generalizing this, con-

sider solving for the fixed point of a projected equation x∗ = ΠŜT (x∗)

[143, 144] for a functional mapping T : Rn → Rn, where ΠŜ is the pro-

jector onto a low-dimensional convex subspace Ŝ w.r.t. some positive

definite matrix Ξ, so that

Ŝ = {Φr|r ∈ R̂}, R̂ = {r|Φr ∈ Ŝ} ⇒ Φr∗ = ΠŜT (Φr∗)

Here. Φ is an n × s matrix where s � n, and the goal is to make the

computation depend on s, not n. Note that x∗ = ΠŜT (x∗) if and only

if

〈(x∗ − T (x∗),Ξ(x− x∗)〉 ≥ 0. ∀x ∈ Ŝ
Following [143], note that this is a variational inequality of the form

〈F (x∗), (x−x∗)〉 ≥ 0 if we identify F (x) = Ξ(x−T (x)), and in the lower-

dimensional space, 〈F (Φr∗),Φ(r− r∗)〉, ∀r ∈ R̂. Hence, the projection

algorithm takes on the form:

xk+1 = ΠŜ(xk − γD−1〈Φ, F (Φxk))〉

It is shown in [143] that if T is a contraction mapping, then F (x) =

Ξ(x − T (x)) is strongly monotone. Hence, the above projection algo-

rithm will converge to the solution x∗ of the VI for any given starting

point x0 ∈ Ŝ. Now, the only problem is how to ensure the computation

depends only on the size of the projected lower-dimensional space (i.e.,

s, not n). To achieve this, let us assume that the mapping T (x) = Ax+b

is affine, and that the constraint region R̂ is polyhedral. In this case,

we can use the following identities:

〈Φ, F (Φ, x)〉 = ΦTΞF (Φx) = Cr − d, C = ΦTΞ(I −A)Φ, d = ΦTΞb
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and the projection algorithm for this affine case can be written as:

xk+1 = ΠŜ(xk − γD−1(Cr − d))

One way to solve this iteratively is to compute a progressively more

accurate approximation Ck → C and dk → d by sampling from the

rows and columns of the matrix A and vector b, as follows:

Ck =
1

k + 1

k∑
t=0

φ(it)(φ(it)−
aitjt
pitjt

φ(jt))
T , dk =

1

k + 1

k∑
t=0

φ(it)bit

where the row sampling generates the indices (i0, i1, . . .) and the col-

umn sampling generates the transitions ((i0, j0), (i1, j1), . . . , ) in such

a way that the relative frequency of row index i matches the diag-

onal element ξi of the positive definite matrix Ξ. Given Ck and dk,

the solution can be found by x∗ ≈ C−1
k dk, or by using an incremen-

tal method. Computation now only depends on the dimension s of the

lower-dimensional space, not on the original high-dimensional space.

Gordon [144] proposes an alternative approach separating the projec-

tion of the current iterate on the low-dimensional subspace spanned by

Φ from its projection onto the feasible set. Both of these approaches

[143, 144] have been only studied with the simple projection method

(Algorithm 1), and can be generalized to a more powerful class of VI

methods that we are currently developing.
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Appendix: Technical Proofs

8.1 Convergence Analysis of Saddle Point Temporal Differ-
ence Learning

Proof of Proposition 1

We give a descriptive proof here. We first present the monotone opera-

tor corresponding to the bilinear saddle-point problem and then extend

it to stochastic approximation case with certain restrictive assumptions,

and use the result in [47].

The monotone operator Φ(x, y) with saddle-point problem

SadV al = infx∈Xsupy∈Y φ(x, y) is a point-to-set operator

Φ(x, y) = {∂xφ(x, y)} × {−∂yφ(x, y)}

Where ∂xφ(x, y) is the subgradient of φ(x, ·) over x and ∂yφ(x, y) is

the subgradient of φ(·, y) over y. For the bilinear problem in Equation

(4.1.2), the corresponding Φ(x, y) is

Φ(x, y) = (AT y, b−Ax)

Now we verify that the problem (4.2.1) can be reduced to a standard

bilinear minimax problem. To prove this we only need to prove X in

102
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our RL problem is indeed a closed compact convex set. This is easy

to verify as we can simply define X = {x|‖x‖2 ≤ R} where R is large

enough. In fact, the sparse regularization h(x) = ρ||x||1 helps xt stay

within this l2 ball. Now we extend to the stochastic approximation case

wherein the objective function f(x) is given by the stochastic oracle,

and in our case, it is Ax− b, where A, b are defined in Equation (4.2.1),

with Assumption 3 and further assuming that the noise εt for t-th

sample is i.i.d noise, then with the result in [109], we can prove that

the RO-TD algorithm converges to the global minimizer of

x∗ = arg min
x∈X
‖Ax− b‖m + ρ‖x‖1

Then we prove the error level of approximate saddle-point x̄t, ȳt defined

in (4.3.1) is αtL
2. With the subgradient boundedness assumption and

using the result in Proposition 1 in [78], this can be proved.

8.2 Convergence Analysis of True Gradient Temporal Differ-
ence Learning

We first present the assumptions for the MDP and basis functions,

which are similar to [26, 14].

Assumption 1 (MDP): The underlying Markov Reward Process

(MRP) M = (S, P,R, γ) is finite and mixing, with stationary distribu-

tion π. The training sequence (st, at, s
′
t) is an i.i.d sequence.

Assumption 2 (Basis Function): The inverses E[φtφ
T
t ]−1 and

[φt(φt − γφt
′T )]−1 exist. This implies that Φ is a full column rank ma-

trix. Also, assume the features (φt, φ
′
t) have uniformly bounded second

moments, and ‖φt‖∞ < +∞, ‖φ′t‖∞ < +∞.

Next we present the assumptions for the stochastic saddle point prob-

lem formulation, which are similar to [108, 109].

Assumption 3 (Compactness): Assume for the primal-dual loss

function,

min
θ∈X

max
y∈Y

(L(θ, y) = 〈K(θ), y〉 − F ∗(y) + h(θ)) ,

the sets X,Y are closed compact sets.

Assumption 4 (F ∗(·)): We assume that F ∗(·) is a smooth convex

function with Lipschitz continuous gradient, i.e., ∃LF ∗ such that ∀x, y ∈
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X

F ∗(y)− F ∗(x)− 〈∇F ∗(x), y − x〉 ≤ LF ∗

2
||y − x||2

Assumption 5 (K(θ)): K(θ) is a linear mapping which can be

extended to Lipschitz continuous vector-valued mapping defined on a

closed convex cone CK . Assuming K(θ) to be CK-convex, i.e., ∀θ, θ′ ∈
X,λ ∈ [0, 1],

K(λθ + (1− λ)θ′)≤CKλK(θ) + (1− λ)K(θ′),

where a≤CK b means that b− a ∈ CK .

Assumption 6 (Stochastic Gradient): In the stochastic saddle

point problem, we assume that there exists a stochastic oracle SO that

is able to provide unbiased estimation with bounded variance such that

E[F∗(yt)] = ∇F ∗(yt)
E[||F∗(yt)−∇F ∗(yt)||2] ≤ σ2

F ∗

E[Kθ(θt)] = K(θt)

E[||Kθ(θt)−K(θt)||2] ≤ σ2
K,θ

E[Ky(θt)T yt] = ∇K(θt)
T yt

E[||Ky(θt)T yt −∇K(θt)
T yt||2] ≤ σ2

K,y

where σF ∗ , σK,θ and σK,y are non-negative constants. We further

define

σ =
√
σ2
F ∗ + σ2

K,θ + σK,y

8.2.1 Convergence Rate

Here we discuss the convergence rate of the proposed algorithms. First

let us review the nonlinear primal form

min
θ∈X

(Ψ(θ) = F (K(θ)) + h(θ))

The corresponding primal-dual formulation [57, 28, 58] of Equation

(8.2.1) is Equation (2.6.3). Thus we have the general update rule as

yt+1 = yt + αtKθ(θt)− αtF∗(yt), θt+1 = proxαth(θt − αtKy(θt)T yt)
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Lemma 1 (Optimal Convergence Rate): The optimal conver-

gence rate of 2.6.3 is O(LF∗
N2 + LK

N + σ√
N

).

Proof: Equation (8.2.1) can be easily converted to the following

primal-dual formulation

min
y∈Y

max
θ∈X

(〈−K(θ), y〉+ F ∗(y)− h(θ))

Using the bounds proved in [145, 109, 108], the optimal convergence

rate of stochastic saddle-point problem is O(LF∗
N2 + LK

N + σ√
N

).

The GTD/GTD2 algorithms can be considered as using Polyak’s al-

gorithm without the primal average step. Hence, by adding the primal

average step, GTD/GTD2 algorithms will become standard Polyak’s

algorithms [146], and thus the convergence rates are O(LF∗+LK+σ√
N

) ac-

cording to [49]. So we have the following propositions.

Proposition 1 The convergence rates of GTD/GTD2 algorithms

with primal average are O(LF∗+LK+σ√
N

), where LK = ||ΦTΞ(Φ −
γΦ
′T )||2, for GTD, LF ∗ = 1 and for GTD2, LF ∗ = ||M ||2.

Now we consider the acceleration using the SMP algorithm, which

incorporates the extragradient term. According to [109] which extends

the SMP algorithm to solving saddle-point problems and variational

inequality problems, the convergence rate is accelerated to O(LF∗+LK
N +

σ√
N

). Consequently,

Proposition 2 The convergence rate of the GTD2-MP algorithm

is O(LF∗+LK
N + σ√

N
).

8.2.2 Value Approximation Error Bound

One key question is how to give the error bound of ||V −Vθ|| given that

of ||K(θ)||. Here we use the result in [111], which is similar to the one

in [147].

Lemma 2 [111]: For any Vθ = Φθ, the following component-wise

equality holds

V − Vθ = (I − γΠΞP )−1
((
V −ΠΞV

)
+ Φ(ΦTΞΦ)−1K(θ)

)
Proof :
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Use the equality V = TV and Vθ = ΠΞVθ, where the first equality is

the Bellman equation, and the second is that Vθ lies within the spanning

space of Φ.

we have

V −ΠΞV

= V −ΠΞTV + (Vθ −ΠΞTVθ)− (Vθ −ΠΞTVθ)

= (I − γΠΞP )(V − Vθ) + ΠΞ(Vθ − TVθ)
After rearranging the equation, we have Equation (8.2.2) and find that

ΠΞ(Vθ − TVθ) = −Φ(ΦTΞΦ)−1K(θ)

Proposition 3: For GTD/GTD2, the prediction error of ||V − Vθ||
is bounded by ||V − Vθ||∞ ≤

LΞ
φ

1−γ · O
(
LF∗+LK+σ√

N

)
; For GTD2-MP,

it is bounded by ||V − Vθ||∞ ≤
LΞ
φ

1−γ · O
(
LF∗+LK

N + σ√
N

)
, where LΞ

φ =

maxs||(ΦTΞΦ)−1φ(s)||1.

Proof:

From Lemma 2, we have

||V − Vθ||∞ ≤ ||(I − γΠΞP )−1||∞ ·
(
||V −ΠΞV ||∞ + LΞ

φ ||K(θ)||∞
)

Using the results in Proposition 1 and Proposition 2, we have for GTD

and GTD2,

||V−Vθ||∞ ≤ ||(I − γΠΞP )−1||∞·
(
||V −ΠΞV ||∞ + LΞ

φ ·O
(
LF ∗ + LK + σ√

N(1− γ)

))
For GTD2-MP,

||V−Vθ||∞ ≤ ||(I − γΠΞP )−1||∞·
(
||V −ΠΞV ||∞ + LΞ

φ ·O(
LF ∗ + LK

N
+

σ√
N

)

)
If we further assume a rich expressive hypothesis space H, i.e., ΠΞP =

P,ΠΞR = R, ||V − ΠΞV ||∞ = 0, ||(I − γΠΞP )−1||∞ = 1
1−γ , then for

GTD and GTD2, we have

||V − Vθ||∞ ≤
LΞ
φ

1− γ ·O
(
LF ∗ + LK + σ√

N

)
For GTD2-MP, we have

||V − Vθ||∞ ≤
LΞ
φ

1− γ ·O
(
LF ∗ + LK

N
+

σ√
N

)
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