Rethinking Machine Learning in the 21st Century: From Optimization to Equilibration

 Sridhar MahadevanAutonomous Learning Laboratory

$$
\underset{\text { school of computer sclence }}{\text { UMASSCS }}
$$

Research funded in part by the National Science Foundation, NASA and AFOSR

National Science Foundation where discoveries begin

(Almost) Dimension-Free

 optimization
To

(Almost) Dimension-Free equilibration

http://all.cs.umass.edu/pubs.shtml

Barto (Emeritus)

Lab Directors

Thomas Boucher
CJ Carey

Bruno Castro da Silva

William Dabney
Stefan Dernbach
Kimberly Ferguson
Ian Gemp
Stephen Giguere

Thomas Helmuth

Nicholas Jacek

Bo Liu

Clemens Rosenbaum
Andrew Stout
Philip Thomas

Chris Vigorito

Transfer Learning on Mars

(Darby Dyar, Mount Holyoke; Thomas Boucher, Clifton Carey, Stephen Giguere, UMass)

Low-Dimensional Representation Discovery

Original Data

Mixture of low-dimensional reduction method

Optimization

Equilibration

$\min f(x)$
x in feasible set K
(Stampacchia, 1960s)

Part I: Some (Personal) History and Motivation

Iravatham

Mahadevan
ஐராவதம் மகாதேவன்

Early Tamil Epigraphy from the Earliest Times to the Sixth Century A.D

Edited and translated by Iravatham Mahadevan Harvard Oriental Series 62

Iravatham Mahadevan, June 2014 at 85

A DRAVIDIAN ETYMOLOGICAL DICTIONARY

1904-2005

Obituaries | PASSINGS
Murray Emeneau, 101; Founded UC Berkeley Linguistics Department

Murray Barnson Emeneau, 101, an expert in Sanskrit and Dravidian languages who founded the UC Berkeley Linguistics Department, died Aug. 29 in his sleep of natural causes at his Berkeley home.

2500
$B . C$.

Great Bath
Mohenjadaro

Indus Script

Published Online April 232009 Science 29 May 2009:
 Vol. 324 no. 5931 p. 1165
 DOI: 10.1126/science. 1170391
 - BREVIA

Entropic Evidence for Linguistic Structure in the Indus Script
Rajesh P. N. Rao, Nisha Yadav, Mayank N. Vahia, Hrishikesh Joglekar, R. Adhikari, Iravatham Mahadevan

Is the Indus Script really a language?

Entia non sunt multiplicanda sine necessitate

of Willam's philosophy

William of Ockham
14th century logician and Franciscan friar

Why should machines learn?

Learning denotes changes in a system that are adaptive in that they enable the system to do the same task or tasks drawn from the same population more efficiently and more effectively the next time around

Herbert Simon

Learning to Drive

ALVINN learns
from a human driver

Neural
Network

Can drive on actual highways at 65 miles per hour!

Søren Kierkegaard 19th century Danish philosopher

Life must be lived going forwards but can only be understood going backwards

IBM's T.J. Watson said it would increase IBM stock by 10 points and it did!

First demo of ML!

MIT Press

http://webdocs.cs.ualberta.ca/~sutton/book/ebook/node1.html

LEAST
 SQUARES

TEMPORAL
 Difference LEARNING

Algorithm 1 TD (1984)
(1) $\delta_{t}=r_{t}+\gamma \phi_{t}^{T} \theta_{t}-\phi_{t}^{T} \theta_{t}$
(2) $\theta_{t+1}=\theta_{t}+\beta_{t} \delta_{t}$

Dopamine Neurons Code TD Error

 $\delta(\mathrm{t})=\mathrm{r}(\mathrm{t})+\gamma \mathrm{V}(\mathrm{s}(\mathrm{t}+\mathrm{l}))-\mathrm{V}(\mathrm{s}(\mathrm{t}))$
(Schultz et al. 1997)

OKINAWA INSTITUTE OF SCIENCE AND TECHNOLOGY GRADUATE UNIVERSITY

TD-Learning Fails (not always, but predictably!)

Baird counter example

Optimization by Gradient Descent TD

Min $f(x), x$ in feasible set K 1984-2014:
Can TD be converted into a "true" gradient method?

Latest attempt: Sutton, 2009
Introduces gradient objectives
but solves without true gradient computation

Part II:Equilibration in Reinforcement Learning

Proximal Reinforcement Learning: A New Theory of Sequential Decision Making in Primal-Dual Spaces,

$$
\text { Arxiv, May 26, } 2014 \text { (126 pages) }
$$

Sridhar Mahadevan, Bo Liu, Philip Thomas, Will Dabney, Stephen Giguere, Nicholas Jacek, Ian Gemp,

Ji Liu

Proximal Reinforcement Learning in Primal-Dual Spaces

Søren Kierkegaard 19th century Danish philosopher

Life must be lived going forwards but can only be understood going backwards

```
In the Dual Space!
```


(Almost) Dimension-free optimization

Mirror Maps

(Nemirovski and Yudin, 1980s; Bubeck, 2014)

Variational Inequality (Stampacchia, 1960s)

$$
\left\langle F\left(x^{*}\right), x-x^{*}\right\rangle \geq 0, \forall x \in K
$$

Extragradient Method

Korpolevich (1970s) developed the extragradient method

Mirror-Prox: Non-Euclidean Extragradient
(Nemirovski, 2005)

True Gradient TD-Learning: RL meets VI

Algorithm 2 GTD2-MP (2014)

(1) $w_{t+\frac{1}{2}}=w_{t}+\beta_{t}\left(\delta_{t}-\phi_{t}^{T} w_{t}\right) \phi_{t}$,
$\theta_{t+\frac{1}{2}}=\operatorname{prox}_{\alpha_{t} h}\left(\theta_{t}+\alpha_{t}\left(\phi_{t}-\gamma \phi_{t}^{\prime}\right)\left(\phi_{t}^{T} w_{t}\right)\right)$
(2) $\delta_{t+\frac{1}{2}}=r_{t}+\gamma \dot{\prime}_{t}^{T} \theta_{t+\frac{1}{2}}-\phi_{t}^{T} \theta_{t+\frac{1}{2}}$
$w_{t+1}=w_{t}+\beta_{t}\left(\delta_{t+\frac{1}{2}}-\phi_{t}^{T} w_{t+\frac{1}{2}}\right) \phi_{t}$,
(3) $\quad \theta_{t+1}=\operatorname{prox}_{\alpha_{t} h}\left(\theta_{t}+\alpha_{t}\left(\phi_{t}-\gamma \phi_{t}^{\prime}\right)\left(\phi_{t}^{T} w_{t+\frac{1}{2}}\right)\right)$
(Mahadevan et al., Arxiv 2014)

Baird

counter example

Our new methods 2014
Variance of our methods: $\propto O\left(\frac{1}{n}\right)$

20-Dimensional Robot Arm

Safe Robot Learning
 Our new method

UBot, Laboratory of Perceptual Robotics

Thomas, Dabney, Mahadevan, Giguere, NIPS 2013

Mirror Descent = "Natural" Gradient

 (Nemirovsky and Yudin; Amari, 1980s)
Mirror Map

Mirror Descent

Natural gradient

Thomas, Dabney, Mahadevan, Giguere, NIPS 2013

Part III: Equilibration Framework for ML, CS

"The Internet is an equilibrium - we just have to identify the game (Scott Shenker)"
"The Internet was the first computational artifact that was not created by a single entity, but emerged from the strategic interaction of many (Christos Papadimitriou)"

The "Invisible Hand" of the Internet

Algorithmic Game Theory

Adam Smith
The Wealth of Nations
1776

SELFISH Routing .nome

Competing Goals of the Internet:

 ON EVER INTERNET... 1992-2014
hack in the bok

LA Times Story. June 052014

Verizon tells Netflix to stop blaming it for streaming issues
Verizon wants Netflix to stop blaming the Internet Service Provider for any streaming issues customers may be having when watching TV shows and movies.
"Netflix has been aware for some time that a few Internet middlemen have congestion issues with some IP Networks and nonetheless, Netflix has chosen to continue sending its traffic over those congested routes," said Verizon General Counsel Randal Milch. (Paul Sakuma / AP)

Part IV: New Algorithms, Applications, Results

(Almost) Dimension-Free

 optimization
To

(Almost) Dimension-Free equilibration

Fixed Point Formulation

Extragradient Method

Korpolevich (1970s) developed the extragradient method

Søren Kierkegaard Revisited

Life must be lived going forwards many times in the Dual Space!
but can only be understood going backwards
many times in the Dual Space!

Our Latest VI Methods

(Gemp and Mahadevan, 2014)

$$
\begin{aligned}
& \text { General Runge-Kutta Mirror Descent (RKMDA) } \\
& k_{1}=\alpha_{k} F\left(x_{k}\right) \\
& k_{2}=\alpha_{k} F\left(\nabla \psi_{k}^{*}\left(\nabla \psi_{k}\left(x_{k}\right)-a_{21} k_{1}\right)\right) \\
& k_{3}=\alpha_{k} F\left(\nabla \psi_{k}^{*}\left(\nabla \psi_{k}\left(x_{k}\right)-a_{31} k_{1}-a_{32} k_{2}\right)\right) \\
& \vdots \\
& k_{s}=\alpha_{k} F\left(\nabla \psi_{k}^{*}\left(\nabla \psi_{k}\left(x_{k}\right)-a_{s 1} k_{1}-a_{s 2} k_{2}-\ldots-a_{s, s-1} k_{s-1}\right)\right) \\
& x_{k+1}=\nabla \psi_{k}^{*}\left(\nabla \psi_{k}\left(x_{k}\right)-\Sigma_{i=1}^{s} b_{i} k_{i}\right)
\end{aligned}
$$

Benchmark VI Problem

Sun problem: This problem was proposed in [45]. The affine operator $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is again given y $F(x)=A x+b$, where

$$
A=\left(\begin{array}{ccccc}
1 & 2 & 2 & \ldots & 2 \\
0 & 1 & 2 & \ldots & 2 \\
0 & 0 & 1 & \ldots & 2 \\
\vdots & \vdots & \vdots & \ddots & 2 \\
0 & 0 & 0 & \ldots & 1
\end{array}\right)
$$

and $b=(-1, \ldots,-1)^{T}$. The problem instances ranged from $n=8000$ to $n=30,000$.

Results on Benchmark VI

Next Generation Internet Model [Nagurney et al., 2014]

Service Providers
Cournot-Nash
game

Demand Markets
Figure 1: The Network Structure of the Cournot-Nash-Bertrand Model for a Service-Oriented Internet

Problem Formulation

Table 1: Notation for the Game Theoretic Cournot-Nash-Bertrand Model

Notation	Definition
$Q_{i j k}$	the nonnegative service volume from i to k via j. We group the $\left\{Q_{i j k}\right\}$ elements for all j and k into the vector $Q_{i} \in R_{+}^{\text {no }}$ and then we group all the vectors Q_{i} for all i into the vector $Q \in R_{+}^{m n o}$.
s_{i}	the service volume (output) produced by service provider i. We group the $\left\{s_{i}\right\}$ elements into the vector $s \in R_{+}^{m}$.
$q_{i j k}$	the nonnegative quality level of network provider j transporting service i to k. We group the $q_{i j k}$ for all i and k into the vector $q_{j} \in R_{+}^{m o}$ and all the vectors q_{j} for all j into the vector $q \in R_{+}^{m n o}$.
$\pi_{i j k}$	the price charged by network provider j for transporting a unit of service provided by i via j to k. We group the $\pi_{i j k}$ for all i and k into the vector $\pi_{j} \in R_{+}^{m}$ and then we group all the vectors π_{j} for all j into the vector $\pi \in R_{+}^{m n o . ~}$
$f_{i}(s)$	the total production cost of service provider i.
$\hat{\rho}_{i j k}(Q, q)$	the demand price at k associated with service i transported via j.
$c_{i j k}(Q, q)$	the total transportation cost associated with delivering service i via j to k.
$o c_{i j k}\left(\pi_{i j k}\right)$	the opportunity cost associated with pricing by network provider j services transported from i to k.

VI Fomulation

$$
\left\langle F\left(X^{*}\right), X-X^{*}\right\rangle \geq 0, \quad \forall X \in \mathcal{K},
$$

$$
X \equiv(Q, q, \pi)
$$

* Production cost function $f(\mathrm{Q})$ - cost of providing a certain volume of content
* Demand price function - user offer depends on content quality and market volume

$$
\begin{gathered}
F_{i j k}^{1}(X)=\frac{\partial \hat{f}_{i}(Q)}{\partial Q_{i j k}}+\pi_{i j k}-\hat{\rho}_{i j k}(Q, q)-\sum_{h=1}^{n} \sum_{l=1}^{o} \frac{\partial \hat{\rho}_{i h l}(Q, q)}{\partial Q_{i j k}} \times Q_{i h l}, \\
F_{i j k}^{2}(X)=\sum_{h=1}^{m} \sum_{l=1}^{o} \frac{\partial c_{h j l}(Q, q)}{\partial q_{i j k}}, \\
F_{i j k}^{3}(X)=-Q_{i j k}+\frac{\partial o c_{i j k}\left(\pi_{i j k}\right)}{\partial \pi_{i j k}} .
\end{gathered}
$$

Simple Example

Example

The production cost functions are:

$$
\hat{f}_{1}(Q)=Q_{111}^{2}+Q_{111}, \quad \hat{f}_{2}(Q)=2 Q_{211}^{2}+Q_{211} .
$$

The demand price functions are:

$$
\hat{\rho}_{111}(Q, q)=-Q_{111}-.5 Q_{211}+.5 q_{111}+100, \quad \hat{\rho}_{211}(Q, q)=-Q_{211}-.5 Q_{111}+.5 q_{211}+200
$$

The transportation cost functions are:

$$
\hat{c}_{111}(Q, q)=.5\left(q_{111}-20\right)^{2}, \quad \hat{c}_{211}(Q, q)=.5\left(q_{211}-10\right)^{2}
$$

with the opportunity cost functions being:

$$
o c_{111}\left(\pi_{111}\right)=\pi_{111}^{2}, \quad o c_{211}\left(\pi_{211}\right)=\pi_{211}^{2} .
$$

Example Results

$$
\begin{gathered}
F_{111}^{1}(X)=2 Q_{111}+1+\pi_{111}+Q_{111}+.5 Q_{211}-.5 q_{111}-100+Q_{111}, \\
F_{211}^{1}(X)=4 Q_{211}+1+\pi_{211}+Q_{211}+.5 Q_{111}-.5 q_{211}-200+Q_{211}, \\
F_{111}^{2}(X)=q_{111}-20, \quad F_{211}^{2}(X)=q_{211}-10, \\
F_{111}^{3}(X)=-Q_{111}+2 \pi_{111}, \quad F_{211}^{3}(X)=-Q_{211}+2 \pi_{211} . \\
Q_{111}^{*}=21.00, \quad Q_{211}^{*}=30.00 \\
q_{111}^{*}=20.00, \quad q_{211}^{*}=10.00, \\
\pi_{111}^{*}=10.50, \quad \pi_{211}^{*}=15.00 .
\end{gathered}
$$

Results on Internet VI Problem

Sustainable Supply Chain

Nagurney et al.

Results on Sustainable Supply Chain VI Problem

Extragradient

SCN Convergence to C-N Equilibrium

Our new algorithm

Optimization

Player A

Questions?

