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Outline of the Tutoral

+ Historical review and motivation (20 minutes)

+ Mathematical background (20 minutes)
* Algorithms (30 minutes)
* Applications (30 minutes)

* Questions (5 minutes)



Motivation

* Machine learning assumes the test data is drawn from
the same distribution as the training data

* Transfer learning is the class of problems where this
assumption is violated (also called domain adaptation)

* In many real world problems, there is a lack of adequate
labeled datasets, as labeling requires human effort

* In cognitive science, analogies and metaphors have been
long studied as a major component of human thought
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Cross-Language IR

e
N

English
documents

.

R
N

Italian
documents

.
N
N

German
documents

S

Madam President, on a point of order. You will be aware from the
press and television that there have been a number of bomb

explosions and killings in Sr1 Lanka.

Signora Presidente, intervengo per una mozione
d'ordine.Come avra letto sui giornali o sentito alla
televisione, in Sr1 Lanka s1 sono verificati numerosi
assassinil ed esplosioni di ordigni.

Frau Prasidentin, zur Geschaftsordnung.
Wie Sie sicher aus der Presse und dem Fernsehen

wissen, gab es in Sr1 Lanka mehrere
Bombenexplosionen mit zahlreichen Toten.



Metaphors in Language

“The stock market crashed today”

METAPHOR
AND COGNITION

by
BIFPIN INDURKHYA

“Good news.

The test results show it’s a metaphor.”




Metaphors in Language

JUST LAST WEEK, | MURDERED A

“FORTHIS FIGHT, FVE WRESTLED 7 o LS

WITH ALLIGATORS, I'VE TUSSLED HOSPITALIZED A BRICK. I'M S0
MEAN, | MAKE MEDICINE SICK.

WITH A WHALE. | HANDCUFFED - MEALL WARE WEMCIE S1¢

LIGHTNING AND THROWN ? . MAN,

aa 3 THROUGH A HURRICANE AND
';I;II:NDEH INJAIL YOU KNOW I'M !!‘NOT GET WET. | CAN DROWN THE

DRINK OF WATER, AND KILTA
DEAD TREE". - MUHAMMAD ALI




Cognitive Science Models

Base Domain

Known

Analogical Reasoning:
Structure Mapping

structural
aspects

>

» Target Domain

Inferred
structural
aspects

Gentner

6 protons

+ 6 neutrons

\—/J G electron

o neutron

Carbon atom

: : W 7 NEPTUNE -
& BARTH,_ i} JUPTER~ RN

> ® 2 h __o

iy muus

Solar system



Recent Books on Analogical Reasoning

SURFACES AND ESSENCES

Nerr | Frade
(iBes Fchied Edvorn

Computational
Approaches

to Analogical
Reasoning:
“Current Trends

DOUGLAS HOFSTADTER
& EMMANUEL SANDER




Logical Approach to Analogy

“ In IJCAI 1987, Stuart Russell and Todd Davies proposed

the use of determination rules as a logical framework
for analogy

* Determinations generalize the concept of functional
dependencies in databases

* We intuitively think nationality determines language, in
that speakers who share a nationality speak the same
language



Determination Rules

THE DEFINITION OF DETERMINATION:

Ylz, yl - Xz, 2]
iff
Vy,z(dz Xz, y| A Xz, 2|) = (Ve X[z, y] = Xz, 2]).

Make(Carg) = Ford AN Make(Cary) = Ford
Model(Carp) = Mustang A Model(Cary) = Mustang PS
Design(Carg) = GLX N Design(Cary) = GLX
Engine(Carg) = V6 A Engine(Cary) = V6

Year(Carg) = 1982 A Year(Car;) = 1982
Value(Carg) = $3500

Value(Cary) = $3500,



PAC Learning of Determinations

Lisa @
® English

John @

Guiseppe @ @ ltalian

Mahadevan and Tadepalli

MILJ 9924

Isabella @

Mami ® ® Japanese

Theorem 4 The space of functions F. consistent with a determination P(x,y) > Q(z, z) is

polynomial-time learnable if |[range(P)| < ¢ and |range(Q)| < 1 are polynomials in |x| = n.
Determ. Dimension | Examples| needed P-time learnable if
P> Q < cl Aiclln 2 In = o O
P =r ¢ cl H{elln2 4+ 1n £} ¢ < O(n")

P v @ Man|2°1, 2"]] = {Min(2°1,2*)In2 + In 5} ¢ < O(logn)
JEs=a [2¢/21, Min[2¢1,271]] {2°1In2 + In £} ¢ < O(logn)
P3¢ |22 = {2"In2 + In 4} Not Learnable
P> Q <cl+ecl*(p—1)+ %{(cl +cl*(p—1) + cln(p — 1)+ c < O(nk)
cln(p—1) + log(cl(p — 1)) log(cl(p—1)))In2 + In £}
P =% Q) R e %{(cl + 2c2 % 4+ 2% lan+ Bt O(nk)
2c?lan + log 2¢% o log 2¢*la)In2 + In %}




|_earning from Multiple Datasets

e |[n many applications, multiple “views™ or multiple datasets are
constructed

e Bioinformatics

e Activity recognition

e Computer graphics

e Scientific exploration (MARS rover)
e Cross-lingual information retrieval

e Spectral methods for learning latent variable models



Exploiting Correlations
(Hotelling, 1936)

& . ’.."' :’.c
= pida
0 B a8eX” .
" S - .
Acceleration MPG = 3 2l
P . .':
Bl atee
.2_ 0:‘0

4 1 1 1 1 1 1 1 1 1
15 1 05 0 05 1 15 2 25 3 35
0.0025"Disp+0.020*HP-0.000025*"Wat

Displacement Horsepower Weight
u' X'Yw
VuT XT X uvVoTYTY v
Find a projection of source and target vectors onto common

|atent space suchithat projectedivectorsiare maximally:correlated



Exploiting Symmetries

C3: f. maps 16@10x10

oUT C1: feature maps S4: f. maps 16@5x5
|32x3.‘2 20X S2: f. maps : CSs: | TPUT
: f. ae’FGae o|| U
6@14x14 120 g bayer

LAONN

Full conAectlon ! Gaussuan connections
Convolutions Subsampling Convolutions Subsampllng Full connection

An early (Le-Net5) Convolutional Neural Network design, LeNet-5, used for recognition
of digits

[Learned

| Deep RL in Atari

(Mnih et al.,
Nature 2015)

PREACARNNAAGERYINIREL T RGOIRTEN
BN L ANTEMV OGNSR ATEGL N IRAVEE
MELFNIECAYRY AN O™ T ATy

MNELS NN AT ET T N




Group Theoretic Approaches

t e = cos(h) + isin(6)

Sphere

in n-dim

Grassmannian

approaches
(Ham & Lee)




Convolution and Group Theory

Convolution Cross-correlation  Autocorrelation

kg 9 /N 9:9 /N

A U oa ol | e asd LN

Tl A
Y N N

(Wikipedia)



Definition of Transier Learning

Definition 1 (7ransfer Learning) Given a source domain Dg
and learning task 7g, a target domain D and learning task
I, transfer learning aims to help improve the learning of the
target predictive function fr(-) in Dp using the knowledge in
Ds and 7g, where Dg # Dy, or Tg # I7.

|[Pan and Yang, IEEE Trans]



Amazon Sentiment Analysis

“ A great read. You get an opportunity to glimpse
how a great scientific mind thinks
and how the person lived.”

“Fantastic performances from every actor. | appreciate that this movie
doesn't feel that it needs to take an already dramatic topic and
dramatize it even more. [t takes itself seriously, and presents the story
without unnecessary drama. Highly recommended.”




Computer Vision Transier

Caltech-256




Transter Learning on Mars

(Dyar, Mahadevan et al.)

Preprocessed

el Curiosity zapping a
rock with a laser

Same laser
on Earth
as on Mars

v 7 "
lo ™ , "‘
: B ‘y 5S4
!
| - . Rty




I'ransier in Reinforcement Learning

o

(¢) Three-Link Cart Pole (d) Quadrotor



Mult-modal transfer learning

VIDEO
/

JOS AN | \TENT
SWAR A spAcE

flowers, grass, tiger, water




Why is Transfer Learning Dithicult?

+ High-dimensional datasets (images, text, speech)

* Source and target domains may not share features (e.g.,
words in English and German)

“ Lack of suftficient correspondences

* Limited number of labeled examples in source and
target



Outline of the Tutoral

+ Historical review and motivation (20 minutes)

+ Mathematical background (20 minutes)

* Algorithms (30 minutes)

* Applications (30 minutes)

* Questions (5 minutes)



CHARLIE BROWN
A5 THAT BROTHERS
AND SISTERS CAN
LEARN T0 GET

(o
-’

AND HE SAYS THAT ADULTS

CAN GET ALONG THE SAME (UAY
THAT NATIONS GET ALONG ...

HE 9AYS THEY CAN GET
ALONG THE SAME WAY MATURE
ADULTS GET ALONG...

AT THIS POINT THE
ANALOGY BREAKS DOWN !




I WORRY THAT
ALL OF MY WISDOM
IS DERIVED FROM
BAD ANALOGIES.

www.dilbert.com scottadama®aclcom

© Scott Adams, Inc./Dist. by UFS, Inc.

RATBERT, SOMETIMES
A GOOD WINE HAS TO
AGE BEFORE IT IS
PERFECT.

|10 2% 06 ©2006 Scott Adams, Inc./Dist. by UFS, Inc.

SO. . . TO THE
ILLGET  EXTENT

SMARTER  THAT YoOU
OVER
TIME?

ARE LIKE
A GRAPE.




Sternberg’s Vector Space Model

Analogy Series Completion Classification
: D
@ o D1 A &
B I /1 . D3
e @t ®
@®------ - --->@ D, @ 1@ el
? ? 2 ® Rt ® Ds \ S Dy
/ iy =2 oD, =g
1 ! PS D4 @ @
S RO B
A C

R. J. Sternberg and M. K. Gardner. Unities in inductive reasoning. Journal of Experimental Psychology:
General, 112(1):80, 1983.



Analogical Reasoning in NLP

Athens is to Greece as Baghdad is to ?

cheap is to cheaper as high is to X?

Europe s to euro, as Vietnam is.to X2




Linguistic Reasoning by Vector Arithmetic

queen = king — man + woman

L ———— R

arg max (cos (b*,b—a +a”))
b*eV

Mikolov.et al., 2013



Levy and Goldberg, 2014

To achieve better balance among the different
aspects of similarity, we propose switching from
an additive to a multiplicative combination:

cos (b*, b) cos (b*, a™)
arg max 5
b*eV  cos (b*,a) + ¢




Modeling of Linguistic Relations

Spain \
4 Italy

Germany ~—— Rome
man walked — Berlin
O “Nuy woman Rt Ankara
. *. O ’ swam Russia
king Moscow
R o walking 1‘ Canada Ottawa
queen i . Japan Tokyo
My O Vietnam Hanoi
swimming China Beijing
Male-Female Verb tense Country-Capital

(Sternbergand Gardner, 1983; Mikolowv:etal., 2013)



Spain \
A Italy

Germany = Rome
— Berlin

" ... AN R Ankara

. *‘ O : swam Russia
king . ® ey Moscow
A walking - Canada tawa
queen < . X Jepan Tokyo
g O Vietnam Hanoi

swimming China Beijing

Male-Female Verb tense Country-Capital
geodesic
on Grassmannian

We show later that matrix manifold oniold

representations of linguistic relations Saanele, Capitals
subspace stbspace

are far supenor tolinear vector
LrANSIatONIaPPIOAGHES

PCA derived

subspaces of

word vectors



ML Techniques

* Instance reweighing methods

* Domain adaptation

* Linear Feature (subspace) construction methods
* CCA, Manifold alignment

“ Subspace alignment

“ Geodesic flow kernels

* Nonlinear feature construction approaches

* Deep learning
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A Survey on Transfer Learning

Sinno Jialin Pan and Qiang Yang Fellow, IEEE

Abstract—A major assumption in many machine learning and data mining algorithms is that the training and future data must be
in the same feature space and have the same distribution. However, in many real-world applications, this assumption may not hold.
For example, we sometimes have a classification task in one domain of interest, but we only have sufficient training data in another
domain of interest, where the latter data may be in a different feature space or follow a different data distribution. In such cases,
knowledge transfer, if done successfully, would greatly improve the performance of learning by avoiding much expensive data labeling
efforts. In recent years, transfer learning has emerged as a new learning framework to address this problem. This survey focuses on
categorizing and reviewing the current progress on transfer learning for classification, regression and clustering problems. In this survey,
we discuss the relationship between transfer learning and other related machine learning techniques such as domain adaptation, multi-
task learning and sample selection bias, as well as co-variate shift. We also explore some potential future issues in transfer learning
research.

Index Terms—Transfer Learning, Survey, Machine Learning, Data Mining.



A Taxonomy of Transter Learning

Case 1 > Self-taught
/ SRR E< Learning

Proto-Value
(INCHIONS

Learning

Labeled data are available
in a target domain

i Sourceand § | Multi-task
—i target tasks are >

; learnt : Leamlng
simultaneously
Transfer iy — ;
. T La!:l'e}[fld da‘;a ae i : Assumption: i
Learning : avatla edony%na SN Transductive | —  different i—» Domain
! source domam : : ; ; -
\ Transfer Learning <— domains but — Adaptation
single task

E NO Iabeled data ]_.[1 E ﬁb‘ ----------------------------------- E

both source and i Assumption: single
target domain | :  domain and single task

.- _ | VUV . o
Unsupervised

. Sample Selection Bias
Transter Learning /Covariance Shift

Pan and Yang, A Survey of Transfer Learning, IEEE TKDE 2010



Proto-Value Function Approximation

[Mahadevan, ICML 2005;
Mahadevan & Maggioni, JMLR 2007]

Reward-invariant




Extensions to Continuous MDPs

0.1

0.056

-0.05

Basis Fcn 3

Mountain car

0.1

0

0 -0.05

01 Velocity
Position

o s

[Mahadevan et al., AAAI 2006, Mahadevan and Maggioni, JMLR 2007]



Continuous MDPs: Acrobot Task

Proto—Value Functions on Acrobot Domain
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Reinforcement Learning for Atari

S

(Mmh et al Nature 2015)

Representation
Discovery
by fmdmg

usmgiconvolutionaly
RNEUral MEetVOTrKS

N
L NS EDT




Atari Deep Learning
Architecture

(Mnih et al., Nature 2015)
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Statistical Models of Domain Adaptation

DATASET SHIFT IN
MACHINE LEARNING

EDITED BY JOAQUIN QUINONERO-CANDELA, MASASHI SUGIYAMA,
ANTON SCHWAIGHOFER, AND NEIL D. LAWRENCE _

Simple covariate shift is when only the distributions of covariates x change and

everything else is the same.

Prior probability shift is when only the distribution over y changes and every-

thing else stays the same.

Sample selection bias is when the distributions differ as a result of an unknown
sample rejection process.

Imbalanced data is a form of deliberate dataset shift for computational or mod-

eling convenience.
Domain shift involves changes in measurement.

Source component shift involves changes in strength of contributing compo-
nents.



Simple Domain Adaptation Methods

The SRCONLY baseline ignores the target data and ’
trains a single model, only on the source data. (Daume and Marcu, 2006)

The TGTONLY baseline trains a single model only
on the target data.

The ALL baseline simply trains a standard learning

1 “th h . fth d Task Dom SRCONLY TGTONLY ALL WEIGHT PRED LININT PRIOR AUGMENT [IT<S Wir
algorithm on the union ot the two datasets. bn 498 e PO =iEia DAL Tl 2.06 1.98 P
A potential problem with the ALL baseline is that bc 2.0 4.07 3.55 353 3.89 4.01 3.47 347 + o+
1fN > M, then Ds may “WaSh OU.t” any affect ACE- nw 478 3.71 3.86 3.65 3.56 3.79 3.68 3.39 + +
D Gl T Wi i e T bl : NER wl 245 245 2.12 212 245 233 241 2.12 = +
e B S un 3.67 2.46 248 240 DAlSREE 0 2.03 191 = 5
more detail later, but one potential solution is cts 208 046 0.40 040 0.46 0.44 0.34 032 T
to re-weight examples from D®. For instance, | CoNLL  tgt 2.49 2.95 1.80 1.75 2513 1.77 1.89 1.76 +
if N =10 x M, we may weight each example PubMed  tgt 12.02 4.15 5.43 4.15 4.14 505 80 3.61 + +
T N R TR I L e s ol CNN tgt 10.29 3.82 3.67 345 3.46 344 3.35 3.37 + +
) . Yy 5 ) WS] 6.63 4 35 433 4 .30 432 432 427 4.11 + +
line, WEIGHTED, 18 exactly this approach, with swbd3 15.90 4.15 4.50 4.10 4.13 4.09 3.60 3.51 + +
the weight chosen by cross-validation. br-cf 5.16 6.27 4.85 4.80 4.78 4.72 5.22 SHIS
: ’ ; : Tree br-cg 432 5.36 4.16 4.15 4.27 4 .30 425 490
The PRED bascline is based on the idea of using | W - o 505 6.32 5105 A RO R 5 (|8 e 5 1) 5 s 541
the output of the source classifier as a feature in | Chunk  br-cl 5.66 6.60 542 539 5.39 553 5.99 5.73
the target classifier. Specifically, we first train a br-cm 3.57 6.59 3.14 3.11 3.15 3.31 4.08 4.89
model on the target data (training, development bECR o2 2 il s 45 202 st 5k
g ng, i br-cr 578 9.13 S F %510 520 5.5 6.71 6.30
and test). We use the predictions made by [Treebank-brown 6.35 5775 480 475 481 472 472 4.65 RN

the SRCONLY model as additional features and
train a second model on the target data, aug-
mented with this new feature.

In the LININT baseline, we linearly interpolate
the predictions of the SRCONLY and the TG-
TONLY models. The interpolation parameter is
adjusted based on target development data.



Mathematical Model of Sample Selection Bias

DEFINITION 2.1. Let & be a class of functions f:X—1R. Let p and
q be Borel probability distributions, and let X = (xq,...,X,,) and

= (y1,...,Y,) be samples composed of independent and identic-
ally distributed observations drawn from p and q, respectively. We
define the maximum mean discrepancy (MMD) and its empirical
estimate as

MMD|F, p, q| := sup (E, [f (x)] — Eq[f (y)])

feF

MMDIF,X, Y] := sup< Zf == if(m))

JHSE




Kernel Version ot MMD

Let XS = {ii, s ,53?} and Xt — {53%, s ,iln} be [Baktashmotlagh et al.
two sets of observations drawn 1.1.d. from s and ¢, respec- ICCV 2013]
tively. An empirical estimate of the MMD can be computed
as

g x4 n E m !

DG = S e = = Y e

i—1 j=1 .

2 o 2).

2 2 o
Bl n Fa g el e

-

1
(n k@, &) m k@ E) unm k(azz,@z))z

where ¢(-) is the mapping to the RKHS H, and k(-, ) =
(¢(+), @(+)) is the universal kernel associated with this map-
ping. In short, the MMD between the distributions of two
sets of observations 1s equivalent to the distance between
the sample means 1n a high-dimensional feature space.



Kernel MMD on Orthogonal Subspaces

= - o= -
1= JIE ity HE
DWW Xa, WiXe)=|=3 ¢(Wal) — — > (W a))| .
i=1 = =
BakiashmoedagiTerals
D2WTX, WTX,) = [CEV2018]
L (@, —2))TWW_ (2, — =)
S| 0
=1
Ly (2 — @) TWW (@} — x})
—I_W .Zl EeEXP ( =
Ui
Yool ) ' I8 e
_i Z exp | — (ws = CB“Z)TWW (CBS = mi)
mn e O



Feature Construction Methods



Single Subspace Methods

Map source
and target instances
to latent space

gnment

Preprocessed
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Canonical Correlational Analysis

Acceleration MPG
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Pioneer of the statistics
departments in the US!
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Dual Subspace Methods

subspace geodesic flow
kernels
Unprocessed Preprocessed
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Manifold Learning

LLE, ISOMAP
Laplacian Eigenmaps




A Summary of Manifold Alignment Approaches

Given Given Unsupervised
correspondences labels alignment
Preserve Local geometry . .
Preserve Global geometry .
One-step alignment .
Two-step alignment .
Feature-level - -
Instance-level . .
. Procrustes alignment . Manifold Projections (MP) Extensions of MP

* Chang Wang, Peter Krafft, and Sridhar Mahadevan, *“ Manifold Alignment ", appearing in
Manifold Learning: Theory and Applications, Taylor and Francis CRC Press, 2012.




Mathematical Notaton

D, isadiagonal matrix: D¥f = . Wi

Lm = Dm o Wx. .w . .
D, is a diagonal matrix: D}’ = >, W,’.
L, =D, — W,.

(), is an m x m diagonal matrix, and Q% = > ; Wi,
() is an m x n matrix, and Q37 = W7,

(23 is an n X m matrnx, and Q;’ = Wi,

()4 is ann x n diagonal matrix, and Q4 = > j Wi,




Manifold Alignment

Latent Space

X; X,
X
Two-step alignment One-step alignment
Example: Procrustes alignment Example: Manifold Projections

* Chang Wang, Peter Krafft, and Sridhar Mahadevan, “ Manifold Alignment ", in Manifold
Learning: Theory and Applications, Taylor and Francis CRC Press, 2012.



Feature-Level Manitold Projection

Xesilere s e

Y=[y19"°9yn]aijRq
x, <=y, forig[l,/]

Projection Results:
x; 2 alx;

2By

— a4 [
® 1) aB— (1)




Manifold Projection

X=la i e

V=l =l
x, <=y forig[l,/]




Manifold Projection

X=X 0 ER=

V=i vl s
x;, <>y, foriE[L,/]

We want to find mapping functions «, £ to mimimize the cost function C(«, ), where

C@f)=uY Y (@'x =BTy W +05Y (@'x,~a'x W +05% BTy, =y W,
e = £



Manifold Projection

X=loi s s

Y =[y.. -y, 1Ly ER
x, <=y fori[L/]

We want to find mapping functions «, £ to minimize the cost function C(«, ), where
Ca) =SS, (@ Fy W 4053 @~ YW +05S B0 BT W
e o &

The first term encourages the corresponding instances from different domains to be
projected to similar locations.
Wii=1, when x; and y; are in correspondence; 0, otherwise.

= i
1 - When 1:1 correspondence is given (x;<-2y; fori<=l):
- When many:many correspondence is given, set
W= X corresponding entries to 1.

0 - When nothing is given, we can use local geometry
information to fill in this matrix. (IJCAI 2009)




Comparison with CCA

O
. e o =i
0 +—\® o Vil topalap daiie
NO O x;, <y, forie[l/]

We want to find mapping functions &, £ to minimize the cost function C(«, ), where

Cl@,B)=p) ¥ (@'x%-ByYW FOSS@X=—a X;) W, F03 3B T =P V) 7,
e i,j I,j




How to compute projections?

Optimal Solution:

X T
y —.-me-a_m_“w

Y

N

[aaﬁ]=F(X9Y9W)

correspondence

(1) Construct Z, L, D using X, Y and W (the correspondences).

D, is a diagonal matrix: D¥ = > Wid.
L,=D,—W,.

D, is a diagonal matrix: D}’ = >, W,7.

L, =D, - W,. ) -
() is anm x m diagonal matrix, and Qf = >_, W*J.
(), is an m X n matrix, and Q’ZJ = Wi,

Q3 is ann X n matrix, and Q37 = W,

()4 is an n x n diagonal matrix, and Q4 = > Wi,

X 0
zz(o Y).
_<Dz 0)
-\ 0o b, )
L:(La:'*'/f'ﬂl —p )
—ufl3 Ly+lLQ4 ’

Create a joint domain.
( use correspondences

to determine how to join
them)

Project the joint domain to
a lower dimensional space.

(2) Theorem 1 : o, B to minimize C(c, ) are given by the

eigenvectors corresponding to the smallest eigenvalues of

ZLZ"y = AZDZ'y.

3) [

04

p

} =[7,,..7,], wherey, is the i minimum eigenvector.



Protein Alignment

Two datasets:

X: 3%215 matrix Y: 3%215 matrix 10% points are in
correspondence

" s
22
N 2 4 %]
L B
-0 a4
1834 L
e T oo e
g P T 2o -
- o — o
LS _-______-- - L
Y =100 Lo o
1 2 3 1 2 | 3 ||
10 4388 -3.508) -10572 1] 2.756 -2.591 -3.275 1 7
2 | 2.472 8.376 -20.128 2 -0.639 -0.921 -3.985
3 -6.944 20.36 -18.184 3 | -3.214 0.085 -1.307 1
4 | -11.984 26.472 -31.232 4 -6.82 0.065 -2.548
5 | 16.216 40.492 -26.64 5 | -8.344 2.16 0.275
6 | -18.468 55.324 -29.54 6 | -10.785 4.753 1.667
7| -9.84 61.756 -18.424 7 -8.798 7.635 3.284 1
8 | -20.412 71.732 -13.436 8 -10.872 7.801 6.497 W =
9 -31.58 61.296 -12.044 9 -11.08 4.019 7.073 0
10 -36.328 60.128 2.656 10 | 9.42 298 10.402
11 -38.652 45132 0.732 11 | -8.042 -0.212 8.606 O
12 -24.248 43.664 -4.044 12 £.674 1.858 59
13 -19.648 51.504 8.288 13 | 5055 4.182 8.427
14 -27.768 41.44 16.744 14 -3.503 1.162 10.245
15 -20.788 29.8 9.572 15 | 1957 0.001 5.95 0
16 -6.784 35.812 10.756 18 081 3.496 5.955
a= nec 2 NcY n 400




Protein Alignment

—0.0181 —0.2178
0.0398 —0.1073
—0.2368 —0.0126

—0.6555 —0.7379 —0.3007

ﬁ: 0.0329 0.0011 —(.8933
0.7216 —0.6305 0.2289



Protein Alignment

(A) Comparison of Manifold A and B (Before Alignment) (B) Comparison of Manifold A and B (After 3D Alignment)
100 20 -
3D .
N O Projection N O
-100.. 1D Projection -20 .
200 2D Prajection 50

40

-10 0 10 20 30 40 0 50 100 150 200 250



Reinforcement Learning Transter using Manifold Alignment

Source Domain

b\ “o-®
: \\ shared representation

*
traces from 7 (g,

| 3)execute (g,

Phase I: Learn cross-domain mapping -

Phase Il: Cross-domain transfer via Xs

T 2.) reflect target >
(s) : ()

Alnma

Target Domain

N

traces from target

| 1.) sample initial states

\

\

T T+
(s) %)
4.) transfer tracking signal

Py

Figure 1: Transfer is split into two phases: (I) learning the
inter-state mapping s via manifold alignment, and (II) ini-
tializing the target policy via mapping the source task policy.

Algorithm 1 Manifold Alignment Cross-Domain Transfer
for Policy Gradients (MAXDT-PG)

Inputs: Source and target tasks 7(5) and 7(7), optimal
source policy WZ*S), # source and target traces ng and

nr, # nearest neighbors k, # target rollouts z7, initial #
of target states m.
Learn xs:
1: Sample ng optimal source traces, T(*S), and n7 random
target traces, T(T)
2: Using the modified UMA approach, learn o s) and
o) to produce xs = a(TjiL) a(TS) ]
Transfer & Initialize Policy:
3: Collect m 1nitial target states ng) ~ éT)

4: Project these m states to the source by applying x &[]
5: Apply the optimal source policy 71'?5) on these projected
states to collect D(5) = {'T((g)}
i=1
6: Project the samples in D(%) to the target using xs[] to

produce tracking target traces D(7)

7. Compute tracking rewards using Eqn. (9)

8: Use policy gradients to minimize Eqn. (8), yielding 6 g;))
Improve Policy:

9: Start with 6 Ef(l)’)) and sample zp target rollouts

10: Follow policy gradients (e.g., episodic REINFORCE)

but using target rewards R(7)
11: Return optimal target policy parameters 0(*T)
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T'ransfer in RL using Manifold Alignment
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Transfer Learning from Mixture of Manifolds
(Boucher, Carey, Mahadevan, and Dyar, AAAI 2015)

Single manifold
(LLE, Laplacian Eigenmaps, Isomap) Low-rank Alignment (LRA)

S 2
_ Sgyid

: "%af%e.;?‘é@

4

1
in —||X — XR|? i}
min || X — XR|[% + A[|R]..



Multiple Objectives

1
in — || X — XR||% + \|R]l.,
min || Rl|% + Al|R]]

AN

Minimize reconstruction o
Minimize

error .
model complexity
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Cross-Language IR

1.0r Affine Ital.
' — Manifold lItal.
0.8 - Procrustes ltal.
' == Affine Ger.
0.7 - = LRA Ger.
a - - Manifold Ger.
© 0.671 - = Procrustes Ger.
| -
-
O 0.5
b e
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0.2
0.1% ' : ' : :
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Dimension

Figure 5: Cross validation results of EU parallel corpus
with 2410 Italian-English sentences pairs and 2110 German-
English sentences pairs.



Manitold Warping

(Hoa, Carey, Mahadevan: AAAI, 2012)

Dynamic Time Warping

lterate:
e -ind projection to lower-dimensional
space

oFind new set of correspondences Manifold Alignment




Activity Recognition

CCA+DTW (Zhou, NIPS 2009)

300

200 |

150 L

L s A KRR T-shep WYY
100t — = 2-shep MW
------- 2-5lep & CTW

i == CTW

® 6 66 O - —
T 00 150 200 250 300 350

The resulted alignment path of manifold warping is much closer to the ground truth alignment

Vu, Carey, and Mahadevan, AAAI 2012




Social Network Alignment

Sparse Manifold Alignment

Use Lasso to find a sparse solution.

0.35

o BI_?..PSociaI.?Netvvork-

Manifold Alignment with Lasso :

Result: Social Network Data

Probability of Matching

Procrustes alignment with Laplacian eigenmaps

Manifold Alignment with Fused Lasso
Affine matching with Laplacian eigenmaps

h ptg
Procrustes alignment with LPP

. 1)1 LS SR AR e e === Mfanifold alignment (feature-level)
_i' = ] ;; = ..:'! ‘ : ; : : : —e—Manifold alignment (instance-level)
: : H ] : Manifold alignment with Lasso
== \fanifold alignment with Fused Lasso

S G G G C—— e —
2 3 4 5 6 7 8 9 10

Wang, Liu, Vu, and Mahadevan, 2012 =




Smooth Transfer Learning

Smooth path
between source and
target




Subspace Alignment

# CCA and manifold alignment are based on aligning
instances

* They assume a discrete source and target domain
* They are non-incremental methods

* We present an alternative approach based on aligning
subspaces



Xt

/ Target Domain

AD2
Source Domain
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) XsM

Target Aligned Source Domain

Subspace Alignment (Fernando et al., CVPR 2014)



Subspace Alignment
F(M) = [|XsM — Xr ||

M™* = argminy (F(M))

argminy || X XsM — X¢Xr| |%~
argminy||M — XXr||%.
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Grassmannian Manifolds

1809-1877 ol




2D Example

All 1D subspaces
are rotations of each
other and must
pass through the origin

(Grassmannian
Subspace 2

= O
Subsp ac/




Rotations in n-dimensions

t e = cos(8) + isin()

Sphere

in n-dim




Geodesics on Lie Groups

In a Lie group, gradients live in the tangent space,
not in the group

[fogimapiliie croupitortangentspace
Xponentalimapsic SENLSPAGENT 1o ero)tie

G(m, D)




Subspace Manifolds

SPACE SYMBOL  MATRIX REP. QUOTIENT REP.
Orthogonal group On, O —~
Stiefel manifold Vst % OlOzs

- Vi, p/Op
Grassmann manifold G, , None or
On/(Op X On—p)




Tangent

Spaces

SPACE

Stiefel manifold

Grassmann manifold

DATA STRUCTURE REPRESENTS TANGENTS A
Y one point YTA = skew-symmetric
% entire equivalence class SN )

Normal

Manifold



Geodesic Flow Kernels

i (0)"
: 0 0O , 0O
e — e, = 0 Z> (Zi ) 7
: l . =.'X,'l'GXj
®(1)T s Z1
00
subspace | | > Zj + ZI:-OI-
—

Gong et al.,, CVPR 2012



Word Analogy Results

Word Plurals
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Comparisons

Relation CosADD | CosMUL | GFKCosADD | GFKCosMUL
capital-common-countries 89.52% 98.22% 100 % 100 %
capital-world 51.25% 80.43 % 72.61% 76.68%
city-in-state 7.62% 43.12% 46.00% 69.59 %
currency 18.57% 15.17% 33.43% 27.86%
family (gender inflections) | 69.36% 81.42% 94.26 % 93.67%
graml-adjective-to-adverb | 30.54% 39.91% 89.31% 86.18%
e gram?2-opposite 39.40% 45.32% 75.00 % 73.02%
gram3-comparative 73.49% 88.81% 92.71 % 91.96%
gram4-superlative 33.80% 67.61% 86.17% 90.43 %
gramS-present-participle 80.01% 92.32% 99.81 % 99.71%
gramb6-nationality-adjective | 92.49% 95.30% 98.93 % 98.43%
gram’/-past-tense 84.29% 93.79% 99.80 % 99.29%
gram8-plural (nouns) 80.03% 90.16% 98.19 % 97.67%
gram9-pluran-verbs 82.52% 91.72% 97.81 % 97.58
adjectives 35.90% 47.19% 59.55% 60.44 %
MSR nouns 69.91% 83.04% 84.10% 83.90%
verbs 81.26% 91.86% 89.03 % 88.86%




Correspondence Optumized DA

Giguere, 2016

f(SOaSl) = Z

1
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Correspondence Optumized DA




Computer Vision Testbed

Table 2. Recognition accuracy with semi-supervised DA with SVM classifier(Office dataset + Caltech10).

Method | C—A | D—A | W—=A | A—~C | D—C | W—C | A—-D | C—D | W—=D | A=W | C—»W | D—>W
NA 45.10 | 32.80 | 28.20 | 37.80 | 28.40 | 23.80 | 38.60 | 39.30 | 71.80 | 38.70 | 64.60 | 83.10
PCAg 46.20 | 37.70 | 35.60 | 37.10 | 31.60 | 29.30 | 39.10 | 33.70 | 66.80 | 36.10 | 76.60 | 83.10
PCA~r 43.60 | 38.50 | 34.30 | 36.60 | 31.60 | 27.80 | 39.10 | 34.10 | 64.20 | 36.80 | 67.90 | 83.10
GFK 4540 | 36.30 | 32.10 | 38.80 | 28.50 | 26.30 | 39.50 | 39.10 | 70.30 | 41.10 | 77.70 | 83.10
SA 4470 | 41.60 | 39.30 | 40.60 | 34.80 | 32.60 | 4090 | 41.10 | 77.60 | 38.20 | 82.20 | 87.10
OSA 46.51 | 46.38 | 4586 | 36.17 | 3495 | 34.27 | 49.79 | 4982 | 73.16 | 58.89 | 5399 | 78.26

Caltech-256
= -




Domain Invariant Projection

[Baktashmotlagh et al.,
ICCV 2013]

DIP is based on domg gradients on the Grassmannian manifold

Compute the gradient V fy, of the objective function
f on the manifold at the current estimate W as

Viw =0fw — WW' ofw | (1)

Riernannian Euclidean

oradient oradient



Domain Invariant Projection
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DIP Results in Gomputer Vision

Method A—-C A—-D A->W C—-A C—-D C—-W WA W—-C W=D
NO ADAPT-1INN 26 29.9 29.8 A T 25.5 25.8 23 20 59.2
NO ADAPT-SVM 41.7 41.4 34.2 51.8 54.1 46.8 31.1 31.5 70.7
TCA[24] 35.0 36.3 27.8 Asf 45.2 3045 24.2 20E5 80.2
GFK][15] 42.2 4051 40.7 44.5 43.3 44.7 31.8 30.8 75.6
SCL|[5] 42.3 36.9 34.9 49.3 42.0 39.3 34.7 32.5 83.4
KMM[18] 492 42.7 42 .4 48.3 53.5 45.8 31.9 29.0 72.0
LM[14] 45.5 4] 46.1 56.7 S 49.5 40.2 35.4 o8
DIP 47 .4 50.3 47.5 DDA 60.5 58.3 42.6 34.2 88.9
DIP-CC 2 49.04 47.8 58.7 61.2 58 40.9 37.2 91.7
DIP(Poly) 47.3 49.1 45.1 56.1 58.6 57 42.8 36.5 89.8
DIP-CC(Poly) 47.4 48.4 46.1 56.4 58.6 58 42.7 36.5 89.8

Table 1. Recognition accuracies on 9 pairs of source/target domains using the evaluation protocol of [14]. C': Caltech, A: Amazon,
W: Webcam, D: DSLR.



Batch vs. Incremental Methods

* Both MA and SA domain adaptation methods are batch
mode techniques

* They require having all the data upfront, and involve a
matrix eigenvector (SVD) computation

+ Given a new instance, the whole solution has to be

recomputed

* Can we design an incremental method?



Incremental Subspace Tracking
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Subspace Tracking

1. Introduction. We seek to identify an unknown subspace & of dimension d
in R™, described by an n X d matrix U whose orthonormal columns span S. Our data
consist of a sequence of vectors v; of the form

Uy = USt, (11)

where s; € R? is a random vector whose elements are independent and identically
distributed (i.i.d.) in A(0,1). Critically, we observe only a subset Q; C {1,2,...,n}
of the components of v;.



Key Theorem
(Edelman et al, SIAM)

2.5.1. Geodesics (Grassmann). A formula for geodesics on the Grassmann

manifold was given via (2.32); the following theorem provides a useful method for
computing this formula using n-by-p matrices.

THEOREM 2.3. IfY (t) = Qetlz o ). p, with Y(0) =Y and Y (0) = H, then

(2.65) Y(#)=(YV U) (ngf) T

where ULV is the compact singular value decomposition of H.

(2.32) Q(t) = Q(0) expt (g ‘§T>



GROUSE (Balzano et al., 2010)

(Grassmannian Rank-One Update Subspace Estimation)
Algorithm 1 GROUSE
Given Uy, an n X d orthonormal matrix, with 0 < d < n;
Setetoi=1%
repeat
Take €2; and (v;)q, from (1);
Define w; := arg miny, ||[Us]a,w — [vi]a, ||3;

Define b= Uswy; [rt]ﬂt = [Ut]Qt = [pt]ﬂt;
[”'“t]Q,? =05 o1 := ||re]] [|pel];
Choose 7; > 0 and set
77
Rl
Ut—|—1 = (U (COS(Otnt) = 1) ||pt|| ”wttH
ot ( ) T't w? (2)
sin(o .
] el

=t
until termination




Derivation of GROUSE

F(S;t) = min ||Aq,(Ua — ?Jt)||2

3—5 = —2(Aq, (vy — Uw))w?’
— _orw! r = Aq,(vs — Uw)
dF’
e Al I S
VF =(I-UU )dU

= —2(I — UUT)TwT = —orw?!



Derivation of GROUSE

o = 2|r||[|w]

i
—Orw :{—ﬁ Lo e wd}xdiag(a,o ..... O)X{HZJ)—H Uojiziass. yd}

cos(on) — 1 : P
( TWH)Q )waT—l—sm(an)

] sin(o 2 - (coslon) — i w—T
=0+ (sinton o+ fostom = O ) o

Uln) = -

I7{] {Jaw]
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CO-DIP-DA

Correspondence optimized domain invariant projection
ordomainiadaptation(Mahadevan 6

Combines minimization of kernelized maximum mean discrepancy
with CODA

Uses a convex combination of gradients from DIP and CODA




Comparison of DA Methods
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Comparison of DA Methods

MSR: Average Hits
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Computer Vision: Comparison of DA Methods

dososencananas
| Method

e e et e
| SA-Stnd

| SA-CODA

| GFK-Stnd
| GFK-CODA

| SA-Stnd
| SA-CODA
| GFK-Stnd
| GFK-CODA
i — = i e
Normalized:

4L
I

+
|
|
|
I

+

o e e e

+
| Method |
P —— +
I
|

| SA-CODA
| GFK-Stnd |
| GFK-CODA |

sridhar@fovea:~/code/OptimizedDomainAdaptation-master$ l




Computer Vision Testbed: Comparison of DA Methods

Standard:

| SA-Stnd
| SA-CODA
| GFK-Stnd
| GFK-CODA

| SA-Stnd
| SA-CODA
| GFK-Stnd
| GFK-CODA

| SA-Stnd
| SA-CODA
| GFK-Stnd |
| GFK-CODA |

sridhar@fovea:~/code/OptimizedDomainAdaptation-master$ l



Spine flow along manifolds

%/\/I

Source SSE Source

o “ Ta_rget
o—
Mean SGF

Source

How to model

multiple source

Source

(Caseiro etal., CVPR 2015)



Rolling Riemannian Manifolds
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Deep Transier Learning



Deep Learning learns layers of features
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'3'2‘:32‘ gé gga’é%re maps S4: 1. maps 16@5x5
S2: f. maps C5:la -
1993 B Bt g

LeCun et al.

Canvelutions

# of transistors

C3: 1, maps 16@10x10

Subsampling

Convolutions

Subsampling

‘ Full connection |
Full connection

l
Gaussiar

# of pixels used in training

107 NIST

201 2 a8 \ 192 192 t\J 128 2048 \ / 204s \dense
o 128 ! — .
° 13 13 13
Krizhevsky N = |l =
et al J = 2 e 13 dense’ | |dense
. COR A\ | . § 1000
\o 192 192 128 Max - _—
’Sﬂt.;id Max 128 Max pooling 2048 2048
of 4 pooling pooling
3 48. . . . .
# of transistors GPUs # of pixels used in training
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| arge-scale Image
recognition

I M A G E N E T www.image-net.org

22K categories and 14V images

* Animals * Plants e Structures * Person
* Bird e Tree e Artifact e Scenes
* Fish * Flower * Tools * |ndoor
e Mammal  Food e Appliances * Geological Formations

Invertebrate ¢ Materials » Structures * Sport Activities
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IMSAGENE T Large Scale Visual Recognition Challenge

Year 2010

NEC-UIUC

[

Dense grid descriptor:
HOG, LBP

1

v

-

\

Coding: local coordinate,
super-vector

v

Ve

\

Pooling, SPM

¥

[

Linear SVM

[Lin CVPR 2011]

Year 2012

SuperVision

[Krizhevsky NIPS 2012]

GoogleNet

Bleeflee-

B B B
3 23 23 EF

E

B = B
5 25 25 2

EH =4 R
E3 E3 23 23

=Y B B 5
E3 29 3 25 29
-] | ——]
B PR e
= EE 2R ER R
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5 E3 25 Bm

=Y B B4

s s e s e
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-] ==}
= B e
- 2 2R N S

. o o]
Convolution il
Pooling ]

Other

[Szegedy arxiv 2014]

Year 2014

VGG

image

conv-64
conv-64
maxpool

conv-128
conv-128
maxpool

conv-256
conv-256
maxpool

conv-512
conv-512
maxpool

conv-512
conv-512
maxpool

FC-4096
FC-4096
FC-1000
softmax

[Simonyan arxiv 2014]

el BRDTE) - ==

9607 960% T

MSRA

]

[He arxiv 2014]
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ILSVRC top-5 error on ImageNet
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Classifying Objects in Hubble Images

Ongomg projectwith BrofessoriDaniela Calzetts, Ulviass Astronomy,

Table 1
Class 1 Class 2 Galaxy Type | # Clusters
A A NGC0628 SAc ~1,500
Vi . . . NGC1313 SBd ~1,800
- | NGC1566 SABbC ~2,100
Class3 Class 4 NGC3344 SABbC ~400
T NGC3738 Im ~400
e NGC4449 IBm ~600*
; NGC0628 NGC5194 SAbc | ~3,000*
NGC5253 Im ~150*
NGC7793 SAd ~300
~12 Dwarfs Irr ~300*




Hubble Classification using Deep Learning

1.0

0.8}

©
o

Accuracy

0.2f

0.0

Deep Learning Classifier: standard input

Accuracy

o
I

~ 4-Classes

2-Classes 3-Classes

Deep Learning Classifier: improved input

1.0

0.8}

o
o))

o
I

0.2f

0.0

~ 4-Classes

~ 2-Classes 3-Classes



Transfer Learning with CNNs

conv-64
conv-64

maxpool

conv-128
conv-128
maxpool

conv-256
conv-256

maxpool

conv-512
conv-512

maxpool

conv-512
conv-512

maxpool

FC-4096
FC-4096
FC-1000
softmax

1. Train on
Imagenet

|__image |

conv-64
conv-64

maxpool

conv-128
conv-128

maxpool

conv-256
conv-256

maxpool

conv-512
conv-512
maxpool

conv-512
conv-512

maxpool

FC-4096
FC-4096

FC-1000
softmax

2. If small dataset: fix
all weights (treat CNN
as fixed feature
extractor), retrain only
the classifier

i.e. swap the Softmax
layer at the end

conv-64
conv-64

maxpool

conv-128
conv-128

maxpool

conv-256
conv-256

maxpool

conv-512
conv-512

maxpool

conv-512
conv-512

maxpool

FC-4096
FC-4096
FC-1000
softmax

3. If you have medium sized
dataset, “finetune” instead:
use the old weights as
initialization, train the full
network or only some of the
higher layers

retrain bigger portion of the
network, or even all of it.

Slide courtesy of Fei Fei Li and Andrej Karpathy



CNN Features off-the-shelf: an Astounding Baseline for Recognition

[Razavian et al, 2014]

& )

CNN
| Representation |

. Strong Learn Extract Features
D art Normalized RGB, gradient, B SVM
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Slide courtesy of Fei Fei Li and Andrej Karpathy



How transferable are features in deep neural networks?
[Yosinski et al., 2014]

0.64}
3: Fine-tuning recovers co-adapted interactions

ol
o
N

2: Performance drops
due to fragile
co-adaptation

ot
n
o)

Top-1 accuracy (higher is better)
o
(@)
o

0.56}

0.54'—:

5: Transfer + fine-tuning improves generalization

/

0 1 2 3 4 5 6
Layer n at which network is chopped and retrained

Slide courtesy of Fei Fei Li and Andrej Karpathy

Split ImageNet
classes in half to
two sets: A/B.

Train on A, fix the
first n layers, reinit
layers n+, train on
B, test on B val.

=> performance
degrades because
representation
higher up is too A-
specific



How transferable are features in deep neural networks?
[Yosinski et al., 2014]

0.64}

Top-1 accuracy (higher is better)

0.56

0.54'—

0.62+

0.60

5: Transfer + fine-tuning improves generalization

DN

3: Fine-tuning recovers co-adapted interactions

2: Performance drops
due to fragile
co-adaptation

4: Performance

drops due to
representation
specificity

2 3 4 5 6 7
Layer n at which network is chopped and retrained

Slide courtesy of Fei Fei Li and Andrej Karpathy

Split ImageNet
classes in half to
two sets: A/B.

Train on A, reinit
layers n+, train on
B, test on B val.

=> the information
from once seeing
data from A seems
to linger, gives
better generalization
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conv-64
conv-64

maxpool

conv-128
conv-128

maxpool

conv-256
conv-256

maxpool

conv-512
conv-512

maxpool

conv-512
conv-512

maxpool

FC-4096
FC-4096
FC-1000
softmax

T~

more generic

more specific

very similar very different
dataset dataset

very little data | Use Linear You're in
Classifier on top |trouble... Try

layer

linear classifier
from different
stages

quite a lot of
data

Finetune a few
layers

Finetune a
larger number of
layers

Slide courtesy of Fei Fei Li and Andrej Karpathy




Stacked auto encoders

* Auto encoders are deep learning networks that learn to
reproduce their inputs

# The idea is to find a low-dimensional compression of the
input

# They can be applied to domain adaptation and transfer
learning by giving them unlabeled source and target
examples as input

« Denoising stacked auto encoders are given noisy inputs
and required to reproduce the noiseless version



Linear Denoising AutoEncoder

(Chen et al., [CML 2012)
X:[Xl,.. Xn] ERdxn

& mLLuxz Wiy |

T Ly e |
uncorrupted mput
1
X WX

e OV = tr X WX

2nm

m C C

W=PQ 'withQ=XX"and P = XX '



Marginalized Stacked DA
W = E[P|E[Q] .
ElQ] = Z E %%, |

S NN

v el i e
ElQlas _{ S50 i ar=15



MSDA Results

1o Il Bascline
I PCA

1ok [ ISCL (Blitzer et. al., 2007)
2 [ ICODA (Chen et. al., 2011)
~— 8- B SDA (Glorot et. al., 2011)
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Transfer Ratio
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Generative Adversarial Networks
(Goodfellow. et al., NIPS 2014; Ganlin, et als, IMILLR 2016

“For effective domain transfer to be achieved, predictions must be

made based on features that cannot discriminate between the training
(source) and test (target) domains.”

OL
] f‘> f‘> f‘> E f‘> f‘> f‘> E class label y |
| Y J

| ) oL, == label predictor G,(+;0,)
z,%%l 90 ¢ . g domain classifier Gy4(-;04)

SERULEEN

7~

N o, oA r A \
+ Y € Y
feature extractor Gy(05) 4, “, X
& f‘> > B domain label d

forwardprop  backprop (and produced derivatives) o Hd

{E> 5 J



GAN objective function

min max V (D, G) = By ) 108 D@)] + Exep, (s)[l0a(1 — D(G(2)))].

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used k£ = 1, the least expensive option, in our
experiments.

for number of training iterations do
for k steps do

e Sample minibatch of m noise samples {21, ... 2(™)} from noise prior p,(2).
e Sample minibatch of m examples {x),..., (™)} from data generating distribution
pdata(w)-

e Update the discriminator by ascending its stochastic gradient:

Vo, 3 [log D (29) +10g (1- D (@ (x)))].

=1

end for
e Sample minibatch of m noise samples {21, ... z(™)} from noise prior p,(z).
e Update the generator by descending its stochastic gradient:

V@Q% Z._illog (1 - D (G (z(i)))) .

end for
The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.




Results on Amazon Sentiment Analysis

Original data

mSDA representation

SOURCE TARGET DANN NN SVM DANN NN SVM
BOOKS DVD 784 790  .799 .829 .824 .830
BOOKS ELECTRONICS 733 AT S .804 770 766
BOOKS KITCHEN 779 078 769 .843 842 821
DVD BOOKS TS, 720 .743 825 823 .826
DVD ELECTRONICS .754 732 748 .809 768 739
DVD KITCHEN .783 S TG .849 .853 842
ELECTRONICS BOOKS 713 709  .705 774 770 762
ELECTRONICS DVD 738 e o P (A 781 759 +F¢0
ELECTRONICS KITCHEN .854 854 847 881 .863 847
KITCHEN BOOKS .709 708 .707 718 Al .769
KITCHEN DVD .740 739 736 .789 .789 788
KITCHEN ELECTRONICS .843 841  .842 .856 .850 .861

(a) Classification accuracy on the Amazon reviews data set



Summary

« Transfer learning is a broad topic that has been studied
for many decades

« Classical approaches:

+ Structure mapping finds a way to transfer
relationships from source to target

* Determination rules provide a logical formulation
for transfer learning



Summary

« Statistical Approaches:

+ Canonical correlational analysis (CCA) finds a
lower-dimensional subspace where projected source
and target vectors are maximally correlated

* Manifold alignment generalizes CCA to unlabeled
data and also enables its use for data that lies on a
manifold



Summary

“ Subspace identification:

+ Subspace alignment finds a linear transformation that
makes the source look like the target

+ Geodesic flow kernels find the shortest path geodesic on
the Grassmannian manifold from source subspace to
target subspace

+ Correspondence optimized domain-invariant projection
provides a way to choose the source and target subspaces
using a small number of correspondences



Summary

* Deep transfer learning:
* Train a deep neural network on data (e.g., Imagenet)

* Reuse some of the weights from the first N convolutional layers and
retrain the subsequent layers

+ Stacked denoising auto encoders (SDA) are multi-level networks that
learn to reproduce an uncorrupted version of a set of noisy input examples

* Marginalized SDAs are a hybrid linear-nonlinear approach where the
linear weights are trained using least-squares

+ Generative adversarial networks find a representation where source and
target data look indistinguishable



Future Challenges

+ Transfer learning admits a plethora of approaches, but
lacks a clear unifying framework

I

* Two major themes:

+ Find correlations between source and target (CCA)
+ Find symmetries across source and target (CNN5s)

* More sophisticated ideas from group representations can
be used

* Generalization of CNNs that extract deeper symmetries
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