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Structure of Tutorial
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representation discovery?

PART II Representation Discovery using Fourier
Manifold Learning

COFFEE BREAK

PART III Multiscale Representation Discovery 
using Wavelet Manifold Learning

PART IV Advanced Topics and Challenges; 
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Two Approaches to 
Representation Discovery

• Diagonalization:
– First discovered by Joseph Fourier in 1807 
– Time/Space → Frequency
– Basis functions are localized in frequency alone
– Matrix “Eigenvector” methods

• Dilation: 
– Multiscale framework that decomposes 

time/space simultaneously
– Basis functions localized in space and time
– Principle underlying “wavelets” (Daubechies, 1991)



What is a representation?
(Marr and Nishihara, 1978)

• “A representation is a formal system for making 
explicit certain entities or types of information, 
together with a specification of how the system 
does this.”

• “For example, a representation for shape would 
be a formal scheme for describing some aspects 
of shape, together with rules that specify how the 
scheme is applied to any particular shape.

• “A musical score provides a way of representing a 
symphony.”



Representation of Music



Representations of Numbers
• Roman:

– I, II, III, IV, …
– Can you multiply MCXII by LMIV?
– Fashionable on wristwatches, but not very practical 

• Decimal: (invented in India!)
– 0, 1, 2, 3, 4, …
– Positional system, widely used in science & engineering

• Binary:
– 0, 1, 10, 11, 100,…
– Made it possible to implement computers on hardware

• Many others: octal, hexadecimal,…



Popular Representations in AI

• Algebraic structures:
– Matrices and vector spaces

• Relational structures: 
– Graphs

• Factored Representations
– Graphical models

• Probabilistic finite-state representations:
– Markov chains and Markov decision processes

• Propositional and predicate logic
– Combining probability and logic



Why Automate Representation Discovery?

• Existing methods may be inadequate
– Standard “Euclidean” methods fail
– Data lies in an abstract space (e.g. a graph)

• Faster algorithms can be designed
– By learning customized representations that exploit 

“smoothness” properties of functions on graphs

• Adaptive compression algorithms
– 3D graphics and computer animation

• The environment may be non-stationary
– Human-engineered representations cannot anticipate 

tasks an agent may face



Semi-Supervised Learning

Euclidean methods
like “k-means”
or “nearest-neighbor”
fail on this task

“Two-moons
problem”

+
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Social Network Analysis

Collaboration
graph of
authors with
Erdos # =2

Discovering
hidden structure
by embedding
graphs in Rn



Compression of 3D Objects
in Computer Graphics

Spatial 3D Representation
1.5 Mbytes, 20,000 vertices

JPEG does not work
for 3D objects. 

Challenge: design an
adaptive object-specific
compression method



Credit Assignment Problem 
(Minsky, Steps Toward AI, 1960)

States

Tasks

Time
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Representation Discovery
provides a unified approach 
to the credit assignment problem



Representation Discovery in
Problem-Solving

(Saul Amarel, 1960s) Missionaries and Cannibal

Find symmetries and 
bottlenecks in state spaces



Markov Decision Processes
(Bellman, Howard)
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Representation Discovery in MDPs
(Mahadevan, AAAI 2005)
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Representations: The Hidden Dimension
Domains

Clustering

Classification

Reinforcement
Learning

Regression

Problems/TechniquesLearning a Basis

Fourier

Wavelet

Feature
discovery
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representation discovery?

PART II Representation Discovery using Fourier
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Fourier Representation of
Boolean Functions
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Fourier Manifold Methods
• Same basis construction principle as PCA

– Diagonalization (or eigenvector construction)
– The matrix representation changes from Σ to L

• Spectral methods are based on computing 
eigenvectors of a normalized “affinity” matrix
– [Shi and Malik, IEEE PAMI 1997; Ng, Jordan, and Weiss, 

NIPS 2001; Page, Brin, Motwani, Winograd, 1998]

• Manifold methods model the local geometry of 
the data by constructing a graph
– [Roweis and Saul; Tenenbaum, de Silva, Langford, 

Science 2000; Belkin and Niyogi, MLJ 2004]



Some Matrix Decompositions

• Gram-Schmidt:
– A = QR 

• Spectral:
– A = U Λ UT

• SVD:
– A = U Σ VT

A Q R

U UT

U

All of these represent a change of basis

A

VT



Singular Value Decomposition 
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Principal Components Analysis

• Form Covariance matrix
Σ = 1/n ∑ xi xi

T

• Diagonalize Σ = U Λ UΤ

PCA does poorly
when data is on a
nonlinear manifold

Digit recognition task



An Example where PCA Fails

This does not preserve “locality”

“Swissroll”

PCA

PCA finds the direction of “maximal variance”



Nonlinear dimensionality reduction

Embedding should preserve “locality”

“Swissroll”

Embedding



Graph Embedding
• Consider the following optimization 

problem mapping, where yi ∈ R is a 
mapping of the ith vertex to the real line

Miny ∑i,j (yi – yj)2 wi,j s.t. yT D y = 1
• The best mapping is found by solving the 

generalized eigenvector problem
W φ = λ D φ

• If the graph is connected, this can be written as

D-1 W φ = λ φ



Random Walk Operator
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Combinatorial Graph Laplacian
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Properties of the Laplacian

• The Laplacian L is positive semidefinite

• The Laplacian for this graph is = 

• Note that <f, Lf> = fT L f = (f1 – f2)2

• Hence, for any f ≠ 0, <f, Lf> ≥ 0
• All the eigenvalues of L are non-negative
• Combinatorial Laplacian L = D – W acts on f

(L f)(i) =Σ i~j (fi – fj) wij

1 2



Dirichlet Sums
• The quadratic form <f, Lf>  is given by 

∑i fi (Lf)i = ∑i fi ∑j (fi – fj) wij

• Note that for each term of the form fi(fi – fj), 
there must be another term of the form fj(fj – fi)

• We can express <f, Lf> as a Dirichlet sum
<f, Lf> = ∑(u,v) ∈ E (fu – fv)2 wij

• The pseudo-inverse of the Laplacian L+ defines a 
reproducing kernel Hilbert space (RKHS)
– The quadratic form <f, Lf> induces a regularization prior 

that favors smooth functions
– Laplacian embedding is a form of kernel PCA



Laplacian and
Random Walks on a Graph

D-1 W = D-1/2 (D-1/2 W D-1/2) D1/2 = D-1/2 (I – L) D1/2

Hence, D-1W and I – L have the same eigenvalues

Spectral bounds follow 
from Gershgorin’s theorem



Laplacian on Boolean Hypercube

Ln = n In – An0
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Spectral Representation of 
Boolean Functions
(Bernasconi, ’98)
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Fourier Basis on 1D Graph
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Laplacian Embedding
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Laplacian Embedding of Digit Data



Eigenvectors of Graph Laplacian: 
Discrete and Continuous Domains

Inverted pendulum
Mountain Car ProblemThree rooms with bottlenecks
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Least-Squares Projection

f

Φ

Theory of least-squares tells
us how to find the closest
vector in a subspace to a
given vector

What is an optimal subspace Φ
for approximating f on a graph?

Standard bases
(polynomials, RBFs)
don’t exploit geometry
of graph



Compression of 3D Objects

Topology
Geometry
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Laplacian Compression of 3D Objects
(Karni and Gotsman, SIGGRAPH 2000)

100 Basis Functions

800 Basis Functions

Original object

f ~ ∑i ∈ I <f, φi> φi
Fourier series expansion



Representation Policy Iteration
(Mahadevan, UAI 2005)

Trajectories
Representation

Learner

“Greedy”
Policy

Policy
improvement

Policy
evaluation

“Actor”

“Critic” Laplacian/wavelet bases 



VFA using Least-Squares Projection
(Boyan, Bradtke and Barto, Bertsekas and Nedic, Lagoudakis and Parr)

∑=
i

ii wssV )()(ˆ φ

Subspace Φ

))(ˆ( sVT π

Minimize Projected Resid
ual



RPI: Two-Room World
(Mahadevan, ICML 2005)
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Graph Construction

• The graph assumes a local
similarity metric
– In discrete MDPs, state s 

is connected to s’ if an 
action led the agent from 
s → s’

• Distance metrics:
– Nearest neighbor: connect 

an edge from s to s’ if s’ is 
one of k nearest neighbors 
of s

– Heat kernel: connect s to 
s’ if | s –s’|2 < ε with 
w(s,s’)= e-| s – s’|2/2 < ε

• Weights can depend on 
target function 
– The gradient of the 

function

undirected

directed



Manifold Construction in 
Continuous MDPs

(Mahadevan, Maggioni, Ferguson, Osentoski, AAAI 2006)

• How to deal with new samples?
– The Nystrom extension interpolates 

eigenfunctions from sample points to new 
points

• Many practical issues are involved
– How many samples to use to build the graph?
– Local distance metric: Gaussian distance, k-NN
– Graph operator: Normalized Laplacian, 

Combinatorial Laplacian, Random Walk, …
– Type of graph: Undirected, directed, state-

action graph



Sampling from a Continuous Manifold
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Out of Sample Extension

• The testing of a learned policy requires 
computing the basis in novel states

• The Nystrom extension is a classical method 
developed in the solution of integral equations

φm(x) = 1/λm ∑j wj k(x,s) φm(sj)

Mountain
Car MDP



Pendulum Proto-Value Functions



Mountain Car Proto-Value Functions



RPI in Continuous Domains:
Inverted Pendulum

Each episode: 
random walk of 6-7 steps
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Acrobot Task
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Pos. ForceNeg. Force

2d state space (angle, angular velocity)
3 actions (+, 0, - force)
Many non-reversible actions

Directionality in Inverted Pendulum

θ

F



Directed Laplacian  
[Chung ’05]

• Digraph weight matrix W (potentially asymmetric)
– P = D-1 W   (stochastic random walk matrix)

• Invariant distribution ψ
– Definition: ψTP = ψT and    ∑ ψi = 1
– Ψ = diagonal matrix with Ψ(i,i) = ψi

– Also referred to as the Perron vector

• Directed Graph Laplacian: Ψ - (Ψ P + PT Ψ)/2

j



Invariant Distribution ψ
• Perron-Frobenius Theorem ensures P has a unique 

left eigenvector ψ with all positive values as long as 
the graph is strongly connected

• Teleporting random walk ensures the graph is 
strongly connected
– Pteleport =  η P  +  (1-η) (1 1T) / n (η ≈ 0.99)

• Use the Power method to compute ψ
– Iterate:   ψT Pteleport = ψT until ψ converges
– Computing ψ is the only additional cost for the directed 

Laplacian

i i+1



Inverted Pendulum Results
(Johns and Mahadevan, ICML 2007)

• Improved performance with less training 
data (results using 8 basis functions)



Learning Basis Functions in SMDPs
using state-Action Graphs

(Osentoski and Mahadevan, ICML 2007)

• Q(s,a) is a function over states and actions
• Thus far, we have generated basis functions for Q 

by “copying” basis functions φ(s) over states |A| 
times

• A more efficient method is to directly generate 
state-action bases by diagonalizing the directed 
Laplacian on state-action graphs

• We can also exploit the hierarchical nature of 
actions by using semi-Markov decision processes



State Graphs

State Graph with 
primitive actions

State Graph in SMDPs with
temporally extended actions

Long-range
connections



State-Action Graphs

State-action graph with 
primitive actions Close up of first node



Close up of Embeddings

State Graph Embedding

State-option Graph 
Embedding



Four Room Gridworld
(Sutton et al., AIJ, 1999)

• 104  states
• 4 primitive actions 

(N,E,S,W)
• Two hallway options 

per room
• Total number of 

actions: 12
• Stochastic 

environment: 10% 
probability an action 
will fail



Results on Four Room Gridworld
(Osentoski and Mahadevan, ICML 2007)

Prim State Graph: 400 basis functions State graph: 264 basis functions
Prim State-action Graph: 260 basis functions State-option graph: 260 basis functions



The graph 
weight matrix 
W can reflect 
the reward 
function
This results in 
bases tuned 
to a value 
function
If the target 
function is 
unknown, it is 
harder to do 
this tuning

Topological
approximation

Reward-sensitive
approximation

Reward Sensitive Basis Functions
(Johns, 2007; Parr et al., ICML 2007; Keller, ICML 2006)

Exact



Mean-Value Representation
of Laplacian over 2-Manifolds

(Floater et al., 2003)

• 3D meshes are triangulations of 2-
manifolds (surfaces)

• The weight matrix W can be specified for 
triangulated meshes based on geometry

vi

vj

θij
2

θij
1

Wij = [tan(θij
1/2) + tan(θij

2/2)]/(|| vi – vj ||)



Topological vs. Geometry-Aware 
Laplacian Bases
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Spectral Clustering
(Ng, Jordan,Weiss, NIPS 2001)

• Compute the normalized 
graph Laplacian defined as 

L = D-1/2 (D-W) D-1/2

• L is the discrete version of 
the Laplace-Beltrami 
operator on a Riemannian 
manifold

• Project the data onto the 
low-order eigenvectors of 
L

• Use k-means method on 
projected data 0 5 10 15 20 25 30 35
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Faculty Collaboration Graph
(U.Mass Amherst CS Dept)

Graph formed by
Emery Berger



Spectral Clustering using 
Graph Laplacian
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Limitation of Fourier Methods
• “Global” representation that captures long-time 

scales
– Basis functions span the size of the graph
– Eigenvectors reflect long-term regularities

• Difficult to approximate functions that are not 
globally smooth
– Local discontinuities cause global “ripples”
– Regularities at different spatial/temporal frequencies 

cannot be modeled easily

• After the break, we will explore multi-scale 
manifold methods
– Unlike global eigenvector methods, these are based on 

constructing compact multiscale basis functions



Structure of Tutorial
PART 1 Motivation: Why automate 

representation discovery?

PART II Representation Discovery using Fourier
Manifold Learning

COFFEE BREAK

PART III Multiscale Representation Discovery 
using Wavelet Manifold Learning

PART IV Advanced Topics and Challenges; 
Discussion



Wavelet Representations

• Wavelets are a multiscale framework originally 
developed for Euclidean spaces [Haar, 1900; 
Daubechies, 1992; Mallat 1999]
– Basis functions are compact and at multiple scales
– Higher level basis functions are constructed by dilations

• Wavelets on graphs and manifolds [Coifman and 
Maggioni: ACHA 2006; Mahadevan and Maggioni, NIPS 2005, ICML 2006]
– Extends classical wavelets to graphs and manifolds
– Multi-resolution analysis of functions on graphs
– Compact bases

2
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Localized in frequency
Stretched in time

Fourier

Localized in frequency
and time

Wavelet



Multiscale Analysis on Graphs
• Let T be a diffusion operator on a graph

– Example: T = D-1/2 W D-1/2

• Assume T is self-adjoint (symmetric)
– We will relax this assumption soon

• Let the spectrum of T be normalized
– λi ∈ [0,1]

• Denote the desired resolution by ε



Definition of Multiresolution

• Dyadic powers
– tj = 2j – 1

• Multiscale spectral analysis

σj = {λ ∈ σ(T) | λtj ≥ ε }
• Vector space hierarchy

Vj = span({ξj : λj ∈ σj(T)})



Compressing Powers of Diffusion Operator
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Scaling Functions and Wavelets

• The vector spaces Vj are “low-pass” filters
– They are spanned by “scaling function” bases

• Wj: a series of subspaces orthogonal to Vj
– These are “high-pass” filters, and capture the 

resolution lost in going from Vj to Vj+1

– The Wj are spanned by “wavelet” bases

V0

V1 W1

V2 W2

V0 = V1 ⊕ W1



Scaling Function Bases on 
2D Graph with Bottleneck

0
5

10
15

20

0
5

10
15

20
0

0.2

0.4

0.6

0.8

1

Diffusion Wavelet at Level 1 Basis Function 1

0
5

10
15

20

0
5

10
15

20
-0.2

0

0.2

0.4

0.6

Diffusion Wavelet at Level 3 Basis Function 4

0
5

10
15

20

0
5

10
15

20
-0.1

0

0.1

0.2

0.3

0.4

Diffusion Wavelet at Level 4 Basis Function 5

0
5

10
15

20

0
5

10
15

20
-0.1

0

0.1

0.2

0.3

Diffusion Wavelet at Level 6 Basis Function 1

0
5

10
15

20

0
5

10
15

20
-0.05

0

0.05

0.1

0.15

Diffusion Wavelet at Level 7 Basis Function 1

0
5

10
15

2

0
5

10
15

20
-0.1

-0.05

0

0.05

0.1

0.15

Diffusion Wavelet at Level 9 Basis Function 5

Unit vectors

Eigenvectors

Level 1 Level 3 Level 4

Level 6 Level 7 Level 9



Diffusion Wavelet Construction
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Multiscale Construction

• Orthogonalization and downsampling

• Dilation and operator compression (non-
symmetric case)



Multiscale Construction

• Orthogonalization and downsampling

• Dilation and operator compression 
(symmetric case)



Wavelet Bases Construction

• Find basis functions orthogonal to scaling 
functions: 
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Constructing diffusion wavelet tree on L^4 on 179 points...
V_1            gsqr:   22 fcns, 0.09 secs T reps: T^2: 0.00 secs freq: [1e-006 1]

W_1            gsqr:  157 fcns, 0.95 secs freq: [0 1e-006]
V_2            gsqr:    9 fcns, 0.03 secs T reps: T^2: 0.00 secs freq: [0.001 1]

W_2            gsqr:   13 fcns, 0.00 secs freq: [1e-006 0.001]
V_3            gsqr:    6 fcns, 0.02 secs T reps: T^2: 0.00 secs freq: [0.0316228 1]

W_3            gsqr:    3 fcns, 0.00 secs freq: [0.001 0.0316228]
V_4            gsqr:    4 fcns, 0.00 secs T reps: T^2: 0.00 secs freq: [0.177828 1]

W_4            gsqr:    2 fcns, 0.00 secs freq: [0.0316228 0.177828]
V_5            gsqr:    3 fcns, 0.00 secs T reps: T^2: 0.00 secs freq: [0.421697 1]

W_5            gsqr:    1 fcns, 0.00 secs freq: [0.177828 0.421697]

sampling

179 states1894 states
θ

F



Pendulum Diffusion Bases



Mountain Car Scaling Functions



Diffusion Operator Compression

Pendulum Mountain Car

T

T2

T4

T8

Plots in log10 scale



3D Mesh Compression using Diffusion Wavelets 
(Mahadevan, ICML 2007)
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Level 5 Basis Functions
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Diffusion Projection: Multi-scale 
Analysis on Directed Manifolds

(Chang, Maggioni and Mahadevan, 2007)

• Diffusion Projection (DP) is based on the 
diffusion scaling functions in Diffusion Wavelets. 

• Diffusion Projections provide multi-scale 
embedding, which means they automatically 
reveal the geometric structure of the data at 
different scales

• They enable finding the best scale/dimension for 
a low dimensional embedding once a rough 
dimension range is given.



Diffusion Projections
• The scaling function        provides a mapping 

between the data on large scale space and small 
scale space. 

• The elements in    are usually much coarser and 
smoother than the initial elements in     , which is 
why they can be represented in a compressed form. 

• Given     , any function on the compressed large-
scale space can be extended naturally to the original 
space or vice versa. The connection between any 
vector in the original space and its compressed 
representation at scale j is

0
][ φφ j

0
][ φφ j

0
][ 0 φφ

0
][ φφ j

][][ 00
)']([ φφφ φ vv jj

=



Symmetric and Non-symmetric 
Embeddings

• Diffusion Projection can handle both 
symmetric and non-symmetric matrices. 

• Symmetric case: the low dimensional 
embedding is the same as the embedding 
learned from Laplacian eigenmap, up to 
precision ε.

• Non-symmetric case spans the same subspace, 
up to a precision ε, spanned by the columns 
of      , which is the space of probability 
distributions of the random walk     at time 2t. 

0
][ φφ t t

T 2



Example
The punctured sphere in Figure (A) includes 800 points. We compare 

Laplacian eigenmap on (W+W’)/2 with Diffusion Projections on 
the random walk matrix of W. 

Original Laplacian
embedding

Diffusion Projection
embedding



Multiscale Embedding of
Citation Graphs

• The citation data set in KDD Cup 2003 are 
scientific papers from arXiv.org from the high-
energy physics theory area. 

• We sampled 1716 documents from the complete 
data set and created a citation graph. 

• A citation relationship is directed, and a paper 
cited by many other papers should be more 
important compared to a paper that cites many 
others but is not cited by others. 

• Symmetrizing such a relationship destroys much 
useful information.



Citation Graphs: Two Embeddings
(High-energy physics papers, KDD 2003)

(Wang et al., 2007)(Belkin and Niyogi, MLJ 2005)

Laplacian Eigenmaps
on Undirected Graph

Diffusion Projection on
Directed Graph



Diffusion Policy Evaluation: Fast Inversion
(Maggioni and Mahadevan, ICML 2006)

• Two approaches to policy evaluation:
– DIRECT: inverting the matrix takes O(|S|3)
– ITERATIVE: successive approximation in O(|S|2)

• New faster approach to policy evaluation:
– Construct  a diffusion wavelet tree from the 

transition matrix to invert the Green’s function
– Use the Schultz expansion to do the inversion
– Results in a significantly faster method ≈ O(|S|) (for 

diffusion matrices, within a log |S| factor)



Schultz Expansion for
Diffusion Semi-Groups

• The random walk operator 
T is a semi-group, where 
the powers Tk satisfy the 
following conditions
– T0 = I
– Tk+l = Tk Tl

• To compute the Green’s 
function (I – T)-1, we use 
the Schultz expansion 
formula

• As a special case, we can 
apply this approach to 
policy evaluation, where T 
is represented by γP
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Policy Evaluation Results
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Structure of Tutorial
PART 1 Motivation: Why automate 

representation discovery?

PART II Representation Discovery using Fourier
Manifold Learning

COFFEE BREAK

PART III Multiscale Representation Discovery 
using Wavelet Manifold Learning

PART IV Advanced Topics and Challenges; 
Discussion



Representation Discovery in Large Spaces

• Divide-and-conquer:
– Graph partitioning 

• Factorization of product spaces: 
– It is possible to represent spectral bases 

compactly for large factored state spaces 

• Kronecker Decomposition
– Approximate matrix factorization using 

Kronecker products

• Harmonic analysis on groups



Representation Discovery in Graphics

• Graph partitioning (Karypis and Kumar, SIAM 
1998)

– Coarsening: |V0| > |V1| > … |Vm| 
– Partitioning:  Divide Vm into two parts
– Uncoarsening: Project Pm onto original 

graph
Laplacian Wavelet



Fourier vs wavelet bases
(Mahadevan, ICML 2007)

~20,000 vertices
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Object File:   ea4.obj  Vertices: 19753 Partitions:  300

Laplacian Bases: 11.81 seconds
DWT Bases: 27.42 seconds



Scaling to Large 3D Objects

35000 vertices, 100,000 edges

Stanford “Bunny”
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Error vs. Number of Partitions
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Kronecker Product Definition

• Consider two matrices B and C.  Let A equal the 
Kronecker product of B and C, written A = B   C.

• Matrix A’s size is  [rowB * rowC]  x  [colB * colC]

b11C b12C … b1nC
b21C b22C … b2nC

bm1C bm2C … bmnC

…… … …A   =   B    C   =



Kronecker Sum Graphs

• The Kronecker sum of two graphs G = G1 ⊕ G2
is the graph with vertex set V = V1 × V2 and 
adjacency matrix A = A1 ⊗ I2 + I2 ⊗ A1

– Alternative definition: The Kronecker sum 
graph G has an edge between vertices (u,v) 
and (u’,v’) if and only if (u,u’) ∈ E1 and v=v’ or 
(u=u’) and (v,v’) ∈ E2

⊕ =

a

b

c

1 2 3

(a,1) (b,1) (c,1)

(a,2) (b,2) (c,2)

(a,3) (b,3) (c,3)



Spectral Theory of Tensor Products

• Let Ar × r and Bs × s be two matrices of full rank
• Let (λi, ui) and (μj, vj) be the ith eigenvalue and 

eigenvector of graph A and B, respectively
• Spectra of tensor sum and products: 

– (A ⊗ B) (ui ⊗ vj) = λi μj (ui ⊗ vj)
– (A ⊗ Is + Ir ⊗ B) (ui ⊗ vj) = (λi +  μj) (ui ⊗ vj) 

• This result is based on the following identity 
– (A C) ⊗ (B D) = (A ⊗ B) (C ⊗ D) (if AC and BD 

are well-defined)



Laplacian of Kronecker Sum Graphs

• If L1, L2 be the combinatorial Laplacians of graphs 
G1, G2, then the spectral structure of the 
combinatorial Laplacian of the Kronecker sum of 
these graphs G = G1 ⊕ G2 is specified as

σ(L), X(L))  = {λi + μj, li ⊗ kj } 

• where λi is the ith eigenvalue of L(G1) with 
associated eigenvector li and μj is the jth
eigenvalue of L(G2) with associated eigenvector 
kj. 



Embedding of Structured Spaces
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Blockers Domain
(Sallans and Hinton, JMLR 2003)
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Large Factored MDP: Blockers Domain

Topologically, this space is
the tensor product of
three “irregular” cylinders
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Discovery of Factored Representations 
for Markov Decision Processes

(Johns and Mahadevan, AAAI 07)

• Goal:  Given basis matrix A, find the best 
matrices B and C such that A ≈ B   C

• Create approx. eigenvectors of A by computing 
the eigenvectors of B and C and combining them 
via the Kronecker product

• Benefits for Proto-value functions: 
– Computing eigenvectors of much smaller matrices
– Storing eigenvectors in more compact form
– Benefits are magnified if factorization is done recusively!



Automatic Kronecker Factorization 
(Pitsianis and van Loan, 1993)

Given: matrix A
dimensions for matrix B

Return: B and C such that min   A – B   C

Frobenius norm:

FB,C

X     =   ∑ ∑ Xi,jF

2

i j



Rank-One Problem in Disguise

Problem: min   A – B   C

Pitsianis (’97) solved this problem for arbitrary A

A – B   C         = A – vec(B)   vec(C)T

= A – vec(B) ⋅ vec(C)T

FB,C

F F

F

~

~

rank-1 matrix



Rank-One Solution

Optimal solution is to take the SVD of A and use the 
first columns and first eigenvalue

min    A – x ⋅ yT has same minimizer as

min    A – x ⋅ yT = A – σ1 u1 v1
T

where UT A V  =  diag([σ1 σ2 … σq])
A  ∈ Rmxn

x  ∈ Rm

y  ∈ Rn

q  =  min(m,n)

~

2

~

x,y

~

2

F

~

x,y

~

vec(B) = σ1 u1
vec(C) = v1



Basis Compression

(Eig)A|A| (Eig)B|B|

min(|B|,k)

where |A| = |B|*|C|

(Eig)C|C|

min(|C|,k)

state feature vector 
is computable from

k



Form a graph with weight matrix W by connecting 
states to nearby neighbors
Form the random walk matrix P = D-1 W
Represent P with two smaller stochastic matrices B 
and C such that B  C ≈ P
Compute eigenvectors of B and C
When we need an embedding (feature vector) for a 
state φP during learning, compute it from φB and φC

Overall Method



Discovery of Factorized Structure

Original Matrix Reordered Matrix



Acrobot (36x compression)
|P| ≈ 1800
|B| ≈ 60
|C| = 30



Rubiks Cube

Large state spaces
have many underlying
symmetries

http://en.wikipedia.org/wiki/Image:Rubik%27s_cube_variations.jpg


Groups

• A group G is a set, along with an 
operation . : G × G → G

• In Abelian groups, a.b = b.a
– Real numbers under addition

• Non-Abelian groups: 
– Let G be any graph, and consider a mapping 

φ:V → V that respects adjacency
– If (u,v) ∈ E, then (φ(u), φ(v)) ∈ E
– The set of all automorphisms forms a group



Fourier Analysis on Groups
• Given a group G, and a representation ρ, the 

Fourier transform of any function f on G is given 
by

fρ = ∑g f(g) ρ(g)

Graph generator:
i +/- 1 mod 6

0 1

3
4

Cayley
graph

25

Abelian
group

ρj(k) =  e-(2 π i j k)/N



Cayley Group Representation of 
Boolean Functions

x1 x2 x3 f

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 0

f = x1 ¬ x3 ∨ ¬ x2 x3 f(m1 ⊕ m2) = 1

000 001

011010

100 101

111

110

Cayley graph group
under the operator ⊕



Matrix Groups

• Many problems in robotics generate manifolds 
that can be modeled as continuous matrix (Lie) 
groups

• GL(n) is the group of all (real or complex) 
invertible matrices (under matrix multiplication)

• The set of matrices A such that AT A = 1 forms a 
subgroup of GL(n) and is called the orthogonal 
group O(n)

• Length-preserving transformations (e.g. 
rotations) form a subgroup of O(n) called SO(n) 
(here, the matrices have determinant = 1)



SO(2)

• SO(2) is the group defined by all rotations 
on the plane 

• This group can be represented in several 
different ways
– As a set of orthogonal rotation matrices 

– The new coordinates are given by 
x cos θ – y sin θ, x sin θ + y cos θ

– As a set of complex numbers eiθ θ

F



SE(2)

• If you include translations, it is easy to 
show that no 2x2 matrix representation 
exists

• However, it is possible to augment the 
representation to a 3x3 matrix to capture 
rotations and translations

x cos θ – y sin θ + x1, x sin θ + y cos θ + y1

θ

F



Kinematic Chains

• Consider the Acrobot task, defined by 
motions of a 2-link robot arm

• What manifold does this define?
• The manifold can be represented by 

products of SE(2) matrices



Group Representations
(Serre)

• A linear representation of a group G is a 
mapping from elements of G to invertible 
matrices M such that

ρ(a.b) = ρ(a) . ρ(b)

• Group theory provides a powerful framework to 
study many problems in machine learning
– Compact representations of eigenvectors and wavelet 

representations
– Applicable to all the domains described here
– See tutorial by Risi Kondor at ICML 2007



Noncommutative harmonic analysis

• NHA is a generalization of spectral learning
• In spectral analysis, data is projected onto 

eigenvectors, which is a 1-dimensional invariant
subspace

• This is an example of commutative harmonic 
analysis (Fourier)

• There are many problems which cannot be 
reduced down to 1-dimensional subspaces. 

• For example, consider the problem of finding 
structure in voting data



Group-Theoretic Analysis of Ranking 
(Diaconis and Rockmore, 1990)

• The set of rankings of n objects is a 
subgroup of the symmetric group Sn

• A representation of the symmetric group 
is the permutation representation: ρ(π)ij = 
1 if permutation π(i) = j.

• fρ = ∑π f(π) ρ(π) computes the first-order 
summary statistics (the (i,j) entry counts 
the number of times object i is ranked j)

• Other representations reveal higher-order 
structure such as coalitions



Parametric Manifold Analysis

• Can knowledge of the underlying manifold 
be used to scale representation learning?

• How can invariants be exploited?
– Rigid body actions preserve lengths
– Graph automorphisms can be exploited
– Learn Lie group generator (Rao and Ruderman, 

NIPS ’98)

• How can AI systems discover abstract 
properties of the state space?



Future Challenges
• Scaling to large state spaces

– Backgammon, chess, humanoid robot control, 
natural language, and web structure analysis

• Transfer learning
– Can representations learned in one domain be 

mapped to a new domain?

• First-order representation discovery
– How can these methods be extended to richer 

representations?

• Can we get deeper insight into human 
representation discovery?
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