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Transfer Learning on Mars 
(Darby Dyar, Mount Holyoke; Thomas Boucher, Clifton 

Carey, Stephen Giguere, UMass)

Same laser 	


on Earth	



as on Mars

Curiosity zapping a !
rock with a laser



Low-Dimensional 
Representation Discovery 

Mixture of low-dimensional 
 (non-Euclidean) spaces

Original Data

New dimensionality 
reduction method



Optimization Equilibration

min f(x) 
x in feasible set K hF (x⇤), x� x

⇤i � 0, 8x 2 K

(Stampacchia, 1960s)



Part I: Some (Personal) 
History and Motivation



Iravatham 
Mahadevan ஐராவதம் மகாேதவன் 

5th century BC 
Tamil Brahmi

Early Tamil Epigraphy from the Earliest Times!
 to the Sixth Century A.D!

Edited and translated by Iravatham Mahadevan
Harvard Oriental Series 62



Iravatham 
Mahadevan, 
June 2014 

at 85

Obituaries | PASSINGS 
Murray Emeneau, 101; Founded UC Berkeley Linguistics Department 

Murray Barnson Emeneau, 101, an expert in Sanskrit and Dravidian languages who founded 
the UC Berkeley Linguistics Department, died Aug. 29 in his sleep of natural causes at his 

Berkeley home.

1904-2005



Indus 
Script

Great Bath 
Mohenjadaro2500 

B.C.



Published Online April 23 2009 
Science 29 May 2009:  

Vol. 324 no. 5931 p. 1165  
DOI: 10.1126/science.1170391 

 • BREVIA 
Entropic Evidence for Linguistic Structure in 

the Indus Script 
 . Rajesh P. N. Rao, Nisha Yadav, Mayank N. Vahia, Hrishikesh Joglekar, R. Adhikari, 

Iravatham Mahadevan

DNA

Fortran

Language

Is the Indus Script really a language?

http://www.sciencemag.org/search?author1=Rajesh+P.+N.+Rao&sortspec=date&submit=Submit
http://www.sciencemag.org/search?author1=Nisha+Yadav&sortspec=date&submit=Submit
http://www.sciencemag.org/search?author1=Mayank+N.+Vahia&sortspec=date&submit=Submit
http://www.sciencemag.org/search?author1=Hrishikesh+Joglekar&sortspec=date&submit=Submit
http://www.sciencemag.org/search?author1=R.+Adhikari&sortspec=date&submit=Submit
http://www.sciencemag.org/search?author1=Iravatham+Mahadevan&sortspec=date&submit=Submit


Entia non sunt multiplicanda sine necessitate 

William of Ockham
14th century logician and Franciscan friar

Bertrand Russell’s explication  
of Willam’s philosophy



Herbert Simon

Why should machines learn?

Learning denotes changes in a system that  
are adaptive in that they enable the system 

to do the same task or tasks drawn from 
the same population more efficiently and 

more effectively the next time around



Learning to Drive

Neural 	


Network

ALVINN learns	


from a human driver

Can drive on actual highways at 65   
miles per hour!



Søren Kierkegaard 
19th century Danish philosopher 

Life must be lived going forwards 
but can only be understood  

going backwards



Arthur Samuel's  
Checker Playing Program 

(IBM 700, 1956)

First demo of ML!

IBM’s T.J. Watson said it would  
increase IBM stock by 10 points 

and it did! 



> 16,000 citations

MIT Press

Temporal  
Difference 
Learning 
Algorithm

http://webdocs.cs.ualberta.ca/~sutton/book/ebook/node1.html

Andy 
Barto  

!
Richard 
Sutton



Least 
Squares

Temporal  
Difference 
Learning

Dedicated to Andrew Barto and Richard Sutton for inspiring a
generation of researchers to the study of reinforcement learning.

Algorithm 1 TD (1984)
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TD-Learning Fails (not 
always, but predictably!)

TD diverges

Baird 
 counter example



Optimization by  
Gradient Descent TD

1984-2014:!
Can TD be converted!
into a "true" gradient !

method?!

Min f(x), x in feasible set K

Latest attempt: Sutton, 2009 
Introduces gradient objectives 

but solves without  
true gradient 
computation



Part II:Equilibration in 
Reinforcement Learning 



Proximal Reinforcement Learning: A New Theory of Sequential 
Decision Making in Primal-Dual Spaces,!

Arxiv, May 26, 2014 (126 pages)!
!

!

Sridhar Mahadevan, Bo Liu, Philip Thomas, Will Dabney, 
Stephen Giguere,!

 Nicholas Jacek, Ian Gemp,!
Ji Liu!



Proximal Reinforcement 
Learning in Primal-Dual Spaces

Why Proximal RL? 

ScalabilitySparsity

Safety Reliability



Søren Kierkegaard 
19th century Danish philosopher 

Life must be lived going forwards 
but can only be understood  

going backwards
In the Dual Space!



(Almost) Dimension-free 
optimization



Mirror Maps 
(Nemirovski and Yudin, 1980s; Bubeck, 2014)

r�

r�⇤

xt
xt+1 X

r�(xt)

r�(yt+1)

gradient step

D

DUAL
SPACE

PRIMAL
SPACE

Rn



Variational Inequality 
(Stampacchia, 1960s)

Normal Cone

-F(x*)

F(x*)

x*x x-x*

Feasible set K

hF (x⇤), x� x

⇤i � 0, 8x 2 K



Extragradient Method

xk

�F(xk)

�F(yk)
yk

xk+1

K

Korpolevich (1970s) developed the extragradient method



Mirror-Prox: Non-Euclidean 
Extragradient  

(Nemirovski, 2005)
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r�(xt)

D
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extragradient step

Rn



True Gradient TD-Learning: 
RL meets VI

Dedicated to Andrew Barto and Richard Sutton for inspiring a
generation of researchers to the study of reinforcement learning.

Algorithm 1 TD (1984)
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(Mahadevan et al., Arxiv 2014)



Baird 
 counter example

Sutton et al., 2009
Our new methods 

2014



20-Dimensional Robot Arm

Our new 
method

Sutton 
et al., 2009



Safe Robot Learning

UBot, Laboratory of Perceptual Robotics

Our new method 

Previous 
method 

Thomas, Dabney, Mahadevan, Giguere, NIPS 2013



Mirror Descent = “Natural” Gradient 
(Nemirovsky and Yudin; Amari, 1980s)

Natural gradientMirror Descent 

Thomas, Dabney, Mahadevan, Giguere, NIPS 2013

Mirror Map



Part III: Equilibration 
Framework for ML, CS



The “Invisible Hand” of 
the Internet

“The Internet is an equilibrium — we just have!
to identify the game (Scott Shenker)”!

!
“The Internet was the first computational artifact  that!
was not created by a single entity, but emerged from!

the strategic interaction of many (Christos Papadimitriou)”!
!
!

Adam Smith 
The Wealth of Nations 

1776



Competing Goals of the Internet:
1992-2014 



LA  Times Story. June 05 2014 
Verizon tells Netflix to stop blaming it for streaming issues 

"Netflix has been aware for some time that a few Internet 
middlemen have congestion issues with some IP Networks 
and nonetheless, Netflix has chosen to continue sending its 
traffic over those congested routes," said Verizon General 

Counsel Randal Milch. (Paul Sakuma / AP)

!
Verizon wants Netflix to stop blaming the Internet Service 

Provider for any streaming issues customers may be having 
when watching TV shows and movies. 

!



Part IV: New Algorithms, 
Applications, Results 



Normal Cone

-F(x*)

F(x*)

x*x x-x*

Feasible set K

Optimization

Game theory

Nonlinear equation
solving

Complementarity
problems

Variational Inequalities

Traffic equilibrium
problem

21st 
century ML

20th 
century ML



(Almost) Dimension-Free 
optimization  

!

To 
!

(Almost) Dimension-Free 
equilibration  



Fixed Point Formulation

Normal Cone

-F(x*)

F(x*)

x*x x-x*

Feasible set K



Extragradient Method

xk

�F(xk)

�F(yk)
yk

xk+1

K

Korpolevich (1970s) developed the extragradient method



Søren Kierkegaard 
Revisited

Life must be lived going forwards 
!
!
!

but can only be understood  
going backwards

many times in the Dual 
Space!

many times in the Dual 
Space!



Our Latest VI Methods 
(Gemp and Mahadevan, 2014)
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Intuitively, the Bregman divergence measures the difference between the value of a strongly con-
vex function  (x) and the estimate derived from the first-order Taylor series expansion at  (y).
Many widely used distance measures turn out to be special cases of Bregman divergences, such
as Euclidean distance (where  (x) =

1
2kxk2 ) and Kullback Liebler divergence (where  (x) =P

i

x

i

log2 xi

, the negative entropy function). In general, Bregman divergences are non-symmetric,
but projections onto a convex set with respect to a Bregman divergence are well-defined. The general
mirror descent procedure can thus be defined as:
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The solution to this optimization problem can be stated succinctly as the following generalized
gradient descent algorithm, which forms the core procedure in mirror descent:
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Here,  ⇤ is the Legendre transform of the strongly convex function  , which is defined as

 

⇤
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x2K
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Equation 4 carries out the gradient update in two stages. In the first step, the gradient is computed
and x

k

is updated in the dual space. Subsequently the updated x

k

is mapped back into the primal
space.

General Runge-Kutta Mirror Descent (RKMDA)
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Figure 3: The proposed Runge Kutta family of algorithms for solving V I(F,K).

A detailed theoretical analysis of the proposed RKMDA method is the main topic of a subsequent
paper, as it requires introducing lengthy technical issues dealing with discontinuous differential
equations and projected dynamical systems, beyond the scope of this introductory paper on VIs.

4 Experimental Results

4.1 Service Oriented Internet

There are dozens of real-world applications of VIs [9], from supply chain manufacturing to financial
networks and traffic equilibrium problems. Many of these problems are beyond the scope of classical
optimization methods, since they require dealing with asymmetric Jacobian mappings. Given space
constraints, we select two representative network equilibrium problems of current interest, namely a
“next-generation” economic model of the Internet [10], and a sustainable environmentally conscious
supply chain network. This game-theoretic model of a service-oriented Internet has members of the
network (see Figure 4) compete to maximize profits by adjusting the quantity, quality, and price of
services delivered. Service providers (e.g., Netflix, Amazon) play a Cournot-Nash game controlling
the quantities of services provided while network providers (e.g., Verizon, AT&T) play a Bertrand
game controlling the delivery price as well as service quality. Consumers influence the network
through demand functions dictating the prices they are willing to pay for specific quantities and
qualities of services rendered. The variational inequality in Figure 4 is defined in terms of the service
quantity (Q), quality (q), and price (⇡) delivered from service provider i by network provider j to

6



Benchmark VI Problem

update is defined as:

x
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The learning rates in our approach were adapted as described in Figure 5 for the Euler-Heun method and
using the Cash-Karp method [7]. We compared our methods with the procedure developed by Dang and
Lan [9], which is essentially the mirror-prox method [18] with an extra line search step. Their approach,
which we refer to below as DL

Best

, is described below as Algorithm 3. The benchmark VI problems that
we used are as follows:

Algorithm 3 Non-Euclidean Extragradient VI Method proposed by Dang and Lan [9]
INPUT: Given initial point x1 2 K, initial step size �0 2 (0, 1), and � 2 (0, 1).

1: Set k = 1.
2: Compute y
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5: Set k  k + 1 and go to step 2.

1. Kojima-Shindo problem: These problems are from [37]. K = {x 2 R4|
P4

i=1 x

i

= 1}, and the
operator F : R4 ! R4 is defined as:

F (x) =
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CCA .

2. Watson (WAT) problem: These were proposed by Watson in [51]. The operator F : R10 ! R10 is
given by the affine mapping F (x) = Ax + b, where

F (x) =

0

BBBBBBBBBBBBBB@

0 0 �1 �1 �1 1 1 0 1 1
�2 �1 0 1 1 2 2 0 �1 0
1 0 1 �2 �1 �1 0 2 0 0
2 1 �1 0 1 0 �1 �1 �1 1
�2 0 1 1 0 2 2 �1 1 0
�1 0 1 1 1 0 �1 2 0 1
0 �1 1 0 2 �1 0 0 1 �1
0 �2 2 0 0 1 2 2 �1 0
0 �1 0 2 2 1 1 1 �1 0
2 �1 �1 0 1 0 0 �1 2 2

1

CCCCCCCCCCCCCCA

b = e

i

, the unit vector. There are 10 different instances of the Watson problem obtained for e1, . . . , e10.

3. Sun problem: This problem was proposed in [45]. The affine operator F : Rn ! Rn is again given y
F (x) = Ax + b, where

A =

0

BBBBB@

1 2 2 . . . 2

0 1 2 . . . 2

0 0 1 . . . 2

...
...

...
. . .

2

0 0 0 . . . 1

1

CCCCCA

and b = (�1, . . . ,�1)

T . The problem instances ranged from n = 8000 to n = 30, 000.

8



Results on Benchmark VI

Figure 6: This figure compares our proposed adaptive step size Runge Kutta VI methods described in
Figure 4 against a recently proposed non-Euclidean extragradient method by Dang and Lan [9] (Algorithm
3 above) [9]. See text for explanation.

10
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Figure 1: The Network Structure of the Cournot-Nash-Bertrand Model
for a Service-Oriented Internet

Professor Anna Nagurney Network Economics and the Internet

Cournot-Nash!
game

Bertrand !
game

Next Generation Internet Model [Nagurney et al., 2014]



Problem Formulation
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Figure 1: The Network Structure of the Cournot-Nash-Bertrand Model for a Service-Oriented
Internet

Table 1: Notation for the Game Theoretic Cournot-Nash-Bertrand Model
Notation Definition

Q

ijk

the nonnegative service volume from i to k via j.
We group the {Q

ijk

} elements for all j and k into the vector Q

i

2 R

no

+

and then we group all the vectors Q

i

for all i into the vector Q 2 R

mno

+ .
s

i

the service volume (output) produced by service provider i.
We group the {s

i

} elements into the vector s 2 R

m

+ .
q

ijk

the nonnegative quality level of network provider j transporting service
i to k. We group the q

ijk

for all i and k into the vector q

j

2 R

mo

+ and
all the vectors q

j

for all j into the vector q 2 R

mno

+ .
⇡

ijk

the price charged by network provider j for transporting a unit of
service provided by i via j to k. We group the ⇡

ijk

for all i and k into
the vector ⇡

j

2 R

m

+ and then we group all the vectors ⇡

j

for all j into
the vector ⇡ 2 R

mno

+ .
f

i

(s) the total production cost of service provider i.
⇢̂

ijk

(Q, q) the demand price at k associated with service i transported via j.
c

ijk

(Q, q) the total transportation cost associated with delivering service i via j

to k.
oc

ijk

(⇡
ijk

) the opportunity cost associated with pricing by network provider j

services transported from i to k.
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VI Fomulation
Production cost function f(Q) - cost of providing a certain 
volume of content


Demand price function - user offer depends on content quality 
and market volume




Simple Example
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Figure 3: Network Topology for Another Illustrative Example

The production cost functions are:

f̂1(Q) = Q

2
111 + Q111, f̂2(Q) = 2Q2

211 + Q211.

The demand price functions are:

⇢̂111(Q, q) = �Q111 � .5Q211 + .5q111 + 100, ⇢̂211(Q, q) = �Q211 � .5Q111 + .5q211 + 200.

The transportation cost functions are:

ĉ111(Q, q) = .5(q111 � 20)2
, ĉ211(Q, q) = .5(q211 � 10)2

,

with the opportunity cost functions being:

oc111(⇡111) = ⇡

2
111, oc211(⇡211) = ⇡

2
211.

Using (24) through (26), we construct the following:

F

1
111(X) = 2Q111 + 1 + ⇡111 + Q111 + .5Q211 � .5q111 � 100 + Q111,

F

1
211(X) = 4Q211 + 1 + ⇡211 + Q211 + .5Q111 � .5q211 � 200 + Q211,
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