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Convex Optimization

If f is a convex function, x* is 
its unique minimum 
whenever

f(x) � f(x⇤) + hrf(x⇤), x� x

⇤i, 8x 2 K

x

⇤ = argmin
x

f(x) such that x 2 K

Limitations of 
Optimization

•Single (convex) objective function may not exist 

•World is non-stationary, and competitive 

•“Symmetrization” is artificially imposed 

• Similarity matrix in manifold learning 

• Jacobian matrix in gradient optimization 



The “Invisible Hand” of 
the Internet

“The Internet is an equilibrium — we just have 
to identify the game (Scott Shenker)” 

!
“The Internet was the first computational artifact  that 

was not created by a single entity, but emerged from 
the strategic interaction of many (Christos Papadimitriou)” 

!
!

Adam Smith 
The Wealth of Nations 

1776

Changes at IBM 

Brendan Mcdermid/Reuters 
!

Virginia M. Rometty, IBM’s chief 
executive, last week announced the 

company’s new Watson division, 
which will have 2,500 employees. 
“This is a key growth area for IBM,” said Erich 
Clementi, senior vice president of IBM Global 

Technology Services. “We are building out a global 
footprint.” In addition to selling raw computing and 
data storage capabilities, he said, IBM plans to offer 

over 150 software and software development 
products in its cloud. Among the products is 
Watson, an advanced cognitive computing 

framework. Last week, IBM’s chief executive, 
Virginia Rometty, announced a new business group 

inside IBM for Watson. 

IBM Plans Big Spending for the Cloud 
By QUENTIN HARDY  JANUARY 16, 2014, 

NY Times 
!

IBM is moving rapidly on its plans to spend heavily on cloud 
computing. It expects to spend $1.2 billion this year on 

increasing the number and quality of computing centers it has 
worldwide. 

!
The move reflects the speed at which the business of renting a 

lot of computing power via the Internet is replacing the 
conventional business of selling mainframe computers, 

computer servers, and associated hardware and software. 
Champions of cloud computing cite both lower costs and faster 

deployment as the reasons for the shift. 
!
!
!
!
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“Netflix” Cache Problem 
(Dernbach, Kurose, Mahadevan, Technicolor)
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Figure 1: The Network Structure of the Cournot-Nash-Bertrand Model
for a Service-Oriented Internet

Professor Anna Nagurney Network Economics and the Internet

Cournot-Nash 
game

Bertrand  
game

Next Generation Internet Model [Nagurney et al., 2014] Multiple data sources on 
Mars Curiosity Rover

Rock Abrasion Tool

Miniature Thermal Emission Spectrometer
Moessbauer Spectrometer 

Alpha Particle X-ray Spectrometer

Microscopic Imager How to handle competition across  
 across instruments and scientists?



Part II: A New Framework for ML

"If I have seen further it is by standing on 
 ye sholders of Giants"

Letter to Robert Hooke (15 February 1676 
Isaac Newton) 

Guido Stampacchia

Normal Cone

-F(x*)

F(x*)

x*x x-x*

Feasible set K

Optimization

Game theory

Nonlinear equation
solving

Complementarity
problems

Variational Inequalities

Traffic equilibrium
problem

Variational Inequality

Normal Cone

-F(x*)

F(x*)

x*x x-x*

Feasible set K

hF (x⇤), x� x

⇤i � 0, 8x 2 K



Convex Optimization => VI

f(x) � f(x⇤) + hrf(x⇤), x� x

⇤i, 8x 2 K

Optimization => VI

Suppose x

⇤
= argmin

x2Kf(x)

where f is di↵erentiable

Then x

⇤
solves the VI

hrf(x

⇤
), x� x

⇤i � 0. 8x 2 K

Proof: Define �(t) = f(x

⇤
+ t(x� x

⇤
)

Since �(0) achieves the minimum

�

0
(0) = hrf(x

⇤
), x� x

⇤i � 0

When VI => optimization?

Given V I(F,K), define rF (x) =

2

64

@F1
@x1

. . .

@F1
@xn

... . . .

...
@Fn
@x1

. . .

@Fn
@xn

3

75

When rF is symmetric and positive semi-definite

VI(F,K) can be reduced to an optimization problem,

Optimization vs VIs

Property Optimization VI

Mapping (Strong) Convexity
(Strong) 

Monotonicity

Jacobian Positive definite and 
symmetric

Asymmetric

Objective function Single fixed Multiple or none



Traffic Network Equilibrium 
(Dafermos, Nagurney)

Link travel cost functions 

Ca(Fa) = 10*Fa 

Cb(Fb) = Fb + 50 

Cc(Fc) = Fc + 50 

Cd(Fd) = 10 Fd 

Travel demand D14 = 6 

Find equilibrium flows

1

3

4

a b

c d

2

Traffic Network Equilibrium 
(Dafermos, Nagurney)

1

3

4

a b

c d

2

Flows at equilibrium 

Fa = Fb = 3 

Fc = Fd = 3 

Ca = 30, Cb = 53 

Cc = 53, Cd = 30 

Path costs = 83 

Nash equilibrium

e

Travel cost = 92!

Part II: Algorithms 

Composite Objective Functions 
from recent ALL Research

shown in [24] that the d columns of the embedding
matrix F in equation (7) are equal to the d smallest
non-zero eigenvectors, the eigenvectors associated with
the smallest non-zero eigenvalues, of the Laplacian L

in the generalized eigenvalue problem LF = �DF .

3 Low Rank Embedding

Low rank embedding (LRE) is a variation on locally
linear embedding (LLE) [17] that uses low rank ma-
trix approximations instead of LLE’s nearest neighbor
approach to calculate a reconstruction coe�cients ma-
trix [12]. LRE is a two part algorithm. Given a data
set X, LRE begins by calculating the reconstruction
coe�cients matrix R by minimizing the loss function,

min
R

1

2
||X �XR||2F + �||R||⇤, (8)

where ||X||⇤ =
P

i �i(X) for singular values �i is the
spectral norm. In [5] it was shown that the spectral
norm is a convex relaxation of the rank minimization
problem, and so the solution XR is a low rank ap-
proximation of the original data matrix X. To solve
equation (8), the alternating direction method of mul-
tipliers (ADMM) [3] is used.

The generic ADMM optimization problem considers
convex functions f and g and minimizes the con-
strained equation

min f(x) + g(z) subject to Ax+Bz = c. (9)

In the case of LRE, f is the Frobenius norm mini-
mization and g is the spectral norm minimization in
equation (8). To apply ADMM we introduce a new
variable Z and equation (8) becomes

min
Z,R

1

2
||X �XR||2F + �||Z||⇤, s.t. R = Z. (10)

To solve the constrained optimization problem of equa-
tion (10), the augmented Lagrangian function L̂ is in-
troduced,

L̂(Z,R,L) =
1

2
||X �XR||2F + �||Z||⇤

+ tr(L(R� Z)>) +
�

2
||R� Z||2F , (11)

where � is the penalty parameter that controls the con-
vergence of the ADMM algorithm and � is the param-
eter that controls the penalty on the rank.

The ADMM algorithm consists of three steps. In the
first two steps, Z and R are updated by minimizing
L̂, and in the last step, L is updated with the error
violating the R = Z constraint. When updating Z in
practice, singular value thresholding (SVT) [4] is used

to minimize the spectral norm. Algorithm 2 details
the calculation to solve equation (11).

The second step of LRE preserves point-wise local lin-
earity, holding the reconstruction matrix R fixed while
minimizing the reconstruction loss in the embedded
space,

min
F (X)

1

2
||F (X) � F

(X)
R||2F s.t. (F (X))>F (X) = I, (12)

where F (X) is the embedding ofX and I is the identity
matrix. The constraint (F (X))>F (X) = I ensures that
it is a well-posed problem. In [18] it was shown that
equation (12) can be minimized by calculating the d

smallest non-zero eigenvectors of the Gram matrix (I�
R)>(I �R).

4 Low Rank Alignment

Low rank alignment (LRA) is a novel manifold align-
ment algorithm that uses a variant of LRE to em-
bed the data sets to a joint manifold space, unlike
previous non-linear manifold alignment methods that
have been based on Laplacian eigenmaps [2, 23, 24]
and Isomap [20, 25]. These methods rely on nearest-
neighbor graph construction algorithms, and are thus
prone to creating spurious inter-manifold connections
when mixtures of manifolds are present. These so-
called short-circuit connections are most commonly
found at junction points between manifolds. In con-
trast, LRA is able to avoid this problem, successfully
aligning data sets drawn from a mixture of manifolds.

LRA di↵ers from other manifold alignment algorithms
in several key aspects.

Where some previous algorithms embed data using the
eigenvectors of the graph Laplacian to preserve both
inter-set correspondences and intra-set local geome-
try, LRA minimizes the eigenvectors of the sum of the
Laplacian and the local Gram matrix to preserve the
inter-set correspondences and the intra-set local linear-
ity. Moreover, previous manifold alignment algorithms
require a reliable measure of similarity between near-
est neighbor samples, whereas LRA relies on the linear
weights used in sample reconstruction. Lastly, because
LRA uses the global property of rank to calculate its
reconstruction matrix, it can better discern the global
structure of mixing manifolds [12].

We now describe the low rank alignment algorithm
for two data sets. It begins with the same setup as
manifold alignment: two data sets X and Y are given,
along with the correspondence matrix C

(X,Y ) describ-
ing inter-set correspondences (defined identically to
W

(X,Y ) in equation (1)). The goal of LRA is to cal-
culate a set of embeddings F

(X) and F

(Y ) to a joint,

Low-rank embedding:

min
x2X

f(x) + g(x) : min
�2Rk

kX� � yk22 + �k�k1Lasso:

RO-TD:

“Sparse” Supervised learning

“Saddle Point” Reinforcement Learning

Unsupervised learning

min

x

kAx� bk
m

+ h(x) = min

x

max

kykn1
y

T

(Ax� b) + h(x)



Proximal 
Mappings

Operator 
Splitting

Mirror 
Descent

ADMM 
(Dual Decomposition)

Monotone 
Inclusion

0 2 T (x)

0 2 A(x) +B(x)

xk+1  r ⇤(r (xk)� ↵k@f(x))

prox

f

(v) = argmin

x

(f(x) +

1

2

kx� vk22)

Normal Cone

@f(x) = {v 2 Rn
: f(z) � f(x) + v

T
(z � x), 8z 2 dom(f)}

IC(x)

x

Normal Cone: @IC(x) = NC(x)z

Subdifferential of a convex function: 

VI as monotone inclusion

Normal Cone

-F(x*)

F(x*)

x*x x-x*

Feasible set K

0 2 F (x⇤) +NK(x⇤)

Distributed Optimization via ADMM  
(Boyd et al., ML FT 2010)

“ADMM was developed over a generation ago, 
with its roots stretching far in advance of the 

Internet, distributed and cloud computing systems, 
massive high-dimensional datasets, and associated 

large-scale applied statistical problems. Despite this, 
it appears well-suited to the modern regime.” 



Convex Feasibility Problem
10 Proximal Splitting Methods in Signal Processing 17
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Fig. 10.3 Forward-backward versus Douglas–Rachford: As in Example 10.12, letC and D be two
closed convex sets and consider the problem (10.30) of finding a point x∞ inC at minimum distance
from D. Let us set f1 = ιC and f2 = d2D/2. Top: The forward–backward algorithm with γn ≡ 1 and
λn≡ 1. As seen in Example 10.12, it assumes the form of the alternating projection method (10.31).
Bottom: The Douglas–Rachford algorithm with γ = 1 and λn ≡ 1. Table 10.1.xii yields prox f1 = PC
and Table 10.1.vi yields prox f2 : x "→ (x+PDx)/2. Therefore the updating rule in Algorithm 10.15
reduces to xn = (yn+PDyn)/2 and yn+1 = PC(2xn− yn)+ yn− xn = PC(PDyn)+ yn− xn.

Proximal splitting methods in signal processing 
Combetti and Pesquet

Operator 
Splitting

xk+1  (I + �A)�1(I � �B)xk

Manifold Learning

Single Manifold 
(LLE, ISOMAP, Diffusion Maps, 

Laplacian Eigenmaps)

Mixture of Manifolds 
(Low-rank embedding) 

Manifold)Warping 
(Vu,)Carey,)and)Mahadevan,)AAAI)2012)

• Combine)dynamic)time)warping)and)manifold)
alignment)using)alternating)projections)

• Minimize)the)loss)function)to)preserve)local)
geometry)and)correspondences

• CMU Multimodal activity dataset 
• Measure human activity while cooking 
• 26 subjects 
• 5 different recipes

Manifold Alignment over time



MARS Curiosity Rover

Boucher, Carey, Darby, Mahadevan, 2014

Mineral Spectra

Curiosity zapping a  
rock with a laser

Low-Rank Alignment

shown in [24] that the d columns of the embedding
matrix F in equation (7) are equal to the d smallest
non-zero eigenvectors, the eigenvectors associated with
the smallest non-zero eigenvalues, of the Laplacian L

in the generalized eigenvalue problem LF = �DF .

3 Low Rank Embedding

Low rank embedding (LRE) is a variation on locally
linear embedding (LLE) [17] that uses low rank ma-
trix approximations instead of LLE’s nearest neighbor
approach to calculate a reconstruction coe�cients ma-
trix [12]. LRE is a two part algorithm. Given a data
set X, LRE begins by calculating the reconstruction
coe�cients matrix R by minimizing the loss function,

min
R

1

2
||X �XR||2F + �||R||⇤, (8)

where ||X||⇤ =
P

i �i(X) for singular values �i is the
spectral norm. In [5] it was shown that the spectral
norm is a convex relaxation of the rank minimization
problem, and so the solution XR is a low rank ap-
proximation of the original data matrix X. To solve
equation (8), the alternating direction method of mul-
tipliers (ADMM) [3] is used.

The generic ADMM optimization problem considers
convex functions f and g and minimizes the con-
strained equation

min f(x) + g(z) subject to Ax+Bz = c. (9)

In the case of LRE, f is the Frobenius norm mini-
mization and g is the spectral norm minimization in
equation (8). To apply ADMM we introduce a new
variable Z and equation (8) becomes

min
Z,R

1

2
||X �XR||2F + �||Z||⇤, s.t. R = Z. (10)

To solve the constrained optimization problem of equa-
tion (10), the augmented Lagrangian function L̂ is in-
troduced,

L̂(Z,R,L) =
1

2
||X �XR||2F + �||Z||⇤

+ tr(L(R� Z)>) +
�

2
||R� Z||2F , (11)

where � is the penalty parameter that controls the con-
vergence of the ADMM algorithm and � is the param-
eter that controls the penalty on the rank.

The ADMM algorithm consists of three steps. In the
first two steps, Z and R are updated by minimizing
L̂, and in the last step, L is updated with the error
violating the R = Z constraint. When updating Z in
practice, singular value thresholding (SVT) [4] is used

to minimize the spectral norm. Algorithm 2 details
the calculation to solve equation (11).

The second step of LRE preserves point-wise local lin-
earity, holding the reconstruction matrix R fixed while
minimizing the reconstruction loss in the embedded
space,

min
F (X)

1

2
||F (X) � F

(X)
R||2F s.t. (F (X))>F (X) = I, (12)

where F (X) is the embedding ofX and I is the identity
matrix. The constraint (F (X))>F (X) = I ensures that
it is a well-posed problem. In [18] it was shown that
equation (12) can be minimized by calculating the d

smallest non-zero eigenvectors of the Gram matrix (I�
R)>(I �R).

4 Low Rank Alignment

Low rank alignment (LRA) is a novel manifold align-
ment algorithm that uses a variant of LRE to em-
bed the data sets to a joint manifold space, unlike
previous non-linear manifold alignment methods that
have been based on Laplacian eigenmaps [2, 23, 24]
and Isomap [20, 25]. These methods rely on nearest-
neighbor graph construction algorithms, and are thus
prone to creating spurious inter-manifold connections
when mixtures of manifolds are present. These so-
called short-circuit connections are most commonly
found at junction points between manifolds. In con-
trast, LRA is able to avoid this problem, successfully
aligning data sets drawn from a mixture of manifolds.

LRA di↵ers from other manifold alignment algorithms
in several key aspects.

Where some previous algorithms embed data using the
eigenvectors of the graph Laplacian to preserve both
inter-set correspondences and intra-set local geome-
try, LRA minimizes the eigenvectors of the sum of the
Laplacian and the local Gram matrix to preserve the
inter-set correspondences and the intra-set local linear-
ity. Moreover, previous manifold alignment algorithms
require a reliable measure of similarity between near-
est neighbor samples, whereas LRA relies on the linear
weights used in sample reconstruction. Lastly, because
LRA uses the global property of rank to calculate its
reconstruction matrix, it can better discern the global
structure of mixing manifolds [12].

We now describe the low rank alignment algorithm
for two data sets. It begins with the same setup as
manifold alignment: two data sets X and Y are given,
along with the correspondence matrix C

(X,Y ) describ-
ing inter-set correspondences (defined identically to
W

(X,Y ) in equation (1)). The goal of LRA is to cal-
culate a set of embeddings F

(X) and F

(Y ) to a joint,

Step 1: Compute 
Reconstructions

shown in [24] that the d columns of the embedding
matrix F in equation (7) are equal to the d smallest
non-zero eigenvectors, the eigenvectors associated with
the smallest non-zero eigenvalues, of the Laplacian L

in the generalized eigenvalue problem LF = �DF .

3 Low Rank Embedding

Low rank embedding (LRE) is a variation on locally
linear embedding (LLE) [17] that uses low rank ma-
trix approximations instead of LLE’s nearest neighbor
approach to calculate a reconstruction coe�cients ma-
trix [12]. LRE is a two part algorithm. Given a data
set X, LRE begins by calculating the reconstruction
coe�cients matrix R by minimizing the loss function,

min
R

1

2
||X �XR||2F + �||R||⇤, (8)

where ||X||⇤ =
P

i �i(X) for singular values �i is the
spectral norm. In [5] it was shown that the spectral
norm is a convex relaxation of the rank minimization
problem, and so the solution XR is a low rank ap-
proximation of the original data matrix X. To solve
equation (8), the alternating direction method of mul-
tipliers (ADMM) [3] is used.

The generic ADMM optimization problem considers
convex functions f and g and minimizes the con-
strained equation

min f(x) + g(z) subject to Ax+Bz = c. (9)

In the case of LRE, f is the Frobenius norm mini-
mization and g is the spectral norm minimization in
equation (8). To apply ADMM we introduce a new
variable Z and equation (8) becomes

min
Z,R

1

2
||X �XR||2F + �||Z||⇤, s.t. R = Z. (10)

To solve the constrained optimization problem of equa-
tion (10), the augmented Lagrangian function L̂ is in-
troduced,

L̂(Z,R,L) =
1

2
||X �XR||2F + �||Z||⇤

+ tr(L(R� Z)>) +
�

2
||R� Z||2F , (11)

where � is the penalty parameter that controls the con-
vergence of the ADMM algorithm and � is the param-
eter that controls the penalty on the rank.

The ADMM algorithm consists of three steps. In the
first two steps, Z and R are updated by minimizing
L̂, and in the last step, L is updated with the error
violating the R = Z constraint. When updating Z in
practice, singular value thresholding (SVT) [4] is used

to minimize the spectral norm. Algorithm 2 details
the calculation to solve equation (11).

The second step of LRE preserves point-wise local lin-
earity, holding the reconstruction matrix R fixed while
minimizing the reconstruction loss in the embedded
space,

min
F (X)

1

2
||F (X) � F

(X)
R||2F s.t. (F (X))>F (X) = I, (12)

where F (X) is the embedding ofX and I is the identity
matrix. The constraint (F (X))>F (X) = I ensures that
it is a well-posed problem. In [18] it was shown that
equation (12) can be minimized by calculating the d

smallest non-zero eigenvectors of the Gram matrix (I�
R)>(I �R).

4 Low Rank Alignment

Low rank alignment (LRA) is a novel manifold align-
ment algorithm that uses a variant of LRE to em-
bed the data sets to a joint manifold space, unlike
previous non-linear manifold alignment methods that
have been based on Laplacian eigenmaps [2, 23, 24]
and Isomap [20, 25]. These methods rely on nearest-
neighbor graph construction algorithms, and are thus
prone to creating spurious inter-manifold connections
when mixtures of manifolds are present. These so-
called short-circuit connections are most commonly
found at junction points between manifolds. In con-
trast, LRA is able to avoid this problem, successfully
aligning data sets drawn from a mixture of manifolds.

LRA di↵ers from other manifold alignment algorithms
in several key aspects.

Where some previous algorithms embed data using the
eigenvectors of the graph Laplacian to preserve both
inter-set correspondences and intra-set local geome-
try, LRA minimizes the eigenvectors of the sum of the
Laplacian and the local Gram matrix to preserve the
inter-set correspondences and the intra-set local linear-
ity. Moreover, previous manifold alignment algorithms
require a reliable measure of similarity between near-
est neighbor samples, whereas LRA relies on the linear
weights used in sample reconstruction. Lastly, because
LRA uses the global property of rank to calculate its
reconstruction matrix, it can better discern the global
structure of mixing manifolds [12].

We now describe the low rank alignment algorithm
for two data sets. It begins with the same setup as
manifold alignment: two data sets X and Y are given,
along with the correspondence matrix C

(X,Y ) describ-
ing inter-set correspondences (defined identically to
W

(X,Y ) in equation (1)). The goal of LRA is to cal-
culate a set of embeddings F

(X) and F

(Y ) to a joint,

Step 2: Compute 
Low-Dimensional 

Embeddings

(ADMM)

Eigen 
Decomposition

Experimental Results

Martian Spectroscopy EU Parallel Corpus 
English-German

Boucher, Carey, Darby, Mahadevan, 2014

LRA Cross-lingual AlignmentAstronomy

Optimization in High-Dimensions

Dual

Primal

Mirror!
Descent!

(Nemirovski and Yudin)

argminx�Xf(x)

Legendre!
Transform

[Thomas, Dabney, Mahadevan, Giguerre, NIPS 2013]

Natural!
Gradient!
Descent!
(Amari)

xk+1  r ⇤
k(r (xk)� ↵k@f(xk)) xk+1  xk � ↵kG

�1
k rf(xk)



Mirror Descent = Natural Gradient!
[Thomas, Dabney, Mahadevan, Giguerre, NIPS 2013]

4 Mirror Descent

Mirror descent algorithms form a class of highly scalable online gradient methods that are useful
in constrained minimization of non-smooth functions [17, 18]. They have recently been applied to
value function approximation and basis adaptation for reinforcement learning [19, 20]. The mirror
descent update is

x

k+1 = r ⇤
k

�
r 

k

(x

k

)� ↵

k

rf(x

k

)

�
, (1)

where  
k

: Rn ! R is a continuously differentiable and strongly convex function called the proxi-
mal function, and where the conjugate of  

k

is  ⇤
k

(y) , max

x2Rn {x|
y �  

k

(x)}, for any y 2 Rn.
Different choices of  

k

result in different mirror descent algorithms. A common choice for a fixed
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1Later, we abuse notation and switch freely between treating Gk as a matrix and a relation. When it is a
matrix, Gkx denotes matrix-vector multiplication that produces a vector. When it is a relation, Gk(x) produces
the singleton {Gkx}.

3

4 Mirror Descent

Mirror descent algorithms form a class of highly scalable online gradient methods that are useful
in constrained minimization of non-smooth functions [17, 18]. They have recently been applied to
value function approximation and basis adaptation for reinforcement learning [19, 20]. The mirror
descent update is

x

k+1 = r ⇤
k

�
r 

k

(x

k

)� ↵

k

rf(x

k

)

�
, (1)

where  
k

: Rn ! R is a continuously differentiable and strongly convex function called the proxi-
mal function, and where the conjugate of  

k

is  ⇤
k

(y) , max

x2Rn {x|
y �  

k

(x)}, for any y 2 Rn.
Different choices of  

k

result in different mirror descent algorithms. A common choice for a fixed
 

k

=  , 8k, is the p-norm [20], and a common adaptive  
k

is the Mahalanobis norm with a dynamic
covariance matrix [15].

Intuitively, the distance metric for the space that x
k

resides in is not necessarily the same as that of
the space that rf(x

k

) resides in. This suggests that it may not be appropriate to directly add x

k

and �↵
k

rf(x

k

) in the gradient descent update. To correct this, mirror descent moves x
k

into the
space of gradients (the dual space) with r 

k

(x

k

) before performing the gradient update. It takes
the result of this step in gradient space and returns it to the space of x

k

(the primal space) with r ⇤
k

.
Different choices of  

k

amount to different assumptions about the relationship between the primal
and dual spaces at x

k

.

5 Equivalence of Natural Gradient Descent and Mirror Descent

Theorem 5.1. The natural gradient descent update at step k with metric tensor G
k

, G(x

k

):

x

k+1 = x

k

� ↵

k

G

�1
k

rf(x

k

), (2)
is equivalent to (1), the mirror descent update at step k, with  

k

(x) = (

1
/2)x|

G

k

x.

Proof. First, notice that r 
k

(x) = G

k

x. Next, we derive a closed-form for  ⇤
k

:

 

⇤
k

(y) = max

x2Rn

⇢
x

|
y � 1

2

x

|
G

k

x

�
. (3)

Since the function being maximized on the right hand side is strictly concave, the x that maximizes
it is its critical point. Solving for this critical point, we get x = G

�1
k

y. Substituting this into (3), we
find that  ⇤

k

(y) = (

1
/2)y|G�1

k

y. Hence, r ⇤
k

(y) = G

�1
k

y. Inserting the definitions of r 
k

(x) and
r ⇤

k

(y) into (1), we find that the mirror descent update is
x

k+1 =G

�1
k

(G

k

x

k

� ↵

k

rf(x

k

)) = x

k

� ↵

k

G

�1
k

rf(x

k

),

which is identical to (2). ⌅
Although researchers often use  

k

that are norms like the p-norm and Mahalanobis norm, notice
that the  

k

that results in natural gradient descent is not a norm. Also, since G
k

depends on k,  
k

is
an adaptive proximal function [15].

6 Projected Natural Gradients

When x is constrained to some set, X ,  
k

in mirror descent is augmented with the indicator function
I

X

, where I

X

(x) = 0 if x 2 X , and +1 otherwise. The  
k

that was shown to generate an
update equivalent to the natural gradient descent update, with the added constraint that x 2 X , is
 

k

(x) = (

1
/2)x|

G

k

x+ I

X

(x). Hereafter, any references to  
k

refer to this augmented version.

For this proximal function, the subdifferential of  
k

(x) is r 
k

(x) = G

k

(x) +

ˆ

N

X

(x) = (G

k

+

ˆ

N

X

)(x), where ˆ

N

X

(x) , @I

X

(x) and, in the middle term, G
k

and ˆ

N

X

are relations and + denotes
Minkowski addition.1 ˆ

N

X

(x) is the normal cone of X at x if x 2 X and ; otherwise [21].
r ⇤

k

(y) = (G

k

+

ˆ

N

X

)

�1
(y). (4)

1Later, we abuse notation and switch freely between treating Gk as a matrix and a relation. When it is a
matrix, Gkx denotes matrix-vector multiplication that produces a vector. When it is a relation, Gk(x) produces
the singleton {Gkx}.

3

Fixed Point Formulation

Let ΠK be the projection 
onto convex set K 
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Projection Algorithm
how to adapt step sizes automatically in Section 3.3. In Section 3.4, we present a detailed study compar-
ing our proposed non-Euclidean RK methods with previous methods. In Section 3.5, we discuss scaling
our approach using Monte-Carlo methods for solving VIs, and by exploiting decompositional properties of
partitionable VIs.

3.1 Projection-Based Algorithms for VIs

The basic projection-based method (Algorithm 1) for solving VIs is based on Theorem 4 introduced earlier.

Algorithm 1 The Basic Projection Algorithm for solving VIs.
INPUT: Given VI(F,K), and a symmetric positive definite matrix D.

1: Set k = 0 and x

k

2 K.
2: repeat
3: Set x

k+1  ⇧

K,D

(x
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�D

�1
F (x

k

)).
4: Set k  k + 1.
5: until x
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= ⇧

K,D

(x
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k

)).
6: Return x

k

Here, ⇧

K,D

is the projector onto convex set K with respect to the natural norm induced by D, where
kxk2

D

= hx, Dxi. It can be shown that the basic projection algorithm solves any V I(F, K) for which the
mapping F is strongly monotone 4 and Lipschitz.5A simple strategy is to set D = ↵I, where ↵ >

L

2

2µ

, and L

is the Lipschitz smoothness constant, and µ is the strong monotonicity constant. The basic projection-based
algorithm has two critical limitations: it requires that the mapping F be strongly monotone. If, for example, F

is the gradient map of a continuously differentiable function, strong monotonicity implies the function must
be strongly convex. Second, setting the parameter ↵ requires knowing the Lipschitz smoothness L and the
strong monotonicity parameter µ. The extragradient method of Korpolevich [22] addresses some of these
concerns, and is defined as Algorithm 2 below.

Algorithm 2 The Extragradient Algorithm for solving VIs.
INPUT: Given VI(F,K), and a scalar ↵.

1: Set k = 0 and x

k

2 K.
2: repeat
3: Set y
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5: Set k  k + 1.
6: until x
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k

)).
7: Return x

k

Figure 3 shows a simple example where Algorithm 1 fails to converge, but Algorithm 2 does. If the initial
point x0 is chosen to be on the boundary of X, using Algorithm 1, it stays on it and fails to converge to the
solution of this VI (which is at the origin). If x0 is chosen to be in the interior of K, Algorithm 1 will move
towards the boundary. In contrast, using Algorithm 2, the solution can be found for any starting point. The
extragradient algoriithm derives its name from the property that it requires an “extra gradient” step (step 4
in Algorithm 2), unlike the basic projection algorithm given earlier as Algorithm 1. The principal advantage
of the extragradient method is that it can be shown to converge under a considerably weaker condition on
the mapping F , which now has to be merely monotonic: hF (x) � F (y), x � yi � 0. The earlier Lipschitz
condition is still necessary for convergence.

The extragradient algorithm has been the topic of much attention in optimization since it was proposed,
e.g., see [16, 20, 26, 38, 33, 43]. Khobotov [20] proved that the extragradient method converges under
the weaker requirement of pseudo-monotone mappings, 6 when the learning rate is automatically adjusted

4A mapping F is strongly monotone if hF (x)� F (y), x� yi � µkx� yk22, µ > 0,8x, y 2 K.
5A mapping F is Lipschitz if kF (x)� F (y)k2  Lkx� yk2,8x, y 2 K.
6A mapping F is pseudo-monotone if hF (y), x� yi � 0 ) hF (x), x� yi � 0, 8x, y 2 K.

4

Monotonicity Properties

hF (x)� F (y), x� yi � µkx� yk22, µ > 0, 8x, y 2 K

Strongly monotone mapping: 

Lipschitz mapping:

kF (x)� F (y)k2  Lkx� yk2, 8x, y 2 K

Example: if  F is the gradient map of a function f, then strong 
monotonicity of F implies f is strongly convex
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Figure 3: Left: This figure illustrates a VI where the basic projection algorithm (Algorithm 1) fails, but the
extragradient algorithm (Algorithm 2) succeeds. Right: One iteration of the extradient algorithm.
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Figure 4: Left: the proposed Runge Kutta extragradient family of algorithms for solving variational inequal-
ities V I(f, K) for the special case of unconstrained function minimization, where f = rF , and K = Rn.
Right: the corresponding methods for the general (non-Euclidean) VI problem.

based on a local measure of the Lipschitz constant. Iusem [16] proposed a variant whereby the current
iterate is projected onto a hyperplane separating the current iterate from the final solution, and subsequently
projected from the hyperplane onto the feasible set. Solodov and Svaiter [43] proposed another hyperplane
method, whereby the current iterate is projected onto the intersection of the hyperplane and the feasible
set. Finally, the extragradient method was generalized to the non-Euclidean case by combining it with the
mirror-descent method [31], resulting in the so-called “mirror-prox” algorithm [18].

3.2 Runge-Kutta Extragradient Algorithms

Figure 4 presents our proposed novel class of algorithms, which generalize the extragradient method using
numerical methods for solving ordinary differential equations (ODEs), principally the Runge Kutta family
[39]. In what follows, we will describe the methods on the left-hand side of Figure 4 for the special case
of unconstrained function minimization in Rn, and subsequently describe the algorithms on the right-hand
side for the more general non-Euclidean VI setting using Bregman divergences [5], and where the learning
rates are automatically adapted. Runge Kutta methods are highly popular methods for solving systems of
coupled first-order differential equations of the form:

dy

i

dx

= f

i

(x, y1, . . . , yn

), i = 1, . . . , n

5
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PDS Formulation
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Lipschitz continuity of F(X) guarantees the existence of a unique solution
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that is, it takes a key-value pair and emits a list of intermediate
key-value pairs. The engine then collects all the values v′

1, . . . ,v
′
r that

correspond to the same output key k′ (across all Mappers) and passes
them to the Reduce functions, which performs the transformation

(k′, [v′
1, . . . ,v

′
r]) !→ (k′′,R(v′

1, . . . ,v
′
r)),

where R is a commutative and associative function. For example, R
could simply sum v′

i. In Hadoop, Reducers can emit lists of key-value
pairs rather than just a single pair.

Each iteration of ADMM can easily be represented as a MapRe-
duce task: The parallel local computations are performed by Maps,
and the global aggregation is performed by a Reduce. We will describe
a simple global consensus implementation to give the general flavor
and discuss the details below. Here, we have the Reducer compute

Algorithm 2 An iteration of global consensus ADMM in Hadoop/ MapReduce.

function map(key i, dataset Di)
1. Read (xi,ui, ẑ) from HBase table.
2. Compute z := proxg,Nρ((1/N)ẑ).
3. Update ui := ui + xi − z.
4. Update xi := argminx

(
fi(x) + (ρ/2)∥x − z + ui∥2

2
)
.

5. Emit (key central, record (xi,ui)).

function reduce(key central, records (x1,u1), . . . ,(xN ,uN ))
1. Update ẑ :=

∑N
i=1 xi + ui.

2. Emit (key j, record (xj ,uj , ẑ)) to HBase for j = 1, . . . ,N .

ẑ =
∑N

i=1(xi + ui) rather than z or z̃ because summation is associa-
tive while averaging is not. We assume N is known (or, alternatively,
the Reducer can compute the sum

∑N
i=1 1). We have N Mappers, one

for each subsystem, and each Mapper updates ui and xi using the
ẑ from the previous iteration. Each Mapper independently executes
the proximal step to compute z, but this is usually a cheap opera-
tion like soft thresholding. It emits an intermediate key-value pair that
essentially serves as a message to the central collector. There is a sin-
gle Reducer, playing the role of a central collector, and its incoming
values are the messages from the Mappers. The updated records are

Boyd et al., ML Fn Trends, 2010



Bregman Divergence
Bregman Divergences: Definition

Let ϕ : S → R be a differentiable, strictly convex function of “Legendre
type” (S ⊆ Rd)
The Bregman Divergence Dϕ : S × relint(S)→ R is defined as

Dϕ(x, y) = ϕ(x)− ϕ(y)− (x− y)T∇ϕ(y)

y

x

Dϕ(x ,y)=x log x
y
−x+y

h(z)

ϕ(z)=z log z

Relative Entropy (or KL-divergence) is another Bregman divergence

Inderjit S. Dhillon University of Texas at Austin Learning with Bregman Divergences

KL divergence

Bregman ADMM
specifically, given yt and zt, xt+1 can be obtained by solving Lφρ(x, zt,yt) as ADMM does. In
other words, the quadratic penalty term 1

2∥Ax+Bzt−c∥22 in (3) is replaced withBφ(c−Ax,Bzt)
in the x update of BADMM. However, we cannot get zt+1 by solving Lφρ(xt+1, z,yt), since
Lφρ(xt+1, z,yt) contains the termBφ(c−Axt+1,Bz)which is not convex in z. Instead, the z update
of BADMM uses Bφ(Bz, c−Axt+1) to replace the quadratic penalty term 1

2∥Axt+1 +Bz− c∥22
in (3). It is worth noting that the same Bregman divergence Bφ is used in the x and z updates. To
allow the use of different Bregman divergences, additional Bregman divergences are introduced in
the x and z updates, which give more options for solving them efficiently. Therefore, we formally
propose the following updates for BADMM:

xt+1 = argmin
x∈X

f(x) + ⟨yt,Ax+Bzt − c⟩+ ρBφ(c−Ax,Bzt) + ρxBϕx
(x,xt) , (7)

zt+1 = argmin
z∈Z

g(z) + ⟨yt,Axt+1 +Bz− c⟩+ ρBφ(Bz, c−Axt+1) + ρzBϕz
(z, zt) , (8)

yt+1 = yt + τ(Axt+1 +Bzt+1 − c) . (9)

where ρ > 0, τ > 0, ρx ≥ 0, ρz ≥ 0. Note that three Bregman divergences are used in BADMM. If
all three of them are quadratic functions, Bregman ADMM reduces to generalized ADMM [8]. We
allow the use of a different step size τ in the dual variable update [8, 21]. The global convergence
for BADMM will be shown in Section 3.

We will discuss some special cases in two scenarios. In scenario 1 where ρx, ρz are zero,
BADMM simply replaces the quadratic penalty term in ADMM by a single Bregman divergence.
In this scenario, the x and z updates should be solved exactly. In scenario 2 where one or both of
ρx, ρz are positive, we can choose different Bregman divergences in the x and z updates so that
they can be solved inexactly. Compared to scenario 1, scenario 2 usually takes more iterations
to converge but may be less expensive in solving the x and z updates. Since (7) and (8) are
symmetric, the discussion below focuses on the x update, and can be applied for the z update. As
a gentle reminder, the global convergence for BADMM in Section 3 automatically applies for the
special cases considered here.

2.1 Scenario 1: Exact BADMM Update
If ρx = ρz = 0, BADMM simply uses a single Bregman divergence to replace the quadratic
penalty term in ADMM. This scenario is particularly useful when a single Bregman divergence φ
can yield efficient algorithms for both the x and z updates.

In a special case, like consensus optimization [4], whenA = −I,B = I, c = 0, (7) becomes

xt+1 = argmin
x∈X

f(x) + ⟨yt,−x+ zt⟩+ ρBφ(x, zt) . (10)

This special case is similar to Case 2 in Scenario 2. Further, if f is a linear function and X is the
unit simplex, we have multiplicative update when using KL divergence. If the z update is also a
multiplicative update, we have alternating multiplicative updates. In Section 4, we will show the
minimization over doubly stochastic matrices can be cast into this scenario.

4

“There is no known proof of convergence known for ADMM  
with non-quadratic penalty terms”, Boyd et al., 2010

Wang and Banerji, 2013: 

Bauschke et al., 2004: 

Therefore, Problem (4) can be viewed as a relaxation of

(7) minimize (x, y) !→ ϕ(x) + ψ(y) + ι∆(x, y) over U × U,

which, in turn, is equivalent to the standard problem

(8) minimize ϕ + ψ over U.

For the sake of illustration, let us consider the case when f = 1
2∥ · ∥

2, so that U = X and
D : (x, y) !→ 1

2∥x− y∥2. If ϕ and ψ are the indicator functions of two nonempty closed convex sets
A and B, respectively, then (8) corresponds to the convex feasibility problem of finding a point in
A ∩B. When no such point exists, a sensible alternative is to look for a pair (x, y) ∈ A× B such
that ∥x− y∥ = inf ∥A−B∥. This formulation, which corresponds to (4), was proposed in [21] and
has found many applications in engineering [22, 35, 38]. The algorithm devised in [21] to solve this
joint best approximation problem is the alternating projections method

(9) fix x0 ∈ X and set (∀n ∈ N) yn = PB(xn) and xn+1 = PA(yn).

More generally, let proxθ : x !→ argminy θ(y)+ 1
2∥x−y∥2 be the proximity operator [36, 37] associated

with a function θ ∈ Γ0(X). In [1], (9) was extended to the algorithm

(10) fix x0 ∈ X and set (∀n ∈ N) yn = proxψ(xn) and xn+1 = proxϕ(yn)

in order to solve

(11) minimize (x, y) !→ ϕ(x) + ψ(y) + 1
2∥x− y∥2 over X ×X.

The purpose of this paper is to introduce and analyze a proximal-like method to solve (4) under
the assumptions stated above. The lack of symmetry of D prompts us to consider two single-valued
operators defined on U , namely

(12) ←−−proxϕ : y !→ argmin
x∈U

ϕ(x) + D(x, y) and −−→proxψ : x !→ argmin
y∈U

ψ(y) + D(x, y).

The operators←−−proxϕ and −−→proxψ will be called the left and the right proximity operator, respectively.
While left proximity operators have already been used in the literature (see [6] and the references
therein), the notion of a right proximity operator at this level of generality appears to be new. We
note that [27, p. 26f] observes (but does not exploit) a superficial similarity between the iterative
step of a multiplicative algorithm and the application of the right proximity operator −−→proxψ in the
Kullback-Leibler divergence setting (see Example 2.5(ii)), where ψ is assumed to be the sum of a
continuous convex function and the indicator function of the nonnegative orthant in X.

In this paper, we shall provide a detailed analysis of these operators and establish key properties.
With these tools in place, we shall be in a position to tackle (4) by alternating minimizations of Λ.
We thus obtain the following algorithm

(13) fix x0 ∈ U and set (∀n ∈ N) yn = −−→proxψ(xn) and xn+1 =←−−proxϕ(yn).
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Generalized ADMM Method for 
Separable VIs 

(Tseng, 1988)

hx� x

⇤
, R(x⇤)i+ hz � z

⇤
, S(z⇤)i � 0,

8(x, z) 2 X ⇥ Z s.t. Ax+Bz = b

Minimize hR(x⇤), xi+ hS(z⇤), zi
s.t. x 2 X, z 2 Z,Ax+Bz = b

Let N(.|X), N(.|Z) be subdi↵erentials of �(.|X), �(.|Z)

Let p

⇤
be the optimal Lagrange multiplier for Ax+Bz = b

Generalized ADMM for 
Separable VIs
Karush Kuhn Tucker conditions imply:

A

T
p

⇤ 2 N(x

⇤|X) +R(x

⇤
)

B

T
p

⇤ 2 N(z

⇤|Z) + S(z

⇤
)

Ax

⇤
+Bz

⇤
= b

Define maximal monotone operators

F (x) = R(x) +N(x|X)

G(z) = S(z) +N(z|Z)

Above equations can be rewritten as:

AF�1
(AT p⇤) +BG�1

(BT p⇤) = b



Splitting Algorithm for 
Separable VIs

Find xt s.t. hx� xt, R(xt)�A

T
p(t)i � 0, 8x 2 X

Compute zt s.t.

hz � zt, S(zt)�B

T
(p(t)� c(t)(Axt +Bzt � b)i � 0,

8z 2 Z

Update p(t+ 1) = p(t) + c(t)(b�Axt �Bzt)

Summary
VIs and PDS provide a new direction for 
ML research 

Many applications and challenges 

Non-cooperative version of distributed 
ADMM optimization

Questions? Game theory => VI

A CN game consists of m 
players, where player i 
chooses a strategy xi ε Xi 

Let the joint payoffs for 
player i be Fi(x1,…,xm) 

A set of strategies x* is in 
Nash equilibrium if 

Proof: Define �(t) = f(x

⇤
+ t(x � x

⇤
)). Since �(t) is minimized at t = 0, it follows that 0  �

0
(0) =

hrf(x

⇤
), x � x

⇤i � 0, 8x 2 K, that is x

⇤ solves the VI.

Theorem 3. If f(x) is a convex function, and x

⇤ is the solution of V I(rf, K), then x

⇤ minimizes f .

Proof: Since f is convex, it follows that any tangent lies below the function, that is f(x) � f(x

⇤
) +

hrf(x

⇤
), x � x

⇤i, 8x 2 K. But, since x

⇤ solves the VI, it follows that f(x

⇤
) is a lower bound on the value of

f(x) everywhere, or that x

⇤ minimizes f .
A rich class of problems called complementarity problems (CPs) also can be reduced to solving a VI.

When the feasible set K is a cone, meaning that if x 2 K, then ↵x 2 K, ↵ � 0, then the VI becomes a CP.

Definition 2. Given a cone K ⇢ Rn, and a mapping F : K ! Rn, the complementarity problem CP(F,K) is
to find an x 2 K such that F (x) 2 K

⇤, the dual cone to K, and hx, F (x)i � 0. 3

A number of special cases of CPs are important. The nonlinear complementarity problem (NCP) is to
find x

⇤ 2 Rn

+ (the non-negative orthant) such that F (x

⇤
) � 0 and hF (x

⇤
), x

⇤i = 0. The solution to an NCP
and the corresponding V I(F,Rn

+) are the same, showing that NCPs reduce to VIs. In an NCP, whenever
the mapping function F is affine, that is F (x) = Mx+b, where M is an n⇥n matrix, then the corresponding
NCP is called a linear complementarity problem (LCP) [27]. Recent work on learning sparse models using
L1 regularization has exploited the fact that the standard LASSO objective [50] of L1 penalized regression
can be reduced to solving an LCP [21]. This reduction to LCP has been used in recent work on sparse
value function approximation as well in a method called LCP-TD [17]. A final crucial property of VIs is that
they can be formulated as finding fixed points.

Theorem 4. The vector x

⇤ is the solution of VI(F,K) if and only if, for any � > 0, x

⇤ is also a fixed point of
the map x

⇤
= ⇧

K

(x

⇤ � �F (x

⇤
)), where ⇧

K

is the projector onto convex set K.

In terms of the geometric picture of a VI illustrated in Figure 2. this property means that the solution of
a VI occurs at a vector x

⇤ where the vector field F (x

⇤
) induced by F on K is normal to the boundary of K

and directed inwards, so that the projection of x

⇤ � �F (x

⇤
) is the vector x

⇤ itself. This property forms the
basis for the projection class of methods that solve for the fixed point.

2.1 Equilibrium Problems in Game Theory

The VI framework provides a mathematically elegant approach to model equilibrium problems in game
theory [35]. A Nash game consists of m players, where player i chooses a strategy x

i

belonging to a
closed convex set X

i

⇢ Rn. After executing the joint action, each player is penalized (or rewarded) by the
amount F

i

(x1, . . . , xm

), where F

i

: Rn

i ! R is a continuously differentiable function. A set of strategies
x

⇤
= (x

⇤
1, . . . , x

⇤
m

) 2
Q

M

i=1 X

i

is said to be in equilibrium if no player can reduce the incurred penalty (or
increase the incurred reward) by unilaterally deviating from the chosen strategy. If each F

i

is convex on the
set X

i

, then the set of strategies x

⇤ is in equilibrium if and only if h(x
i

� x

⇤
i

), r
i

F

i

(x

⇤
i

)i � 0. In other words,
x

⇤ needs to be a solution of the VI h(x�x

⇤
), f(x

⇤
)i � 0, where f(x) = (rF1(x), . . . , rF

m

(x)). Nash games
are closely related to saddle point problems [18, 19, 23]. where we are given a function F : X ⇥ Y ! R,
and the objective is to find a solution (x

⇤
, y

⇤
) 2 X ⇥ Y such that

F (x

⇤
, y)  F (x

⇤
, y

⇤
)  F (x, y

⇤
), 8x 2 X, 8y 2 Y

Here, F is convex in x for each fixed y, and concave in y for each fixed x. Many equilibria problems in
economics can be modeled using VIs [29]. Bruckner et al. [6] solve the Nash equilibria problem using the
extragradient VI method [22], described below as Algorithm 2.

3 Proposed Research: Algorithms

Section 3.1 reviews projection-based algorithms for solving VIs, including the popular extragradient method
[22]. In Section 3.2, we introduce a new family of enhanced extragradient methods based on the Runge-
Kutta (RK) family of methods for numerical solution of ordinary differential equations (ODEs), and show

3Given a cone K, the dual cone K

⇤ is defined as K

⇤ = {y 2 Rn|hy, xi � 0, 8x 2 K}.
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