\Rightarrow
Rethinking Machine Learning
in the 21st Century: From
Optimization to Equilibration
Sridhar Mabadevan
Autonomous Learning Laboratory
School of Computer Science
University of Massacbusetts, Amberst

Autonomous Learning Laboratory
(formerly Adaptive Networks Laboratory, pre 2001)
Total: 29 graduated PhD students, 5 postdocs, 4 MS students, 3 undergrads) CJ Carey

Barto

Lab Directors
Current PhD
Students

Bruno Castro da Silva

William Dabney
Stefan Dernbach Kimberly Ferguson
lan Gemp
Stephen Giguere
Thomas Helmuth
Nicholas Jacek

Clemens Rosenbaum

Part I: Motivation

Optimization Problems

Convex Optimization

$x^{*}=\operatorname{argmin}_{x} f(x)$ such that $x \in \mathcal{K}$

- If f is a convex function, x^{*} is its unique minimum

Limitations of
 Optimization

- Single (convex) objective function may not exist
-World is non-stationary, and competitive
- "Symmetrization" is artificially imposed Similarity matrix in manifold learning Jacobian matrix in gradient optimization

The "Invisible Hand" of the Internet

"The Internet is an equilibrium - we just have to identify the game (Scott Shenker)"
"The Internet was the first computational artifact that was not created by a single entity, but emerged from the strategic interaction of many (Christos Papadimitriou)"

Changes at IBM

 IBM Watsor

Virginia M. Rometty, IBM's chief executive, last week announced the company's new Watson division, which will have 2,500 employees.
"This is a key growth area for IBM," said Erich Clementi, senior vice president of IBM Global Technology Services. "We are building out a global footprint." In addition to selling raw computing and data storage capabilities, he said, IBM plans to offer over 150 software and software development products in its cloud. Among the products is
Watson, an advanced cognitive computing
framework. Last week, IB M's chief executive, Virginia Rometty, announced a new business group inside IBM for Watson.

IBM Plans Big Spending for the Cloud By QUENTIN HARDY JANUARY 16, 2014, NY Times

IBM is moving rapidly on its plans to spend heavily on cloud computing. It expects to spend $\$ 1.2$ billion this year on increasing the number and quality of computing centers it has worldwide.

The move reflects the speed at which the business of renting a lot of computing power via the Internet is replacing the conventional business of selling mainframe computers, computer servers, and associated hardware and software.
Champions of cloud computing cite both lower costs and faster deployment as the reasons for the shift.

"Netflix" Cache Problem

http://www.mghpcc.org/ http://www.bu.edu/ http://www.harvard.edu http://web.mit.edu
http://www.massachusetts.edu/ http://www.northeastern.edu/ http://www.cisco.com http://www.emc.com
(Dernbach, Kurose, Mahadevan, Technicolor

Next Generation Internet Model [Nagurney et al., 2014]

Demand Markets
Figure 1: The Network Structure of the Cournot-Nash-Bertrand Model for a Service-Oriented Internet

amazon

Multiple data sources on Mars Curiosity Rover

How to handle competition across across instruments and scientists?

Rock Abrasion Tool

Miniature Thermal Emission Spectromet Moessbauer Spectrometer Alpha Particle X-ray Spectrometer

> Microscopic Imager

Part II: A New Framework for ML

"If I have seen further it is by standing on
ye sholders of Giants"
Letter to Robert Hooke (15 February 1676 Isaac Newton)

Guido Stampacchia

Variational Inequality

$\left\langle F\left(x^{*}\right), x-x^{*}\right\rangle \geq 0, \forall x \in K$

Convex Optimization => VI

$f(x) \geq f\left(x^{*}\right)+\left\langle\nabla f\left(x^{*}\right), x-x^{*}\right\rangle, \forall x \in K$

Optimization => VI

Suppose $x^{*}=\operatorname{argmin}_{x \in \mathcal{K}} f(x)$ where f is differentiable

Then x^{*} solves the VI $\left\langle\nabla f\left(x^{*}\right), x-x^{*}\right\rangle \geq 0 . \forall x \in \mathcal{K}$

Proof: Define $\phi(t)=f\left(x^{*}+t\left(x-x^{*}\right)\right.$
Since $\phi(0)$ achieves the minimum

$$
\phi^{\prime}(0)=\left\langle\nabla f\left(x^{*}\right), x-x^{*}\right\rangle \geq 0
$$

Optimization vs VIs

Given $V I(F, K)$, define $\nabla F(x)=\left[\begin{array}{ccc}\frac{\partial F_{1}}{\partial x_{1}} & \cdots & \frac{\partial F_{1}}{\partial x_{n}} \\ \vdots & \cdots & \vdots \\ \frac{\partial F_{n}}{\partial x_{1}} & \cdots & \frac{\partial F_{n}}{\partial x_{n}}\end{array}\right]$

When ∇F is symmetric and positive semi-definite $\mathrm{VI}(\mathrm{F}, \mathrm{K})$ can be reduced to an optimization problem,

Property	Optimization	VI
Mapping	(Strong) Convexity	(Strong) Monotonicity
Jacobian	Positive definite and symmetric	Asymmetric
Objective function	Single fixed	Multiple or none

Traffic Network Equilibrium

(Dafermos, Nagurney)

- Link travel cost functions
- $\mathrm{C}_{\mathrm{a}}\left(\mathrm{F}_{\mathrm{a}}\right)=10 * \mathrm{~F}_{\mathrm{a}}$
- $\mathrm{C}_{\mathrm{b}}\left(\mathrm{F}_{\mathrm{b}}\right)=\mathrm{F}_{\mathrm{b}}+50$
- $\mathrm{C}_{\mathrm{c}}\left(\mathrm{F}_{\mathrm{c}}\right)=\mathrm{F}_{\mathrm{c}}+50$
- $\mathrm{C}_{\mathrm{d}}\left(\mathrm{F}_{\mathrm{d}}\right)=10 \mathrm{~F}_{\mathrm{d}}$
- Travel demand $\mathrm{D}_{14}=6$

- Find equilibrium flows

Part II: Algorithms

Traffic Network Equilibrium
(Dafermos, Nagurney)

- Flows at equilibrium
- $\mathrm{F}_{\mathrm{a}}=\mathrm{F}_{\mathrm{b}}=3$
- $\mathrm{F}_{\mathrm{c}}=\mathrm{F}_{\mathrm{d}}=3$
- $\mathrm{C}_{\mathrm{a}}=30, \mathrm{C}_{\mathrm{b}}=53$
- $\mathrm{C}_{\mathrm{c}}=53, \mathrm{C}_{\mathrm{d}}=30$
- Path costs $=83$
- Nash equilibrium

Composite Objective Functions from recent ALL Research
"Sparse" Supervised learning
Lasso:
$\min _{r \in X} f(x)+g(x): \min _{\beta \in \mathbb{R}^{k}}\|X \beta-y\|_{2}^{2}+\lambda\|\beta\|_{1}$

RO-TD: "Saddle Point" Reinforcement Learning $\min _{x}\|A x-b\|_{m}+h(x)=\min _{x} \max _{\|y\|_{n} \leq 1} y^{I}(A x-b)+h(x)$

Low-rank embedding:

Normal Cone

Subdifferential of a convex function:
$\partial f(x)=\left\{v \in \mathbb{R}^{n}: f(z) \geq f(x)+v^{T}(z-x), \forall z \in \operatorname{dom}(f)\right\}$

$$
I_{\mathcal{C}}(x)
$$

VI as monotone inclusion

$$
0 \in F\left(x^{*}\right)+N_{K}\left(x^{*}\right)
$$

Distributed Optimization via ADMM

 (Boyd et al., ML FT 2010)"ADMM was developed over a generation ago, with its roots stretching far in advance of the Internet, distributed and cloud computing systems, massive high-dimensional datasets, and associated large-scale applied statistical problems. Despite this, it appears well-suited to the modern regime."

Convex Feasibility Problem

Proximal splitting methods in signal processing Combetti and Pesquet

Manifold Warping

(Vu, Carey, and Mahadevan, AAAI 2012)

- Combine dynamic time warping and manifold alignment using alternating projections
- Minimize the loss function to preserve local geometry and correspondences

$$
\begin{aligned}
L_{1}\left(F^{(X)}, F^{(Y)}\right) & =\mu \sum_{i \in X, j \in Y}\left\|F_{i}^{(X)}-F_{j}^{(Y)}\right\|^{2} W_{i, j}^{(X, Y)} \\
& +(1-\mu) \sum_{i, j \in X}\left\|F_{i}^{(X)}-F_{j}^{(X)}\right\|^{2} W_{i, i}^{(X)} \\
& +(1-\mu) \sum_{i, j \in Y}\left\|F_{i}^{(Y)}-F_{j}^{(Y)}\right\|^{2} W_{i, j}^{(Y)}
\end{aligned}
$$

Manifold Learning

Single Manifold
LLE, ISOMAP, Diffusion Maps, Laplacian Eigenmaps

Mixture of Manifolds Low-rank embedding)

Manifold Alignment over time

- CMU Multimodal activity dataset
- Measure human activity while cooking
- 26 subjects
- 5 different recipes

MARS Curiosity Rover

Mineral Spectra

Boucher, Carey, Darby, Mahadevan, 2014

Experimental Results

Low-Rank Alignment

Step 1: Compute
Reconstructions

$$
\min _{R} \frac{1}{2}\|X-X R\|_{F}^{2}+\lambda\|R\|_{*}
$$

(ADMM)

Step 2: Compute Low-Dimensional Embeddings

Optimization in High-Dimensions [Thomas, Dabney, Mahadevan, Giguerre, NIPS 2013]

$$
\operatorname{argmin}_{x \in X} f(x)
$$

Natural
Gradient

Descent (Amari)

Mirror Descent = Natural Gradient

Thomas, Dabney, Mahadevan, Giguerre, NIPS 2013]

Theorem 5.1. The natural gradient descent update at step k with metric tensor $G_{k} \triangleq G\left(x_{k}\right)$:

$$
x_{k+1}=x_{k}-\alpha_{k} G_{k}^{-1} \nabla f\left(x_{k}\right),
$$

is equivalent to (1), the mirror descent update at step k, with $\psi_{k}(x)=(1 / 2) x^{\top} G_{k} x$.

$$
x_{k+1}=\nabla \psi_{k}^{*}\left(\nabla \psi_{k}\left(x_{k}\right)-\alpha_{k} \nabla f\left(x_{k}\right)\right)
$$

Projection Algorithm

Algorithm 1 The Basic Projection Algorithm for solving VIs.
INPUT: Given $\mathrm{VI}(\mathrm{F}, \mathrm{K})$, and a symmetric positive definite matrix D
1: Set $k=0$ and $x_{k} \in K$.

2: repeat

3: \quad Set $x_{k+1} \leftarrow \Pi_{K, D}\left(x_{k}-D^{-1} F\left(x_{k}\right)\right)$.
4. Set $k \leftarrow k+1$

5: until $x_{k}=\Pi_{K, D}\left(x_{k}-D^{-1} F\left(x_{k}\right)\right)$
6: Return x_{k}

Fixed Point Formulation

- Let Π_{K} be the projection onto convex set K
- Then x^{*} solves VI(F,K) if and only if x^{*} is the fixed point of the mapping
 given by
* $x^{*}=\Pi_{\mathrm{K}}\left(\mathrm{x}^{*}-\gamma \mathrm{F}\left(\mathrm{x}^{*}\right)\right)$

Monotonicity Properties

Strongly monotone mapping:

$$
\langle F(x)-F(y), x-y\rangle \geq \mu\|x-y\|_{2}^{2}, \mu>0, \forall x, y \in K
$$

Lipschitz mapping:

$$
\|F(x)-F(y)\|_{2} \leq L\|x-y\|_{2}, \forall x, y \in K
$$

Example: if F is the gradient map of a function f, then strong monotonicity of F implies f is strongly convex

Projection Method Fails

Bertsekas and Tsitsiklis, Parallel and Distributed Computation, Athena Scientific.

Extragradient Method

Algorithm 2 The Extragradient Algorithm for solving VIs.
INPUT: Given VI(F,K), and a scalar α.
1: Set $k=0$ and $x_{k} \in K$.

2: repeat

Set $y_{k} \leftarrow \Pi_{K}\left(x_{k}-\alpha F\left(x_{k}\right)\right)$.
Set $x_{k+1} \leftarrow \Pi_{K}\left(x_{k}-\alpha F\left(y_{k}\right)\right)$.
5: \quad Set $k \leftarrow k+1$.
6: until $x_{k}=\Pi_{K}\left(x_{k}-\alpha F\left(x_{k}\right)\right)$.
: Return x_{k}
Khobotov developed a learning rate rule under which the extragradient method works for all pseudo-monotone mappings

$$
\langle F(y), x-y\rangle \geq 0 \Rightarrow\langle F(x), x-y\rangle \geq 0, \forall x, y \in K
$$

Extragradient Method

Korpolevich developed the extragradient method, which is the most popular method for solving VIs

```
    Runge-Kutta Method for VIs
    (Ian Gemp)
\begin{tabular}{|ll|}
\hline Runge Kutta (4) Gradient Descent & Runge Kutta (4) Non-Euclidean Extragradient \\
\(k_{1}=\alpha \nabla F\left(x_{k}\right)\) & \(k_{1}=\alpha F\left(x_{k}\right)\) \\
\(k_{2}=\alpha \nabla F\left(x_{k}-\frac{1}{2} k_{1}\right)\) & \(k_{2}=\alpha F\left(\nabla \psi_{k}^{*}\left(\nabla \psi_{k}\left(x_{k}\right)-\frac{\alpha}{2} k_{1}\right)\right)\) \\
\(k_{3}=\alpha \nabla F\left(x_{k}-\frac{1}{2} k_{2}\right)\) & \(k_{3}=\alpha F\left(\nabla \psi_{k}^{*}\left(\nabla \psi_{k}\left(x_{k}\right)-\frac{\alpha}{2} k_{2}\right)\right)\) \\
\(k_{4}=\alpha \nabla F\left(x_{k}-k_{3}\right)\) & \(k_{4}=\alpha F\left(\nabla \psi_{k}^{*}\left(\nabla \psi_{k}\left(x_{k}\right)-\alpha k_{3}\right)\right)\) \\
\(x_{k+1}=x_{k}-\frac{1}{6}\left(k_{1}+2 k_{2}+2 k_{3}+k_{4}\right)\) & \(x_{k+1}=\nabla \nabla \psi_{k}^{*}\left(\nabla \psi_{k}\left(x_{k}\right)-\frac{1}{6}\left(k_{1}+2 k_{2}+2 k_{3}+k_{4}\right)\right)\) \\
General Runge Kutta Gradient Descent & General RK Non-Euclidean Extragradient \\
\(k_{1}=\alpha \nabla F\left(x_{k}\right)\) & \(k_{1}=\alpha F\left(x_{k}\right)\) \\
\(k_{2}=\alpha \nabla F\left(x_{k}-a_{21} k_{1}\right)\) & \(k_{2}=\alpha F\left(\nabla \psi_{k}^{*}\left(\nabla \psi_{k}\left(x_{k}\right)-a_{21} k_{1}\right)\right)\) \\
\(k_{3}=\alpha \nabla F\left(x_{k}-a_{31} k_{1}-a_{32} k_{2}\right)\) & \(k_{3}=\alpha F\left(\nabla \psi_{k}^{*}\left(\nabla \psi_{k}\left(x_{k}\right)-a_{31} k_{1}-a_{32} k_{2}\right)\right)\) \\
\(\vdots\) & \\
\(k_{s}=\alpha \nabla F\left(x_{k}-a_{s 1} k_{1}-a_{s 2} k_{2}-\ldots-a_{s, s-1} k_{s-1}\right)\) \\
& \(k_{s}=\alpha F\left(\nabla \psi_{k}^{*}\left(\nabla \psi_{k}\left(x_{k}\right)-a_{s 1} k_{1}-a_{s 2} k_{2}-\ldots\right.\right.\) \\
\(x_{k+1}=x_{k}-\Sigma_{i=1}^{s} b_{i} k_{i}\) & \(\left.\left.a_{s, s-1} k_{s-1}\right)\right)\) \\
& \(x_{k+1}=\nabla \psi_{k}^{*}\left(\nabla \psi_{k}\left(x_{k}\right)-\Sigma_{i=1}^{s} b_{i} k_{i}\right)\) \\
&
\end{tabular}
```


Runge Kutta (4) Gradient Descent

$$
\begin{aligned}
& k_{4}=\nabla \psi_{k}^{*}\left(\nabla \psi_{k}\left(x_{k}\right)-\frac{1}{6}\left(k_{1}+2 k_{2}+2 k_{3}+k_{4}\right)\right. \\
& x_{k+1}=x_{2}
\end{aligned}
$$

```

\section*{General Runge Kutta Gradient Descent}
```

k
$k_{2}=\alpha \nabla F\left(x_{k}-a_{21} k_{1}\right)$
$k_{3}=\alpha \nabla F\left(x_{k}-a_{31} k_{1}\right.$
\vdots
$k_{s}=\alpha \nabla F\left(x_{k}-a_{s 1} k_{1}-a_{s 2} k_{2}-\ldots-a_{s, s-1} k_{s-1}\right) \vdots$
$\left.\left.x_{k+1}=x_{k}-\sum_{i=1}^{s} b_{i} k_{i} \quad a_{s, s-1} k_{s-1}\right)\right)$
$x_{k+1}=\nabla \psi_{k}^{*}\left(\nabla \psi_{k}\left(x_{k}\right)-\sum_{i=1}^{s} b_{i} k_{i}\right)$

```

\section*{Next-Generation Internet}
(Nagurney et al., 2014)


Markets

\section*{Results of Runge-Kutta on Internet VI Problem}


\section*{VI Formulation}
* Production cost function \(f(Q)\) - cost of providing a certain volume of content
* Demand price function \(\rho(\mathrm{Q}, \mathrm{q})\) - user offer depends on content quality and market volume
\[
\begin{gathered}
\left\langle F\left(X^{*}\right), X-X^{*}\right\rangle \geq 0, \quad \forall X \in \mathcal{K}, \\
F_{i j k}^{1}(X)=\frac{\partial \hat{f}_{i}(Q)}{\partial Q_{i j k}}+\pi_{i j k}-\hat{\rho}_{i j k}(Q, q)-\sum_{h=1}^{n} \sum_{l=1}^{o} \frac{\partial \hat{\rho}_{i h l}(Q, q)}{\partial Q_{i j k}} \times Q_{i h l}, \\
F_{i j k}^{2}(X)=\sum_{h=1}^{m} \sum_{l=1}^{o} \frac{\partial c_{h j l}(Q, q)}{\partial q_{i j k}}, \\
F_{i j k}^{3}(X)=-Q_{i j k}+\frac{\partial o c_{i j k}\left(\pi_{i j k}\right)}{\partial \pi_{i j k}} .
\end{gathered}
\]

\section*{Projected Dynamical Systems}
Two Player Game
\begin{tabular}{|l|c|c}
\multicolumn{3}{c}{ Column } \\
\hline & Heads & Talls \\
\hline Heads & \((1,-1)\) & \((-1,1)\) \\
\hline Talls & \((-1,1)\) & \((1,-1)\) \\
\hline
\end{tabular}
\[
\begin{aligned}
\alpha_{t+1} & =\alpha_{t}+\eta_{t} \frac{\partial V_{r}\left(\alpha_{t}, \beta_{t}\right)}{\partial \alpha} \\
\beta_{t+1} & =\beta_{t}+\eta_{t} \frac{\partial V_{c}\left(\alpha_{t}, \beta_{t}\right)}{\partial \beta}
\end{aligned}
\]

Projected dynamical systems are a more powerful framework for studying dynamics of equilibria in games than classical dynamical systems used in [Singh et al., UAI 2000]

\section*{PDS Formulation}

* \(\mathrm{X}^{*}\) solves the VI iff it is a stationary point of the projected ODE
*. Lipschitz continuity of \(F(X)\) guarantees the existence of a unique solution
* Stability of equilibrium is given by the monotonicity of \(F(X)\) which can be determined from the positive-definiteness of the Jacobian of \(F(X)\)

\section*{Alternating Direction Method of Multipliers}

Minimize \(f(x)+g(x)\) ADMM is an instance of Solve \(0 \in \partial f(x)+\partial g(x) \quad\) Douglas Rachford
Choose \(A(x)=\partial g(x), B(x)=\partial f(x)\) splitting
\[
\begin{array}{r}
x_{k+\frac{1}{2}}=\operatorname{argmin}_{x}\left(f(x)+\frac{1}{2 \lambda}\left\|x-z_{k}\right\|_{2}^{2}\right) \\
z_{k+\frac{1}{2}}=2 x_{k+\frac{1}{2}}-z_{k} \\
x_{k+1}=\operatorname{argmin}_{x}\left(g(x)+\frac{1}{2 \lambda}\left\|x-x_{k+\frac{1}{2}}\right\|_{2}^{2}\right) \\
z_{k+1}=z_{k}+x_{k+1}-x_{k+\frac{1}{2}}
\end{array}
\]

\section*{ADMM for Cloud Computing}

\section*{Algorithm 2 An iteration of global consensus ADMM in Hadoop/ MapReduce.}
function \(\operatorname{map}\left(\operatorname{key} i\right.\), dataset \(\left.\mathcal{D}_{i}\right)\)
1. Read \(\left(x_{i}, u_{i}, \hat{z}\right)\) from HBase table.
2. Compute \(z:=\operatorname{prox}_{g, N \rho}((1 / N) \hat{z})\)
3. Update \(u_{i}:=u_{i}+x_{i}-z\).
4. Update \(x_{i}:=\operatorname{argmin}_{x}\left(f_{i}(x)+(\rho / 2)\left\|x-z+u_{i}\right\|_{2}^{2}\right)\)
5. Emit (key central, record \(\left(x_{i}, u_{i}\right)\) ).
function reduce \(\left(\right.\) key Central, records \(\left.\left(x_{1}, u_{1}\right), \ldots,\left(x_{N}, u_{N}\right)\right)\)
1. Update \(\hat{z}:=\sum_{i=1}^{N} x_{i}+u_{i}\).
2. Emit (key \(j\), record \(\left(x_{j}, u_{j}, \hat{z}\right)\) ) to HBase for \(j=1, \ldots, N\).

Boyd et al., ML Fn Trends, 2010

\section*{Bregman Divergence}


\section*{Generalized ADMM Method for} Separable VIs
(Tseng, 1988)
\[
\begin{gathered}
\left\langle x-x^{*}, R\left(x^{*}\right)\right\rangle+\left\langle z-z^{*}, S\left(z^{*}\right)\right\rangle \geq 0, \\
\forall(x, z) \in X \times Z \text { s.t. } A x+B z=b \\
\downarrow \\
\text { Minimize }\left\langle R\left(x^{*}\right), x\right\rangle+\left\langle S\left(z^{*}\right), z\right\rangle \\
\text { s.t. } x \in X, z \in Z, A x+B z=b
\end{gathered}
\]

Let \(N(. \mid X), N(. \mid Z)\) be subdifferentials of \(\delta(. \mid X), \delta(. \mid Z)\)
Let \(p^{*}\) be the optimal Lagrange multiplier for \(A x+B z=b\),

\section*{Bregman ADMM}
"There is no known proof of convergence known for ADMM with non-quadratic penalty terms", Boyd et al., 2010

Wang and Banerji, 2013:
```

$\mathbf{x}_{t+1}=\underset{\mathbf{x} \in \mathcal{X}}{\operatorname{argmin}} f(\mathbf{x})+\left\langle\mathbf{y}_{t}, \mathbf{A} \mathbf{x}+\mathbf{B} \mathbf{z}_{t}-\mathbf{c}\right\rangle+\rho B_{\phi}\left(\mathbf{c}-\mathbf{A x}, \mathbf{B} \mathbf{z}_{t}\right)+\rho_{\mathbf{x}} B_{\varphi_{\mathbf{x}}}\left(\mathbf{x}, \mathbf{x}_{t}\right)$

```
\(\mathbf{z}_{t+1}=\underset{\mathbf{z} \in \mathcal{Z}}{\operatorname{argmin}} g(\mathbf{z})+\left\langle\mathbf{y}_{t}, \mathbf{A} \mathbf{x}_{t+1}+\mathbf{B z}-\mathbf{c}\right\rangle+\rho B_{\phi}\left(\mathbf{B} \mathbf{z}, \mathbf{c}-\mathbf{A} \mathbf{x}_{t+1}\right)+\rho_{\mathbf{z}} B_{\varphi_{\mathbf{z}}}\left(\mathbf{z}, \mathbf{z}_{t}\right)\)
\(\mathbf{y}_{t+1}=\mathbf{y}_{t}+\tau\left(\mathbf{A} \mathbf{x}_{t+1}+\mathbf{B} \mathbf{z}_{t+1}-\mathbf{c}\right)\)

Bauschke et al., 2004: \(\stackrel{\operatorname{prox}}{\varphi}^{:} y \mapsto \underset{\operatorname{argmin}}{ } \varphi(x)+D(x, y)\) \(\overrightarrow{\operatorname{prox}}_{\psi}: x \mapsto \operatorname{argmin} \psi(y)+D(x, y)\). \(y \in U\)
fix \(x_{0} \in U\) and set \((\forall n \in \mathbb{N}) \quad y_{n}=\overrightarrow{\operatorname{prox}}_{\psi}\left(x_{n}\right)\) and \(x_{n+1}=\overleftarrow{\operatorname{prox}}_{\varphi}\left(y_{n}\right)\)

\section*{Generalized ADMM for Separable VIs}

Karush Kuhn Tucker conditions imply:
\[
\begin{array}{r}
A^{T} p^{*} \in N\left(x^{*} \mid X\right)+R\left(x^{*}\right) \\
B^{T} p^{*} \in N\left(z^{*} \mid Z\right)+S\left(z^{*}\right) \\
A x^{*}+B z^{*}=b
\end{array}
\]

Define maximal monotone operators
\[
\begin{array}{r}
F(x)=R(x)+N(x \mid X) \\
G(z)=S(z)+N(z \mid Z)
\end{array}
\]

Above equations can be rewritten as:
\[
A F^{-1}\left(A^{T} p^{*}\right)+B G^{-1}\left(B^{T} p^{*}\right)=b
\]

\section*{Splitting Algorithm for Separable VIs}

Find \(x_{t}\) s.t. \(\left\langle x-x_{t}, R\left(x_{t}\right)-A^{T} p(t)\right\rangle \geq 0, \forall x \in X\)
\[
\begin{array}{r}
\text { Compute } z_{t} \text { s.t. } \\
\left\langle z-z_{t}, S\left(z_{t}\right)-B^{T}\left(p(t)-c(t)\left(A x_{t}+B z_{t}-b\right)\right\rangle \geq 0\right. \\
\forall z \in Z
\end{array}
\]

Update \(p(t+1)=p(t)+c(t)\left(b-A x_{t}-B z_{t}\right)\)

\section*{Questions?}

\section*{Game theory \(=>\) VI}

- A CN game consists of \(m\) players, where player i chooses a strategy \(\mathrm{x}_{\mathrm{i}} \varepsilon \mathrm{X}_{\mathrm{i}}\)
- Let the joint payoffs for player i be \(\mathrm{F}_{\mathrm{i}}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{m}}\right)\)
- A set of strategies \(x^{*}\) is in Nash equilibrium if
```

