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Mathematical Foundations

• What we will assume:
– Basic knowledge of machine learning, Markov 

decision processes and reinforcement learning
– Linear algebra , graph theory, and statistics

• What we will introduce:
– Least squares techniques (for solving MDPs)
– Spectral graph theory: matrices graphs
– Fourier and wavelet bases on graphs
– Continuous manifolds
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Tutorial Decomposition

• Sridhar Mahadevan
– History and motivation
– Overview of the framework
– Fourier (Laplacian) approach: global bases

• Mauro Maggioni
– Harmonic analysis on graphs and manifolds
– Diffusion wavelets: local bases

• Both:
– Algorithms, experiments, implementation
– Future work
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Credit Assignment Problem 
(Minsky, Steps Toward AI, 1960)

States

Tasks

Time

s

s’

r

Challenge: Need a unified approach 
to the credit assignment problem
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Samuel’s Checker Player

(Arthur Samuel, 1950s)
• Samuel’s work laid the 

foundations for many 
later ideas: temporal-
difference learning, 
parametric function 
approximation, 
evaluation functions,…

• However, his work did 
not address a crucial 
problem: learning of 
representation
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Polynomial Bases
(Samuel, 1959; Koller and Parr, UAI 2000)

1 1 1 1 1 1 1

1 2 4 8 32 6416

1 3 9 27 81 243 729

1 4 16 64 256 1024 4096

1 5 25 125 625 3125 15625

1 6 36 216 1296 7776 46656

1 7 49 343 2401 16807 117649

One basis function applied to all states

All
basis
functions
applied
to one
state

i0 i i2 i3 i4 i5 i6

Φ
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How to find a good basis?

1 2

3 4

5 6

7

Goal

Any function on this graph
is a vector in R7

The question we want to ask is
how to construct a basis set for
approximating functions on this graph

Solution 1:  use the unit basis
Solution 2: use polynomials or RBFs

Neither of these exploit geometry
e1 = [1, …, 0]
ei = [0, …, i, …,0]
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Structural Credit Assignment: 
Automating Value Function 

Approximation

• Many approaches to 
value function 
approximation
– Neural nets, radial basis 

functions, support vector 
machines, kernel density 
estimation, nearest 
neighbor

• How to automate the 
design of a function 
approximator? 

• We want to go beyond 
model selection!
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Standard Approaches to VFA
Can Easily Fail!

(Dayan, Neural Comp, 1993; Drummond, JAIR 2003)

0

10

20

0
5

10
15

20
0

20

40

60

80

100

Optimal Value Function

0
5

10
15

20

0

10

20
0

10

20

30

Value Function Approximation using Polynomials

0
5

10
15

20

0

10

20
0

20

40

60

80

Value Function Approximation using Radial Basis Functions

OPTIMAL VF POLYNOMIAL RADIAL BASIS FUNCTIONMulti-room
environment

G These approaches measure distances
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Learning Representations by 
Global State Space Analysis

(Saul Amarel, 1960s) Missionaries and Cannibal

Find symmetries and 
bottlenecks in state spaces
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Overview of Framework
(Mahadevan, AAAI,ICML,UAI 2005; Mahadevan & Maggioni, NIPS 2005;

Maggioni and Mahadevan, ICML 2006)
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Proto-Value Functions
(Mahadevan: AAAI 2005, ICML 2005, UAI 2005)

Proto-value functions are reward-independent
global (or local) basis functions, customized
to a state (action) space
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Value Function Approximation 
using Fourier and Wavelet Bases
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Laplacian Proto-Value Functions: 
Inverted Pendulum
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Laplacian PVFs:Inverted Pendulum
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Laplacian Proto-Value Functions:
Mountain Car
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Multiresolution Manifold Learning

• Fourier methods, like Laplacian manifold or 
spectral learning, rely on eigenvectors
– Eigenvectors are useful in analyzing long-term global 

behavior of a system (e.g, PageRank)
– They are rather poor at short or medium term transient 

analysis (or locally discontinuities)

• Wavelet methods [Daubechies, Mallat]
– Inherently multi-resolution analysis
– Local basis functions with compact support

• Diffusion wavelets [Coifman and Maggioni, 2004]
– Extend classical wavelets to graphs and manifolds
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Multiscale Analysis: Diffusion Wavelet Bases
(Coifman and Maggioni, 2004; Mahadevan and Maggioni, NIPS 2005)

Level 2 Level 3

Level 4 Level 5

δ functions → Global eigenvectors
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Automatic Multiscale Analysis of 
Transition Matrices

(Maggioni and Mahadevan, ICML 2006)
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Combining Reward-Specific and 
Reward-Independent Learning

Task-Independent
Learning

Task-Specific
Learning

Global value 
functions
(TD-Gammon,
Tesauro, 1992)

Proto-value functions
(Mahadevan, 2005)

Global
Rewards

Local value
functions

(Dietterich, 2000)

Pseudo-
rewards,
shapingBottlenecks,

symmetries

Diffusion wavelets
(Coifman and Maggioni, 2004)
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Learning Representation and Behavior

• Unified framework for credit assignment problem:
– Harmonic analysis on graphs and manifolds
– Fourier and wavelet bases (for value functions, 

transition matrices, policies, and more…)
– Unifies RL with manifold and spectral learning

• Novel representations and algorithms:
– Automatic basis function construction (values, policies)
– Representation Policy iteration with an adaptive basis
– Multiscale diffusion policy evaluation 
– A new representation for temporally extended actions 
– Transfer learning by representation sharing
– Extendable to POMDPs and PSRs



June 25, 2006 ICML 2006 Tutorial

Manifold and Spectral Learning

• Spectral methods are based on computing 
eigenvectors of a normalized “affinity” matrix
– [Shi and Malik, IEEE PAMI 1997]
– [Ng, Jordan, and Weiss, NIPS 2001] 
– PageRank [Page, Brin, Motwani, Winograd, 1998]

• Manifold methods model the local geometry of 
the data by constructing a graph
– [Roweis and Saul; Tenenbaum, de Silva, Langford, 

Science 2000]
– [Belkin and Niyogi, MLJ 2004]
– [Weinberger, Sha, Saul, ICML 2004]

• These methods are closely related to kernel PCA
– [Scholkopff, Smola and Muller, 2001]
– [Bengio et al, Neural Computation, 2004]
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“Curse of Dimensionality”

• Two active subfields in machine learning
– Learning in inner product spaces: kernel methods
– Manifold learning: nonlinear dimensionality reduction

• Fourier and wavelet bases on graphs
– Based on analysis of the heat kernel of a graph
– Basis for Hilbert space of functions on a graph
– Nonlinear low-dimensional embedding of the graph

• Measure distances “intrinsically” in data space, 
not in ambient space!
– Distance is based on diffusions (heat flow)
– Closely connected to random walks on graphs
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Finite State Probabilistic Models

Markov Chain
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representations for
analysis using
these models?
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Markov Decision Processes
(Puterman, 1994; Howard, 1960)

• Specification:

– A finite set of states S

– A finite set of actions A
– A transition matrix Pa

xy

– A reward function r(s,a)
– An optimality criterion O

“Earth”

“Heaven”

“Hell”

$1

$-1

a1: $0

a2: $100

Va1(”Earth”) =  f(0,1,1,1,1,...)

Va2(”Earth”) = f(100,-1,-1,-1,-1,...)
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Graded myopia: “discounted sum of rewards”
Maximize 

Hell if γ < 0.98, otherwise Heaven
Maximize “average-adjusted sum of rewards”

Always go to heaven!

γ t
tt

r∑

lim
n

r

n
tt

n

→ ∞
=
∑

1

Infinite Horizon Markov 
Decision Processes
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Bellman Optimality Equation

-1

Choose
greedy action
given V*

4 23
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10 49 100

Goal!

+50

EXIT  EAST

EXIT  WEST

WAIT
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Policy Iteration
(Howard, PhD, MIT, 1959)

Policy Improvement:
(“Actor”) 

Policy Evaluation:
(“Critic”)

γ

γ
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Value Function Approximation

Inverted Pendulum with
Radial Basis Functions (10)

R|S| x |A|

RkD
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Discrete MDP:
Continuous MDP:



June 25, 2006 ICML 2006 Tutorial

Linear Value Function Approximation

• Consider a linear architecture for approximating 
value functions

V(s) ≈ ∑i φi(s) wi
• Policy evaluation is no longer straightforward!

∑i φi(s) wi ≠ r(s,π(s)) + γ ∑s’
Pa

s,s’ ∑i φi(s’) wi

• This equation is not guaranteed to be solvable 
since the RHS may be outside column space of Φ
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Least-Squares Projection
(Strang, 2003; Deutsch, 2001)

b

Ax

A

Many problems in learning
can be formalized using the
framework of projections
in inner product spaces

x = (AT A)-1 AT b

P = A(AT A)-1 AT

b - Ax

Extends to infinite-dimensional spaces
provided subspace is “complete”

This does not work
for L∞ norm
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Bellman Residual Method
(Munos, ICML 03; Lagoudakis and Parr, JMLR 03)

• Let us write the Bellman equation in 
matrix form as 

Φ wπ ≈ Rπ + γ Pπ Φ wπ

• Collecting the terms, we rewrite this as
(Φ - γ Pπ Φ) wπ ≈ Rπ

• The least-squares solution is 
wπ = [(Φ - γ Pπ Φ)T (Φ - γ Pπ Φ)]-1 (Φ - γ Pπ Φ)T Rπ



June 25, 2006 ICML 2006 Tutorial

Bellman Residual Method
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Bellman Fixpoint Method

• Another way to obtain a least-squares 
solution is to project the backed-up value 
function Tπ(Vπ)

P = Φ (ΦT Φ)-1 ΦT

• The least-squares projected weights then 
becomes

Wπ = (ΦT Φ)-1 ΦT [Rπ + γ Pπ Vπ]
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Bellman Fixpoint Method

∑=
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Subspace Φ
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bases)
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Minim
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Graph Adjacency Matrix

1 2

3 4

5 6

7

Goal

Adjacency Matrix

0 1 1 0 0 0 0

1 0 0 1 0 0 0

1 0 0 1 1 0 0

0 1 1 0 0 1 1

0 0 1 0 0 1 0

0 0 0 1 1 0 0

0 0 0 1 0 0 0
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Spectral Theorem

• From basic linear algebra, we know that since the 
adjacency matrix A is symmetric, we can use the spectral 
theorem

A = V Λ VT

• V is a matrix of orthonormal eigenvectors, Λ is a diagonal 
matrix of eigenvalues

• Eigenvectors satisfy the following property: 

A x = λ x
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Diagonalized Adjacency Matrix
2.5243         0         0         0         0         0

0    1.0000         0         0         0         0
0         0    0.7923         0         0         0
0         0         0   -0.7923         0         0
0         0         0         0   -1.0000         0
0         0         0         0         0   -2.5243

Λ =

-0.3213    0.5000   -0.3831    0.3831    0.5000    0.3213
-0.3419    0.5000    0.0900    0.0900 -0.5000   -0.3419
-0.4692   -0.0000   -0.3935   -0.3935 -0.0000   -0.4692
-0.5418    0.0000    0.4544   -0.4544   -0.0000    0.5418
-0.3213   -0.5000   -0.3831    0.3831   -0.5000    0.3213
-0.3419   -0.5000    0.0900    0.0900 0.5000   -0.3419
-0.2146   -0.0000    0.5735    0.5735 0.0000   -0.2146

V = 
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Inner Product Spaces

• An inner product space is a vector space associated with 
an inner product (e.g, Rn)

• The set of all functions Φ on a graph G = (V, E) forms an 
inner product space, where the inner product is defined as

<f , g> = ∑i f(i) g(i) 
• An operator O on an inner product space of functions is a 

mapping O: Φ → Φ
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Adjacency Operator

• Let us now revisit the 
adjacency matrix and treat 
it as an operator

• What is its effect on 
functions on the graph?

• It is easy to see that 

A f(i) = ∑j ~ i f(j)

0 1 1 0 0 0 0

1 0 0 1 0 0 0

1 0 0 1 1 0 0

0 1 1 0 0 1 1

0 0 1 0 0 1 0

0 0 0 1 1 0 0

0 0 0 1 0 0 0
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Graph Embedding:10x10 Grid
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the largest two
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Combinatorial Graph Laplacian 
(Fiedler, 1973; Cvetkovic et al, 1980; Chung, 1997)

1 2

3 4

5 6

7

Goal

Laplacian Matrix = D - A 
2 -1 -1 0 0 0 0

-1 2 0 -1 0 0 0

-1 0 3 -1 -1 0 0

0 -1 -1 4 0 -1 -1

0 0 -1 0 2 -1 0

0 0 0 -1 -1 2 0

0 0 0 -1 0 0 1

Row sums

Negative of weights
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One-Dimensional Chain MDP
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Fourier Approach: Laplacian Eigenfunctions

• In 1807, Joseph Fourier discovered trigonometric functions 
are a complete basis for approximating any smooth 
function, while solving the heat equation
– The trigonometric functions ei w t diagonalize any time-invariant 

linear operator L
L et w t = h(w) ei w t

L f = ∫-∞∞ h(w) e-i w t dt

• Fourier’s insight has been generalized extensively over the 
past 200 years
– In the study of continuous manifolds, the eigenfunctions of the 

Laplacian form a discrete orthonormal basis [Rosenberg, 1997]
– For vector spaces associated with a discrete graph, the 

eigenfunctions of the graph Laplacian form a complete basis 
[Chung, 1997; Cvetkovic, 1980]
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Simple Properties of the Laplacian

• The Laplacian is positive semidefinite

• The Laplacian for this graph is [1 -1; -1 1]
• Note that xT L x = (x1 – x2)2

• We can express the Laplacian of any graph as the 
sum of the Laplacians of the same graph with all 
edges deleted, except for one. 

• This implies that 
<x, Lx> = xT L x = ∑u ∼ v (xu – xv)2
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Embedding a Grid
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Laplacian vs. Polynomial 
Approximation on a Grid
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Linear Least-Squares Approximation 
with Laplacian Bases
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Linear vs. Nonlinear LS Approximation 
of Random Function
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Graph Embedding
• Consider the following optimization 

problem mapping, where yi ∈ R is a 
mapping of the ith vertex to the real line

Minw ∑i,j (yi – yj)2 wi,j s.t. yT D y = 1
• The best mapping is found by solving the 

generalized eigenvector problem
W φ = λ D φ

• If the graph is connected, this can be written as

D-1 W φ = λ φ
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Normalized Graph Laplacian 
and Random Walks

• Given an undirected weighted graph G = (V, E, 
W), the random walk on the graph is defined by 
the transition matrix

P = D-1W
– Random walk matrix is not symmetric

• Normalized Graph Laplacian
L = D-1/2 (D - W) D-1/2 = I - D-1/2 W D-1/2

• The random walk matrix has the same 
eigenvalues as (I - L ) 

D-1W = D-1/2 (D-1/2 W D-1/2) D1/2 = D-1/2 (I - L ) D1/2
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Operators on Graphs
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Diffusion Analysis

• Fourier vs. wavelet analysis
– Local vs. global analysis
– Multiresolution modeling

• Diffusion wavelets [Coifman and Maggioni, 2004]

– Generalization of wavelets to graphs and manifolds
– Provides a way to learn multiscale basis functions
– Automatic hierarchical abstraction of Markov process on 

graphs
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Multiscale analysis vs. Fourier Analysis

- Fourier vs. Wavelet Analysis:

– Qualitative ideas: global vs. multiscale

– Motivations: approximation, compression, denoising, computational

efficiency; connections with Harmonic Analysis and approximation theory

– Multiresolution modeling: multiscale approximation of processes

- Diffusion Wavelets

– A way of generalizing wavelets to graphs and manifolds

– Can be learnt once a graph is given

– Automatically generates hierarchical view of a Markov process
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Qualitative ideas: multiscale vs. global

The setup is as before: we construct a set of basis functions adapted to the

geometry of the explored state space, and project a policy iteration algorithm in

a subspace spanned by those basis functions.

Instead of global Fourier-modes, we will use wavelet-like, multiscale basis

elements. They are also built from a diffusion operator T on a graph. We denote

them by φj,k, where j will indicate scale, and k location. These allow to

represent efficiently a broader class of functions than Fourier eigenfunctions, for

example functions which are piecewise smooth and not globally smooth.

This wavelet analysis is multiscale in at least three ways:

• in space: basis elements are localized, the elements at scale j have support of

roughly diameter δj , for some δ > 1;

• in frequency: basis elements at scale j have Fourier transform essentially

supported in [ǫ2
−j

, ǫ2
−j+1

];

• in time: it is possible to represent T 2j

on {φj,k}k by a small matrix, with

great precision.
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What do diffusion wavelets look like? (I)

For pedagogical purposes, we illustrate the construction in a very simple

example. We consider the Laplacian on the circle T, since even in this case the

multiresolution analysis we introduce is new.
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Left: the spectrum of T . Right: the dimension of Vj as a function j.
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What do diffusion wavelets look like? (II)
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Room with an obstacle in the middle. Diffusion scaling functions are automatically

adapted to the state space. First index denotes scale (the larger the index the coarser

the scale) and the second one indexes the location. Compared to the eigenfunctions of

the Laplacian, each of which has global support, the scaling functions are localized at

different scales.
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What do diffusion wavelets look like? (III)
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Diffusion scaling functions on a discrete two-room spatial domain connected by a

common door. All the scaling functions are naturally adapted to the state space.
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Connections with Harmonic Analysis, I

We need tools for efficiently working with functions on a manifold or graph: in

particular efficient and stable representation for functions of interest (e.g. value

functions). Assume a linear architecture:

f =
∑

k

αkφk

where f is a function in the class of functions we want to approximate, φk’s are

basis functions (“building blocks” or “templates”), and the coefficients αk

contain the information for putting together the “building blocks” in order to

reconstruct (or approximate) f .

What does efficient mean? Few, in proportion to how “complicate” f is, and

efficiently-organized coefficients αk. Smoothness constraints become sparsity

constraints. For example, it is useful for linear approximation, that |αk| . k−γ .

Or, for nonlinear approximation, that |ασ(k)| . k−γ , for some permutation σ

(possibly σ(k) ≫ k!).
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Connections with Harmonic Analysis, II

[Enter Fourier]

(i) Fourier: approximate solutions of the heat equation on an interval or

rectangle with sine and cosine functions: φk(x) = sin(kx).

(ii) Fourier on Euclidean domains: instead of sines and cosines need the

eigenfunctions of the Laplacian on the domain: φk :

∆φk = λkφk .

(iii) Fourier on manifolds and graphs: as above, with the natural

Laplace-Beltrami operator, or the graph Laplacian.

The good and the bad: FFT, φk’s are global approximants, and αk are not as

sparse as one may wish. Example: f ∈ Cs iff |f̂(k)| = |〈f, φk〉| ≤ k−s−1 (modulo

a “small lie”).
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Connections with Harmonic Analysis, III

Wavelets and Multiresolution Analysis:

Wavelets are concentrated both in time and frequency. Wavelets have to indices

φj,k is an “atom” concentrated in time at position k, width about 2−j , and

concentrated around frequency 2j . They provide essentially the best possible

building blocks for interesting and large classes of functions, i.e. much fewer αk’s

in the representation of these functions.

Initially constructed on R (late 80’s), then on R
n, and constructions on meshed

surfaces (graphics, PDEs).

They characterize local regularity, vs. the global regularity characterized by

Fourier coefficients.
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Example of nonlinear approximation
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Approximation of a value function which is not very smooth because of localized peaks

that induce local large gradients. This value function corresponds to a discrete two

room domain connected by a door in the middle, with two (positive but different)

rewards at the two opposite corners of the two rooms.
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Example of Wavelet Transform
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Multiscale geometry and Markov processes

In many situations the graph/manifold representing the state space contains

clusters at different scales, separated by bottlenecks. A Markov process (e.g.

associated with a policy) on such a space will be “nearly decomposable” (or

lumpable), at different time-scales. For example in the two-room problem, at a

certain large time scale, may be approximated by a two-state problem. In

general there may be more bottlenecks and decompositions, depending on the

time-scale at which the problem is considered.

This generalizes Euclidean constructions of wavelets, much used in mathematical

analysis and signal processing, and extends it not only to the analysis of

functions, but also to the analysis of Markov processes.
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Abstraction of Markov chains

We now consider a simple example of a Markov chain on a graph with 8 states.

T =





































0.80 0.20 0.00 0.00 0.00 0.00 0.00 0.00

0.20 0.79 0.01 0.00 0.00 0.00 0.00 0.00

0.00 0.01 0.49 0.50 0.00 0.00 0.00 0.00

0.00 0.00 0.50 0.499 0.001 0.00 0.00 0.00

0.00 0.00 0.00 0.001 0.499 0.50 0.00 0.00

0.00 0.00 0.00 0.00 0.50 0.49 0.01 0.00

0.00 0.00 0.00 0.00 0.00 0.01 0.49 0.50

0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.50





































From the matrix it is clear that the states are grouped into four pairs {ν1, ν2},

{ν3, ν4}, {ν5, ν6}, and {ν7, ν8}, with weak interactions between the the pairs.
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A multiscale “network”
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Multiscale Analysis, I

We construct multiscale bases on manifolds, graphs, point clouds.

Classical constructions of wavelets are based on geometric transformations (such

as dilations, translations) of the space, transformed into actions (e.g. via

representations) on functions. There are plenty of such transformations on R
n,

certain classes of Lie groups and homogeneous spaces (with automorphisms that

resemble “anisotropic dilations”), and manifolds with large groups of

transformations.

Here the space is in general highly non-symmetric, not invariant under ”natural”

geometric transformation, and moreover it is “noisy”.

Idea: use diffusion and the heat kernel as dilations, acting on functions on the

space, to generate multiple scales.

This is connected with the work on diffusion or Markov semigroups, and

Littlewood-Paley theory of such semigroups (a la Stein).

We would like to have constructive methods for efficiently computing the

multiscale decompositions and the wavelet bases.
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Multiscale Analysis, II

Suppose for simplicity we have a weighted graph (G, E, W ), with corresponding

Laplacian L and random walk P . Let us renormalize, if necessary, P so it has

norm 1 as an operator on L2: let T be this operator. Assume for simplicity that

T is self-adjoint, and high powers of T are low-rank: T is a diffusion, so range of

T t is spanned by smooth functions of increasingly (in t) smaller gradient.

A “typical” spectrum for the powers of T would look like this:
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Construction of Diffusion Wavelets
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−−−−−−−−−−−→
[T ]

Φ1
Φ0

−−−−−−−−−−→
[T 2]

Φ2
Φ1

−−−−−−−−−→
[T 2j

]
Φj+1
Φj

−−−−−−−−−−→
[T 2j+1

]
Φj+2
Φj+1

−−
−
−
−
−
−
−
−
−
−
−→

[T ]
Φ0
Φ0

−−
−−
−−
−−
−−
−−
−−
−−
−→

[Φ1]Φ0

−−
−
−
−
−
−
−
−
−
−
−→

[T 2]
Φ1
Φ1

−−
−−
−−
−−
−−
−−
−−
−−
−−
→

[Φ2]Φ1

−−
−−
−−
−−
−−
−−
−−
−−
−−
−→

[Φj+1]Φj

−−
−
−
−
−
−
−
−
−
−→[T 2j+1

]
Φj+1
Φj+1

−−
−−
−−
−−
−−
−−
−−
−−
−−
→

[Φj+2]Φj+1

Φ0 Φ1 . . . Φj+1 . . .

Φ̃1 Φ̃2 . . . Φ̃j+1

Diagram for downsampling, orthogonalization and operator compression. (All triangles

are commutative by construction)
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{Φj}
J
j=0, {Ψj}

J−1
j=0 , {[T 2j

]
Φj

Φj
}J

j=1 ← DiffusionWaveletTree ([T ]Φ0
Φ0

, Φ0, J, SpQR, ǫ)

// [T ]Φ0
Φ0

: a diffusion operator, written on the o.n. basis Φ0

// Φ0 : an orthonormal basis which ǫ-spans V0

// J : number of levels to compute

// SpQR : a function compute a sparse QR decomposition, template below.

// ǫ: precision

// Output: The orthonormal bases of scaling functions, Φj , wavelets, Ψj , and

// compressed representation of T 2j

on Φj , for j in the requested range.

for j = 0 to J − 1 do

[Φj+1]Φj
, [T ]Φ1

Φ0
←SpQR([T 2j

]
Φj

Φj
, ǫ)

Tj+1 := [T 2j+1

]
Φj+1

Φj+1
← [Φj+1]Φj

[T 2j

]
Φj

Φj
[Φj+1]

∗
Φj

[Ψj ]Φj
← SpQR(I〈Φj〉 − [Φj+1]Φj [Φj+1]

∗
Φj

, ǫ)

end

Q, R ← SpQR (A, ǫ) // A: sparse n × n matrix, ǫ: precision

// Output: Q, R matrices, hopefully sparse, such that A =ǫ QR, Q is n × m and orthogonal,

// R is m × n, and upper triangular up to a permutation,

// the columns of Q ǫ-span the space spanned by the columns of A.
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A Diffusion Multiresolution on the Circle (cont’d)

For pedagogical purposes, we illustrate the construction in a very simple

example. We consider the Laplacian on the circle T, since even in this case the

multiresolution analysis we introduce is new.
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Figure 1: Left: the spectrum of T . Right: the dimension of Vj as a function j.
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26

50 100 150 200 250 300 350 400 450

50

100

150

200

250

300

350

400

450

500

−5.5

−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

50 100 150 200 250 300 350 400

50

100

150

200

250

300

350

400

450 −5.5

−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

20 40 60 80 100 120 140 160

20

40

60

80

100

120

140

160

180

200

220 −5.5

−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

2 4 6 8 10 12 14 16 18 20

5

10

15

20

25

30
−5.5

−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

Figure 3: The scaling function filters M1 (top left), M2 (top right), M5 (bottom

left) and M11 (bottom right). The images are in logarithmic scale to show entries

larger than 10−6.
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logarithmic scale to show entries larger than 10−6.
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Thinking multiscale on graphs...

Investigating other constructions:

• Biorthogonal diffusion wavelets, in which scaling functions are probability

densities (useful for multiscale Markov chains)

• Top-bottom constructions: recursive subdivision

• Both...

Applications besides Markov Decision Processes:

• Document organization and classification

• Nonlinear Analysis of Images

• Semi-supervised learning through diffusion processes on data
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Algorithmic Issues

• How to sample the manifold?
– Random walk or guided exploration
– How to select a subset of states to construct the bases?

• What sort of graph to build?
– Similarity metric (action-based or Euclidean)
– State graph (undirected or directed)
– State action graph (ditto)

• What graph operator to use?
– Combinatorial or normalized Laplacian
– Beltrami normalization

• How to compactly store the eigenvectors?
– Nystrom and other low-rank approximations
– Tensor products of basis functions
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Random Sampling from a 
Continuous Manifold
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Trajectory Sampling from a 
Continuous Manifold
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Type of Graphs

• Graphs on the state space
– Undirected graph (weighted or unweighted)
– Directed graph (assume strongly connected)

• Graphs on state action space [Osentoski, 2006]

– Basis functions directly represent φ(s,a)
– Graph grows larger

• Other types of graph
– Graphs on state controller space (hierarchical RL)

– Hypergraphs (multivalued relations)



June 25, 2006 ICML 2006 Tutorial

Types of Graphs

Undirected state:

Undirected state action:

Directed state action:

Directed stochastic
state action:
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Similarity Metrics

• The graph is constructed using a similarity 
metric
– In discrete spaces, connect state s to s’ if an 

action led the agent from s → s’
– Action respecting embedding [Bowling, ICML 2005]

• Local distance metrics:
– Nearest neighbor: connect an edge from s to s’

if s’ is one of k nearest neighbors of s
– Heat kernel: connect s to s’ if | s –s’|2 < ε with 

weight w(s,s’)= e-| s – s’|2/2 < ε
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Graph Operator

• Random walk: R = D-1 W

• Discrete Laplacian:  Ld = I – D-1W

• Combinatorial Laplacian: L = D – W

• Normalized Laplacian: L = D-1/2 (D – W) D-1/2

• Directed Laplacian, Beltrami, ….
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Laplacian on Directed Graphs
(Chung, 2005)

• Given a strongly connected directed graph G = 
(V, E, W), the directed Laplacian is defined as
– L = Φ – (Φ P + PT Φ)/2  (combinatorial)
– L = I – (Φ1/2 P Φ-1/2 + Φ-1/2 P Φ1/2)/2

• The diagonal matrix Φ is the matrix formed by 
placing the Perron vector φ on its main diagonal

• The Perron vector φ is the eigenvector associated 
with the largest eigenvalue of P (spectral radius)

• The Perron-Frobenius theorem: all strongly 
connected graphs define ergodic irreducible 
transition matrices, whose largest eigenvector φ
has all real entries > 0
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Two Specific Algorithms

• Representation Policy Iteration (Mahadevan, UAI 
2005)

– Approximate policy iteration on adaptive basis
– Interleave policy and representation learning

• Diffusion policy evaluation (Maggioni and Mahadevan, 
ICML 2006)

– New approach to policy evaluation
– O(|S|) in many problems of interest
– Unlike incremental methods (e.g, TD), 

computation is not reward-specific
– Compute (I - γ P)-1 by building basis functions!
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Representation Policy Iteration
(Mahadevan, UAI 2005)

Trajectories
Representation

Learner

“Greedy”
Policy

Policy
improvement

Policy
evaluation

“Actor”

“Critic” Laplacian/wavelet bases 
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Least-Squares Policy Iteration
(Lagoudakis and Parr, JMLR 2003)

Random walk generates  transitions D = (st, at, r, st’),…

Solve the equation:
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Scaling Fourier and Wavelet Bases

• Factored MDPs generate product (tensor) spaces
– It is possible to represent spectral bases 

compactly for large factored MDPs
– Basis functions can be represented in space 

independent of the size of the state space 
– Fourier analysis on groups: compact 

representations
• Continuous spaces can be handled by sampling 

the underlying manifold and constructing a graph
– Nystrom interpolation method for extension of 

eigenfunctions
– Low-rank approximations of diffusion matrices
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Kronecker Sum Graphs
• The Kronecker sum of two graphs G = G1 ⊕ G2

is the graph with vertex set V = V1 × V2 and 
adjacency matrix A = A1 ⊗ I2 + I2 ⊗ A1

– Alternative definition: The Kronecker sum 
graph G has an edge between vertices (u,v) 
and (u’,v’) if and only if (u,u’) ∈ E1 and v=v’ or 
(u=u’) and (v,v’) ∈ E2

⊕ =
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Spectral Theory of Tensor Products

• Let Ar × r and Bs × s be two matrices of full rank
• Let (λi, ui) and (μj, vj) be the ith eigenvalue and 

eigenvector of graph A and B, respectively
• Spectra of tensor sum and products: 

– (A ⊗ B) (ui ⊗ vj) = λi μj (ui ⊗ vj)
– (A ⊗ Is + Ir ⊗ B) (ui ⊗ vj) = (λi +  μj) (ui ⊗ vj) 

• This result is based on the following identity 
– (A C) ⊗ (B D) = (A ⊗ B) (C ⊗ D) (if AC and BD 

are well-defined)
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Laplacian of Kronecker Graphs

• If L1, L2 be the combinatorial Laplacians of graphs 
G1, G2, then the spectral structure of the 
combinatorial Laplacian of the Kronecker sum of 
these graphs G = G1 ⊕ G2 is specified as

σ(L), X(L))  = {λi + μj, li ⊗ kj } 

• where λi is the ith eigenvalue of L(G1) with 
associated eigenvector li and μj is the jth
eigenvalue of L(G2) with associated eigenvector 
kj. 
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Embedding of Structured Spaces
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RPI in Continuous State Spaces
(Mahadevan, Maggioni, Ferguson, Osentoski, AAAI 2006)

• RPI in continuous state spaces
– The Nystrom extension interpolates 

eigenfunctions from sample points to new 
points

• Many practical issues are involved
– How many samples to use to build the graph?
– Local distance metric: Gaussian distance, k-NN
– Graph operator: Normalized Laplacian, 

Combinatorial Laplacian, Random Walk, …
– Type of graph: Undirected, directed, state-

action graph
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The Nystrom method
(Williams and Seeger, NIPS 2001)

• The Nystrom approximation was developed in the 
context of solving integral equations

∫D K(t,s) Φ(s) ds = λ Φ(t), t ∈ D

• A quadrature approximation of the integral: 
∫D K(t,s) Φ(s) ds = ∑j wj k(x,s) φ(sj)

leads to the following equation
∑j wj k(x,s) φ(sj) = λ φ(x) 

• which rewritten gives the Nystrom extension
φm(x) = 1/λm ∑j wj k(x,s) φm(sj)
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Outline

• Part One
– History and Motivation (9:00-9:15)
– Overview of framework (9:15-9:30)
– Technical Background (9:30-10:30)
– Questions: (10:30-10:45)

• Part Two
– Algorithms and implementation (11:15-11:45)
– Experimental Results (11:45-12:30)
– Discussion and Future Work (12:30-12:45)
– Questions (12:45-1:00)
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Experimental Testbeds

• Discrete MDPs:
– One dimensional chains [Koller and Parr, UAI 2001]

– Two dimensional “room” environments [Mannor, 
McGovern, Simsek et al]

– Factored MDPs (Sallans and Hinton, JMLR 2003)

• Continuous MDPs:
– Inverted pendulum and mountain car
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Learned vs. Handcoded
Representations: Chain MDP

Convergence
time

Policy
error Laplacian

RBF Poly
Results averaged 

over 5 runs
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Directed Two-Room Environment
(Johns, 2006)

This domain was used to compare the 
bases functions from the undirected 
Laplacian vs. the directed Laplacian

Two 10x10 rooms with two directed 
edges (all other edges are 
undirected)
Four stochastic actions, zero reward 
unless in goal state (+100)
Discount factor of 0.9

G
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Directed vs. Undirected Laplacian

• The first eigenvector of the normalized Laplacian 
shows the difference directionality makes on the 
steady-state distribution

Directed Undirected
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Results:  Directed vs. Unidrected Laplacian
(Johns, 2006)

• The undirected Laplacian results in a poorer 
approximation because it ignores directionality

Exact VF Undirected Dir. Combinatorial
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Comparison of Undirected vs. 
Directed Laplacians
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Blockers Domain
(Sallans and Hinton, JMLR 2003)
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Large Factored MDP: Blockers Domain

Topologically, this space is
the tensor product of
three “irregular” cylinders
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Irregular Blockers Domain
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RPI on Inverted Pendulum
(Mahadevan, Maggioni, Ferguson, Osentoski,  AAAI 2006)
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RPI on Inverted Pendulum
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Inverted Pendulum
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Left: Q-value function for the action “left”, reconstructed from its representation

of the diffusion wavelet basis. Right: trajectory of the pendulum in phase space

according to the policy learnt.
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Inverted Pendulum (cont’d)
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Top row: trajectory of angle and angle velocity variables. Bottom row: some diffusion

wavelets used as basis functions for representation during the learning phase.



32

Inverted Pendulum (cont’d)
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balancing for at least 3000 steps, and worst and best number of balancing steps. Each

simulation was stopped and considered successful after 3000 steps, which biases the first

and third graphs downwards.
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Mountain Car
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Top left: Q-value function for the action “left”, reconstructed from its representation of

the diffusion wavelet basis. Top right: trajectory of the mountain car in phase space

according to the policy learnt (107 steps). Bottom row: some diffusion wavelets used as

basis functions for representation during the learning phase.
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Mountain Car (cont’d)
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Measures of performance based on 23 experiments, as a function of number of training

runs (each of which of length at most 100). Left: average and median number of

successful steps for reaching the goal; right: average and median probability of

succeeding in reaching the goal in less than 800 steps. The best policy actually finds a

path in 103 steps.
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Multiscale inversion

The multiscale construction enables a direct solution of Bellman’s equation. The

algorithm consists of two parts:

(i) a pre-computation step, that depends on the structure of the state space and

on the policy, and yields the multiscale analysis described above.

(ii) an inversion step which uses the multiscale structure built in the

pre-computation step to efficiently compute the solution of Bellman’s

equations for a given reward function.
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Multiscale inversion (cont’d)

The starting point are the identities

V π = (I − γPπ)−1R =
∑

k≥0

(γΠ− 1
2 TπΠ

1
2 )kR =

∏

k≥0

(I + γ2k

Π− 1
2 (Tπ)2

k

Π
1
2 )R ,

where Pπ = Π− 1
2 TπΠ

1
2 , Π is the matrix whose diagonal is the asymptotic

distribution of P , and R is the reward vector. The formulas hold for γ ≤ 1 and R

has no component in the kernel of (I − γPπ).

We have compressed in a multiscale fashion the (quasi-)dyadic powers of the

operator Tπ.

In many cases of interest, both the construction of the multiscale structure and

the inversion take only O(|S|) operations!
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Example: Two-room environment
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Example: Two-room environment, II
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Four diffusion scaling functions built on the set, at increasing scale. Note the

localization at the finer scales, and the global support at coarser scales.
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Example: Two-room environment, III
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Compression of the powers of the symmetrized random walk T in a continuous

two-room environment. T0 is sorted to show the two-room and corridor structures. T6

is very small, and essentially represents only the transition between two states (the two

rooms).
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Comparison with standard Direct and Iterative techniques
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Solving a Bellman equation on a random walk in the two-room environment, as a

function of the number of states explored (x-axis): DWT inversion, iterative Conjugate

Gradient Squared method (Matlab implementation) and direct inversion. Left:

pre-processing time, comparing computation of the full inverse and construction

diffusion wavelet tree. Right: computation time of applying the inversion scheme.
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Comparison with standard Direct and Iterative techniques, II
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Precision, defined as log10 of the Bellman residual error ||(I − γP π)Ṽ π − R||p, where

Ṽ π is the computed solution, achieved by the different methods. The precision

requested was 1e − 10. We show the results for p = 2 (left) and p = ∞ (right).
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– Questions: (10:30-10:45)

• Part Two
– Algorithms and implementation (11:15-11:45)
– Experimental Results (11:45-12:30)
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Challenges and Future Directions

• Computational tractability
– Fourier and wavelet bases for high-dimensional 

continuous control tasks (e.g. humanoid robots)

• Convergence and theoretical analysis
– Can these bases be shown to be “optimal” in some 

interesting sense?

• Application of this approach to related problems
– POMDPs: value function is highly compressible!
– PSRs: low-rank approximation of dynamical systems

• The approach is general, and provides a way to 
do multiscale data analysis on a graph
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Factored and Relational MDPs

• Much work on factored and relational 
MDPs and RL
– [Koller and Parr, UAI 2000; Guestrin et al, 

IJCAI 2003; JAIR 2003 ]
– [Fern, Yoon, and Givans, NIPS 2003]
– ICML 2004 workshop on relational RL 

• How to construct Fourier and wavelet 
bases over relational representations?
– Symmetries and group automorphisms
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Exploiting Symmetries
to Reduce Basis Size

• A graph automorphism h is a mapping 
from the vertex set V → V, such that
– w(u,v) > 0 ↔ w(h(u),h(v)) > 0

• The automorphisms of a graph can 
generate compact bases

• Let P be a permutation matrix such that 
A P = P A

• If x is an eigenvalue of A, then so is Px
A P x = P A x = λ P x
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Modeling Temporally Extended Actions
(Barto and Mahadevan, Discrete-Event Systems, 2003)

• Semi-Markov decision 
process 
– S: set of states
– A: set of activities (or 

behaviors)
– P: S × A × N × S → (0,1) 

multi-step transition 
probability

– R: S × A × N → R expected 
reward over duration of 
activity

[Kaelbling, ICML 1993]
[Parr and Russell, NIPS 1998]
[Sutton, Precup, and Singh, AIJ 1999]
[Dietterich, JAIR 2000]

Attend ICML

Exit Room

Exit Hotel Go to
CMU
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How to Discover Temporal 
Abstractions?  

• Much recent work
– Find bottlenecks and symmetries in state spaces
– [McGovern, U.Mass PhD, 2002; Balaraman, U.Mass, PhD 2004]

– Rank state variables by rate of change
– [Hengst, ICML 2002]

– Graph-based approaches
– [Menache et al, ECML 2002; Simsek, Wolfe, and Barto, ICML 

2005]

• Lacks formal framework that generalizes to 
arbitrary (continuous or discrete) spaces

• Does not yield compact representations of 
temporally extended actions
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Applications to Hierarchical RL

• Learning temporally extended actions
– Laplacian eigenfunctions can be used to 

partition the graph (Cheeger constant)
– Diffusion wavelets can be used to learn 

multiscale option models

• Task transfer
– Laplacian or diffusion bases are reward 

independent
– Proto-transfer: map representations from one 

task to another [Ferguson and Mahadevan, ICML 
Workshop on Transfer Learning, 2006]
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Current & Future work

• Relate approximation rates with guarantees on convergence of the algorithm;

• Construct bases even better adapted to approximation and learning;

• Study sensitivity of basis construction with respect to sampling and other

deformations;

• Explore other ways for performing multiscale analysis, tuned to the policy

iteration algorithm and its target optimum;

• Transferring learning, by mapping the manifolds, and transport basis

functions from one problem to the other;

Material (Matlab code, tutorial talks) available at www.math.yale.edu/∼mmm82.

Thank you!
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Further Reading

• Fourier bases (Laplacian eigenfunctions)
– Sridhar Mahadevan, "Samuel Meets Amarel: Automating Value Function 

Approximation using Global State Space Analysis" , Proceedings of the National 
Conference on Artificial Intelligence (AAAI-2005), Pittsburgh, PA, July 9-13, 
2005. 

– Sridhar Mahadevan, "Representation Policy Iteration" , Proceedings of the 21st 
Conference on Uncertainty in AI (UAI-2005), Edinburgh, Scotland, July 26-29, 
2005. 

– Sridhar Mahadevan, "Proto-Value Functions: Developmental Reinforcement 
Learning" , Proceedings of the International Conference on Machine Learning 
(ICML-2005), Bonn, Germany, August 7-13, 2005. 

• Wavelet bases 
– Sridhar Mahadevan and Mauro Maggioni, "Value Function Approximation using 

Diffusion Wavelets and Laplacian Eigenfunctions" , Neural Information Processing 
Systems (NIPS) conference, Vancouver, December, 2005. 

• Fast policy evaluation
– Mauro Maggioni and Sridhar Mahadevan, "Fast Direct Policy Evaluation 

Using Multiscale Markov Diffusion Processes" , University of 
Massachusetts, Department of Computer Science Technical Report TR-
2005-39, 2005 (also accepted to ICML 2006)

http://www.cs.umass.edu/~mahadeva/papers/aaai-final-paper.pdf
http://www.cs.umass.edu/~mahadeva/papers/aaai-final-paper.pdf
http://www.cs.umass.edu/~mahadeva/papers/aaai-final-paper.pdf
http://www.cs.umass.edu/~mahadeva/papers/final-paper.pdf
http://www.cs.umass.edu/~mahadeva/papers/final-paper.pdf
http://www.cs.umass.edu/~mahadeva/papers/final-paper.pdf
http://www.cs.umass.edu/~mahadeva/papers/nips-paper1-v5.pdf
http://www.cs.umass.edu/~mahadeva/papers/nips-paper1-v5.pdf
http://www.cs.umass.edu/~mahadeva/papers/nips-paper2-tr.pdf
http://www.cs.umass.edu/~mahadeva/papers/nips-paper2-tr.pdf
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