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László Lovász
Microsoft Research

One Microsoft Way, Redmond, WA 98052
e-mail: lovasz@microsoft.com



2



Contents

I Background 5

1 Eigenvalues of graphs 7
1.1 Matrices associated with graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 The largest eigenvalue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.1 Adjacency matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.2 Laplacian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.3 Transition matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 The smallest eigenvalue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 The eigenvalue gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4.1 Expanders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4.2 Random walks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.5 The number of different eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.6 Eigenvectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 Convex polytopes 21
2.1 Polytopes and polyhedra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2 The skeleton of a polytope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3 Polar, blocker and antiblocker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

II Representations of Planar Graphs 25

3 Planar graphs and polytopes 27
3.1 Planar graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Straight line representation and 3-polytopes . . . . . . . . . . . . . . . . . . . . . 28

4 Rubber bands, cables, bars and struts 29
4.1 Rubber band representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1.1 How to draw a graph? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.1.2 How to lift a graph? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.1.3 Rubber bands and connectivity . . . . . . . . . . . . . . . . . . . . . . . . 36
4.1.4 Rubber bands and random walks . . . . . . . . . . . . . . . . . . . . . . . 36

4.2 Rigidity of bar-and-joint structures . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2.1 Cauchy’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2.2 Generic rigidity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2.3 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3



4 CONTENTS

5 Representing graphs by touching domains 37
5.1 Square tiling representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2 Coin representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.3 The Cage Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6 Harmonic and analytic functions on graphs 41
6.1 Harmonic functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.1.1 Harmonic functions from random walks, electrical networks, and rubber
bands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.1.2 Harmonic and equitable flows . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.1.3 Computing harmonic functions . . . . . . . . . . . . . . . . . . . . . . . . 44

6.2 Analytic functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.2.1 Circulations and homology . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.2.2 Analytic functions from harmonic functions . . . . . . . . . . . . . . . . . 45
6.2.3 Nondegeneracy properties of smooth circulations . . . . . . . . . . . . . . 46

III Representations in Higher Dimensions 51

7 Orthogonal representations 53
7.1 Smallest cone and the theta function . . . . . . . . . . . . . . . . . . . . . . . . . 53
7.2 Minimum dimension and connectivity . . . . . . . . . . . . . . . . . . . . . . . . 53
7.3 Treewidth and monotone connectivity . . . . . . . . . . . . . . . . . . . . . . . . 53

8 The Colin de Verdière Number 55
8.1 The definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

8.1.1 The Strong Arnold Property . . . . . . . . . . . . . . . . . . . . . . . . . 55
8.2 Basic properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
8.3 Small values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
8.4 Nullspace representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
8.5 Gram representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
8.6 The Van der Holst–Laurent–Schrijver parameter . . . . . . . . . . . . . . . . . . 58

9 Graph independence to linear independence 59
9.1 Independence-critical graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

10 Metric embeddings 61
10.1 Embeddings of metric spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
10.2 Multicommodity flows and bandwidth . . . . . . . . . . . . . . . . . . . . . . . . 61

IV General issues 63

11 Semidefinite optimization 65

12 Is there a theory of geometric representations 67
12.1 Graph structure and geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
12.2 Non-degeneracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
12.3 Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
12.4 Algorithmic applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69



Part I

Background

5





Chapter 1

Eigenvalues of graphs

1.1 Matrices associated with graphs

We introduce the adjacency matrix, the Laplacian and the transition matrix of the random walk,
and their eigenvalues.

Let G be a (finite, undirected, simple) graph with node set V (G) = {1, . . . , n}. The adjacency
matrix of G is be defined as the n× n matrix AG = (Aij) in which

Aij =

{
1, if i and j are adjacent,
0, otherwise.

We can extend this definition to the case when G has multiple edges: we just let Aij be the
number of edges connecting i and j. We can also have weights on the edges, in which case we
let Aij be the weight of the edges. We could also allow loops and include this information in the
diagonal, but we don’t need this in this course.

The Laplacian of the graph is defined as the n× n matrix LG = (Lij) in which

Lij =

{
di, if i = j,

−Aij , if i 6= j.

Here di denotes the degree of node i. So LG = DG − AG, where DG is the diagonal matrix of
the degrees of G.

In the weighted case, di is the sum of weights of edges incident with node i.
The transition matrix of the random walk on G is defined as the n× n matrix PG = (Pij) in

which

Pij =
1
di

Aij .

So PG = D−1
G A.

The matrices AG and LG are symmetric, so their eigenvalues are real. The matrix PG is not
symmetric, but it is conjugate to a symmetric matrix. Let

NG = D
−1/2
G AGD

−1/2
G ,

then NG is symmetric, and

PG = D
−1/2
G NGD

1/2
G .

7
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The matrices PG and NG have the same eigenvalues, and so all eigenvalues of PG are real.

Example 1.1.1 Compute the spectrum of complete graphs, cubes, stars, paths.

We’ll often use the (generally non-square) incidence matrix of G. This notion comes in two
flavors. Let V (G) = {1, . . . , n} and E(G) = {e1, . . . , em, and let BG denote the n ×m matrix
for which

(BG)ij =

{
1 if i is and endpoint of ej ,

0 otherwise.

Often, however, the following matrix is more useful: Let us fix an orientation of each edge, to
get an oriented graph

−→
G . Then let B−→

G
denote the n×m matrix for which

(B−→
G

)ij =





1 if i is the head of ej ,

−1 if i is the tail of ej ,

0 otherwise.

Changing the orientation only means scaling some columns by −1, which often does not matter
much. For example, it is easy to check that independently of the orientation,

LG = B−→
G

BT−→
G

. (1.1)

It is worth while to express this equation in terms of quadratic forms:

xTLGx =
n∑

ij∈E(G)

(xi − xj)2. (1.2)

1.2 The largest eigenvalue

1.2.1 Adjacency matrix

The Perron–Frobenius Theorem implies immediately that if G is connected, then the largest
eigenvalue λmax of AG of AG has multiplicity 1. This eigenvalue is relatively uninteresting, it is
a kind of “average degree”. More precisely, let dmin denote the minimum degree of G, let d be
the average degree, and let dmax be the maximum degree.

Proposition 1.2.1 For every graph G,

max{dmin,
√

dmax} ≤ λmax ≤ d.

Proof.
¤

Example 1.2.2 Compute the largest eigenvalue of a star.
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1.2.2 Laplacian

For the Laplacian LG, this corresponds to the smallest eigenvalue, which is really uninteresting,
since it is 0:

Proposition 1.2.3 The Laplacian LG is singular and positive semidefinite.

Proof. The proof follows immediately from (1.1) or (1.2), which show that LG is positive
semidefinite. Since 1 = (1, . . . , 1)T is in the null space of LG, it is singular. ¤

If G is connected, then 0, as an eigenvalue of LG, has multiplicity 1; we get this by applying
the Perron–Frobenius Theorem to cI − LG, where c is a large real number. The eigenvector
belonging to this eigenvalue is 1 = (1, . . . , 1)T (and its scalar multiples).

We note that for a general graph, the multiplicity of the 0 eigenvalue of the Laplacian is
equal to the number of connected components. Similar statement is not true for the adjacency
matrix (if the largest eigenvalues of the connected components of G are different, then the
largest eigenvalue of the whole graph has multiplicity 1). This illustrates the phenomenon that
the Laplacian is often better behaved algebraically than the adjacency matrix.

1.2.3 Transition matrix

The largest eigenvalue of PG is 1, and it has multiplicity 1 for connected graphs. It is straight-
forward to check that the right eigenvector belonging to it is 1, and the left eigenvector is given
by πi = di/(2m) (where m is the number of edges). This vector π describes the stationary
distribution of a random walk, and it is very important in the theory of random walks (see
later).

1.3 The smallest eigenvalue

Proposition 1.3.1 (a) A graph is bipartite if and only if its spectrum is symmetric about the
origin.

(b) A connected graph G is bipartite if and only if λmin(G) = −λmax(G).

Proof.
¤

The “only if” part of Proposition 1.3.1 can be generalized: The ratio between the largest and
smallest eigenvalue can be used to estimate the chromatic number [68].

Theorem 1.3.2

χ(G) ≥ 1 +
λmin

λmax
.

Proof. Let k = χ(G), then AG can be partitioned as



0 M12 . . . M1k

M21 0 M2k

...
...

. . .
Mk1 Mk2 0,
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where Mij is an mi ×mj matrix (where mi is the number of points with color i).
Let v be an eigenvector belonging to λ1. Let us break v into pieces v1, . . . ,vk of length

m1, . . . , mk, respectively. Set

wi =




|vi|
0
...
0


 ∈ Rmi w =




w1

...
wk


 .

Let Bi be any orthogonal matrix such that

Biwi = vi (i = 1, . . . , k),

and

B =




B1 0
B2

0
. . .

Bk


 .

Then Bw = v and

B−1ABw = B−1Av = λ1B
−1v = λ1w

so w is an eigenvector of B−1AB. Moreover, B−1AB has the form



0 B−1
1 A12B2 . . . B−1

1 A1kBk

B−1
2 A21B1 0 B−1

2 A2kBk

...
. . .

...
B−1

k Ak1B1 B−1
k Ak2B2 . . . 0


 .

Pick the entry in the upper left corner of each of the k2 submatrices B−1
i AijBj (Aii = 0), these

form a k × k submatrix D. Observe that

u =



|v1|

...
|vk|




is an eigenvector of D; for w is an eigenvector of B−1AB and has 0 entries on places corresponding
to those rows and columns of B−1AB, which are to be deleted to get D. Moreover, the eigenvalue
belonging to u is λ1.

Let α1 ≥ · · · ≥ αk be the eigenvalues of D. Since D has 0’s in its main diagonal,

α1 + · · ·+ αk = 0.

On the other hand, λ1 is an eigenvalue of D and so

λ1 ≤ α1,

while by the Interlacing Eigenvalue Theorem

λn ≤ αk, . . . , λn−k+2 ≤ α2.
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Thus

λn + · · ·+ λn−k+2 ≤ αk + · · ·+ α2 = −α1 ≤ −λ1.

¤

Remark 1.3.3 The proof did not use that the edges were represented by the number 1, only
that the non-edges and diagonal entries were 0. So if we want to get the strongest possible lower
bound on the chromatic number that this method provides, we can try to find a way of choosing
the entries in A corresponding to edges of G in such a way that the right hand side is minimized.
This can be done efficiently, and this idea will be important in Chapter 7.

The smallest eigenvalue can be used to characterize linegraphs [67].

Proposition 1.3.4 Let H be the linegraph of G, and let λmin be the smallest eigenvalue of H.
Then λmin ≥ −2; if |E(G)| > |V (G)|, then λmin = −2.

Proof. It is easy to check that we have

AL(G) = BT
GBG − 2I

follows easily.
Since BT

GBG is positive semidefinite, all of its eigenvalues are non-negative. Hence, the
eigenvalues of AL(G) are ≥ −2. Moreover, if |V (G)| < |E(G)|, then

r(BT B) = r(B) ≤ |V (G)| < |E(G)|

(r(X) is the rank of the matrix X). So, BT B has at least one 0 eigenvalue, i.e. AL(G) has at
least one −2 eigenvalue. ¤

1.4 The eigenvalue gap

The gap between the second and the first eigenvalues is an extremely important parameter in
many branches of mathematics.

If the graph is connected, then the largest eigenvalue of the adjacency matrix as well as the
smallest eigenvalue of the Laplacian have multiplicity 1. We can expect that the gap between
this and the nearest eigenvalue is related to some kind of connectivity measure of the graph.
Indeed, fundamental results due to Alon–Milman [3], Alon [2] and Jerrum–Sinclair [72] relate the
eigenvalue gap to expansion (isoperimetric) properties of graphs. These results can be considered
as discrete analogues of Cheeger’s inequality in differential geometry.

There are many related (but not equivalent) versions of these results. We illustrate this
connection by two versions that are of special interest: a spectral characterization of expanders
and a bound on the mixing time of random walks on graphs. For this, we discuss very briefly
expanders and also random walks and their connections with eigenvalues (see [1] and [94] for
more).

The multiplicity of the second largest eigenvalue will be discussed in connection with the
Colin de Verdière number (Chapter 8).
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1.4.1 Expanders

An expander is a regular graph with small degree in which the number of neighbors of any set
containing at most half of the nodes is at least a constant factor of its size. To be precise, an
ε-expander is a graph G = (V, E) in which for every set S ⊂ V with |S| ≤ |V |/2, the number of
nodes in V \ S adjacent to some node in S is at least ε|S|.

Expanders play an important role in many applications of graph theory, in particular in
computer science. The most important expanders are d-regular expanders, where d ≥ 3 is a small
constant. Such graphs are not easy to construct. One method is to do a random construction:
for example, we can pick d random perfect matchings on 2n nodes (independently, uniformly
over all perfect matchings), and let G be the union of them. Then a moderately complicated
computation shows that G is an ε-expander with positive probability for a sufficiently small ε.
Deterministic constructions are much more difficult to obtain; the first construction was found
by Margulis [97]; see also [95]. Most of these constructions are based on deep algebraic facts.

Our goal here is to state and prove a spectral characterization of expanders, due to Alon [2],
which plays an important role in analyzing some of the above mentioned algebraic constructions.
note that since we are considering only regular graphs, the adjacency matrix, the Laplacian and
the transition matrix are easily expressed, and so we shall only consider the adjacency matrix.

Theorem 1.4.1 Let G be a d-regular graph.
(a) If d− λ2 ≥ 2εd, then G is an ε-expander.
(b) If G is an ε-expander, then d− λ2 ≥ ε2/5.

Proof. The proof is similar to the proof of Theorem 1.4.5 below. ¤

1.4.2 Random walks

A random walk on a graph G is a random sequence (v0, v1, . . . ) of nodes constructed as follows:
We pick a starting point v0 from a specified initial distribution σ, we select a neighbor v1 of it at
random (each neighbor is selected with the same probability 1/d(v0)), then we select a neighbor
v2 of this node v1 at random, etc. We denote by σk the distribution of vk.

In the language of probability theory, a random walk is a finite time-reversible Markov chain.
(There is not much difference between the theory of random walks on graphs and the theory of
finite Markov chains; every Markov chain can be viewed as random walk on a directed graph,
if we allow weighted edges, and every time-reversible Markov chain can be viewed as random
walks on an edge-weighted undirected graph.)

Let π denote the probability distribution in which the probability of a node is proportional
to its degree:

π(v) =
d(v)
2m

.

This distribution is called the stationary distribution of the random walk. It is easy to check
that if v0 is selected from π, then after any number of steps, vk will have the same distribution
π. This explains the name of π. Algebraically, this means that π is a left eigenvector of PG with
eigenvalue 1:

πT PG = πT .

Theorem 1.4.2 If G is a connected nonbipartite graph, then σk → π for every starting distri-
bution σ.



1.4. THE EIGENVALUE GAP 13

It is clear that the conditions are necessary.

Before proving this theorem, let us make some remarks on one of its important applications,
namely sampling. Suppose that we want to pick a random element uniformly from some finite
set. We can then construct a connected nonbipartite regular graph on this set, and start a
random walk on this graph. A node of the random walk after sufficiently many steps is therefore
essentially uniformly distributed.

(It is perhaps surprising that there is any need for a non-trivial way of generating an element
from such a simple distribution as the uniform. But think of the first application of random walk
techniques in real world, namely shuffling a deck of cards, as generating a random permutation
of 52 elements from the uniform distribution over all permutations. The problem is that the set
we want a random element from is exponentially large. In many applications, it has in addition
a complicated structure; say, we consider the set of lattice points in a convex body or the set
of linear extensions of a partial order. Very often this random walk sampling is the only known
method.)

With this application in mind, we see that not only the fact of convergence matters, but also
the rate of this convergence, called the mixing rate. The proof below will show how this relates
to the eigenvalue gap. In fact, we prove:

Theorem 1.4.3 Let λ1 ≥ λ2 ≥ · · · ≥ λn be the eigenvalues of PG, and let µ = max{λ2, λn}.
Then for every starting node i and any node j, and every t ≥ 0, we have

|Pr(vt = j)− π(j)| ≤
√

π(j)
π(i)

µt.

More generally, for every set A ⊆ V ,

|Pr(vt ∈ A)− π(A)| ≤
√

π(A)
π(i)

µt.

Proof. We prove the first inequality; the second is left to the reader as an exercise. We know
that the matrix NG has the same eigenvalues as PG, and it is symmetric, so we can write it as

NG =
n∑

k=1

λkvkvT
k ,

where v1, . . . , vn are mutually orthogonal eigenvectors. It is easy to check that we can choose

v1i =
√

πi

(we don’t know anything special about the other eigenvectors). Hence we get

Pr(vt = j) = (P t)ij = eT
i D−1/2N td1/2ej =

n∑

k=1

λt
k(eT

i D−1/2vk)(eT
j D1/2vk)

=
n∑

k=1

λt
k

1√
π(i)

vki

√
π(j)vkj = π(j) +

√
π(j)
π(i)

n∑

k=2

λt
kvkivkj .

Here the first term is the limit; we need to estimate the second. We have

∣∣∣
n∑

k=2

λt
kvkivkj

∣∣∣ ≤ µt
n∑

k=2

∣∣∣vkivkj

∣∣∣ ≤ µt
n∑

k=1

∣∣∣vkivkj

∣∣∣ ≤ µt

(
n∑

k=1

v2
ki

)1/2 (
v2

kj

)1/2
= µt.
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This proves the inequality. ¤

If we want to find a bound on the number of steps we need before, say,

|Pr(vk ∈ A)− π(A)| < ε

holds for every j, then it suffices to find a k for which

µk < ε
√

πi.

Writing mu = 1− γ, and using that 1− γ < e−γ , it suffices to have

e−γk < ε
√

πi,

and expressing k,

k >
1
γ

(
ln

1
ε

+
1
2

ln
1
πi

)

So we see that (up to logarithmic factors), it is the reciprocal of the eigenvalue gap that governs
the mixing time.

In applications, the appearance of the smallest eigenvalue λn is usually not important, and
what we need to work on is bounding the eigenvalue gap 1 − λ2. The trick is the following:
If the smallest eigenvalue is too small, then we can modify the walk as follows. At each step,
we flip a coin and move with probability 1/2 and stay where we are with probability 1/2. The
stationary distribution of this modified walk is the same, and the transition matrix PG is replaced
by 1

2 (PG + I). For this modified walk, all eigenvalues are nonnegative, and the eigenvalue gap is
half of the original. So applying the theorem to this, we only use a factor of 2.

The eigenvalues of a general graph are usually difficult to compute; we would like to bound
them by more combinatorial quantities. Let 1 = λ1 ≥ λ2 ≥ . . . ≥ λn be the eigenvalues of PG.

Lemma 1.4.4 For every graph G we have

1− λ2 =
1

2m
min

∑

(i,j)∈E

(xi − xj)2,

where the minimum is taken over all vectors x ∈ RV such that
∑

i∈V

πixi = 0,
∑

i∈V

πix
2
i = 1.

Proof. As remarked before, the symmetrized matrix NG = D
1/2
G PGD

−1/2
G has the same

eigenvalues as PG. For a symmetric matrix, the second largest eigenvalue can be obtained as

λ2 = max yTNGy,

where y ranges over all vectors of unit length orthogonal to the eigenvector belonging to the
largest eigenvalue. This latter eigenvector is given by vi =

√
πi, so the conditions of y are

∑

i∈V

√
πiyi = 0,

∑

i∈V

y2
i = 1.
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Let us introduce xi = yi/
√

πi, then the conditions on x are as in the lemma. Furthermore,

1− yTNGy =
∑

i∈V

πix
2
i − 2

∑

ij∈E

1√
didj

√
πiπjxixj

=
1

2m

∑

i∈V

dix
2
i − 2

∑

ij∈E

xixj

=
∑

(i,j)∈E

(xi − xj)2,

which proves the Lemma. ¤
The conductance of a graph G = (V, E) is defined as follows. For two sets S1, S2 ⊆ V ,

let eG(S1, S2) denote the number of edges ij with i ∈ S1, j ∈ S2. We also set Q(S1, S2) =
eG(S1, S2)/(2m). We define

Φ(G) = min
∅⊂S⊂V

Q(S, V \ S)
π(S)π(V \ S)

.

(Explanation: In a stationary random walk on G, we cross every edge in every direction with
the same frequency, once in every 2m steps on the average. So Q(S, V \S) is the frequency with
which we step out from S. If instead we consider a sequence of independent samples from π, the
frequency with which we step out from S is π(S)π(V \ S). The ratio of these two frequencies is
one of many possible ways comparing a random walk with a sequence of independent samples.)

The following basic inequality was proved by Jerrum and Sinclair [72]:

Theorem 1.4.5 For every graph G,

Φ(G)2

8
≤ 1− λ2 ≤ Φ(G)

Proof. The upper bound is easy: let ∅ 6= S ⊂ V be a set with

Q(S, V \ S)
π(S)π(V \ S)

= Φ(G).

Let x be a vector on the nodes defined by

xi =





√
π(V \S)

π(S) if i ∈ S,

−
√

π(S)
π(V \S) if i ∈ V \ S.

It is easy to check that
∑

i∈V

πixi = 0,
∑

i∈V

πix
2
i = 1.

Thus by Lemma 1.4.4,

1− λ2 ≥ 1
2m

xTAGx =
1

2m

∑

ij∈E

(xi − xj)2

=
1

2m
eG(S, V \ S)

(√
π(V \ S)

π(S)
+

√
π(S)

π(V \ S)

)2

=
1

2m

eG(S, V \ S)
π(S)π(V \ S)

= Φ(G).
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To prove the lower bound, we need a lemma. For every real vector y = (y1, . . . , yn), we define
its median as the bn/2cth largest entry of y.

Lemma 1.4.6 Let G = (V, E) be a graph with conductance Φ(G). Let y ∈ RV , and let y be the
median of y. Then

∑

(i,j)∈E

|yi − yj | ≥ Φ
∑

i

|yi − y|.

Proof. [of the Lemma] We may label the nodes so that y1 ≤ y2 ≤ . . . ≤ yn. We also may assume
that y = 0 (the assertion of the Lemma is invariant under shifting the entries of y). Substituting

yj − yi = (yi+1 − yi) + · · ·+ (yj − yj−1),

we have

∑

(i,j)∈E

|yi − yj | =
n−1∑

i=1

e(Si, V \ Si)(yi+1 − yi).

By the definition of Φ, this implies

∑

(i,j)∈E

|yi − yj | ≥ Φ
n−1∑

i=1

min{i, n− i}(yi+1 − yi) = Φ


 ∑

i≤n/2

yi −
∑

i>n/2

yi




= Φ
∑

i

|yi|.

¤
Now we return to the proof of the lower bound in Theorem 1.4.5. Let x be a unit length

eigenvector belonging to λ2. We may assume that the nodes are labeled so that x1 ≥ x2 ≥
. . . ≥ xn. Let x be the median of x. Setting zi =

(
max{0, xi − x}) and choosing the sign of x

appropriately, we may assume that

∑

i

z2
i ≥

1
2

∑

i

(xi − x)2 =
1
2

∑

i

x2
i − x

∑

i

xi +
n

2
x2 =

1
2

+
n

2
x2 ≥ 1

2
.

By Lemma 1.4.6
∑

(i,j)∈E

|z2
i − z2

j | ≥ Φ
∑

i

z2
i .

On the other hand, using the Cauchy-Schwartz inequality,

∑

(i,j)∈E

|z2
i − z2

j | ≤

 ∑

(i,j)∈E

(zi − zj)2




1/2 
 ∑

(i,j)∈E

(zi + zj)2




1/2

.

Here the second factor can be estimated as follows:
∑

(i,j)∈E

(zi + zj)2 ≤ 2
∑

(i,j)∈E

(z2
i + z2

j ) = 2d
∑

i

z2
i .
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Combining these inequalities, we obtain

∑

(i,j)∈E

(zi − zj)2 ≥

 ∑

(i,j)∈E

|z2
i − z2

j |



2 / ∑

(i,j)∈E

(zi + zj)2

≥ Φ2

(∑

i

z2
i

)2 /
2d

∑

i

z2
i =

Φ2

2d

∑

i

z2
i ≥

Φ2

4d
.

Since ∑

(i,j)∈E

(xi − xj)2 ≥
∑

(i,j)∈E

(zi − zj)2,

from here we can conclude by Lemma 1.4.4. ¤

The quantity Φ(G) is NP-complete to compute. An important theorem of Leighton and Rao
gives an approximate min-max theorem for it, which also yields a polynomial time approximation
algorithm. This will be discussed in Chapter 10.

1.5 The number of different eigenvalues

Multiplicity of eigenvalues usually corresponds to symmetries in the graph (although the cor-
respondence is not exact). We prove two results in this direction. The following theorem was
proved by Mowshowitz [103] and Sachs [115]:

Theorem 1.5.1 If all eigenvalues of A are different, then every automorphism of A has order
1 or 2.

Proof. Every automorphism of G can be described by a permutation matrix P such that
AP = PA. Let u be an eigenvector of A with eigenvalue λ. Then

A(Pu) = PAu = P (λu) = λ(Pu),

so Pu is also an eigenvector of A with the same eigenvalue. Since Pu has the same length as u,
it follows that Pu = ±u and hence P 2u = u. This holds for every eigenvector u of A, and since
there is a basis consisting of eigenvectors, it follows that P 2 = I. ¤

A graph G is called strongly regular, if it is regular, and there are two nonnegative integers
a and b such that for every pair i, j of nodes the number of common neighbors of i and j is

{
a, if a and b are adjacent,
b, if a and b are nonadjacent.

Example 1.5.2 Compute the spectrum of the Petersen graph, Paley graphs, incidence graphs
of finite projective planes.

The following characterization of strongly regular graphs is easy to prove:

Proposition 1.5.3 A connected graph G is strongly regular if and only if it is regular and AG

has at most 3 different eigenvalues.
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Proof. The adjacency matrix of a strongly regular graph satisfies

A2 = aA + b(J −A− I) + dI. (1.3)

The largest eigenvalue is d, all the others are roots of the equation

λ2 − (a− b)λ− (d− b), (1.4)

Thus there are at most three distinct eigenvalues.
Conversely, suppose that G is d-regular and has at most three different eigenvalues. One of

these is d, with eigenvector 1. Let λ1 and λ2 be the other two (I suppose there are two more—the
case when there is at most one other is easy). Then

B = A2 − (λ1 + λ2)A + λ1λ2I

is a matrix for which Bu = 0 for every eigenvector of A except 1 (and its scalar multiples).
Furthermore, B1 = c1, where c = (d− λ1)(d− λ2). Hence B = (c/n)J , and so

A2 = (λ1 + λ2)A− λ1λ2I + (c/n)J.

This means that (A2)ij (i 6= j) depends only on whether i and j are adjacent, proving that G is
strongly regular. ¤

Example 1.5.4 Describe all disconnected strongly regular graphs. Show that there are discon-
nected graphs with only 3 distinct eigenvalues that are not strongly regular.

We can get more out of equation (1.4). We can solve it:

λ1,2 =
a− b±

√
(a− b)2 + 4(d− b)

2
. (1.5)

Counting induced paths of length 2, we also get the equation

(d− a− 1)d = (n− d− 1)b. (1.6)

Let m1 and m2 be the multiplicities of the eigenvalues λ1 and λ2. Clearly

m1 + m2 = n− 1 (1.7)

Taking the trace of A, we get

d + m1λ1 + m2λ2 = 0,

or

2d + (n− 1)(a− b) + (m1 −m2)
√

(a− b)2 + 4(d− b) = 0. (1.8)

If the square root is irrational, the only solution is d = (n−1)/2, b = (n−1)/4, a = b−1. There
are many solutions where the square root is an integer.

A nice application of these formulas is the “Friendship Theorem”:

Theorem 1.5.5 If G is a graph in which every two nodes have exactly one common neighbor,
then it has a node adjacent to every other node.
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Proof. First we show that two non-adjacent nodes must have the same degree. Suppose that
there are two non-adjacent nodes u, v of different degree. For every neighbor w of u there is a
common neighbor w′ of w and v. For different neighbors w1 and w2 of u, the nodes w′1 and w′2
must be different, else w− 1 and w− 2 would have two common neighbors. So v has at least as
many neighbors as u. By a symmetric reasoning, we get du = dv.

If G has a node v whose degree occurs only once, then by the above, v must be connected to
every other node, and we are done. So suppose that no such node exists.

If G has two nodes u and v of different degree, then it contains two other nodes x and y
such that du = dx and dv = dy. But then both x and u are common neighbors of v and y,
contradicting the assumption.

Now if G is regular, then it is strongly regular, and a = b = 1. From (1.8),

d + (m1 −m2)
√

d− 1 = 0.

The square root must be integral, hence d = k2 + 1. But then k | k2 + 1, whence k = 1, d = 2,
and the graph is a triangle, which is not a counterexample. ¤

Exercise 1.1 Prove that every graph with two different eigenvalues is complete.

Exercise 1.2 Construct graphs with three different eigenvalues that are not regular (and hence
not strongly regular).

1.6 Eigenvectors

Relatively little is known about the eigenvectors belonging to various eigenvalues. For a con-
nected graph, the Perron–Frobenius Theorem implies that the eigenvector belonging to the
largest eigenvalue λmax is uniquely determined (up to scaling), and it is all-positive (or all-
negative).

For the other eigenvectors, we prove an important lemma of Van der Holst [62] and Colin de
Verdière [28].

Lemma 1.6.1 Let G be a connected graph, let λ be an eigenvalue of A with multiplicity s, and
let r be the number of eigenvalues larger than λ. Let x be any eigenvector belonging to λ, and
let a, b and c denote the number of connected components of the subgraph spanned by supp+(x),
supp−(x) and supp(x), respectively. Then

(a) c ≤ s;
(b) a + b ≤ r + c;
(c) if x has minimal support among the eigenvectors belonging to λ, then a + b ≤ r + 1.
(d) A has at least a + b eigenvalues ≥ λ.

Proof. Let M = λI − A. Let H1, . . . , Ha and Ha+1, . . . , Ha+b be the connected components
of the subgraph spanned by supp+(x) and supp(x), respectively. Let xi be the restriction of x

onto Hi, extended by 0’s so that it is a vector in RV . Thus x = x1 + · · ·+ xa+b.
For z ∈ Ra+b, let

y =
a+b∑

i=1

zixi. (1.9)
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Then

yTMy =
a+b∑

i,j=1

zizjx
T
i Mxj =

a+b∑

i,j=1

Wijzizj = zTWz,

where Wij = −xT
i Mxj and W is the (a + b) × (a + b) matrix W = (Wij). We can observe the

following properties:
(i) Wij = 0 if there is no edge between Hi and Hj ; in particular, if 1 ≤ i, j ≤ a or a + 1 ≤

i, j ≤ b.
(ii) Wij ≥ 0 for i 6= j. It suffices to verify this when 1 ≤ i ≤ a and a + 1 ≤ j ≤ b. But then

in Wij = xT
i Mxj all non-zero terms are positive.

(iii)
∑

j Wij = xT
i

∑
j Mxj = xT

i Mx = 0.
It follows from (iii) that the quadratic form belonging to W can be written as

zTWz =
a+b∑

i,j=1

Wijzizj = −
∑

i<j

Wij(zi − zj)2,

and so this form is negative semidefinite. Furthermore, zTWz = 0 if and only if zi = zj

whenever there is an edge between the components Hi and Hj ; in other words, z is constant
on the connected components of supp(x). So the dimension of the nullspace of W is exactly c.
If Wz = 0, then for every vector y defined by (1.9) we have Mz = 0, so the dimension of the
nullspace of M is at least c, which proves (a). Furthermore, zTWz < 0 on every vector z in the
range of W , which has dimension a+b−c. So yTMy < 0 on an (a+b−c)-dimensional subspace,
and hence M must have at least a + b− c negative eigenvalues, proving (b).

Suppose that x has minimal support among the eigenvectors belonging to λ. Then no vector
z ∈ Ra+b with Wz = 0 can have a zero coordinate, since then the corresponding y would be an
eigenvector of A belonging to λ with smaller support. Hence the dimension of the nullspace of
W is at most 1. From here (c) follows.

(d) is trivial by (a) and (b), since r + s ≥ r + c ≥ a + b. ¤

Exercise 1.3 Let G = (V,E) be a simple graph, and define

ρ(G) = min
∅⊂S⊂V

eG(S, V \ S)
|S| · |V \ S| .

Let λ2 denote the second smallest eigenvalue of the Laplacian LG of a graph G. Then

λ2 ≤ nρ(G) ≤
√

λ2dmax.



Chapter 2

Convex polytopes

2.1 Polytopes and polyhedra

The convex hull of a finite set of points in Rd is called a (convex) polytope. The intersection of
a finite number of halfspaces in Rd is called a (convex) polyhedron.

Proposition 2.1.1 Every polytope is a polyhedron. A polyhedron is a polytope if and only if it
is bounded.

For every polytope, there is a unique smallest affine subspace that contains it, called its affine
hull. The dimension of a polytope is the dimension of it affine hull. A polytope in Rd that has
dimension d (equivalently, that has an interior point) is called a d-polytope.

A hyperplane H is said to support the polytope if it has a point in common with the polytope
and the polytope is contained in one of the closed halfspaces with boundary H. A face of
a polytope is its intersection with a supporting hyperplane. A face of a polytope that has
dimension one less than the dimension of the polytope is called a facet. A face of dimension 0
(i.e., a single point) is called a vertex.

Proposition 2.1.2 Every face of a polytope is a polytope. Every vertex of a face is a vertex of
the polytope. Every polytope has a finite number of faces.

Proposition 2.1.3 Every polytope is the convex hull of its facets. The set of vertices is the
unique minimal finite set of points whose convex hull is the polytope.

Let P be a d-polytope. Then every facet F of P spans a (unique) supporting hyperplane, and
the hyperplane is the boundary of a uniquely determined halfspace that contains the polytope.
We’ll call this halfspace the halfspace of F .

Proposition 2.1.4 Every polytope is the intersection of the halfspaces of its facets.

2.2 The skeleton of a polytope

The vertices and edges of a polytope P form a simple graph GP , which we call the skeleton of
the polytope.

21
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Proposition 2.2.1 Let P be a polytope in Rd and a ∈ Rd. Let u and v be vertices of P such
that aTu < aTv. Then there is a vertex w of P such that uw is an edge and aTu < aTw.

Another way of formulating this is that if we consider the linear objective function aTx on
a polytope P , then from any vertex we can walk on the skeleton to a vertex that maximizes
the objective function so that the value of the objective function increases at every step. This
important fact is the basis for the Simplex method.

For our purposes, however, the following corollaries of Proposition 2.2.1 will be important:

Corollary 2.2.2 The skeleton of any polytope is a connected graph.

Corollary 2.2.3 Let G be the skeleton of a d-polytope, and let H be a halfspace containing an
interior point of the polytope. Then the subgraph of GP induced by those vertices of P that are
contained in this halfspace is connected.

From Corollary 2.2.3, it is not hard to derive

Theorem 2.2.4 The skeleton of a d-dimensional polytope is d-connected.

2.3 Polar, blocker and antiblocker

Let P be a convex polytope containing the origin as an interior point. Then the polar of P is
defined as

P ∗ = {x ∈ Rd : xTy ≤ 1∀y ∈ P}

Proposition 2.3.1 (a) The polar of a polytope is a polytope. For every polytope P we have
(P ∗)∗ = P .

(b) Let v0, . . . , vm be the vertices of a k-dimensional face F of P . Then

F⊥ = {x ∈ P ∗ : vT
0 x = 1, . . . , vT

mx = 1}

defines a d− k − 1-dimensional face of P ∗. Furthermore, (F⊥)⊥ = F .
In particular, every vertex v of P corresponds to a facet v⊥ of P ∗ and vice versa. The vector

v is a normal vector of the facet v⊥.

There are two constructions similar to polarity that concern polyhedra that do not contain
the origin in their interior; rather, they are contained in the nonnegative orthant.

A polyhedron P in Rd is called ascending, if P ⊆ Rd
+ and whenever x ∈ P, y ∈ Rd and y ≥ x

then y ∈ P .
The blocker of an ascending polyhedron is defined by

Pbl = {x ∈ Rd
+ : xTy ≤ 1∀y ∈ P}.

Proposition 2.3.2 The blocker of an ascending polyhedron is an ascending polyhedron. For
every ascending polyhedron P we have (Pbl)bl = P .
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The correspondence between faces of P and Pbl is a bit more complicated than for polarity,
and we describe the relationship between vertices and facets only. Every vertex v of P gives rise
to a facet v⊥, which corresponds to the halfspace vTx ≥ 1. This construction gives all the facets
of Pbl, except possibly those corresponding to the nonnegativity constraints xi ≥ 0, which may
or may not define facets.

A d-polytope P is called a corner polytope, if P ⊆ Rd
+ and whenever x ∈ P, y ∈ Rd and

0 ≤ y ≤ x then y ∈ P .
The antiblocker of a corner polytope is defined by

Pabl = {x ∈ Rd
+ : xTy ≤ 1∀y ∈ P}.

Proposition 2.3.3 The antiblocker of a corner polytope is a corner polytope. For every corner
polytope P we have (Pabl)abl = P .

The correspondence between faces of P and Pabl is more complicated than for the blocking
polyhedra. The nonnegativity constraints xi ≥ 0 always define facets, and they don’t correspond
to vertices in the antiblocker. All other facets of P correspond to vertices of Pabl. Not every
vertex of P defines a facet in Pabl. The origin is a trivial exceptional vertex, but there may be
further exceptional vertices. We call a vertex v dominated, if there is another vertex w such that
v ≤ w. Now a vertex of P defines a facet of P ∗ if and only if it is not dominated.
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Part II

Representations of Planar Graphs

25





Chapter 3

Planar graphs and polytopes

3.1 Planar graphs

A graph G = (V, E) is planar, if it can be drawn in the plane so that its edges are continuous
curves and they intersect only in their endpoints.

Theorem 3.1.1 (Kuratowski’s Theorem) A graph G is embedable in the plane if and only if
it does not contain a subgraph homeomorphic to the complete graph K5 or the complete bipartite
graph K3,3.

K K
5 3,3

Figure 3.1: The two Kuratowski graphs.

Among planar graphs, 3-connected planar graphs are especially important.
A cycle C in a graph G is called non-separating, it it has no chords, and the removal of its

nodes does not disconnect the graph.

Proposition 3.1.2 Let G be a 3-connected planar graph, and C a cycle in G. Then C is non-
separating if and only if it bounds a face.

Corollary 3.1.3 Every 3-connected planar graph has and essentially unique embedding in the
plane.

The following characterization of 3-connected planar graphs was proved by Tutte [129]:

Theorem 3.1.4 Let G be a 3-connected graph. Then every edge of G is contained in at least
two non-separating cycles. G is planar if and only if ever edge is contained in exactly two
non-separating cycles.

27



28 CHAPTER 3. PLANAR GRAPHS AND POLYTOPES

3.2 Straight line representation and 3-polytopes

Theorem 3.2.1 (Fáry–Wagner Theorem) Every planar graph can be drawn with straight
edges.

Let P be a convex 3-polytope. The vertices and edges of P form a graph GP , which we call
the skeleton of P .

Proposition 3.2.2 The skeleton of every 3-polytope is a 3-connected planar graph.

We describe the simple proof, because this is our first example of how a geometric represen-
tation can be used to derive a purely graph-theoretic property, namely 3-connectivity.
Proof. Let F be any facet of P , and let x be a point that is outside P but very close to F ;
more precisely, assume that the plane Σ of F separates x from P , but for every other facet F ′,
x is on the same side of the plane of F ′ as P . Let us project the skeleton of P from x to the
plane Σ. Then we get an embedding of GP in the plane.

To see that GP is 3-connected, it suffices to show that for any four nodes a, b, c, d there is a
path from a to b which avoids c and d.

If a, b, c, d are not coplanar, then let Π be a plane that separates {a, b} from {c, d}; then we
can connect a and b by a polygon consisting of edges of P that stays on the same side of Π as a
and b, and so avoids c and d.

If a, b, c, d are coplanar, let Π be a plane that contains them. One of the open halfspaces
bounded by Π contains at least one vertex of P . We can then connect a and b by a polygon
consisting of edges of P that stays on this side of Π (except for its endpoints a and b), and so
avoids c and d. ¤

The converse of this last proposition is an important and much more difficult theorem, proved
by Steinitz [123]:

Theorem 3.2.3 (Steinitz’s Theorem) A simple graph is isomorphic to the skeleton of a 3-
polytope if and only if it is 3-connected and planar.

We don’t prove Steinitz’s Theorem here; constructions of representations by polytopes with
special properties will follow from the material in chapters 4, 5.2 and 8 See also [109].

The construction of the planar embedding of GP in the proof of Proposition 3.2.2 gives
an embedding with straight edges. Therefore Steinitz’s Theorem also proves the Fáry–Wagner
theorem, at least for 3-connected graphs. It is easy to see that the general case can be reduced
to this by adding new edges so as to make the graph 3-connected (see exercise 3.1.

Finally, we note that the Steinitz representation is also related to planar duality.

Proposition 3.2.4 Let P be a convex polytope with the origin in its interior, and let P ∗ be its
polar. Then the skeletons GP are GP∗ are dual planar graphs.

Exercise 3.1 Let G be a simple planar graph. Prove that you can add edges to G so that you
make it 3-connected while keeping it planar.



Chapter 4

Rubber bands, cables, bars and
struts

4.1 Rubber band representation

Let G = (V, E) be a connected graph and ∅ 6= S ⊆ V . Fix an integer d ≥ 1 and a map
W : S → Rd. We extend this to a map of all nodes of G into Rd (a geometric representation of
G) as follows.

First, let’s give an informal description. Replace the edges by ideal rubber bands (satisfying
Hooke’s Law). Think of the nodes in S as nailed to their given position (node i ∈ S to Wi ∈ Rd),
but let the other nodes settle in equilibrium. We’ll see that this equilibrium position is uniquely
determined. We call it the rubber band representation of G in Rd extending W .

To be precise, let xi ∈ Rd be the position of node i ∈ V . The energy of this representation is
defined as

E(x) =
∑

ij∈E

|xi − xj |2

We want to find the representation with minimum energy, subject to the boundary conditions:

min{E(x) : xi = Wi for all i ∈ S}.

Lemma 4.1.1 if W 6= ∅, then the function E(x) is strictly convex.

Proof.
¤

It is trivial that if any of the xi tends to infinity, then E(x) tends to infinity. With Lemma 4.1.1
this implies that the representation with minimum energy is uniquely determined. If i ∈ V \ S,
then at the minimum point, the partial derivative of E(x) with respect to any coordinate of x
must be 0. This means that for every i ∈ V \ S,

∑

j∈N(i)

(xi − xj) = 0. (4.1)

29
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This we can rewrite as

xi =
1
di

∑

j∈N(i)

xj . (4.2)

This equation means that every free node is in the center of gravity of its neighbors. Equation
(4.1) also has a nice meaning: the rubber band connecting i and j pulls i with force xj − xi, so
(4.1) states that the forces acting on i sum to 0 (as they should at the equilibrium).

It will be convenient to extend this construction to the case when the edges of G have arbitrary
positive weights. Let wij denote the weight of the edge ij. We then define the energy function
of a representation i 7→ xi by

E(x) =
∑

ij∈E

wij |xi − xj |2.

The simple arguments above remain valid: there is a unique optimum, and for the optimal
representation every i ∈ V \ S satisfies

∑

j∈N(i)

wij(xi − xj) = 0. (4.3)

This we can rewrite as

xi =
1∑

j∈N(i) wij

∑

j∈N(i)

wijxj . (4.4)

Thus xi is no longer in the center of gravity of its neighbors, but it is still a convex combination
of them with positive coefficients. In other words, it is in the relative interior of the convex hull
of its neighbors.

4.1.1 How to draw a graph?

The rubber band method was first analyzed by Tutte [129]. In this classical paper he describes
how to use “rubber bands” to draw a 3-connected planar graph with straight edges and convex
faces.

Let G = (V, E) be a 3-connected planar graph, and let F be any face of it. Let C be the
cycle bounding C. Let us map the nodes of C on the vertices of a convex polygon P in the
plane, in the same cyclic order. Let i 7→ vi be the rubber band representation of G in the plane
with extending this map. We also draw the edges of G as straight line segments connecting the
appropriate endpoints. We call this mapping the rubber band representation of G with outer face
C.

By the above, we know that each node not on C is positioned at the center of gravity of its
neighbors. Tutte’s main result about this embedding is the following:

Theorem 4.1.2 If G is a simple 3-connected planar graph, then its rubber band representation
gives an embedding of G in the plane.

Proof. The key to the proof is the following claim.
Claim 1. Let ` be a line intersecting the polygon P , and let U be the set of nodes of G that are
mapped onto a given side of `. Then U induces a connected subgraph of G.
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Clearly the nodes of C in U form a path P . Let a ∈ S \ V (C), then va is in the center of
gravity of its neighbors, and so it has a neighbor a1 such that va1 is on the same side of ` as a,
but father from `. Similarly, we find a neighbor a2 of a1 such that va2 is on the same side of ` as
va1 , but farther, etc. This way we get a path Q in G that connects a to P , such that V (Q) ⊆ S.
This proves the claim.

Now turning to the proof of theorem 4.1.2, we start with excluding a possible degeneracy.
Call a node degenerate if there is a line such that the node and all its neighbors get positioned
on this line.
Claim 2. No degenerate nodes exist.

Suppose that there are degenerate nodes; then there is a line ` which contains a node and all
its neighbors. Fix this line, and consider the subgraph induced by all such nodes, and let H be a
connected component of this subgraph (H may be a single node). Let S be the set of neighbors
of H (outside H). Then |S| ≥ 3 by 3-connectivity.

Let U1 and U2 be the sets of nodes of G on the two sides of `. We claim that each node a
in S is connected to both U1 and U2. By the definition of S, a is positioned on `, but it has a
neighbor that is not on `, and so it has a neighbor in U1 ∪ U2. If a /∈ V (C), then a is the center
of gravity of its neighbors, and so it cannot happen that it has a neighbor on one side of ` but
not the other. If a ∈ V (C), then its two neighbors along C are on different sides of `.

Now V (H) induces a connected graph by definition, and U1 and U2 induce connected sub-
graphs by Claim 1. So we can contract these sets to single nodes. These three nodes will be
adjacent to all nodes in S. So G can be contracted to K3,3, which is a contradiction since it is
planar. This proves Claim 2.
Claim 3. Let ab be an edge that is not an edge of C, and let F1 and F2 be the two faces incident
with ab. Then all other nodes of F1 are mapped on one side of the line ` through va and vb, and
all other nodes of F2 are mapped on the other side.

Suppose not, then F1 has a node c and F2 has a node d such that vc and vd are both on
(say) the positive side of `, or on ` itself. In the latter case, they have a neighbor on the positive
side of `, by Claim 2. So by Claim 1, there is a path P connecting c and d whose internal nodes
are positioned on the positive side of `. Similarly, there is a path P ′ connecting a and b whose
internal nodes are positioned on the negative side of `. Thus P and P ′ are disjoint. But look
at the planar embedding: the edge ab, together with P ′, forms a Jordan curve that separates b
and d, so P cannot exist.
Claim 4. The boundary of every face F is mapped onto a convex polygon PF .

This is immediate from Claim 3, since the line of an edge never intersects the interior of the
face.
Claim 5. The interiors of the polygons PF (where F is a bounded face) are disjoint.

Let x be a point inside P , we want to show that it is covered by one PF only. Clearly we may
assume that x not on the image of any edge. Draw a line through x that does not go through the
image any node, and see how many times its points are covered by interiors of such polygons. As
we enter P , this number is clearly 1. Claim 2 says that as the line crosses an edge, this number
does not change. So x is covered exactly once.

Now the proof is essentially finished. Suppose that the images of two edges have a common
point. Then two of the faces incident with them would have a common interior point, which is a
contradiction except if these faces are the same, and the two edges are consecutive edges of this
face. ¤

Before going on, let’s analyze this proof a little. The key step, namely Claim 1, is very similar
to a fact that we have seen before, namely Corollary 2.2.3. Let us call a geometric representation
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of a graph section-connected, if for every open halfspace, the subgraph induced by those nodes
that are mapped into this halfspace is connected (or empty). So the skeleton of a polytope,
as a representation of itself, is section-connected; and so is the rubber-band representation of a
planar graph. Note that the proof of Claim 1 did not make use of the planarity of G; in fact,
the same proof gives:

Lemma 4.1.3 Let G be a connected graph, and let w be a geometric representation of an induced
subgraph H of G (in any dimension). If w is section-connected, then its rubber-band extension
to G is also section-connected.

4.1.2 How to lift a graph?

An old construction of Cremona–Maxwell can be used to “lift” Tutte’s rubber band representa-
tion to a Steinitz representation.

Theorem 4.1.4 Let G = (V, E) be a 3-connected planar graph, and let T be a triangular face
of G. Let (vi : i ∈ V ) be a rubber band representation of G obtained by nailing T to any triangle
in the plane. Then there is a function η : V → R such that η(i) = 0 for i ∈ V (T ), η(i) > 0 for
i ∈ V \ V (t), and the mapping

i 7→ ui =
(

vi

η(i)

)

is a Steinitz representation of G.

Before starting with the proof, we need a little preparation to deal with edges on the boundary
triangle. Recall that we can think of

Fij = vi − vj

as the force with which the edge ij pulls its endpoint j. Equilibrium means that for every internal
node j,

∑

i∈N(j)

Fij = 0. (4.5)

This does not hold for the external nodes, since those are nailed. but we can modify the definition
of Fij along the three boundary edges so that (4.5) will hold for all nodes.

(This is natural by physical intuition: let us replace the outer edges by rigid bars, and remove
the nails. The whole structure will remain in equilibrium, so appropriate forces must act in the
edges ab, bc and ac to keep balance. To translate this to mathematics, we have to work a little.)

Let

Fa =
∑

i∈N(a)\{b,c}
(vi − va)

be the total force with which the internal edges pull a, and let Fb and Fc be defined similarly.
If we sum (4.5) over all internal nodes, then edges connecting two internal nodes cancel, and we
get the equation

Fa + Fb + Fc = 0. (4.6)
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To get a second equation, take the vectorial product of (4.5) with vi, and sum over all internal
nodes i. Since

vi × Fij + vj × Fji = (vi − vj)× Fij = (vi − vj)× (vi − vj) = 0,

the internal edges cancel again, and we get

va × Fa + vb × Fb + vc × Fc = 0. (4.7)

(Equation (4.6) expresses, in physical terms, that the total pull of the internal rubber bands
on the outer frame is 0, so it will not accelerate in any direction. Equation (4.7) says that the
total torque is 0, so the frame will not start rotating.)

Draw a line `a parallel to Fa through xa and a line `b parallel to Fb through vb. Since Fa

and Fb point inside the corresponding corners of the triangle T , these two lines intersect inside
the triangle. We may choose this point of intersection as the origin. Then va ‖ Fa and vb ‖ Fb,
and so va × Fa = vb × Fb = 0. Thus (4.7) implies that vc × Fc = 0, and so vc ‖ Fc.

Write Fi = −λivi for i = a, b, c (so that λi > 0). Define

Fij =
λiλj

λa + λb + λc
(vj − vi)

for i, j ∈ {a, b, c}. We claim that with this definition, (4.5) will be satisfied for all nodes. We
only have to check this e.g. for i = a. Then

∑

i∈N(a)

Fia = Fa + Fba + Fca = −λava +
λaλb

λa + λb + λc
(va − vb) +

λaλc

λa + λb + λc
(va − vc)

=
λa

λa + λb + λc

(
−(λa + λb + λc)va + λb(va − vb) + λc(va − vc)

)

= −λava − λbvb − λcvc = Fa + Fb + Fc = 0.

Thus we have (4.5) for all nodes j. Now we are ready to prove theorem 4.1.4.
Proof. Imagine that we have the proper lifting. Let’s call the third coordinate direction
“vertical”. For each face F , let gF be a normal vector. Since no face is parallel to a vertical
line, we can normalize gF so that its third coordinate is 1. Clearly for each face F , gF will be
an outer normal, except for F = T , when gF is an inner normal.

Write gF =
(
hF

1

)
. Let ij be any edge of G, and let F1 and F2 be the two faces incident with

ij. Then both gF1 and gF2 are orthogonal to the edge uiuj of the polytope, and therefore so is
their difference. Since

(gF1 − gF2)
T(ui − uj) =

((
hF1 − hF2

0

))T ((
vi − vj

η(i)− ηj

))
= (hF1 − hF2)

T(vi − vj),

we get

(hF1 − hF2)
T(vi − vj) = 0. (4.8)

We also have

hT = 0,

since the facet T is not lifted.
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Using that not only gF1 − gF2 , but also gF1 is orthogonal to the edge vivj , we get from

gT
F1

(ui − uj) = hT
F1

(vi − vj) + (ηi − ηj)

that

ηi − ηj = −hT
F1

(vi − vj). (4.9)

This discussion allows us to explain the plan of the proof: given the Tutte representation,
we first reconstruct the vectors hi so that all equations (4.8) are satisfied, then using these, we
reconstruct the function η so that equations (4.9) are satisfied. It will not be hard to verify then
that we get a Steinitz representation.

Let R denote the counterclockwise rotation in the plane by 90◦. We claim that we can replace
(4.8) by the stronger equation

hF1 − hF2 = RFij (4.10)

and still have a solution. Starting with hF = 0, and moving from face to adjacent face, this
equation will determine the value of hF for every face. What we have to show is that we don’t
run into contradiction, i.e., if we get to the same face F in two different ways, then we get the
same vector hF . This is equivalent to saying that if we walk around a closed cycle of faces, then
the total change in the vector hF is zero. We can think of this closed cycle as a Jordan curve in
the plane, that does not go through any nodes, and crosses every edge at most once. We want to
show that the sum of RFij over all edges that it crosses is zero (where the order of the endpoints
is determined so that the Jordan curve crosses the edge from right to left).

From (4.5) we have that

∑

i∈N(j)

RFij = 0.

Summing this over all nodes j for which xj lies in the interior of the Jordan curve, the terms
corresponding to edges with both endpoints inside cancel (since Fij + Fji = 0), and we get that
the sum is 0 for the edges crossing the Jordan curve. This proves that we can define the vectors
hF .

Second, we construct numbers ηi satisfying (4.9) by a similar argument. We set ηi = 0 if i is
an external node. Equation (4.9) tells us what the value at one endpoint of an edge must be, if
we have it for the other endpoint.

Again, the main step is to prove that we don’t get a contradiction when coming back to a
value we already defined.

The first concern is that (4.9) gives two conditions for each, depending on which face incident
with it we choose. But if F1 and F2 are two faces incident with the edge ij, then

hT
F1

(vi − vj)− hT
F1

(vi − vj) = (hF1 − hF2)
T(vi − vj) = (RFij)T(vi − vj) = 0,

since Fij is parallel to vi − vj and so RFij is orthogonal to it. Thus the two conditions on the
difference ηi − ηj are the same; in other words,

χij = −hT
F (vi − vj)

depends only on the edge ij.
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Now consider a cycle C in G, and (for reference) orient it counterclockwise. We want to show
that the total change of ηi we prescribed along this cycle is 0. For every face F with boundary
cycle ∂F , we have

∑

ij∈E(∂F )

χij =
∑

ij∈E(∂F )

hT
F (vi − vj) = 0.

Summing this over all faces inside C the contribution of every edge cancels except for the edges
on C. This proves that

∑

ij∈E(C)

χij = 0

as claimed.
Now define ui =

(
vi

ηi

)
for every node i and gF =

(
hF

1

)
for every face F . It remains to prove

that i 7→ ui maps the nodes of G onto the vertices of a convex polytope, so that edges go to
edges and faces go to faces. We start with observing that if F is a face and ij is an edge of F ,
then

gT
F vi − gT

F vj = hT
F (vi − vj) + (ηi − ηj) = 0,

and hence there is a scalar αF so that all nodes of F are mapped onto the hyperplane gT
F x = αF .

We know that the image of F under i 7→ vi is a convex polygon, and so the same follows for the
map i 7→ ui.

To conclude, it suffices to prove that if ij is any edge, then the two convex polygons obtained
as images of faces incident with ij “bend” in the right way; more exactly, let F1 and F2 be the
two faces incident with ij, and let QF1 and QF2 be two two corresponding convex polygons. We
claim that QF2 lies on the same side of the plane gT

F1
x = αF1 as the bottom face. Let x be any

point of the polygon QF2 not on the edge uiuj . We want to show that gT
F1

x < αF1 . Indeed,

gT
F1

x− αF1 = gT
F1

x− gT
F1

ui = gT
F1

(x− ui) = (gF1 − gF2)
T(x− ui)

(since both x and ui lie on the plane gT
F2

x = αF2),

=
(

hF1 − hF2

0

)T

(x− ui) = (hF1 − hF2)
T(x′ − vi)

(where x′ is the projection of x onto the first two coordinates)

= (RFij)T(x′ − vi) < 0

(since x′ lies on the right hand side of the edge vivj). This completes the proof. ¤
Theorem 4.1.4 proves Steinitz’s theorem in the case when the graph has a triangular face.

We are also home if the dual graph has a triangular face; then we can represent the dual graph
as the skeleton of a 3-polytope, choose the origin in the interior of this polytope, and consider
its polar; this will represent the original graph.

So the proof of Steinitz’s theorem is complete, if we prove the following simple fact:

Lemma 4.1.5 Let G be a 3-connected simple planar graph. Then either G or its complement
has a triangular face.
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Proof. If G∗ has no triangular face, then every node in G has degree at least 4, and so

|E(G)| ≥ 2|V (G)|.
If G has no triangular face, then similarly

|E(G∗)| ≥ 2|V (G∗)|.
Adding up these two inequalities and using that |E(G)| = |E(G∗)| and |V (G)| + |V (G∗)| =
|E(G)|+ 2 by Euler’s theorem, we get

2|E(G)| ≥ 2|V (G)|+ 2|V (G∗)| = 2|E(G)|+ 4,

a contradiction. ¤

4.1.3 Rubber bands and connectivity

The idea of rubber bands can be related to graph connectivity, and can be used to give a test
for k-connectivity of a graph.

Let G = (V,E) be a graph and S ⊂ V , a fixed set of its nodes. A convex representation of G
in dimension d (relative to S) is an embedding of V to Rd such that every node in V \S is in the
convex hull of its neighbors. The representation is in general position if any d + 1 representing
points are affine independent. The following fact was proved by Linial, Lovász and Wigderson
[84].

Theorem 4.1.6 A graph G has a convex representation (with respect to S) in general position
in Rd if and only if no node of G can be separated from S by fewer than d + 1 nodes.

4.1.4 Rubber bands and random walks

Hitting times can be expressed by a rubber band structure.

4.2 Rigidity of bar-and-joint structures

Tensegrity frameworks, stresses.

4.2.1 Cauchy’s Theorem

Theorem 4.2.1 (Cauchy’s theorem) No 3-polytope carries a stress.

Lemma 4.2.2 If the edges of a planar map without multiple edges are 2-colored with red and
blue, there is always a node where the red edges (and the blue edges) are consecutive.

Exercise 4.1 Let S be a finite set of points in the plane, not all on a line. Color these points
red and blue. Prove that there is a line which goes through at least two points in S and all
whose points have the same color.

4.2.2 Generic rigidity

4.2.3 Stability
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Representing graphs by touching
domains

5.1 Square tiling representation

Every planar triangulation of a square can be represented by a square tiling of a rectangle
(Schramm [119]). Proof by minimizing the “energy” of a weighting of the nodes of a planar
graph.

Aside: blocking polyhedra, energy.
Remark: every representation by touching homothetical copies of a centrally symmetric con-

vex domain gives a straight line embedding (Figure 5.1).

5.2 Coin representation

We prove Koebe’s important theorem on representing a planar graph by touching circles [77],
and its extension to a polytopal representation, the Cage Theorem. Extensions by Andreev [5]
and Thurston [128] to circles meeting at other angles will be described.

Nice applications of the Cage Theorem: a simple proof of the Planar Separator Theorem by
Miller and Thurston [100], a bound on the eigenvalue gap of planar graphs by Spielman and
Teng [122], and a bound on the cover time of planar graphs by Jonasson and Schramm [73].

5.3 The Cage Theorem

Theorem 5.3.1 Every 3-connected planar graph is isomorphic to the 1-skeleton of a convex
3-polytope such that every edge of the polytope touches a given sphere.

This is equivalent to a simultaneous representation of a 3-connected planar graph and of its
dual by touching circles, so that circles representing an adjacent face-node pair are orthogonal.
To be precise:

Theorem 5.3.2 Let G be a 3-connected planar graph. Then one can assign to each node i a
circle Ci and to each face a circle Dj on the sphere, so that for every edge ij, bordering faces
a and b, the following holds: the circles Ci and Cj are tangent at a point p; the circles Da and

37
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Figure 5.1: Straight line embedding of a planar graph from touching convex figures

Figure 5.2: The coin representation of a planar graph
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Figure 5.3:

Db are tangent at the same point p; and the circles Da and Db intersect the circles Ci and Cb

at this point.

Proof. Proof by Colin de Verdière. We fix a triangle as the outer face. For i ∈ V , let NF (i)
denote the set of faces containing i, and for j ∈ F , let NV (j) denote the set of nodes contained
in j.

First, an auxiliary construction. Consider a Tutte rubber band embedding of the graph, with
the outside triangle fixed to a regular triangle. For i ∈ V and j ∈ NF (i), let aij denote the
angle of the polygon j at the vertex i. These numbers obviously have the following properties:

0 < aij < π, (5.1)

∑

i∈N(j)

aij = 2(dj − 2)π (5.2)

for every bounded face j,
∑

j∈NF (i)

aij = 2π (5.3)

for every node i not on the boundary, and
∑

j∈NF (i)

aij =
π

3
(5.4)

for the three nodes i on the boundary.
Define

φ(x) = 2
∫ x

∞
arctan(et) dt.

Clearly φ is monotone increasing, convex, and

φ(x) = max{0, πx}+ O(1). (5.5)
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Let x ∈ RV , y ∈ RF , and consider

F (x, y) =
∑

i,j: j∈N(i)

(
φ(yj − xi)− aij(yj − xi)

)
.

Claim. If |(x, y)| → ∞ while (say) x1 = 0, then F (x, y) →∞.

We need to fix one of the xi, since if we add the came value to each xi and yj , then the value
of F does not change.

To prove the claim, we use (5.5):

F (x, y) =
∑

i,j: j∈N(i)

(
φ(yj − xi)− aij(yj − xi)

)

=
∑

i,j: j∈N(i)

(
max{0, π(yj − xi)} − aij(yj − xi)

)
+ O(1)

=
∑

i,j: j∈N(i)

(
max{−aij(yj − xi), (π − aij)(yj − xi)}

)
+ O(1).

Since −aij is negative but π − aij is positive, each term here is non-negative, and a given term
tends to infinity if |xi−yj | → ∞. If x1 remains 0 but |(x, y)| → infty, then at least one difference
|xi − yj | must tend to infinity. This proves the Claim.

It follows from this Claim that F has a minimum at some point (x, y). Let i be an internal
node, then

∂

∂xi
F (x, y) = −

∑

j∈NF (i)

φ′(yj − xi) +
∑

j∈NF (i)

aij

= −2
∑

j∈NF (i)

arccos(eyj−xi) + 2π

(using (5.3)), and so

2
∑

j∈NF (i)

arccos(eyj−xi) = 2π. (5.6)

It follows by a similar computation that

2
∑

j∈NF (i)

arccos(eyj−xi) =
π

3
(5.7)

for the three boundary nodes i, and

2
∑

i∈NV (j)

arccos(eyj−xi) = (dj − 2)π(i)

for every bounded face j. We can rewrite this condition as

2
∑

i∈NV (j)

arccos(exi−yj ) = 2π(i), (5.8)

since arccos(exi−yj ) + arccos(eyj−xi) = π/2.
Now for every i ∈ V and j ∈ NF (i), we make two right triangles with sides exi and eyj .

From these triangles for a fixed j, we can make a convex polygon, using (5.8). These convex
polygons will tile a regular triangle, by (5.6) and (5.7). ¤
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Harmonic and analytic functions
on graphs

6.1 Harmonic functions

Let G = (V, E) be a connected graph and S ⊆ V (the orientation is not relevant right now). A
function π : V → R is called a “harmonic function with set of poles S” if

1
dv

∑

u∈N(v)

π(u) = π(v) ∀v /∈ S.

It is trivial that every non-constant harmonic function has at least two poles (its minimum and
maximum). For any two nodes a, b ∈ V there is are harmonic functions with these poles. Such
a harmonic function is uniquely determined up to scaling by a real number and translating by a
constant. There are various natural ways to normalize; we’ll somewhat arbitrarily decide on the
following one:

1
dv

∑

u∈N(v)

(π(u)− πv) =





1, if v = b,

−1, if v = a,

0, otherwise.
(6.1)

and
∑

u

π(u) = 0. (6.2)

We denote this function by πa,b (if we want to express that it depends on a and b); if there is an
edge e with h(e) = b and t(e) = a, then we also denote πa,b by πe. Expression (6.1) is equivalent
to saying that fe = π(h(e))− π(t(e)) is a flow from a to b.

6.1.1 Harmonic functions from random walks, electrical networks, and
rubber bands

Harmonic functions play an important role in the study of random walks: after all, the averaging
in the definition can be interpreted as expectation after one move. They also come up in the
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theory of electrical networks, and also in statics. This provides a connection between these fields,
which can be exploited. In particular, various methods and results from the theory of electricity
and statics, often motivated by physics, can be applied to provide results about random walks.

We start with describing three constructions of harmonic functions, one in each field men-
tioned.

Example 6.1.1 Let π(v) denote the probability that a random walk starting at node v hits s
before it hits t. Clearly, π is a harmonic function with poles s and t. We have π(s) = 1 and
π(t) = 0.

More generally, if we have a set S ⊆ V and a function π0 : S → R, then we define π(v) for
v ∈ V \S as the expectation of π0(s), where s is the (random) node where a random walk starting
at v first hits S. Then π(v) is a harmonic function with pole set S. Moreover, π(s) = π0(s) for
all s ∈ S.

Example 6.1.2 Consider the graph G as an electrical network, where each edge represents a
unit resistance. Assume that an electric current is flowing through G, entering at s and leaving
at t. Let π(v) be the voltage of node v. Then π is a harmonic function with poles s and t.

Example 6.1.3 Consider the edges of the graph G as ideal springs with unit Hooke constant
(i.e., it takes h units of force to stretch them to length h). Let us nail down nodes s and t to
points 1 and 0 on the real line, and let the graph find its equilibrium. The energy is a positive
definite quadratic form of the positions of the nodes, and so there is a unique minimizing position,
which is the equilibrium. Clearly all nodes will lie on the segment between 0 and 1, and the
positions of the nodes define a harmonic function with poles s and t.

More generally, if we have a set S ⊆ V and we fix the positions of the nodes in S (in any
dimension), and let the remaining nodes find their equilibrium, then every coordinate function
is harmonic with pole set S.

A consequence of the uniqueness property is that the harmonic functions constructed (for
the case |S| = 2) in examples 6.1.1, 6.1.2 and 6.1.3 are the same. As an application of this idea,
we show the following interesting connections (see Nash-Williams [104], Chandra at al. [21]).
Considering the graph G as an electrical network, let Rst denote the effective resistance between
nodes s and t. Considering the graph G as a spring structure in equilibrium, with two nodes s
and t nailed down at 1 and 0, let Fab denote the force pulling the nails. Doing a random walk on
the graph, let κ(a, b) denote the commute time between nodes a and b (i.e., the expected time
it takes to start at a, walk until you first hit b, and then walk until you first hit a again).

Theorem 6.1.4

πab(b)− πab(a) = Rab =
1

Fab = κab

2m

.

Proof. By example 6.1.2, πab(v) is the voltage of v if we push a unit current through G from
a to b (conditions 6.2 is irrelevant here). So the effective resistance is Rab = πab(b)− πab(a).

The second equality is similarly easily derived from Hooke’s Law.
Finally, Example 6.1.1 says that for an appropriate A and B, Aπab(u) + B is the probability

that a random walk starting at u visits a before b. Checking this for u = s and u = t, we get that
A = 1/(πab(b)−πab(a)) and B = −πab(u)/(πab(b)−πab(a)). Hence p0 = 1

da

∑
u∈Γ(a)(A(πab(u)−

πab(a)) is the probability that a random walk starting at a hits b before returning to t.



6.1. HARMONIC FUNCTIONS 43

Let T be the first time when a random walk starting at a returns to a and S, the first
time when it returns to a after visiting b. We know that E(T ) = 2m/da and by definition,
E(S) = κ(a, b). Clearly T ≤ S and the probability of T = S is exactly p0. This implies that
E(S − T ) = (1 − p0)E(S), since if T < S, then after the first T steps, we have to walk from a
until we reach b and then return to b. Hence

p0 =
E(T )
E(S)

=
2m

daκ(a, d)
.

¤

Using the “topological formulas” from the theory of electrical networks for the resistance, we
get a further characterization of these quantities:

Corollary 6.1.5 Let G′ denote the graph obtained from G by identifying a and b, and let T (G)
denote the number of spanning trees of G. Then

Rab =
T (G)
T (G′)

.

6.1.2 Harmonic and equitable flows

Let π be a function on a graph G = (V,E), with pole set S. Let uv be any edge, and suppose
that π(u) ≥ π(v). Orient the edge from u to v, and send a flow of

fuv = π(u)− π(v) (6.3)

from u to v. Then

Proposition 6.1.6 The function f satisfies the flow condition at a node i if and only if π is
harmonic at i.

Indeed, if π is harmonic at i, then

∑

j

f(ij) =
∑

j

(π(j)− π(i)) =
∑

j

π(j)− diπ(i) = 0;

the same computation also gives the converse.
Not every flow can be obtained from a harmonic function: for example, a non-zero circulation

(a flow without sources and sinks) would correspond to a non-constant harmonic function with
no poles, which cannot exist. In fact, the the flow obtained by (6.3) is rotation-free for every
cycle C,

∑

ij

f(ij) = 0,

where the summation extends over all edges of C, oriented in the same direction around C.
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6.1.3 Computing harmonic functions

Let χa denote the function which is 1 on a and 0 everywhere else. In terms of the Laplacian L
of the graph, the equations (6.1) can be written as

L = χb − χa.

The matrix L is not quite invertible, but it has a one-dimensional nullspace spanned by the
vector 1 = (1, . . . , 1)T, and so it determines π up to adding the same scalar to every entry. We
assumed in (6.2) that 1Tπ = 0. If J ∈ RV×V denotes the all-1 matrix, then

(L + J)π = Lπ = χb − χa,

and so we can express π as

π = (L + J)−1(χb − χa). (6.4)

6.2 Analytic functions

6.2.1 Circulations and homology

Let S be a closed compact surface, and consider a map on S, i.e., a graph G = (V,E) embedded
in S so that each face is a disc. We can describe the map as a triple G = (V, E,F), where V is the
set of nodes, E is the set of edges, and F is the set of faces of G. We fix a reference orientation
of G; then each edge e ∈ E has a tail t(e) ∈ V , a head h(e) ∈ V , a right shore r(e) ∈ F , and a
left shore l(e) ∈ F .

The embedding of G defines a dual map G∗. Combinatorially, we can think of G∗ as the
triple (F , E, V ), where the meaning of “node” and “face”, “head” and “right shore”, and “tail”
and “left shore” is interchanged.

Let G be a finite graph with a reference orientation. For each node v, let δv ∈ RE denote
the coboundary of v:

(δv)e =





1, if h(e) = v,

−1, if t(e) = v,

0, otherwise.

Thus |δv|2 = dv is the degree of v.
For every face F ∈ F , we denote by ∂F ∈ RE the boundary of F :

(∂F )e =





1, if r(e) = F,

−1, if l(e) = F,

0, otherwise.

Then dF = |∂F |2 is the length of the cycle bounding F .
A vector φ ∈ RE is a circulation if

φ · δv =
∑

e: h(e)=v

φ(e)−
∑

e: t(e)=v

φ(e) = 0.

Each vector ∂F is a circulation; circulations that are linear combinations of vectors ∂F
are called null-homologous. Two circulations φ and φ′ are called homologous if φ − φ′ is null-
homologous.
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Figure 6.1: The Brooks–Smith–Stone–Tutte construction

Let φ be a circulation on G. We say that φ is smooth if for every face F ∈ F , we have

φ · ∂F = 0.

This is equivalent to saying that φ is a circulation on the dual map G∗.
Smooth circulations can be considered as discrete analytic functions or more correctly discrete

holomorphic 1-forms. These functions were introduced for the case of the square grid a long time
ago [45, 32]. For the case of a general planar graph, the notion is implicit in [19]. For a detailed
treatment see [99].

To explain the connection, let φ be a smooth circulation on a graph G embedded in a surface.
Consider a planar piece of the surface. Then on the set F ′ of faces contained in this planar piece,
we have a function σ : F ′ → R such that ∂σ = φ, i.e., φ(e) = σ(r(e)) − σ(l(e)) for every edge
e. Similarly, we have a function π : V ′ → R (where V ′ is the set of nodes in this planar piece),
such that δπ = φ, i.e., φ(e) = π(t(e)) − π(h(e)) for every edge e. We can think of π and σ as
the real and imaginary parts of a (discrete) analytic function. The relation δπ = ρφ is then a
discrete analogue of the Cauchy–Riemann equations.

Thus we have the two orthogonal linear subspaces: A ⊆ RE generated by the vectors δv
(v ∈ V ) and B ⊆ RE generated by the vectors ∂F (F ∈ F). Vectors in B are 0-homologous
circulations. The orthogonal complement A⊥ is the space of all circulations, and B⊥ is the
space of circulations on the dual graph. The intersection C = A⊥ ∩ B⊥ is the space of smooth
circulations. So RE = A⊕ B ⊕ C. From this picture we conclude the following.

Lemma 6.2.1 Every circulation is homologous to a unique smooth circulation.

It also follows that C is isomorphic to the first homology group of S (over the reals), and
hence we get the following:

Theorem 6.2.2 The dimension of the space C of smooth circulations is 2g.

6.2.2 Analytic functions from harmonic functions

We can use harmonic functions to give a more explicit description of smooth circulations in a
special case. For any edge e of G, let ηe be the projection of χe onto C.
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Lemma 6.2.3 Let a, b ∈ E be two edges of G. Then (ηa)b is given by

(πb)h(a) − (πb)t(a) + (π∗b )r(a) − (π∗b )l(a) + 1,

if a = b, and by

(πb)h(a) − (πb)t(a) + (π∗b )r(a) − (π∗b )l(a),

if a 6= b.

Proof. Let x1, x2 and x3 be the projections of χb on the linear subspaces A, B and C,
respectively. The vector x1 can be expressed as a linear combination of the vectors δv (v ∈ V ),
which means that there is a vector y ∈ RV so that x1 = My. Similarly, we can write x2 = Nz.
Together with x = x3, these vectors satisfy the following system of linear equations:





x + My + Nz = χb

MTx = 0
NTx = 0

(6.5)

Multiplying the first m equations by the matrix MT, and using the second equation and the fact
that MTN = 0, we get

MTMy = MTχb, (6.6)

and similarly,

NTNz = NTχb. (6.7)

Here MTM is the Laplacian of G and NTN is the Laplacian of G∗, and so (6.6) implies that
y = πb + c1 for some scalar c. Similarly, z = π∗b + c∗1 for some scalar c′. Thus

x = χb −MT(πb + c1)−NT(π∗b + c∗1)
= χb −MTπb −NTπ∗b ,

which is just the formula in the lemma, written in matrix form. ¤
The case a = b of the previous formula has the following formulation:

Corollary 6.2.4 For an edge a of a map G, let Ra denote the effective resistance between the
endpoints of a, and let R∗a denote the effective resistance of the dual map between the endpoints
of the edge dual to a. Then

(ηa)a = 1−Ra −R∗a.

6.2.3 Nondegeneracy properties of smooth circulations

We state and prove two key properties of smooth circulations: one, that the projection of a basis
vector to the space of smooth circulations is non-zero, and two, that smooth circulations are
spread out essentially over the whole graph in the sense that every connected piece of the graph
where a non-zero smooth circulation vanishes can be isolated from the rest by a small number
of points.

We start with a simple lemma about maps. For every face F , let aF denote the number of
times the orientation changes if we move along the the boundary of F . For every node v, let bv

denote the number of times the orientation changes in their cyclic order as they emanate from
v.
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Lemma 6.2.5 Let G = (V, E,F) be any digraph embedded on an orientable surface S of genus
g. Then

∑

F∈F
(aF − 2) +

∑

v∈V

(bv − 2) = 4g − 4.

Proof. Clearly
∑

F

aF =
∑

v

(dv − bv),

and so, using Euler’s formula,
∑

F

aF +
∑

v

bv =
∑

v

dv = 2m = 2n + 2f + 4g − 4.

Rearranging and dividing by 2, we get the equality in the lemma. ¤
If G is planar, then Ra + R∗a = 1, a well known fact. For any other underlying surface, we

have

(ηa)a = ηa · χa = |etaa|2

(since ηa is a projection of χa), and so it follows that Ra +R∗a ≤ 1. It follows from theorem 6.2.6
below that strict inequality holds here.

If g = 0, then there is no nonzero smooth circulation by Theorem 6.2.2, and hence ηe = 0 for
every edge e. But for g > 0 we have:

Theorem 6.2.6 If g > 0, then ηe 6= 0 for every edge e.

Proof. Suppose that ηe = 0 for some edge e. Then by Lemma 6.2.3, there are vectors
π = π(e) ∈ RV and π∗ = π∗(e) ∈ RF such that

πh(a) − πt(a) = π∗r(a) − π∗l(a) (6.8)

for every edge a 6= e, but

πh(e) − πt(e) = 1 + π∗r(e) − π∗l(a). (6.9)

We define a convenient orientation of G. Let E(G) = E1 ∪ E2, where E1 consists of edges a
with φ(h(a)) 6 φ(t(a)), and E2 is the rest. Every edge a ∈ E1 is oriented so that πh(a) > πt(a).
Consider any connected component C of the subgraph formed by edges in E2. Let u1, . . . , uk be
the nodes of C that are incident with edges in E1. Add a new node v to C and connect it to
u1, . . . , uk to get a graph C ′. Clearly C ′ is 2-connected, so it has an acyclic orientation such that
every node is contained in a path from v to u1. The corresponding orientation of C is acyclic
and every has the property that it has no source or sink other than possibly u1, . . . , uk.

Carrying this out for every connected component of G′, we get an orientation of G. We claim
this orientation is acyclic. Indeed, if we had a directed cycle, then walking around it π would
never decrease, so it would have to stay constant. But then all edges of the cycle would belong
to E2, contradicting the way these edges were oriented.

We also claim this orientation has only one source and one sink. Indeed, if a node v 6=
h(e), t(e) is incident with an edge of E1, then it has at least one edge of E1 entering it and at
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least one leaving it, by (6.1). If v is not incident with any edge of E1, then it is an internal node
of a component C, and so it is not a source or sink by the construction of the orientation of C.

Take the union of G and the dual graph G∗. This gives a graph H embedded in S. Clearly
H inherits an orientation from G and from the corresponding orientation of G∗.

We are going to apply Lemma 6.2.5. Every face of H will aF = 2 (this just follows from the
way how the orientation of G∗ was defined). Those nodes of H which arise as the intersection
of an edge of G with an edge of G∗ will have bv = 2.

Consider a node v of G. If v = h(a) then clearly all edges are directed toward v, so bh(a) = 0.
Similarly, we have bt(v) = 0. We claim that bv = 2 for every other node. Since obviously v is not
a source or a sink, we have bv ≥ 2. Suppose that bv > 2. Then we have for edges e1, e2, e3, e4

incident with v in this cyclic order, so that e1 and e2 form a corner of a face F , e3 and e4 form
a corner of a face F ′, h(e1) = h(e3) = v and t(e2) = t(e3) = v.

Consider π∗ of the faces incident with v. We may assume that π∗(F ) ≤ π∗(F ′). From the
orientation of the edges e1 and e2 it follows that π∗(F ) is larger than π∗ of its neighbors. Let F
be the union of all faces F ′′ with π∗(F ′′) ≥ π∗(F ). The boundary of F is an eulerian subgraph,
and so it can be decomposed into edge-disjoint cycles D1, . . . , Dt. Since the boundary goes
through v twice (once along e1 and e2, once along two other edges with the corner of F ′ on the
left hand side), we have t ≥ 2, and so one of these cycles, say D1, does not contain e. But then
by the definition of the orientation and by (6.8), D1 is a directed cycle, which is a contradiction.

A similar argument shows that if v is a node corresponding to a face not incident with e,
then bv = 0; while if v comes from r(e) or from l(e), then bv = 2.

So substituting in Lemma 6.2.5, only two terms on the left hand side will be non-zero, yielding
−4 = 4g − 4, or g = 0. ¤

Corollary 6.2.7 If g > 0, then for every edge e, (ηe)e ≥ n−nf−f .

Indeed, combining with the remark after Corollary 6.2.4, we see that (ηe)e > 0 if g > 0. But
(ηe)e = 1−Re−R∗e is a rational number, and it is easy to see that its denominator is not larger
than nnff .

Theorem 6.2.8 Let G be a graph embedded in an orientable surface S of genus g > 0 so that
all faces are discs. Let φ be a non-zero smooth circulation on G and let G′ be the subgraph of
G on which φ does not vanish. Suppose that φ vanishes on all edges incident with a connected
subgraph U of G. Then U can be separated from G′ by at most 4g − 3 points.

The assumption that the connectivity between U and the rest of the graph must be linear in g
is sharp in the following sense. Suppose X is a connected induced subgraph of G separated from
the rest of G by ≤ 2g nodes, and suppose (for simplicity) that X is embedded in a subset of S
that is topologically a disc. Contract X to a single point x, and erase the resulting multiplicities
of edges. We get a graph G′ still embedded in S so that each face is a disc. Thus this graph
has a (2g)-dimensional space of circulations, and hence there is a non-zero smooth circulation ψ
vanishing on 2g − 1 of the edges incident with x. Since this is a circulation, it must vanish on
all the edges incident with x. Uncontracting X, and extending ψ with 0-s to the edges of X, it
is not hard to check that we get a smooth circulation.
Proof. Let W be the connected component of G \ V (G′) containing U , and let Y denote the
set of nodes in V (G) \ V (W ) adjacent to W .

Consider an edge e with φ(e) = 0. If e is not a loop, then we can contract e and get a map
on the same surface with a smooth flow on it. If G − e is still a map, i.e., every face is a disc,
then φ is a smooth flow on it. If G− e is not a map, then both sides of e must be the same face.
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So we can eliminate edges with φ(e) = 0 unless h(e) = t(e) and r(e) = l(e) (we call these edges
strange loops). In this latter case, we can change φ(e) to any non-zero value and still have a
smooth flow.

Applying this reduction procedure, we may assume that W = {w} consists of a single node,
and the only edges with φ = 0 are the edges between w and Y , or between two nodes of Y . We
cannot try to contract edges between nodes in Y (we don’t want to reduce the size of Y ), but
we can try to delete them; if this does not work, then every such edge must have r(e) = l(e).

Also, if more than one edge remains between w and a node y ∈ Y , then each of them has
r(e) = l(e) (else, one of them could be deleted). Note that we may have some strange loops
attached at w. Let D be the number of edges between w and Y .

Re-orient each edge with φ 6= 0 in the direction of the flow φ, and orient the edges between
w and Y alternatingly in an out from w. Orient the edges with φ = 0 between two nodes of Y
arbitrarily. We get a digraph G1.

It is easy to check that G1 has no sources or sinks, so bv ≥ 2 for every node v, and of course
bw ≥ |Y |− 1. Furthermore, every face either has an edge with φ > 0 on its boundary, or an edge
with r(e) = l(e). If a face has at least one edge with φ > 0, then it cannot be bounded by a
directed cycle, since φ would add up to a positive number on its boundary. If a face boundary
goes through an edge with r(e) = l(e), then it goes through it twice in different directions, so
again it is not directed. So we have aF ≥ 2 for every face.

Substituting in Lemma 6.2.5, we get that |Y | − 1 ≤ 4g − 4, or |Y | ≤ dw ≤ 4g − 3. Since Y
separates U from G′, this proves the theorem. ¤
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Part III

Representations in Higher
Dimensions

51





Chapter 7

Orthogonal representations

We want to label the nodes of a graph by vectors in Rd so that nonadjacent nodes must be
labeled by orthogonal vectors. Various parameters of such labelings are related to interesting
graph properties.

7.1 Smallest cone and the theta function

The smallest angle of a rotational cone (in arbitrary dimension) which contains all vectors in an
orthogonal representation of the graph gives rise to the theta-function of the graph [87]. Unlike
the smallest dimension, this quantity is polynomial time computable and is closely related to
the independence number and the chromatic number.

See [54, 76] for more detail.

7.2 Minimum dimension and connectivity

The minimum dimension in which such a labeling exists seems difficult to determine, but we
get interesting results if we impose some “non-degeneracy” conditions. A result of Lovász, Saks,
Schrijver [90] (see [4] for an application in quantum computing) finds an exact condition for this
type of geometric representability.

Theorem 7.2.1 A graph G with n nodes has a general position orthogonal representation in Rd

if and only if it is (at least) n− d-connected.

If we replace the condition that any d vectors are linearly independent by a weaker condition
called the Strong Arnold Property, the smallest d will be closely related to the tree-width of the
graph (Colin de Verdiére [27]; see next section).

7.3 Treewidth and monotone connectivity

Tree-width is a parameter related to connectivity, introduced by Robertson and Seymour [110]
as an important element in their graph minor theory. Colin de Verdière defines the tree-width
tw(G) of a graph G as the smallest r for which G embeds to the cartesian sum of the complete
graph Kr and a tree. (This is not quite the same as the more standard notion of tree-width

53



54 CHAPTER 7. ORTHOGONAL REPRESENTATIONS

introduced by Robertson and Seymour, but the difference is at most 1, as shown by van der
Holst [63]).

A related parameter is the monotone connectivity κmon(G) of a graph G, defined as the
maximum node-connectivity of minors of G. It is easy to see that

κmon(G) ≤ tw(G).

Let d be the smallest dimension in which an orthogonal representation with the Strong Arnold
Property exists, and define a(G) = n− d. The main advantage of this nondegeneracy condition
is that it implies that a(G) is minor-monotone, i.e., if G is a minor of G, then a(H) ≤ a(G).

Colin de Verdière showed that a(G) is a lower bound on the tree-width of the graph. Com-
bining with Theorem 7.2.1 and the minor-monotonicity of a(G) we can also bound a(G) from
below. These bounds are summed up in the following theorem.

Theorem 7.3.1 For every graph,

κmon ≤ a(G) ≤ tw(G).

Colin de Verdière conjectured that equality holds in the upper bound. This was proved by
Van der Holst [63] and Kotlov [78] for a(G) ≤ 2, but in general it is false: it is not hard to see
that the k-cube has a(G) = O(2k/2) but tw(G) = Θ(2k). It is not known whether tw(G) can be
larger than a(G)2.



Chapter 8

The Colin de Verdière Number

This exciting graph parameter µ(G) can be defined (informally) as the multiplicity of the second
largest eigenvalue of the adjacency matrix, where we can weight the edges and the diagonal
entries to maximize this multiplicity [25], and we impose a non-degeneracy condition (for a
survey, see [69]).

8.1 The definition

8.1.1 The Strong Arnold Property

Let RV [2]
denote the space of all symmetric V × V matrices. Let Rk ⊆ RV [2]

be the manifold of
symmetric V × V matrices with rank k (Figure 8.1).

Lemma 8.1.1 Let M ∈ Rk, and let S denote the matrix of the orthogonal projection onto the
nullspace of M . Let T (M) and denote N (M) denote the tangent space and normal space of Rk

at M , respectively.

(a) For every symmetric V × V matrix Y , the following are equivalent:

(a1) Y ∈ T (M);

(a2) SY S = 0;

rk( ) rk( )A M=

0ijA ij E= ∀ ∉

M

Figure 8.1: The Strong Arnold Hypothesis
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(a3) there exists a (not necessarily symmetric) V ×V matrix U such that Y = MU +UTM .

(b) For every symmetric V × V matrix X, the following are equivalent:

(b1) X ∈ N (M);

(b2) MX = 0;

(b3) X = SXS;

(b4) there exists a symmetric V × V matrix W such that X = SWS.

Proof. ((a1) ⇒ (a2)). Let Y ∈ T (M). Then there is a one-parameter differentiable family
M(t) of symmetric matrices, defined in a neighborhood of t = 0, so that M(t) ∈ Rk, M(0) = M
and M ′(0) = Y . Let S(t) denote the matrix of the orthogonal projection onto the nullspace of
M(t), so that S(0) = S.

By definition, we have M(t)S(t) = 0, and hence by differentiation, we get M ′(0)S(0) +
M(0)S′(0) = 0, or Y S + MS′(0) = 0. Multiplying by S from the left, we get SY S = 0. So

((a2) ⇒ (a3)). Using that SY S = 0, we can write

Y =
1
2
((I − S)Y (I + S) + (I + S)Y (I − S)).

Notice that I − S is the orthogonal projection onto the range of M , and hence we can write
I − S = MV with some matrix V . By transposition, we have I − S = V TM . Then

Y =
1
2
MV Y (I + S) +

1
2
(I + S)Y V TM = MU + UTM,

where U = 1
2V Y (I + S).

((a3) ⇒ (a1)). Suppose that Y = MU + UTM . Consider the family

M(t) = (I + tU)TM(I + tU).

Clearly rank(M(t)) ≤ rank(M) ≤ k and equality holds if |t| is small enough. Furthermore,
M ′(0) = MU + UTM = Y . Hence Y ∈ T (M).

II. ((b1) ⇒ (b2)). If X ∈ N (M), then X · Y = 0 for every Y ∈
TT (M), which by (a3) means that X · (MU + UTM) = 0 for every U . This can be written as
Tr(X(MU + UTM)) = 0. But Tr(X(MU + UTM)) = Tr(XMU) + Tr(XUTM) = Tr(XMU) +
Tr(MUX) = 2Tr(XMU), and so it follows that Tr(XMU) = 0 for every matrix U . This implies
that XM = 0.

((b2) ⇒ (b3)). If MX = 0, then by transposition XM = 0, and so the range of X is
contained in the kernel of M , which is just the range of the projection S. So XS = X, and by
transposition, SX = X, and so SXS = SX = X.

((b3) ⇒ (b4)) is trivial.

((b4) ⇒ (b1)). Suppose that X = SWS, then by (a2), we have for every Y ∈ T (M) we have
Y ·X = Tr(Y SWS) = Tr(SY SW ) = 0. ¤

8.2 Basic properties

Theorem 8.2.1 The Colin de Verdière number is minor-monotone.
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Figure 8.2: Two possibilities for the nullspace representation of a connected graph: for every
hyperplane through the origin, either both sides are connected, or...

Theorem 8.2.2 If µ(G) > 2, then µ(G) is invariant under subdivision.

The following result was proved by Bacher and Colin de Verdière [7].

Theorem 8.2.3 If µ(G) > 3, then µ(G) is invariant under ∆− Y transformation.

8.3 Small values

Graphs with Colin de Verdière number up to 4 are characterized.

Theorem 8.3.1 (a) µ(G) ≤ 1 if and only if G is a path;

(b) µ(G) ≤ 2 if and only if G is outerplanar;

(c) µ(G) ≤ 3 if and only if G is planar;

(d) µ(G) ≤ 4 if and only if G is linklessly embedable.

Statements (a)–(c) were proved by Colin de Verdière [25]; an elementary proof is due to Hein
van der Holst [62]); (d) is due to Lovász and Schrijver [91].

8.4 Nullspace representation

Every weighted adjacency matrix with a d-dimensional nullspace gives rise to an embedding of
the graph in d-space. Van der Holst’s Lemma has a nice geometric meaning in this context
(Figure 8.2).

From the Colin de Verdière matrix (the optimal matrix in the definition of µ(G)), we get a
representation of the graph in µ(G)-space.

For 3-connected planar graphs, the nullspace representation gives a Steinitz representation
[92, 89]; in fact, Steinitz representations naturally correspond to Colin de Verdiére matrices.
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8.5 Gram representation

Every Colin de Verdiére matrix of a graph gives rise to another geometric representation of the
graph, this time in the (n − µ(G) − 1)-dimensional space [79]. This is related to the Koebe–
Andre’ev representation if the complement of the graph is a maximal planar graph.

8.6 The Van der Holst–Laurent–Schrijver parameter

Van der Holst’s lemma motivates this related graph parameter, which is again related to planarity
and other geometric representations [64].



Chapter 9

Graph independence to linear
independence

9.1 Independence-critical graphs

As a useful tool in the study of graphs critical with respect to stability number, Lovász [86]
considered vector representations with the property that every set of nodes that covers all the
edges, spans the space. We call this cover-preserving. One can dualize this notion (see section
12), to get the following condition on vector representations: every stable (independent) set of
nodes is represented by linearly independent vectors. Obviously, every orthogonal representation
has this property.

In this case, the dimension problem is trivial: such a representation exists in dimension α(G)
(the maximum number of independent nodes) and higher. But independence-preserving repre-
sentations become interesting in conjunction with criticality: namely, assuming that deleting any
edge, the representation does not remain independence-preserving. We refer to [86] for details.
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Chapter 10

Metric embeddings

10.1 Embeddings of metric spaces

Besides prescribing edge-lengths, geometric representations of graphs with special requirements
like (approximately) distance-preserving [83] and volume-preserving [44] embeddings have been
studied. These are closely related to classical results of Johnson–Lindenstrauss [71] and Bourgain
[13] on embedding finite metric spaces. See also the monograph [31].

10.2 Multicommodity flows and bandwidth

A fundamental result in the theory of multicommodity flows is the theorem of Leighton and Rao
[82]. Stated informally (and in a larger generality, as proved by Linial, London and Rabinovich
[83]), it says the following. Suppose that we have a multicommodity flow problem on a graph
on n nodes. Obvious cut-conditions provide a system of necessary conditions for the problem to
be feasible; but (unlike for the case of a single commodity), these conditions are not sufficient in
general. The theorem asserts that if the cut-conditions are satisfied, then relaxing the capacities
by a factor of O(log n), the problem becomes feasible.

The proof of Linial, London and Rabinovich depends on “distance-preserving” embeddings
of graphs. Given a graph, we would like to embed it in a euclidean space so that the distances
between nodes in the graph should be the same, or at least close to, the geometric distance of
the representing vectors. It is not hard to see that one will necessarily have some distortion
in non-trivial cases. For example, the “claw” K1,3 cannot be embedded without distortion. So
we are interested in two parameters: the dimension and the distortion. Often, the dimension
problem is easy to handle, due to a fundamental lemma of Johnson and Lindenstrauss [71], which
asserts that every n-point configuration in Rn can be embedded in Rd with d = O(log n) with
arbitrarily small distortion.

This topic is closely related to the area of embedding metric spaces in each other, and we can
only refer to the book of Deza and Laurent [31] for the combinatorial aspects of such embedding
problems. However, we mention one line of development because of its rich graph-theoretic
applications.

Bourgain [13] proved that every metric space with n elements can be embedded in an O(log n)-
dimensional euclidean space with O(log n) distortion; more precisely, he constructs an embedding
in which the geometric distance is at most the original, and at least 1/ log n times the original.
Matoušek [98] showed that for an expander graph this is best possible.

61



62 CHAPTER 10. METRIC EMBEDDINGS

Linial, London and Rabinovitch [83] extended Bourgain’s work in various directions. For our
survey, the most important application they give is a proof and quite substantial extension of a
fundamental result of Leighton and Rao [82] in the theory of multicommodity flows.

A very interesting new application of this construction was given by Feige [44]. In an algo-
rithm that finds a polylogarithmic approximation of the bandwidth of a graph in polynomial
time, he uses geometric representations of graphs in Rd, with the following properties:

(a) the representation is contractive, i.e., the distance between the endpoints of any edge is
at most 1;

(b) the representation is volume respecting, meaning that every “small” set of nodes spans a
simplex with almost as large volume as possible.

Obviously, (b) needs explanation. Consider any set S of k nodes. Let T be a shortest
spanning tree on S (with respect to the graph distance d(., .); T is not a subgraph of G). It is
easy to see from (a) that the volume of the simplex spanned by S is at most

TREEVOL(S) =
1
k!

∏

uv∈E(T )

d(u, v).

Formulating the result for one reasonable choice of parameters, Feige constructs a contractive
geometric representation in dimension d = O((log n)3), such that for each set S of at most log n
nodes, the volume of the simplex spanned by S is at least TREEVOL(S)/(log n)2|S|.

The ordering of the nodes which approximates the bandwidth is now obtained through a ran-
dom projection of the representation to the line, in a fashion similar to the Goemans–Williamson
algorithm above.



Part IV

General issues
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Chapter 11

Semidefinite optimization

Semidefinite relaxations of various combinatorial optimization problems lead to interesting and
useful geometric representations (Goemans and Williamson [51]).
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Chapter 12

Is there a theory of geometric
representations

Is there a way to fit these geometric representations in a single theory? Perhaps not, considering
the variety of possibilities how the graph structure can be reflected in the geometry. Nevertheless,
there are some general ideas that can be pointed out.

12.1 Graph structure and geometry

Let us start with a summary of graph representations connecting the graph structure to geometry.
Perhaps the most natural idea is the original definition of dimension by Erdős, Harary and

Tutte [40]: require that all edges have the same length, say 1. It seems that, at the same time,
this notion is rather difficult, and very simple questions like Hadwiger’s problem on the chromatic
number of unit distance graphs in the plane remain unsolved. We seem to get a closer connection
with the graph structure if we require that the edges correspond to the minimum or maximum
distance. At least questions about the density and chromatic number of graphs representable
this way have more complete answers, as we have seen.

Minimum-distance representations are, of course, equivalent to representing a graph by touch-
ing circles (or balls) of the same size, and so they are also connected to Koebe’s touching disk
representation. In fact, the Cage Theorem can be formulated as 3-dimensional minimum distance
representability in a certain projective metric.

Considering other metrics brings quite a few other representations into this framework. Or-
thogonal representations can be viewed as maximum distance representations in elliptic spaces:
if instead of the vectors, we consider the lines of these vectors, then the maximum angular dis-
tance between two lines is 90 degrees. Orthogonal representations have been very useful in the
study of independent sets and cliques, chromatic number (section 7.1), Shannon capacity [86],
connectivity and treewidth (section 7.2).

Putting restrictions on inner products instead of distances of adjacent pairs leads to quite
similar questions, which can often be reduced to each other.

A third, natural but not too well understood version is to consider threshold representations:
let the edges correspond to pairs of points closer than a certain prescribed threshold. Bounds on
the number of edges and on the degrees were proved by Frankl and Maehara [47]. In the setting
of inner products, [46], [107] and [108] studied such questions.
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Another version is obtained when we want to preserve the graph distance of all pairs (not
just adjacent pairs). Constructing approximations has been the main tool in section 10.2.

Some of the constructions above were weaker: only the ordered structure of the space
was used. Convex representations were related to graph connectivity (section 7.2); connected-
halfspace representations, to topological properties (Chapter 8).

Finally, one might use only the linear structure of Rn. Cover-preserving and independence-
preserving representations, discussed in section 9, have this property.

12.2 Non-degeneracy

A common theme in connection with various representations is that imposing non-degeneracy
conditions on the representation often makes it easier to analyze and therefore more useful
(basically, by eliminating the possibility of numerical coincidence). There are at least 3 types
of non-degeneracy conditions; we illustrate the different possibilities by formulating them in
the case of unit distance representations in Rd. All three are easily extended to other kinds of
representations.

The most natural non-degeneracy condition is faithfulness: we want to represent the graph
so that adjacent nodes and only those are at unit distance. This is usually not strong enough.
General position means that no d + 1 of the points are contained in a hyperplane.

Perhaps the deepest non-degeneracy notion is the following. Write the condition of unit
distance representation as a system of algebraic equations:

‖ui − uj‖2 = 1 (ij ∈ E).

We have nd unknowns (the coordinates of the ui). Each of these equations defines a hypersurface
in Rnd, and a representation corresponds to a point where these hypersurfaces intersect. Now
we say that this representation has the Strong Arnold Property if the hypersurfaces intersect
transversally, i.e., their normal vectors at this point are linearly independent. This condition
means that the intersection point is not just accidental, but is forced by some more fundamental
structure; for example, if the representation has the Strong Arnold Property, and we change by
a small amount each constant 1 on the right hand sides of the defining equations, we get another
solvable system.

12.3 Duality

The following notion of duality is known under many aliases: dual chain group in matroid theory,
dual code in coding theory, Gale diagram in the theory of hyperplane arrangements, etc. Let
u1, . . . , un ∈ Rd. Write down these vectors as column vectors, and let L be the row space of
the resulting matrix. Pick any basis in the orthogonal complement L⊥ of L, write them down
as row vectors, and let v1, . . . , vn ∈ Rn−d be the columns of the resulting matrix. One of the
main properties of this construction is that a set of the ui forms a basis of Rd if and only if the
complementary set of the vi forms a basis of Rn−d.

We can carry out this construction for any vector representation of a graph G, to get a
dual vector representation. In some cases, this gives interesting constructions; for example, from
cover-preserving representations we get independence-preserving representations. But note that
(at least in the definition above) the dual is only determined up to an affine transformation;
for geometric representations with metric properties (which is the majority), dualization does
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not seem to make sense. Yet it seem that in some cases more than the basic linear structure is
dualized, and we don’t have a general explanation for this. Let us briefly mention two examples.

In [53], a duality for orthogonal representations of a graph and its complement has been
described. One of the consequences is that every graph G has an orthogonal representation whose
dual (in the sense described above) becomes an orthogonal representation of the complementary
graph G, if an appropriate single row is added. This result is connected to the duality theory of
semidefinite programming.

In [79], it was pointed out that there seems to be a duality between the Colin de Verdère
numbers of planar graphs and their complements. Again (up to a single row) the nullspace
representation and the Gram representation derived from a Colin de Verdère matrix of a graph
are dual to each other; but while the Gram representation has strong metric properties, it is
unclear how to impose those on the nullspace representation.

12.4 Algorithmic applications

To represent a graph geometrically is a natural goal in itself, but in addition it is an important
tool in the study of various graph properties, including their algorithmic aspects. There are
several levels of this interplay between algorithms and geometry.

— Often the aim is to find a way to represent a graph in “good” way. We refer to Kuratowski’s
characterization of planar graphs, its more recent extensions most notably by Robertson and
Seymour, and to Steinitz’s theorem representing 3-connected planar graphs by 3-dimensional
polyhedra. Many difficult algorithmic problems in connection with these representations have
been studied.

— In other cases, graphs come together with a geometric representation, and the issue is
to test certain properties, or compute some parameters, that connect the combinatorial and
geometric structure. A typical question in this class is rigidity of bar-and-joint frameworks, an
area whose study goes back to the work of Cauchy and Maxwell.

— Most interesting are the cases when a good geometric representation of a graph leads to
algorithmic solutions of purely graph-theoretic questions that, at least on the surface, do not seem
to have anything to do with geometry. Our discussions contained several examples of this (but
the list will be far from complete): graph connectivity, graph coloring, finding maximum cliques
in perfect graphs, giving capacity bounds in information theory, approximating the maximum
cut and the bandwidth, planarity, linkless embedability, and rigidity of frameworks.
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France, Paris, 1998.

[29] G. Csizmadia: The multiplicity of the two smallest distances among points, Discrete Math.
194 (1999), 67–86.

[30] C. Delorme and S. Poljak: Laplacian eigenvalues and the maximum cut problem, Math.
Programming 62 (1993) 557–574.

[31] M. Deza and M. Laurent: Geometry of Cuts and Metrics, Springer Verlag, 1997.

[32] R.J. Duffin, Basic properties of discrete analytic functions, Duke Math. J. 23 (1956), 335–
363.



BIBLIOGRAPHY 73

[33] H. Edelsbrunner, P. Hajnal: A lower bound on the number of unit distances between the
vertices of a convex polygon, J. Combin. Theory Ser. A 56 (1991), 312–316.

[34] H.G. Eggleston: Covering a three-dimensional set with sets of smaller diameter, J. London
Math. Soc. 30 (1955), 11–24.
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[42] P. Erdős, L. Lovász, K. Vesztergombi: The chromatic number of the graph of large distances,
in: Combinatorics, Proc. Coll. Eger 1987, Coll. Math. Soc. J. Bolyai 52, North-Holland,
547–551.
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North Holland, Budapest, 1991

[86] L. Lovász: Flats in matroids and geometric graphs, in: Combinatorial Surveys, Proc. 6th
British Comb. Conf., Academic Press (1977), 45-86.



76 BIBLIOGRAPHY

[87] L. Lovász: On the Shannon capacity of graphs, IEEE Trans. Inform. Theory 25 (1979),
1–7.

[88] L. Lovász: Random walks on graphs: a survey, in: Combinatorics, Paul Erdős is Eighty,
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