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Transter Learning on Mars

(Darby Dyar, Mount Holyoke; Thomas Boucher, Clifton
Carey, Stephen Giguere, UMass)
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L ow-Dimensional
Representation Discovery
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Optimization Equilibration

0A

min f(X)
X in feasible set K (F(z¥),z—2") >0, Ve € K

(Stampacchia, 1960s)



Part |: Some (Personal)
History and Motivation
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5th century BC
amil Brahmi

Early Tamil Epigraphy from the Earliest Times
to the Sixth Century A.D

Edited and translated by Iravatham Mahadevan
Harvard Oriental Series 62
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1904-2005

Obituaries | PASSINGS
Murray Emeneau, 101; Founded UC Berkeley Linguistics Department

Murray Barnson Emeneau, 101, an expert in Sanskrit and Dravidian languages who founded
the UC Berkeley Linguistics Department, died Aug. 29 in his sleep of natural causes at his
Berkeley home.
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Entropic Evidence for Linguistic Structure in
the Indus Script

Rajesh P. N. Rao, Nisha Yadav, Mayank N. Vahia, Hrishikesh Joglekar, R. Adhikari,
lravatham Mahadevan
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Entia non sunt multiplicanda sine necessitate
Bertrand Russell's explication

of Willam’s philosophy

[

William of Ockham

14th century logician and Franciscan friar



Why should machines learn?
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Herbert Simon

Learning denotes changes in a system that
are adaptive in that they enable the system
to do the same task or tasks drawn from
the same population more efficiently and
more effectively the next time around



ROBOT
LEARNING

=..  Learning to Drive

Scchar Mahadevan
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ALVINN learns
from a human driver

Can drive on actual highways at 65
miles per hour!



Saren Kierkegaard
19th century Danish philosopher

Life must be lived going forwards
but can only be understood
going backwards




Arthur Samuel's
Checker Playing Program
(IBM 700, 1956)

IBM's T.J. Watson said it would
iIncrease |IBM stock by 10 points
and it did!

First demo of ML!




MIT Press

Reinforcement .

Learning _ Aﬂdy
' Barto
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Temporal
Difference

Learning

> 16,000 citations Algontnm

http://webdocs.cs.ualberta.ca/~sutton/book/ebook/nodel.html



LEAST
SQUARES

45 -
__actual outcome
i [
, ) -
Predicted

total

travel 35 -
time

30 -

T T T T T T
leaving reach exiing 2ndary home  arnve
office  car  highway road  sleel  home

Situation

Predicted
total
travel
time

TEMPORAL
DIFFERENCE
LEARNING
&5
actual
outcome
40 4
35 -
30~

T T T T T T
leaving reach exiting 2ndary home arrive
office  car highway read stieet  home

Situation

Algorithm 1 TD (1984)

(1) 6; =7t + ¢, 0; — ¢ 6,
(2) Opr1 = 0 + By




Dopamine Neurons Code TD Error
0(t) = r(t) + yV(s(t+1)) - V(s(t))

No prediction u n pred iCted A
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ID-Learning rails (ot
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Optimization by
Gradient Descent TD

1984-2014:
Can TD be converted

into a "true” gradient
method?

Latest attempt: Sutton, 2009
Introduces gradient objectives
bl but solves without
true gradient
computation

Min f(x), X in feasible set K




Part |l:Equilibration In
Reinforcement Learning



Proximal Reinforcement Learning: A New Theory of Sequential

Decision Making in Primal-Dual Spaces,
Arxiv, May 26, 2014 (126 pages)

Sridhar Mahadevan, Bo Liu, Philip Thomas, Will Dabney,
Stephen Giguere,

Nicholas Jacek, Ian Gemp,
Ji Liu



Proximal Reinforcement
|_earning in Primal-Dual Spaces

Sparsity Scalability

Why Proximal RL"

Reliability



Saren Kierkegaard
19th century Danish philosopher

Life must be lived going forwards
but can only be understood
going backwards

In the Dual Space!




(Almost) Dimension-free
optimization



Mirror Maps

(Nemirovski and Yudin, 1980s; Bubeck, 2014)
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Variational Inequality

(Stampacchia, 1960s)

(F(x™),x —x") >0, Ve € K



Extragradient Method

Korpolevich (1970s) developed the extragradient method



Mirror-Prox: Non-Euclidean
Extragradient

(Nemirovski, 2005)

Vo

extragradient step




True Gradient TD-Learning:
RL meets V|

Algorithm 2 GTD2-MP (2014)

(1) Wyl = we + B (8¢ — &f we) by,

Oy 1 = ProXa,pn (0r + (e — v9;) (@f wy))
(2) pp1 =1+ 96; 01— 01Oy
Wiyl = Wi + 5t(5t+% - ﬁthwH%)ﬁbt ;
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(Mahadevan et al., Arxiv 2014)
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Variance of previous methods: O(L) Our new methods
Vi 2014

Variance of our methods: 0(7,17)



20-Dimensional Robot Arm

MSPBE

12. 20-link Lin. Pole Balancing Off-pol.
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Safe Robot Learning

Our new method

Previous
method

0000000

UBot, Laboratory of Perceptual Robotics i 4I§pisode650

homas, Dabney, Mahadevan, Giguere, NIPS 2013



Mirror Descent = “Natural” Gradient

(Nemirovsky and Yudin; Amari, 1980s)

Mirror Map

Mirror Descent Natural gradient

Thomas, Dabney, Mahadevan, Giguere, NIPS 2013



Part |ll: Equilibration
Framework for ML, CS



“The Internet is an equilibrium — we just have
to identify the game (Scott Shenker)”

“The Internet was the first computational artifact that
was not created by a single entity, but emerged from
the strategic interaction of many (Christos Papadimitriou)”

The “Invisible Hand” of
the Internet

Adam Smith
The Wealth of Nations  suceor anascne "
1776




Competing Goals of the Internet:
1992-2014
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LA Times Story. June 05 2014

Verizon tells Netflix to stop blaming it for streaming issues

Verizon wants Nettlix to stop blaming the Internet Service
Provider for any streaming issues customers may be having
when watching TV shows and movies.

"Netflix has been aware for some time that a few Internet
middlemen have congestion issues with some |P Networks
and nonetheless, Netflix has chosen to continue sending its

traffic over those congested routes,” said Verizon General

Counsel Randal Milch. (Paul Sakuma / AP)




Part 1IV: New Algorithms,
Applications, Results



Optimization
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(Almost) Dimension-Free
optimization

1o

(Almost) Dimension-Free
equilibration



Fixed Point Formulation

Feasible set K

Normal Cone




Extragradient Method

Korpolevich (1970s) developed the extragradient method



Saren Kierkegaard
Revisited

Life must be lived going forwards

many times in the Dual
Space!

but can only be understood
going backwards

many times in the Dual
Space!




Our Latest VI Methods

(Gemp and Mahadevan, 2014)

General Runge-Kutta Mirror Descent (RKMDA)
kl — OékF (CIS k)

ko = ap F'(VYL (Vir(ar) — a21kr))
k3 = &kF(V¢Z(V¢k($k) — ag1ky — a32k2))

]fs — Cka(va(vwk(l‘k) —aslkl _CLSQkQ — ... —CL37S_1]€8_1))

Tr1 = VYLV (2r) — X7 bik;)




Benchmark VI Problem

Sun problem: This problem was proposed in [45]. The affine operator F' : R — R" is again given y
F(z) = Ax + b, where

1l & & 2
(012 2\
| (e 2
= 2
| O 1)

and b = (—1,...,—1)L". The problem instances ranged from n = 8000 to n = 30, 000.



Results on Benchmark Vi

Sun: CPU Time
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Next Generation Internet Model [Nagurney et al., 2014]

Service Providers

Cournot-Nash
game

Bertrand

Network Providers game

Demand Markets

Figure 1. The Network Structure of the Cournot-Nash-Bertrand Model
for a Service-Oriented Internet




Problem Formulation

Table 1: Notation for the Game Theoretic Cournot-Nash-Bertrand Model

Notation | Definition

& the nonnegative service volume from ¢ to k via j.

We group the {Q;;x} elements for all 7 and k into the vector @); € R%°

and then we group all the vectors @); for all ¢ into the vector ) € R"™°.
Si the service volume (output) produced by service provider i.

We group the {s;} elements into the vector s € R"".

Gl the nonnegative quality level of network provider j transporting service
1 to k. We group the g¢;;, for all ¢ and £ into the vector ¢; € R and
all the vectors g; for all j into the vector ¢ € R"™°.

o the price charged by network provider 5 for transporting a unit of
service provided by ¢ via j to k. We group the m;,; for all 7 and % into
the vector m; € R'" and then we group all the vectors 7; for all j into
the vector m € R'™°.

fi(s) the total production cost of service provider 1.

piik(Q, q) | the demand price at k associated with service ¢ transported via j.

ciik(Q,q) | the total transportation cost associated with delivering service ¢ via j
to k.

oc;ik (k) | the opportunity cost associated with pricing by network provider j

services transported from 7 to k.




VI Fomulation

(F(X*),X —X*)>0, VXeK, X = (Q,q,)

* Production cost function f(Q) - cost of providing a certain
volume of content

* Demand price function - user offer depends on content quality
and market volume

' afz(Q) apzhl Q q
F X I 1 ) 7 x ) )
zyk( ) aka Tk — pyk Q hz 1, lz 1, anyk Q hl
Ocnii(Q, q)
z k y
J LL O

szk( )=_Q’ijk | O, ir
ij



Simple Example

Service Providers

Network Provider

Demand Market @




Example

The production cost functions are:

f1<Q) — Q%u T Qllla f2(Q) — 2@%11 T Q211-

The demand price functions are:

p111(Q,q) = —Q111 — 5Q211 + .5qi11 + 100, p211(Q, q) = —Q211 — -5Q111 + 5211 + 200.

The transportation cost functions are:

é111(@%]) — -5(61111 — 20)2, é211(@ Cl) — -5(Q211 — 10)27

with the opportunity cost functions being:

00111(7T111> — W%Ua 00211(7T211) — 7T§11-




Example Results

FL(X) =2Qu1 + 1+ 11 + Q11 + .5@Q211 — 5giin — 100 + @111,

F2111(X) = 4Q)211 + 1 + mo11 + Q211 + .DQ111 — -5g211 — 200 4 Q211,
Fin(X) = g — 20,  F5,(X) = gann — 10,
FPp(X) = —Quur +2m111,  Fop(X) = — Qa1 + 27ma11.

Q71 = 21.00, @3, = 30.00,

¢111 = 20.00, g5, = 10.00,
7111 = 10.50, @5, = 15.00.



Results on Internet VI Problem

Extrgradient

SOl Convergence to C-N-B Equilibrium
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Sustainable Supply Chain
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Nagurney

et al.




# of Iterations to Convergence

Results on Sustainable
Supply Chain VI Problem

SCN Convergence to C-N Equilibrium

Extraradient
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Player A

Optimization

1 2
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Cooperate Defect

20th
century ML

Cooperate

Game theory

Player B

% Defect

Complementarity
problems

Feasible set K
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Bz, + oz =0 is linear .
Ou +- (ﬁ_“)z = (0 is nonlinear .
fj:l‘] -E}IE
'a“ 4 arf’. + > =0 is nonlinear .
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FPu  u _—
E + tﬂ_ré =1y is linear .
#u O u . s
B_:rf + uﬂ_;r'_é_ =0 is quasilinear . Traffic equ“ibrium

problem

Nonlinear equation
solving




Questions?




