
Towards a Unified Framework for
Transfer Learning: Exploiting
Correlations and Symmetries

Sridhar Mahadevan
Autonomous Learning Lab
UMass Amherst

College of Information
and Computer Sciences

IJCAI 2016 Tutorial
July 11, New York City

Outline of the Tutorial

❖ Historical review and motivation (20 minutes)

❖ Mathematical background (20 minutes)

❖ Algorithms (30 minutes)

❖ Applications (30 minutes)

❖ Questions (5 minutes)

Motivation
❖ Machine learning assumes the test data is drawn from

the same distribution as the training data

❖ Transfer learning is the class of problems where this
assumption is violated (also called domain adaptation)

❖ In many real world problems, there is a lack of adequate
labeled datasets, as labeling requires human effort

❖ In cognitive science, analogies and metaphors have been
long studied as a major component of human thought

The Rosetta Stone

Undeciphered language
(hieroglyphics)

Known language
(Coptic, Greek)

Champollion

Cross-Language IR

Signora Presidente, intervengo per una mozione
d'ordine.Come avrà letto sui giornali o sentito alla
televisione, in Sri Lanka si sono verificati numerosi
assassinii ed esplosioni di ordigni.

Madam President, on a point of order. You will be aware from the
press and television that there have been a number of bomb
explosions and killings in Sri Lanka.

English
documents

Italian
documents

Frau Präsidentin, zur Geschäftsordnung.
Wie Sie sicher aus der Presse und dem Fernsehen
wissen, gab es in Sri Lanka mehrere
Bombenexplosionen mit zahlreichen Toten.

German
documents

Metaphors in Language
“The stock market crashed today”

Metaphors in Language

Cognitive Science Models

Gentner The atom is like the solar system

Solar system

Recent Books on Analogical Reasoning

Logical Approach to Analogy

❖ In IJCAI 1987, Stuart Russell and Todd Davies proposed
the use of determination rules as a logical framework
for analogy

❖ Determinations generalize the concept of functional
dependencies in databases

❖ We intuitively think nationality determines language, in
that speakers who share a nationality speak the same
language

Determination Rules

EXAMPLE 1:

(Athlete(x) ∧ Student(x) ∧ School(x) = s ∧
Y ear(x) = y ∧ Sport(x) = z ∧ i1Female(x))

≻ (Coach(x) = c ∧ i2Sit − ups(x)).

As a second example, to illustrate that the component
schemata may contain quantified variables, consider the
rule that, not having any deductions, having all your in-
come from a corporate employer, and one’s income deter-
mine one’s tax rate:

EXAMPLE 2:

(Taxpayer(x) ∧ Citizen(x, US)∧
(¬∃dDeductions(x, d))∧ (∀i Income(i, x) ⇒
Corporate(i)) ∧ PersonalIncome(x) = p)

≻ (TaxRate(x) = r).

In each of the above examples, the free variables in the
component schemata may be divided, relative to the de-
termination rule, into a case set x of those that appear free
in both the determinant (left-hand side) and the resultant
(right-hand side), a predictor set y of those that appear
only in the determinant schema, and a response set z of
those that appear only in the resultant.2. These sets are
uniquely defined for each determination rule. In particu-
lar, for example 1 they are x = {x}, y = {s, y, z, i1}, and
z = {c, i2}; and for example 2 they are x = {x}, y = {p},
and z = {r}. In general, for a predicate schema Σ with
free variables x and y, and a predicate schema X with free
variables x (shared with Σ) and z (unshared), whether the
determination relation holds is defined as follows:

THE DEFINITION OF DETERMINATION:

Σ[x, y] ≻ X [x, z]
iff

∀y, z(∃xΣ[x, y] ∧ X [x, z]) ⇒ (∀xΣ[x, y] ⇒ X [x, z]).

In interpreting this formula, quantified polar variables
range over the unary Boolean operators (negation and af-
firmation) as their domain of constants, and the standard
Tarskian semantics is applied in evaluating truth in the
usual way (see [9]). This definition covers the full range of
determination rules expressible in first order logic, and is
therefore more expressive than the set of rules restricted
to dependencies between frame slots, given a fixed vocabu-
lary of constants. Nonetheless, one way to view a predicate
schema is as a frame, with slots corresponding to the free
variables.

4 Use in Reasoning

Much of the work in machine learning, from the early
days when Shakey was learning macro-operators for ac-
tion ([21]) to more recent work on chunking ([22]) and
explanation-based generalization ([20]), has involved get-
ting systems to learn and represent explicitly rules and

2Readers familiar with statistical modeling might notice that the
terms for these sets of variables are borrowed from regression analysis.
For a discussion of the statistical analogue of determination, and its
relations to regression and classificiation, see [7]

relations between concepts that could have been derived
from the start. In Shakey’s case, for example, the plan-
ning algorithm and knowledge about operators in STRIPS
were a sufficient apparatus for deriving a plan to achieve
a given goal. To say that Shakey “learned” a specific se-
quence of actions for achieving the goal means only that
the plan was not derived until the goal first arose. Like-
wise, in EBG, explaining why the training example is an
instance of a concept requires knowing beforehand that
the instance embodies a set of conditions sufficient for the
concept to apply, and chunking, despite its power to sim-
plify knowledge at the appropriate level, does not in the
logician’s terms add knowledge to the system. By defining
determination rules prior to the acquisition of case data, we
can enable the system to generalize appropriately without
making the rules it will generate implicit from the start.

Determination rules are the kind of knowledge that pro-
grammers of an intelligent system often have. We may
not know very many specific rules about which coaches
instruct which teams, but we still know that the latter de-
termines the former, and this knowledge has the potential
to generate an infinite number of more fine-grained rules.
In addition to enhancing the power of intelligent systems,
the logical formulation of analogical inference enables it
to be used reliably in the logic programming and expert
system contexts. A logic programming implementation is
described in the next section. Determination rules may be
useful in knowledge engineering for two reasons:

1. In many domains a strong (implicational) theory may
not be available, whereas determination rules can be
provided, and the system can gain expertise through
the acquisition of examples from which it can reason
by analogy.

2. Even when a strong theory is available, its complete
elucidation may be difficult, and it may be easier to
elicit knowledge using questions of the form “What
are the factors which go into making decisions about
Q?”, i.e., to extract determination rules.

The use of determination rules appears to be a natural
stage in the process of knowledge acquisition, occurring
prior to the acquisition of a strong predictive theory; for
example, we have as yet no theory that can even come
close to predicting the vocabulary, grammar and usage of
an entire language simply from facts about the nation it
belongs to, but we still have the corresponding determi-
nation rule that one’s nationality determines one’s native
language, with a few exceptions. We have been building
a list of different categories of determinative knowledge.
Here are some examples of processes in which determina-
tion rules are found:

• Physical processes: initial conditions determine out-
come; boundary conditions determine steady-state
values for whole system; biological ancestry deter-
mines gross physical structure; developmental envi-
ronment determines fine structure of behavior; struc-
ture determines function; function determines struc-
ture (less strongly); disease determines symptoms;
symptoms determine disease (less well); diet, exercise
and genes determine weight; etc.

4

In this case, we say that a function (or set of functions) F
functionally determines the value of function(s) G because
the value assignment for F is associated with a unique
value assignment for G. We may know this to be true
without knowing exactly which value for G goes with a
particular value for F . A taxonomy of the forms for the
relation “F (x) determines G(x)” has been worked out by
researchers in database theory, in which such dependencies
are used as integrity constraints ([28]). If the example of
Bob’s and John’s cars (CarB and CarJ respectively) from
above is written in functional terms, as follows:

Make(CarB) = Ford ∧ Make(CarJ) = Ford

Model(CarB) = Mustang ∧ Model(CarJ) = Mustang

Design(CarB) = GLX ∧ Design(CarJ) = GLX

Engine(CarB) = V 6 ∧ Engine(CarJ) = V 6

Condition(CarB) = Good ∧ Condition(CarJ) = Good

Y ear(CarB) = 1982∧ Y ear(CarJ) = 1982

V alue(CarB) = $3500

V alue(CarJ) = $3500,

then knowing that the make, model, design, engine, condi-
tion, and year determine value thus makes the conclusion
valid. In our generalized logical definition of determina-
tion (see the section on “Representation and Semantics”),
the forms (*) and (**) are subsumed as special cases of a
single relation “P determines Q”, written as P ≻ Q.

Assertions of the form “P determines Q” are actually
quite common in ordinary language. When we say “The
IRS decides whether you get a tax refund”, or “What
school you attend determines what courses are available”,
or, quoting a recent television advertisement, “It’s when
you start to save that decides where in the world you can
retire to”, we are expressing an invariant relation more
complicated than a purely implicational rule. At the same
time, we are expressing weaker information than is con-
tained in the statement that P implies Q. If P implies
Q then P determines Q, but the reverse is not true, so
traditional implication falls out as a special case of deter-
mination. That the knowledge of a determination rule is
what underlies preferred analogical inferences seems rela-
tively transparent once the problem is set up as we have
done. We therefore find it surprising that only recently
has the possibility of valid reasoning by analogy been rec-
ognized (in [30]) and the logical form of its justification
been worked out in a way that solves the non-redundancy
propblem (in [6]). Most research on analogy and general-
ization seems to have assumed that an instance can provide
at most inductive support for a rule. Our work suggests
that rule formation and analogical projection are better
viewed as being guided by higher level domain knowledge
about what sorts of generalizations can be inferred from
an instance. This perspective seems consistent with more
recent AI techniques for doing induction and analogy (e.g.
[14],[15]) which view such inferences as requiring specific
knowledge about relevance rather than just an ability to
evaluate similarity. We have concentrated on making the
relevance criterion deductive.

3 Representation and Semantics

To define the general logical form for determination in
predicate logic, we need a representation that covers (1)
determination of the truth value or polarity of an expres-
sion, as in example cases of the form “P (x) decides whether
or not Q(x)” (formula (*) from previous section), (2) func-
tional determination rules like (**) above, and (3) other
cases in which one expression in first order logic deter-
mines another. Rules of the first form require us to extend
the notion of a first order predicate schema in the following
way. Because the truth value of a first order formula can-
not be a defined function within the language, we introduce
the concept of a polar variable, which can be placed at the
beginning of an expression to denote that its truth value
is not being specified by the expression. For example, the
notation “i P (x)” can be read “whether or not P (x)”, and
it can appear on either side of the determination relation
sign “≻” in a determination rule, as in

P1(x) ∧ i1P2(x) ≻ i2Q(x).

This would be read, “P1(x) and whether or not P2(x) to-
gether jointly determine whether or not Q(x),” where i1
and i2 are polar variables.

The determination relation cannot be formulated as a
connective, i.e., a relation between propositions or closed
formulas. Instead, it should be thought of as a relation
between predicate schemata, or open formulas with polar
variables. For a first order language L, the set of pred-
icate schemata for the language may be characterized as
follows. If S is a sentence (closed formula or wff) of L, then
the following operations may be applied, in order, to S to
generate a predicate schema:

1. Polar variables may be placed in front of any wffs that
are contained as strings in S,

2. Any object variables in S may be unbound (made free)
by removing quantification for any part of S, and

3. Any object constants in S may be replaced by object
variables.

All of and only the expressions generated by these rules
are schemata of L.

To motivate the definition of determination, let us turn
to some example pairs of schemata for which the determi-
nation relation holds. As an example of the use of polar
variables, consider the rule that, being a student athlete,
one’s school, year, sport, and whether one is female deter-
mine who one’s coach is and whether or not one has to do
sit-ups. This can be represented as follows:

3

(Rusell and Davies, IJCAI 87)

PAC Learning of Determinations
I L

Italy

US

Japan

English

Italian

Japanese

N

Lisa

John

Guiseppe

Isabella

Mami

L

individuals
with same P
value

Mahadevan and Tadepalli
MLJ 1994

Learning from Multiple Datasets
• In many applications, multiple “views” or multiple datasets are

constructed

• Bioinformatics

• Activity recognition

• Computer graphics

• Scientific exploration (MARS rover)

• Cross-lingual information retrieval

• Spectral methods for learning latent variable models

Displacement Horsepower Weight

 Acceleration MPG

Exploiting Correlations
(Hotelling, 1936)

Find a projection of source and target vectors onto common
latent space such that projected vectors are maximally correlated

Exploiting Symmetries

Learned
filters

Deep RL in Atari
(Mnih et al.,
Nature 2015)

Group Theoretic Approaches

Lie Group

e

i✓ = cos(✓) + isin(✓)

Sphere
in n-dim

Lie Algebra

Grassmann Discriminant Analysis

Yi
Yj

θ 2

G(m, D)

u1
v1

θ1 , ..., θm

span(Yi)
span(Yj)

RD

Figure 1. Principal angles and Grassmann distances. Let span(Yi) and span(Yj) be two subspaces in the Euclidean space
RD on the left. The distance between two subspaces span(Yi) and span(Yj) can be measured by the principal angles
✓ = [✓1, ... , ✓m]0 using the usual innerproduct of vectors. In the Grassmann manifold viewpoint, the subspaces span(Yi)
and span(Yj) are considered as two points on the manifold G(m, D), whose Riemannian distance is related to the principal
angles by d(Yi, Yj) = k✓k2. Various distances can be defined based on the principal angles.

two metrics with other metrics used in the literature.

Several subspace-based classification methods have
been previously proposed (Yamaguchi et al., 1998;
Sakano, 2000; Fukui & Yamaguchi, 2003; Kim et al.,
2007). However, these methods adopt an inconsistent
strategy: feature extraction is performed in the Eu-

clidean space when non-Euclidean distances are used.
This inconsistency can result in complications and
weak guarantees. In our approach, the feature ex-
traction and the distance measurement are integrated
around the Grassmann kernel, resulting in a simpler
and better-understood formulation.

The rest of the paper is organized as follows. In Sec. 2
and 3 we introduce the Grassmann manifolds and de-
rive various distances on the space. In Sec. 4 we
present a kernel view of the problem and emphasize the
advantages of using positive definite metrics. In Sec. 5
we propose the Grassmann Discriminant Analysis and
compare it with other subspace-based discrimination
methods. In Sec. 6 we test the proposed algorithm for
face recognition and object categorization tasks. We
conclude in Sec. 7 with a discussion.

2. Grassmann Manifold and Principal

Angles

In this section we briefly review the Grassmann man-
ifold and the principal angles.

Definition 1 The Grassmann manifold G(m,D) is

the set of m-dimensional linear subspaces of the RD
.

The G(m,D) is a m(D�m)-dimensional compact Rie-
mannian manifold.1 An element of G(m,D) can be

1G(m, D) can be derived as a quotient space of orthog-
onal groups G(m, D) = O(D)/O(m) ⇥ O(D � m), where

represented by an orthonormal matrix Y of size D by
m such that Y

0
Y = Im, where Im is the m by m iden-

tity matrix. For example, Y can be the m basis vectors
of a set of pictures in RD. However, the matrix rep-
resentation of a point in G(m,D) is not unique: two
matrices Y

1

and Y

2

are considered the same if and only
if span(Y

1

) = span(Y
2

), where span(Y) denotes the
subspace spanned by the column vectors of Y . Equiva-
lently, span(Y

1

) = span(Y
2

) if and only if Y

1

R

1

= Y

2

R

2

for some R

1

, R

2

2 O(m). With this understanding, we
will often use the notation Y when we actually mean
its equivalence class span(Y), and use Y

1

= Y

2

when
we mean span(Y

1

) = span(Y
2

), for simplicity.

Formally, the Riemannian distance between two sub-
spaces is the length of the shortest geodesic connecting
the two points on the Grassmann manifold. However,
there is a more intuitive and computationally e�cient
way of defining the distances using the principal angles

(Golub & Loan, 1996).

Definition 2 Let Y

1

and Y

2

be two orthonormal

matrices of size D by m. The principal an-

gles 0  ✓

1

 · · ·  ✓m  ⇡/2 between two subspaces

span(Y
1

) and span(Y
2

), are defined recursively by

cos ✓k = max
uk2span(Y1)

max
vk2span(Y2)

uk
0
vk, subject to

uk
0
uk = 1, vk

0
vk = 1,

uk
0
ui = 0, vk

0
vi = 0, (i = 1, ..., k � 1).

In other words, the first principal angle ✓

1

is the small-
est angle between all pairs of unit vectors in the first
and the second subspaces. The rest of the principal

O(m) is the group of m by m orthonormal matrices. We
refer the readers to (Wong, 1967; Absil et al., 2004) for
details on the Riemannian geometry of the space.

Grassmannian
approaches

(Ham & Lee)

Convolution and Group Theory

(f ⇤ g)(t) =
Z 1

�1
f(⌧)g(t� ⌧)d⌧

(Wikipedia)

Definition of Transfer Learning

3

task is document classification, and each term is taken as a
binary feature, then X is the space of all term vectors, xi

is the ith term vector corresponding to some documents, and
X is a particular learning sample. In general, if two domains
are different, then they may have different feature spaces or
different marginal probability distributions.

Given a specific domain, D = {X , P (X)}, a task consists
of two components: a label space Y and an objective predictive
function f(·) (denoted by T = {Y, f(·)}), which is not
observed but can be learned from the training data, which
consist of pairs {xi, yi}, where xi ∈ X and yi ∈ Y . The
function f(·) can be used to predict the corresponding label,
f(x), of a new instance x. From a probabilistic viewpoint,
f(x) can be written as P (y|x). In our document classification
example, Y is the set of all labels, which is True, False for a
binary classification task, and yi is “True” or “False”.

For simplicity, in this survey, we only consider the case
where there is one source domain DS , and one target domain,
DT , as this is by far the most popular of the research works in
the literature. More specifically, we denote the source domain
data as DS = {(xS1 , yS1), . . . , (xSnS

, ySnS
)}, where xSi ∈

XS is the data instance and ySi ∈ YS is the corresponding
class label. In our document classification example, DS can
be a set of term vectors together with their associated true or
false class labels. Similarly, we denote the target domain data
as DT = {(xT1 , yT1), . . . , (xTnT

, yTnT
)}, where the input xTi

is in XT and yTi ∈ YT is the corresponding output. In most
cases, 0 ≤ nT ≪ nS .

We now give a unified definition of transfer learning.

Definition 1 (Transfer Learning) Given a source domain DS

and learning task TS , a target domain DT and learning task
TT , transfer learning aims to help improve the learning of the
target predictive function fT (·) in DT using the knowledge in
DS and TS , where DS ̸= DT , or TS ̸= TT .

In the above definition, a domain is a pair D = {X , P (X)}.
Thus the condition DS ̸= DT implies that either XS ̸= XT or
PS(X) ̸= PT (X). For example, in our document classification
example, this means that between a source document set and
a target document set, either the term features are different
between the two sets (e.g., they use different languages), or
their marginal distributions are different.

Similarly, a task is defined as a pair T = {Y, P (Y |X)}.
Thus the condition TS ̸= TT implies that either YS ̸= YT

or P (YS |XS) ̸= P (YT |XT). When the target and source
domains are the same, i.e. DS = DT , and their learning tasks
are the same, i.e., TS = TT , the learning problem becomes
a traditional machine learning problem. When the domains
are different, then either (1) the feature spaces between the
domains are different, i.e. XS ̸= XT , or (2) the feature
spaces between the domains are the same but the marginal
probability distributions between domain data are different;
i.e. P (XS) ̸= P (XT), where XSi ∈ XS and XTi ∈ XT .
As an example, in our document classification example, case
(1) corresponds to when the two sets of documents are
described in different languages, and case (2) may correspond
to when the source domain documents and the target domain
documents focus on different topics.

Given specific domains DS and DT , when the learning
tasks TS and TT are different, then either (1) the label spaces
between the domains are different, i.e. YS ̸= YT , or (2) the
conditional probability distributions between the domains are
different; i.e. P (YS |XS) ̸= P (YT |XT), where YSi ∈ YS and
YTi ∈ YT . In our document classification example, case (1)
corresponds to the situation where source domain has binary
document classes, whereas the target domain has ten classes to
classify the documents to. Case (2) corresponds to the situation
where the source and target documents are very unbalanced
in terms of the user-defined classes.

In addition, when there exists some relationship, explicit or
implicit, between the feature spaces of the two domains, we
say that the source and target domains are related.

2.3 A Categorization of Transfer Learning Tech-
niques
In transfer learning, we have the following three main research
issues: (1) What to transfer; (2) How to transfer; (3) When to
transfer.

“What to transfer” asks which part of knowledge can
be transferred across domains or tasks. Some knowledge is
specific for individual domains or tasks, and some knowledge
may be common between different domains such that they may
help improve performance for the target domain or task. After
discovering which knowledge can be transferred, learning
algorithms need to be developed to transfer the knowledge,
which corresponds to the “how to transfer” issue.

“When to transfer” asks in which situations, transferring
skills should be done. Likewise, we are interested in knowing
in which situations, knowledge should not be transferred. In
some situations, when the source domain and target domain are
not related to each other, brute-force transfer may be unsuc-
cessful. In the worst case, it may even hurt the performance
of learning in the target domain, a situation which is often
referred to as negative transfer. Most current work on transfer
learning focuses on “What to transfer” and “How to transfer”,
by implicitly assuming that the source and target domains be
related to each other. However, how to avoid negative transfer
is an important open issue that is attracting more and more
attention in the future.

Based on the definition of transfer learning, we summarize
the relationship between traditional machine learning and var-
ious transfer learning settings in Table 1, where we categorize
transfer learning under three sub-settings, inductive trans-
fer learning, transductive transfer learning and unsupervised
transfer learning, based on different situations between the
source and target domains and tasks.

1) In the inductive transfer learning setting, the target task
is different from the source task, no matter when the
source and target domains are the same or not.
In this case, some labeled data in the target domain are
required to induce an objective predictive model fT (·)
for use in the target domain. In addition, according to
different situations of labeled and unlabeled data in the
source domain, we can further categorize the inductive
transfer learning setting into two cases:

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

[Pan and Yang, IEEE Trans]

Amazon Sentiment Analysis

“A great read. You get an opportunity to glimpse
how a great scientific mind thinks

 and how the person lived.”

“Fantastic performances from every actor. I appreciate that this movie
doesn't feel that it needs to take an already dramatic topic and

dramatize it even more. It takes itself seriously, and presents the story
without unnecessary drama. Highly recommended.”

Movies

Books

Computer Vision Transfer
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Optimized Subspace Alignment for Domain Adaptation

Figure 3. Example images from the COFFEE-MUG category in
Caltech-256, Amazon, DSLR and Webcam datasets. (Best viewed
in color.)

(Saenko et al., 2010), and contain images downloaded from
Amazon (A), images captured from a webcam (W), and im-
ages captured using a DSLR digital camera (D). The fourth
domain we use is a subset of the Caltech-256 (C) dataset
(Griffin et al., 2007), as used in (Gong et al., 2012). Ex-
amples of images from each of these domains are shown in
figure 5. In total, the four domains contain 2533 images in
total.

5.2. Experimental Procedure

The labels and features used for our experiments
are as in Gong et al. (2012), which we briefly
restate here. First, there are 10 classes of im-
ages determined by their subject. These classes
are BACKPACK, TOURING-BIKE, CALCULATOR,
HEADPHONES, COMPUTER-KEYBOARD, LAPTOP-101,
COMPUTER-MONITOR, COMPUTER-MOUSE,
COFFEE-MUG, and VIDEO-PROJECTOR. Each class
is represented in each of the domains. SURF features
were used and the images were encoded with 800-bin
histograms using a codebook trained from a subset of
Amazon images. Finally, the histograms were normalized
and corrected to have zero mean and unit standard devia-
tion along each dimension. These were then used as input
features to the alignment methods.

Our experimental procedure followed that of previous work
with slight modification. We conduct trials on each pair of
domains. However, we observed that there was a great deal
of variance in the outcome of the experiments when only
using 20 trials, so we evaluated using 100 trials instead.
This variance was not observed when testing unsupervised
alignment methods, leading us to hypothesize that it is in-

troduced in the semi-supervised case due to the added ran-
domness in the choice of labeled examples. For each trial,
we sampled labeled data from the source dataset and unla-
beled data from the target dataset. These formed the train-
ing and testing set for that trial. Because we are testing
semi-supervised alignment, we sampled additional labeled
data from the target domain to form a set of examples. No
samples were allowed to appear in both the example and
testing sets for a given trial. The labeled examples were
not used to augment the training set for OSA during op-
timization, and were instead used in the objective function
as described in section 4.2. However, during evaluation, the
labeled samples were projected using the target projection
and used as candidates for matching the test set. For each
trial, the mean classification accuracy is reported for a 1-
Nearest Neighbor (NN) classifier and for a SVM classifier,
as in (Fernando et al., 2013).

In our comparisons, we consider the following methods.
NA: No adaptation is applied. The image features them-
selves are used as input to the classifier.
PCA

S

: PCA is used to construct a subspace that approx-
imates the source domain. The source and target are both
projected onto this subspace, and the resulting features are
used for classification.
PCA

T

: As PCA
S

, except that the subspace is constructed
from the target domain.
GFK: Similarity between source and target samples are
defined using the geodesic flow kernel proposed in Gong
et al. (2012). GFK computes similarity by projecting the
samples onto intermediate subspaces between the source
S0 and target S1 and measuring their inner product in that
space. However, rather than consider a single intermediate
subspace, GFK implicitly computes the integral of the
projected inner product over all subspaces between S0 and
S1. In our comparisons, the distance between neighbors
(for the NN classifier) and the SVM kernel matrix are
computed using the GFK between the source and target
domains.
GFS: Geodesic flow sampling, proposed in (Gopalan
et al., 2011). GFS constructs features for classification
by sampling a number of subspaces on the geodesic flow
between S0 and S1. Unlike GFK, a discrete number of
subspaces are sampled. For each source and target sample,
the features resulting from projecting the sample onto each
subspace are concatenated, producing a new source and
target dataset. Dimensionality reduction is applied and the
output features are used for classification.
SA: Subspace alignment, as described in section 4.1. SA
produces a source and target transformation that give rise
to a similarity measure through the inner product of the
transformed features. This similarity is subsequently used
for classification.
OSA: Our proposed optimized subspace alignment algo-

Transfer Learning on Mars
(Dyar, Mahadevan et al.)

Same laser
on Earth

as on Mars

Curiosity zapping a
rock with a laser

Transfer in Reinforcement Learning

Algorithm 1 Manifold Alignment Cross-Domain Transfer
for Policy Gradients (MAXDT-PG)

Inputs: Source and target tasks T

(S) and T

(T), optimal
source policy ⇡?

(S), # source and target traces nS and
nT , # nearest neighbors k, # target rollouts zT , initial #
of target states m.

Learn �S :
1: Sample nS optimal source traces, ⌧ ?

(S), and nT random
target traces, ⌧(T)

2: Using the modified UMA approach, learn ↵(S) and
↵(T) to produce �S = ↵T+

(T)↵
T
(S)[·]

Transfer & Initialize Policy:
3: Collect m initial target states s(T)

1 ⇠ P

(T)
0

4: Project these m states to the source by applying �+
S [·]

5: Apply the optimal source policy ⇡?
(S) on these projected

states to collect D

(S)
=

n

⌧ (S)
(i)

om

i=1

6: Project the samples in D

(S) to the target using �S [·] to
produce tracking target traces ˜

D

(T)

7: Compute tracking rewards using Eqn. (9)
8: Use policy gradients to minimize Eqn. (8), yielding ✓(0)

(T)

Improve Policy:
9: Start with ✓(0)

(T) and sample zT target rollouts
10: Follow policy gradients (e.g., episodic REINFORCE)

but using target rewards R

(T)

11: Return optimal target policy parameters ✓?
(T)

the robustness of the learned mapping by varying the num-
ber of source and target samples used for transfer and mea-
suring the resultant target task performance. In all cases we
compared the performance of MAXDT-PG to standard policy
gradient learners. Our results show that MAXDT-PG was able
to: a) learn a valid inter-state mapping with relatively little
data from the target task, and b) effectively transfer between
tasks from either the same or different domains.

Dynamical System Domains

We tested MAXDT-PG and standard policy gradient learn-
ing on four dynamical systems (Figure 2). On all systems,
the reward function was based on two factors: a) penalizing
states far from the goal state, and b) penalizing high forces
(actions) to encourage smooth, low-energy movements.

Simple Mass Spring Damper (SM): The goal with the
SM is to control the mass at a specified position with zero
velocity. The system dynamics are described by two state-
variables that represent the mass position and velocity, and
a single force F that acts on the cart in the x direction.

Cart Pole (CP): The goal is to swing up and then bal-
ance the pole vertically. The system dynamics are described
via a four-dimensional state vector hx, ˙

x, ✓, ˙✓i, represent-
ing the position, velocity of the cart, and the angle and an-
gular velocity of the pole, respectively. The actions consist
of a force that acts on the cart in the x direction.

F1F2

F3 F4

e

1B

e

2B

e3B

r

e11

e21
e31

�

r

o

l

l

� yaw

�

p

i

t

c

h

F

hx, ˙

xi

h✓, ˙✓i

hx, ˙

xi

F

h✓1, ˙✓1i

h✓2, ˙✓2i

h✓3, ˙✓3i

F

hx, ˙

xi

(a) Simple Mass

F1F2

F3 F4

e

1B

e

2B

e3B

r

e11

e21
e31

�

r

o

l

l

� yaw

�

p

i

t

c

h

F

hx, ˙

xi

h✓, ˙✓i

hx, ˙

xi

F

h✓1, ˙✓1i

h✓2, ˙✓2i

h✓3, ˙✓3i

F

hx, ˙

xi

(b) Cart Pole

F1F2

F3 F4

e

1B

e

2B

e3B

r

e11

e21
e31

�

r

o

l

l

� yaw

�

p

i

t

c

h

F

hx, ˙

xi

h✓, ˙✓i

hx, ˙

xi

F

h✓1, ˙✓1i

h✓2, ˙✓2i

h✓3, ˙✓3i

F

hx, ˙

xi

(c) Three-Link Cart Pole

F1F2

F3 F4

e

1B

e

2B

e3B

r

e11

e21
e31

�

r

o

l

l

� yaw

�

p

i

t

c

h

F

hx, ˙

xi

h✓, ˙✓i

hx, ˙

xi

F

h✓1, ˙✓1i

h✓2, ˙✓2i

h✓3, ˙✓3i

F

hx, ˙

xi

(d) Quadrotor

Figure 2: Dynamical systems used in the experiments.

Three-Link Cart Pole (3CP): The 3CP dynam-
ics are described via an eight-dimensional state vector
hx, ˙

x, ✓1, ˙✓1, ✓2, ˙✓2, ✓3, ˙✓3i, where x and ˙

x describe
the position and velocity of the cart and ✓j and ˙✓j represent
the angle and angular velocity of the jth link. The system is
controlled by applying a force F to the cart in the x direc-
tion, with the goal of balancing the three poles upright.

Quadrotor (QR): The system dynamics were adopted
from a simulator validated on real quadrotors (Bouabdal-
lah 2007; Voos & Bou Ammar 2010), and are described via
three angles and three angular velocities in the body frame
(i.e., e1B, e2B, and e3B). The actions consist of four rotor
torques {F1, F2, F3, F4}. Each task corresponds to a differ-
ent quadrotor configuration (e.g., different armature lengths,
etc.), and the goal is to stabilize the different quadrotors.

Same-Domain Transfer
We first evaluate MAXDT-PG on same-domain transfer.
Within each domain, we can obtain different tasks by vary-
ing the system parameters (e.g., for the SM system we varied
mass M , spring constant K, and damping constant b) as well
as the reward functions. We assessed the performance of us-
ing the transferred policy from MAXDT-PG versus standard
policy gradients by measuring the average reward on the tar-
get task vs. the amount of learning iterations in the target. We
also examined the robustness of MAXDT-PG’s performance
based on the number of source and target samples used to
learn �S . Rewards were averaged over 500 traces collected
from 150 initial states. Due to space constraints, we report
same-domain transfer results here; details of the tasks and
experimental procedure can be found in the appendix2.

Figure 3 shows MAXDT-PG’s performance using varying
numbers of source and target samples to learn �S . These re-
sults reveal that transfer-initialized policies outperform stan-
dard policy gradient initialization. Further, as the number of
samples used to learn �S increases, so does both the ini-
tial and final performance in all domains. All initializations
result in equal per-iteration computational cost. Therefore,
MAXDT-PG both improves sample complexity and reduces
wall-clock learning time.

(Ammar et al., AAAI 2015)

Multi-modal transfer learning

flowers, grass, tiger, water

TEXT

AUDIO

LATENT
SPACE

Why is Transfer Learning Difficult?

❖ High-dimensional datasets (images, text, speech)

❖ Source and target domains may not share features (e.g.,
words in English and German)

❖ Lack of sufficient correspondences

❖ Limited number of labeled examples in source and
target

Outline of the Tutorial

❖ Historical review and motivation (20 minutes)

❖ Mathematical background (20 minutes)

❖ Algorithms (30 minutes)

❖ Applications (30 minutes)

❖ Questions (5 minutes)

Sternberg’s Vector Space Model
Analogy

A

B

C

I

D1

D2

D3

D4

Series Completion

A

B

I

D1

D2

D3

D4

Classification

A

B

C

I D1
D2

D3

D4

1

Analogy

A

B

C

I

D1

D2

D3

D4

Series Completion

A

B

I

D1

D2

D3

D4

Classification

A

B

C

I D1
D2

D3

D4

1

Analogy

A

B

C

I

D1

D2

D3

D4

Series Completion

A

B

I

D1

D2

D3

D4

Classification

A

B

C

I D1
D2

D3

D4

1

Figure 1: Sternberg’s model for inductive reasoning in semantic space. A, B, C are given, I is the
ideal point and D are the choices. The correct answer is shaded green. Adapted from [20].

Semantic spaces such as those used in the psychometrics literature provide a natural conceptual
framework for continuous word representations. For one, the intriguing observation that word em-
beddings can be used to solve analogies has a natural explanation in this framework. In fact, this
was already shown by Rumelhart and Abrahamson [18] using continuous word representations de-
rived from semantic similarity surveys. The explanation provided there is that solving analogies
amounts to a similarity judgment between the relations among two pairs of words. If these words
are represented in a multidimensional euclidean space, then the most natural way of assessing this
similarity is to compare the vectors between the two pairs of words. The question is thus whether
a metric space is a valid representation of semantic concepts. There is significant empirical evi-
dence supporting this. For example, it was shown in [18] that synthetic terms assigned to points in
semantic space were used by subjects for solving analogies in the same way they used real words,
and that human mistake rates followed an exponential decay in embedded distance from the true
solution. Sternberg and Gardner provided further evidence supporting this hypothesis for analogical
reasoning, proposing that general inductive reasoning was based upon operations in metric embed-

dings [20]. Using analogy, series completion and classification1 tasks as testbeds, they proposed that
subjects solve these problems by finding the word closest in (semantic space) to an ideal point: the
vertex of a parallelogram for analogies, a displacement from the last word in series completion, and
the centroid in the case of classification (Figure 1).

In this work, we use these cognitive semantic spaces as motivation for the underlying spaces that
word embedding methods attempt to recover. Besides providing grounding from a cognitive per-
spective and offering an explanation for some of the properties of corpus based word embeddings,
the link with the psychometric literature provides yet another advantage. It reminds us that there are
other types of inductive reasoning besides analogical, which has recently dominated the evaluation
of word embeddings. Tasks such as the series completion and classification [20] require similar
operations on semantic entities, and thus a more robust evaluation scheme should also include those.
Based on this observation, we propose two new inductive reasoning tasks, and demonstrate that
word embeddings can be used to solve those too. For example, in the series completion task, given
“body, arm, hand” we find the answer predicted by vector operations on word embeddings to be
“fingers”. We make these new datasets available to be used as benchmarks in addition to current
popular analogy tasks.

3 Recovering semantic distances with word embedding

We illustrate the metric recovery properties of word embedding methods using a simple model pro-
posed in the literature [2] and generalize the model in the next section. Our corpus consists of m
total words across s sentences over a n word vocabulary where each word is given a coordinate in
a latent word vector space {x

1

, . . . , x

n

} 2 Rd. For each sentence s we consider a Markov random
walk, X

1

, . . . , X

ms , with the following transition function

P(X
t

= x

j

|X
t�1

= x

i

) =

exp(�||x
i

� x

j

||2
2

/�

2

)P
n

k=1

exp(�||x
i

� x

k

||2
2

/�

2

)

. (1)

1Choosing the word that fest fits a semantic category defined by a set of words.

2

[15] D. L. Nelson, C. L. McEvoy, and T. A. Schreiber. The university of south florida free association, rhyme,
and word fragment norms. Behavior Research Methods, Instruments, & Computers, 36(3):402–407, 2004.

[16] J. Pennington, R. Socher, and C. D. Manning. Glove: Global vectors for word representation. Proceedings

of the Empiricial Methods in Natural Language Processing (EMNLP 2014), 12, 2014.
[17] B. Perozzi, R. Al-Rfou, and S. Skiena. Deepwalk: Online learning of social representations. In Proceed-

ings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining, pages
701–710. ACM, 2014.

[18] D. E. Rumelhart and A. A. Abrahamson. A model for analogical reasoning. Cognitive Psychology,
5(1):1–28, 1973.

[19] R. Socher, J. Bauer, C. D. Manning, and A. Y. Ng. Parsing with compositional vector grammars. In In

Proceedings of the ACL conference. Citeseer, 2013.
[20] R. J. Sternberg and M. K. Gardner. Unities in inductive reasoning. Journal of Experimental Psychology:

General, 112(1):80, 1983.
[21] J. B. Tenenbaum, V. De Silva, and J. C. Langford. A global geometric framework for nonlinear dimen-

sionality reduction. Science, 290(5500):2319–2323, 2000.
[22] J. Turian, L. Ratinov, and Y. Bengio. Word representations: a simple and general method for semi-

supervised learning. In Proceedings of the 48th annual meeting of the association for computational

linguistics, pages 384–394. Association for Computational Linguistics, 2010.
[23] P. D. Turney and M. L. Littman. Corpus-based learning of analogies and semantic relations. Machine

Learning, 60(1-3):251–278, 2005.

6

he is to she as grandpa is to X?

Analogical Reasoning in NLP

NLP

Athens is to Greece as Baghdad is to ?

he is to she as grandpa is to X?

cheap is to cheaper as high is to X?

Europe is to euro as Vietnam is to X?

Linguistic Reasoning by Vector Arithmetic

Linguistic Regularities in Sparse and Explicit Word Representations

Omer Levy⇤ and Yoav Goldberg
Computer Science Department

Bar-Ilan University
Ramat-Gan, Israel

{omerlevy,yoav.goldberg}@gmail.com

Abstract

Recent work has shown that neural-
embedded word representations capture
many relational similarities, which can be
recovered by means of vector arithmetic
in the embedded space. We show that
Mikolov et al.’s method of first adding
and subtracting word vectors, and then
searching for a word similar to the re-
sult, is equivalent to searching for a word
that maximizes a linear combination of
three pairwise word similarities. Based on
this observation, we suggest an improved
method of recovering relational similar-
ities, improving the state-of-the-art re-
sults on two recent word-analogy datasets.
Moreover, we demonstrate that analogy
recovery is not restricted to neural word
embeddings, and that a similar amount
of relational similarities can be recovered
from traditional distributional word repre-
sentations.

1 Introduction

Deep learning methods for language processing
owe much of their success to neural network lan-
guage models, in which words are represented as
dense real-valued vectors in Rd. Such representa-
tions are referred to as distributed word represen-
tations or word embeddings, as they embed an en-
tire vocabulary into a relatively low-dimensional
linear space, whose dimensions are latent contin-
uous features. The embedded word vectors are
trained over large collections of text using vari-
ants of neural networks (Bengio et al., 2003; Col-
lobert and Weston, 2008; Mnih and Hinton, 2008;
Mikolov et al., 2011; Mikolov et al., 2013b). The

⇤ Supported by the European Community’s Seventh
Framework Programme (FP7/2007-2013) under grant agree-
ment no. 287923 (EXCITEMENT).

word embeddings are designed to capture what
Turney (2006) calls attributional similarities be-
tween vocabulary items: words that appear in sim-
ilar contexts will be close to each other in the
projected space. The effect is grouping of words
that share semantic (“dog cat cow”, “eat devour”)
or syntactic (“cars hats days”, “emptied carried
danced”) properties, and are shown to be effective
as features for various NLP tasks (Turian et al.,
2010; Collobert et al., 2011; Socher et al., 2011;
Al-Rfou et al., 2013). We refer to such word rep-
resentations as neural embeddings or just embed-
dings.

Recently, Mikolov et al. (2013c) demonstrated
that the embeddings created by a recursive neu-
ral network (RNN) encode not only attributional
similarities between words, but also similarities
between pairs of words. Such similarities are
referred to as linguistic regularities by Mikolov
et al. and as relational similarities by Turney
(2006). They capture, for example, the gen-
der relation exhibited by the pairs “man:woman”,
“king:queen”, the language-spoken-in relation in
“france:french”, “mexico:spanish” and the past-
tense relation in “capture:captured”, “go:went”.
Remarkably, Mikolov et al. showed that such rela-
tions are reflected in vector offsets between word
pairs (apples � apple ⇡ cars � car), and
that by using simple vector arithmetic one could
apply the relation and solve analogy questions of
the form “a is to a

⇤ as b is to —” in which the
nature of the relation is hidden. Perhaps the most
famous example is that the embedded representa-
tion of the word queen can be roughly recovered
from the representations of king, man and woman:

queen ⇡ king �man+ woman

The recovery of relational similarities using vector
arithmetic on RNN-embedded vectors was evalu-
ated on many relations, achieving state-of-the-art
results in relational similarity identification tasks

3 Analogies and Vector Arithmetic

Mikolov et al. demonstrated that vector space rep-
resentations encode various relational similarities,
which can be recovered using vector arithmetic
and used to solve word-analogy tasks.

3.1 Analogy Questions
In a word-analogy task we are given two pairs of
words that share a relation (e.g. “man:woman”,
“king:queen”). The identity of the fourth word
(“queen”) is hidden, and we need to infer it based
on the other three (e.g. answering the question:
“man is to woman as king is to — ?”). In the rest
of this paper, we will refer to the four words as
a:a⇤, b:b⇤. Note that the type of the relation is
not explicitly provided in the question, and solv-
ing the question correctly (by a human) involves
first inferring the relation, and then applying it to
the third word (b).

3.2 Vector Arithmetic
Mikolov et al. showed that relations between
words are reflected to a large extent in the
offsets between their vector embeddings
(queen � king ⇡ woman � man),
and thus the vector of the hidden word b

⇤ will be
similar to the vector b � a + a

⇤, suggesting that
the analogy question can be solved by optimizing:

argmax

b

⇤2V
(sim (b

⇤
, b� a+ a

⇤
))

where V is the vocabulary excluding the question
words b, a and a

⇤, and sim is a similarity mea-
sure. Specifically, they used the cosine similarity
measure, defined as:

cos (u, v) =

u · v
kukkvk

resulting in:

argmax

b

⇤2V
(cos (b

⇤
, b� a+ a

⇤
)) (1)

Since cosine is inverse to the angle, high cosine
similarity (close to 1) means that the vectors share
a very similar direction. Note that this metric nor-
malizes (and thus ignores) the vectors’ lengths,
unlike the Euclidean distance between them. For
reasons that will be clear later, we refer to (1) as
the 3COSADD method.

An alternative to 3COSADD is to require that
the direction of transformation be conserved:

argmax

b

⇤2V
(cos (b

⇤ � b, a

⇤ � a)) (2)

This basically means that b⇤ � b shares the same
direction with a

⇤ � a, ignoring the distances. We
refer to this method as PAIRDIRECTION. Though
it was not mentioned in the paper, Mikolov
et al. (2013c) used PAIRDIRECTION for solving
the semantic analogies of the SemEval task, and
3COSADD for solving the syntactic analogies.1

3.3 Reinterpreting Vector Arithmetic

In Mikolov et al.’s experiments, all word-vectors
were normalized to unit length. Under such nor-
malization, the argmax in (1) is mathematically
equivalent to (derived using basic algebra):

argmax

b

⇤2V
(cos (b

⇤
, b)� cos (b

⇤
, a) + cos (b

⇤
, a

⇤
))

(3)
This means that solving analogy questions with
vector arithmetic is mathematically equivalent to
seeking a word (b⇤) which is similar to b and a

⇤

but is different from a. Relational similarity is
thus expressed as a sum of attributional similari-
ties. While (1) and (3) are equal, we find the intu-
ition as to why (3) ought to find analogies clearer.

4 Empirical Setup

We derive explicit and neural-embedded vec-
tor representations, and compare their capacities
to recover relational similarities using objectives
3COSADD (eq. 3) and PAIRDIRECTION (eq. 2).

Underlying Corpus and Preprocessing Previ-
ous reported results on the word analogy tasks us-
ing vector arithmetics were obtained using propri-
etary corpora. To make our experiments repro-
ducible, we selected an open and widely accessi-
ble corpus – the English Wikipedia. We extracted
all sentences from article bodies (excluding ti-
tles, infoboxes, captions, etc) and filtered non-
alphanumeric tokens, allowing mid-token symbols
as apostrophes, hyphens, commas, and periods.
All the text was lowercased. Duplicates and sen-
tences with less than 5 tokens were then removed.
Overall, we retained a corpus of about 1.5 billion
tokens, in 77.5 million sentences.

Word Representations To create contexts for
both embedding and sparse representation, we
used a window of two tokens to each side (5-
grams, in total), ignoring words that appeared less

1This was confirmed both by our independent trials and
by corresponding with the authors.

Mikolov et al., 2013

Levy and Goldberg, 2014

Representation MSR GOOGLE SEMEVAL
Embedding 9.26% 14.51% 44.77%

Explicit 0.66% 0.75% 45.19%

Table 2: Performance of PAIRDIRECTION on different tasks
with the explicit and neural embedding representations.

The results in Table 2 show that the PAIRDI-
RECTION method is better than 3COSADD on
the restricted-vocabulary SEMEVAL task (accu-
racy jumps from 38% to 45%), but fails at the
open-vocabulary questions in GOOGLE and MSR.
When the method does work, the numbers for the
explicit and embedded representations are again
comparable to one another.

Why is PAIRDIRECTION performing so well
on the SEMEVAL task, yet so poorly on the oth-
ers? Recall that the PAIRDIRECTION objective
focuses on the similarity of b

⇤ � b and a

⇤ � a,
but does not take into account the spatial distances
between the individual vectors. Relying on di-
rection alone, while ignoring spatial distance, is
problematic when considering the entire vocabu-
lary as candidates (as is required in the MSR and
GOOGLE tasks). We are likely to find candidates
b

⇤ that have the same relation to b as reflected by
a � a

⇤ but are not necessarily similar to b. As a
concrete example, in man:woman, king:?, we are
likely to recover feminine entities, but not neces-
sarily royal ones. The SEMEVAL test set, on the
other hand, already provides related (and therefore
geometrically close) candidates, leaving mainly
the direction to reason about.

6 Refining the Objective Function

The 3COSADD objective, as expressed in (3), re-
veals a “balancing act” between two attractors and
one repeller, i.e. two terms that we wish to maxi-
mize and one that needs to be minimized:

argmax

b

⇤2V
(cos (b

⇤
, b)� cos (b

⇤
, a) + cos (b

⇤
, a

⇤
))

A known property of such linear objectives is that
they exhibit a “soft-or” behavior and allow one
sufficiently large term to dominate the expression.
This behavior is problematic in our setup, because
each term reflects a different aspect of similarity,
and the different aspects have different scales. For
example, king is more royal than it is masculine,
and will therefore overshadow the gender aspect
of the analogy. It is especially true in the case of
explicit vector representations, as each aspect of

the similarity is manifested by a different set of
features with varying sizes and weights.

A case in point is the analogy question “London
is to England as Baghdad is to — ?”, which we
answer using:

argmax

x2V
(cos (x, en)� cos (x, lo) + cos (x, ba))

We seek a word (Iraq) which is similar to Eng-
land (both are countries), is similar to Baghdad
(similar geography/culture) and is dissimilar to
London (different geography/culture). Maximiz-
ing the sum yields an incorrect answer (under both
representations): Mosul, a large Iraqi city. Look-
ing at the computed similarities in the explicit vec-
tor representation, we see that both Mosul and Iraq
are very close to Baghdad, and are quite far from
England and London:

(EXP) " England # London " Baghdad Sum
Mosul 0.031 0.031 0.244 0.244
Iraq 0.049 0.038 0.206 0.217

The same trends appear in the neural embedding
vectors, though with different similarity scores:

(EMB) " England # London " Baghdad Sum
Mosul 0.130 0.141 0.755 0.748
Iraq 0.153 0.130 0.631 0.655

While Iraq is much more similar to England than
Mosul is (both being countries), both similarities
(0.049 and 0.031 in explicit, 0.130 and 0.153 in
embedded) are small and the sums are dominated
by the geographic and cultural aspect of the anal-
ogy: Mosul and Iraq’s similarity to Baghdad (0.24
and 0.20 in explicit, 0.75 and 0.63 in embedded).

To achieve better balance among the different
aspects of similarity, we propose switching from
an additive to a multiplicative combination:

argmax

b

⇤2V

cos (b

⇤
, b) cos (b

⇤
, a

⇤
)

cos (b

⇤
, a) + "

(4)

(" = 0.001 is used to prevent division by zero)

This is equivalent to taking the logarithm of each
term before summation, thus amplifying the dif-
ferences between small quantities and reducing
the differences between larger ones. Using this ob-
jective, Iraq is scored higher than Mosul (0.259 vs
0.236, 0.736 vs 0.691). We refer to objective (4)
as 3COSMUL.7

73COSMUL requires that all similarities be non-negative,
which trivially holds for explicit representations. With em-
beddings, we transform cosine similarities to [0, 1] using
(x+ 1)/2 before calculating (4).

Representation MSR GOOGLE SEMEVAL
Embedding 9.26% 14.51% 44.77%

Explicit 0.66% 0.75% 45.19%

Table 2: Performance of PAIRDIRECTION on different tasks
with the explicit and neural embedding representations.

The results in Table 2 show that the PAIRDI-
RECTION method is better than 3COSADD on
the restricted-vocabulary SEMEVAL task (accu-
racy jumps from 38% to 45%), but fails at the
open-vocabulary questions in GOOGLE and MSR.
When the method does work, the numbers for the
explicit and embedded representations are again
comparable to one another.

Why is PAIRDIRECTION performing so well
on the SEMEVAL task, yet so poorly on the oth-
ers? Recall that the PAIRDIRECTION objective
focuses on the similarity of b

⇤ � b and a

⇤ � a,
but does not take into account the spatial distances
between the individual vectors. Relying on di-
rection alone, while ignoring spatial distance, is
problematic when considering the entire vocabu-
lary as candidates (as is required in the MSR and
GOOGLE tasks). We are likely to find candidates
b

⇤ that have the same relation to b as reflected by
a � a

⇤ but are not necessarily similar to b. As a
concrete example, in man:woman, king:?, we are
likely to recover feminine entities, but not neces-
sarily royal ones. The SEMEVAL test set, on the
other hand, already provides related (and therefore
geometrically close) candidates, leaving mainly
the direction to reason about.

6 Refining the Objective Function

The 3COSADD objective, as expressed in (3), re-
veals a “balancing act” between two attractors and
one repeller, i.e. two terms that we wish to maxi-
mize and one that needs to be minimized:

argmax

b

⇤2V
(cos (b

⇤
, b)� cos (b

⇤
, a) + cos (b

⇤
, a

⇤
))

A known property of such linear objectives is that
they exhibit a “soft-or” behavior and allow one
sufficiently large term to dominate the expression.
This behavior is problematic in our setup, because
each term reflects a different aspect of similarity,
and the different aspects have different scales. For
example, king is more royal than it is masculine,
and will therefore overshadow the gender aspect
of the analogy. It is especially true in the case of
explicit vector representations, as each aspect of

the similarity is manifested by a different set of
features with varying sizes and weights.

A case in point is the analogy question “London
is to England as Baghdad is to — ?”, which we
answer using:

argmax

x2V
(cos (x, en)� cos (x, lo) + cos (x, ba))

We seek a word (Iraq) which is similar to Eng-
land (both are countries), is similar to Baghdad
(similar geography/culture) and is dissimilar to
London (different geography/culture). Maximiz-
ing the sum yields an incorrect answer (under both
representations): Mosul, a large Iraqi city. Look-
ing at the computed similarities in the explicit vec-
tor representation, we see that both Mosul and Iraq
are very close to Baghdad, and are quite far from
England and London:

(EXP) " England # London " Baghdad Sum
Mosul 0.031 0.031 0.244 0.244
Iraq 0.049 0.038 0.206 0.217

The same trends appear in the neural embedding
vectors, though with different similarity scores:

(EMB) " England # London " Baghdad Sum
Mosul 0.130 0.141 0.755 0.748
Iraq 0.153 0.130 0.631 0.655

While Iraq is much more similar to England than
Mosul is (both being countries), both similarities
(0.049 and 0.031 in explicit, 0.130 and 0.153 in
embedded) are small and the sums are dominated
by the geographic and cultural aspect of the anal-
ogy: Mosul and Iraq’s similarity to Baghdad (0.24
and 0.20 in explicit, 0.75 and 0.63 in embedded).

To achieve better balance among the different
aspects of similarity, we propose switching from
an additive to a multiplicative combination:

argmax

b

⇤2V

cos (b

⇤
, b) cos (b

⇤
, a

⇤
)

cos (b

⇤
, a) + "

(4)

(" = 0.001 is used to prevent division by zero)

This is equivalent to taking the logarithm of each
term before summation, thus amplifying the dif-
ferences between small quantities and reducing
the differences between larger ones. Using this ob-
jective, Iraq is scored higher than Mosul (0.259 vs
0.236, 0.736 vs 0.691). We refer to objective (4)
as 3COSMUL.7

73COSMUL requires that all similarities be non-negative,
which trivially holds for explicit representations. With em-
beddings, we transform cosine similarities to [0, 1] using
(x+ 1)/2 before calculating (4).

Modeling of Linguistic Relations

(Sternberg and Gardner, 1983; Mikolov et al., 2013)

Matrix Manifold Model of Linguistic Relations
(Mahadevan and Chandar, Arxiv, 2015)

Countries
subspace

Capitals
subspace

PCA derived
subspaces of
word vectors

geodesic
on Grassmannian

manifoldWe show later that matrix manifold
representations of linguistic relations

are far superior to linear vector
translation approaches

ML Techniques
❖ Instance reweighing methods

❖ Domain adaptation

❖ Linear Feature (subspace) construction methods

❖ CCA, Manifold alignment

❖ Subspace alignment

❖ Geodesic flow kernels

❖ Nonlinear feature construction approaches

❖ Deep learning

Some Surveys

1

A Survey on Transfer Learning
Sinno Jialin Pan and Qiang Yang Fellow, IEEE

Abstract—A major assumption in many machine learning and data mining algorithms is that the training and future data must be
in the same feature space and have the same distribution. However, in many real-world applications, this assumption may not hold.
For example, we sometimes have a classification task in one domain of interest, but we only have sufficient training data in another
domain of interest, where the latter data may be in a different feature space or follow a different data distribution. In such cases,
knowledge transfer, if done successfully, would greatly improve the performance of learning by avoiding much expensive data labeling
efforts. In recent years, transfer learning has emerged as a new learning framework to address this problem. This survey focuses on
categorizing and reviewing the current progress on transfer learning for classification, regression and clustering problems. In this survey,
we discuss the relationship between transfer learning and other related machine learning techniques such as domain adaptation, multi-
task learning and sample selection bias, as well as co-variate shift. We also explore some potential future issues in transfer learning
research.

Index Terms—Transfer Learning, Survey, Machine Learning, Data Mining.

✦

1 INTRODUCTION
Data mining and machine learning technologies have already
achieved significant success in many knowledge engineering
areas including classification, regression and clustering (e.g.,
[1], [2]). However, many machine learning methods work well
only under a common assumption: the training and test data are
drawn from the same feature space and the same distribution.
When the distribution changes, most statistical models need to
be rebuilt from scratch using newly collected training data. In
many real world applications, it is expensive or impossible to
re-collect the needed training data and rebuild the models. It
would be nice to reduce the need and effort to re-collect the
training data. In such cases, knowledge transfer or transfer
learning between task domains would be desirable.

Many examples in knowledge engineering can be found
where transfer learning can truly be beneficial. One example
is Web document classification [3], [4], [5], where our goal
is to classify a given Web document into several predefined
categories. As an example in the area of Web-document
classification (see, e.g., [6]), the labeled examples may be
the university Web pages that are associated with category
information obtained through previous manual-labeling efforts.
For a classification task on a newly created Web site where the
data features or data distributions may be different, there may
be a lack of labeled training data. As a result, we may not be
able to directly apply the Web-page classifiers learned on the
university Web site to the new Web site. In such cases, it would
be helpful if we could transfer the classification knowledge
into the new domain.

The need for transfer learning may arise when the data can
be easily outdated. In this case, the labeled data obtained in
one time period may not follow the same distribution in a
later time period. For example, in indoor WiFi localization

Department of Computer Science and Engineering, Hong Kong University of
Science and Technology, Clearwater Bay, Kowloon, Hong Kong
Emails: {sinnopan, qyang}@cse.ust.hk

problems, which aims to detect a user’s current location based
on previously collected WiFi data, it is very expensive to
calibrate WiFi data for building localization models in a large-
scale environment, because a user needs to label a large
collection of WiFi signal data at each location. However, the
WiFi signal-strength values may be a function of time, device
or other dynamic factors. A model trained in one time period
or on one device may cause the performance for location
estimation in another time period or on another device to be
reduced. To reduce the re-calibration effort, we might wish to
adapt the localization model trained in one time period (the
source domain) for a new time period (the target domain), or
to adapt the localization model trained on a mobile device (the
source domain) for a new mobile device (the target domain),
as done in [7].

As a third example, consider the problem of sentiment
classification, where our task is to automatically classify the
reviews on a product, such as a brand of camera, into positive
and negative views. For this classification task, we need to
first collect many reviews of the product and annotate them.
We would then train a classifier on the reviews with their
corresponding labels. Since the distribution of review data
among different types of products can be very different, to
maintain good classification performance, we need to collect
a large amount of labeled data in order to train the review-
classification models for each product. However, this data-
labeling process can be very expensive to do. To reduce the
effort for annotating reviews for various products, we may
want to adapt a classification model that is trained on some
products to help learn classification models for some other
products. In such cases, transfer learning can save a significant
amount of labeling effort [8].

In this survey article, we give a comprehensive overview of
transfer learning for classification, regression and clustering
developed in machine learning and data mining areas. There
has been a large amount of work on transfer learning for
reinforcement learning in the machine learning literature (e.g.,

Digital Object Indentifier 10.1109/TKDE.2009.191 1041-4347/$25.00 © 2009 IEEE

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

DATASET SHIFT IN
MACHINE LEARNING
EDITED BY JOAQUIN QUIÑONERO-CANDELA, MASASHI SUGIYAMA,
ANTON SCHWAIGHOFER, AND NEIL D. LAWRENCE

DATASET SH
IFT IN

 M
ACH

IN
E LEARN

IN
G

QUIÑONERO-CANDELA, SUGIYAM
A,

SCHW
AIGHOFER, AND LAW

RENCE, EDITORS

Dataset shift is a common problem in predictive modeling that
occurs when the joint distribution of inputs and outputs differs
between training and test stages. Covariate shift, a particular
case of dataset shift, occurs when only the input distribution
changes. Dataset shift is present in most practical applications,
for reasons ranging from the bias introduced by experimental
design to the irreproducibility of the testing conditions at
training time. (An example is email spam fi ltering, which may
fail to recognize spam that differs in form from the spam the
automatic fi lter has been built on.) Despite this, and despite
the attention given to the apparently similar problems of semi-
supervised learning and active learning, dataset shift has
received relatively little attention in the machine learning com-
munity until recently. This volume offers an overview of current
efforts to deal with dataset and covariate shift.
 The chapters offer a mathematical and philosophical
introduction to the problem, place dataset shift in relationship
to transfer learning, transduction, local learning, active learn-
ing, and semi-supervised learning, provide theoretical views
of dataset and covariate shift (including decision theoretic
and Bayesian perspectives), and present algorithms for covari-
ate shift.

DATASET SHIFT IN
MACHINE LEARNING
EDITED BY JOAQUIN QUIÑONERO-CANDELA,
MASASHI SUGIYAMA, ANTON SCHWAIGHOFER,
AND NEIL D. LAWRENCE

Joaquin Quiñonero-Candela is a Researcher in the Online Services
and Advertising Group at Microsoft Research Cambridge, UK.
Masashi Sugiyama is Associate Professor in the Department of
Computer Science at the Tokyo Institute of Technology. Anton
Schwaighofer is an Applied Researcher in the Online Services
and Advertising Group at Microsoft Research, Cambridge, UK.
Neil D. Lawrence is Senior Research Fellow and Member of the
Machine Learning and Optimisation Research Group in the
School of Computer Science at the University of Manchester.

CONTRIBUTORS
SHAI BEN-DAVID, STEFFEN BICKEL, KARSTEN BORGWARDT, MICHAEL BRÜCKNER, DAVID CORFIELD, AMIR GLOBERSON,
ARTHUR GRETTON, LARS KAI HANSEN, MATTHIAS HEIN, JIAYUAN HUANG, TAKAFUMI KANAMORI, KLAUS-ROBERT MÜLLER,
SAM ROWEIS, NEIL RUBENS, TOBIAS SCHEFFER, MARCEL SCHMITTFULL, BERNHARD SCHÖLKOPF, HIDETOSHI SHIMODAIRA,
ALEX SMOLA, AMOS STORKEY, MASASHI SUGIYAMA, CHOON HUI TEO

Neural Information Processing series

computer science/machine learning

THE MIT PRESS MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 02142 HTTP://MITPRESS.MIT.EDU

978-0-262-17005-5

http://pub.hal3.name#daume06megam

Journal of Artificial Intelligence Research 26 (2006) 101-126 Submitted 8/05; published 5/06

Domain Adaptation for Statistical Classifiers

Hal Daumé III hdaume@isi.edu

Daniel Marcu marcu@isi.edu

Information Sciences Institute
University of Southern California
4676 Admiralty Way, Suite 1001
Marina del Rey, CA 90292 USA

Abstract

The most basic assumption used in statistical learning theory is that training data
and test data are drawn from the same underlying distribution. Unfortunately, in many
applications, the “in-domain” test data is drawn from a distribution that is related, but
not identical, to the “out-of-domain” distribution of the training data. We consider the
common case in which labeled out-of-domain data is plentiful, but labeled in-domain data is
scarce. We introduce a statistical formulation of this problem in terms of a simple mixture
model and present an instantiation of this framework to maximum entropy classifiers and
their linear chain counterparts. We present efficient inference algorithms for this special
case based on the technique of conditional expectation maximization. Our experimental
results show that our approach leads to improved performance on three real world tasks
on four different data sets from the natural language processing domain.

1. Introduction

The generalization properties of most current statistical learning techniques are predicated
on the assumption that the training data and test data come from the same underlying
probability distribution. Unfortunately, in many applications, this assumption is inaccurate.
It is often the case that plentiful labeled data exists in one domain (or coming from one
distribution), but one desires a statistical model that performs well on another related, but
not identical domain. Hand labeling data in the new domain is a costly enterprise, and one
often wishes to be able to leverage the original, “out-of-domain” data when building a model
for the new, “in-domain” data. We do not seek to eliminate the annotation of in-domain
data, but instead seek to minimize the amount of new annotation effort required to achieve
good performance. This problem is known both as domain adaptation and transfer.

In this paper, we present a novel framework for understanding the domain adaptation
problem. The key idea in our framework is to treat the in-domain data as drawn from
a mixture of two distributions: a “truly in-domain” distribution and a “general domain”
distribution. Similarly, the out-of-domain data is treated as if drawn from a mixture of
a “truly out-of-domain” distribution and a “general domain” distribution. We apply this
framework in the context of conditional classification models and conditional linear-chain
sequence labeling models, for which inference may be efficiently solved using the technique
of conditional expectation maximization. We apply our model to four data sets with vary-
ing degrees of divergence between the “in-domain” and “out-of-domain” data and obtain

c⃝2006 AI Access Foundation. All rights reserved.

A Taxonomy of Transfer Learning

5

TABLE 2
Different Settings of Transfer Learning

Transfer Learning Settings Related Areas Source Domain Labels Target Domain Labels Tasks
Inductive Transfer Learning Multi-task Learning Available Available Regression,

Classification
Self-taught Learning Unavailable Available Regression,

Classification
Transductive Transfer Learning Domain Adaptation, Sample

Selection Bias, Co-variate Shift
Available Unavailable Regression,

Classification
Unsupervised Transfer Learning Unavailable Unavailable Clustering,

Dimensionality
Reduction

Fig. 2. An Overview of Different Settings of Transfer

TABLE 3
Different Approaches to Transfer Learning

Transfer Learning Approaches Brief Description
Instance-transfer To re-weight some labeled data in the source domain for use in the target domain [6], [28], [29],

[30], [31], [24], [32], [33], [34], [35].
Feature-representation-transfer Find a “good” feature representation that reduces difference between the source and the target

domains and the error of classification and regression models [22], [36], [37], [38], [39], [8],
[40], [41], [42], [43], [44].

Parameter-transfer Discover shared parameters or priors between the source domain and target domain models, which
can benefit for transfer learning [45], [46], [47], [48], [49].

Relational-knowledge-transfer Build mapping of relational knowledge between the source domain and the target domains. Both
domains are relational domains and i.i.d assumption is relaxed in each domain [50], [51], [52].

TABLE 4
Different Approaches Used in Different Settings

Inductive Transfer Learning Transductive Transfer Learning Unsupervised Transfer Learning
Instance-transfer

√ √

Feature-representation-transfer
√ √ √

Parameter-transfer
√

Relational-knowledge-transfer
√

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Pan and Yang, A Survey of Transfer Learning, IEEE TKDE 2010

Proto-Value
functions

Proto-Value Function Approximation

0

0.5

1

0

5

10

15

20

max(Q∗)

−0.1

0

0.1

−0.1

0

0.1

−0.1

0

0.1

−0.1

0

0.1

−0.1

0

0.1

−0.1

0

0.1 [Mahadevan,	ICML	2005;		
Mahadevan	&	Maggioni,	JMLR	2007]

Reward-invariant
representations

Eigenvectors
of the MDP

graph Laplacian
L = D - W

Extensions	to	Con>nuous	MDPs

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

Position

Eigenvector #15

Velocity

Mountain	car

[Mahadevan	et	al.,	AAAI	2006;	Mahadevan	and	Maggioni,	JMLR	2007]

0 5 10 15 20 25 30
0

100

200

300

400

500

600

700

800

900

1000

Number of Episodes

N
u
m

b
e
r

o
f
S

te
p
s

Proto−Value Functions on Acrobot Domain

75 PVFs: On−Policy Sampling

Con>nuous	MDPs:	Acrobot	Task

TD	+	CMAC

Human-designed	
representa/on

Machine-generated	
representa/on

(4-dim	state	space)

40X	
faster

Reinforcement Learning for Atari

Enduro Pong
Representation

Discovery
by finding

symmetries
using convolutional

neural networks

(Mnih et al., Nature 2015)

Atari Deep Learning
Architecture

difficult and engaging for human players. We used the same network
architecture, hyperparameter values (see Extended Data Table 1) and
learning procedure throughout—taking high-dimensional data (210|160
colour video at 60 Hz) as input—to demonstrate that our approach
robustly learns successful policies over a variety of games based solely
on sensory inputs with only very minimal prior knowledge (that is, merely
the input data were visual images, and the number of actions available
in each game, but not their correspondences; see Methods). Notably,
our method was able to train large neural networks using a reinforce-
ment learning signal and stochastic gradient descent in a stable manner—
illustrated by the temporal evolution of two indices of learning (the
agent’s average score-per-episode and average predicted Q-values; see
Fig. 2 and Supplementary Discussion for details).

We compared DQN with the best performing methods from the
reinforcement learning literature on the 49 games where results were
available12,15. In addition to the learned agents, we also report scores for
a professional human games tester playing under controlled conditions
and a policy that selects actions uniformly at random (Extended Data
Table 2 and Fig. 3, denoted by 100% (human) and 0% (random) on y
axis; see Methods). Our DQN method outperforms the best existing
reinforcement learning methods on 43 of the games without incorpo-
rating any of the additional prior knowledge about Atari 2600 games
used by other approaches (for example, refs 12, 15). Furthermore, our
DQN agent performed at a level that was comparable to that of a pro-
fessional human games tester across the set of 49 games, achieving more
than 75% of the human score on more than half of the games (29 games;

Convolution Convolution Fully connected Fully connected

No input

Figure 1 | Schematic illustration of the convolutional neural network. The
details of the architecture are explained in the Methods. The input to the neural
network consists of an 84 3 84 3 4 image produced by the preprocessing
map w, followed by three convolutional layers (note: snaking blue line

symbolizes sliding of each filter across input image) and two fully connected
layers with a single output for each valid action. Each hidden layer is followed
by a rectifier nonlinearity (that is, max 0,xð Þ).

a b

c d

 0
 200
 400
 600
 800

 1,000
 1,200
 1,400
 1,600
 1,800
 2,000
 2,200

 0 20 40 60 80 100 120 140 160 180 200

A
ve

ra
ge

 s
co

re
 p

er
 e

pi
so

de

Training epochs

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11

 0 20 40 60 80 100 120 140 160 180 200

A
ve

ra
ge

 a
ct

io
n

va
lu

e
(Q

)

Training epochs

 0

 1,000

 2,000

 3,000

 4,000

 5,000

 6,000

 0 20 40 60 80 100 120 140 160 180 200

A
ve

ra
ge

 s
co

re
 p

er
 e

pi
so

de

Training epochs

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 0 20 40 60 80 100 120 140 160 180 200

A
ve

ra
ge

 a
ct

io
n

va
lu

e
(Q

)

Training epochs

Figure 2 | Training curves tracking the agent’s average score and average
predicted action-value. a, Each point is the average score achieved per episode
after the agent is run with e-greedy policy (e 5 0.05) for 520 k frames on Space
Invaders. b, Average score achieved per episode for Seaquest. c, Average
predicted action-value on a held-out set of states on Space Invaders. Each point

on the curve is the average of the action-value Q computed over the held-out
set of states. Note that Q-values are scaled due to clipping of rewards (see
Methods). d, Average predicted action-value on Seaquest. See Supplementary
Discussion for details.

RESEARCH LETTER

5 3 0 | N A T U R E | V O L 5 1 8 | 2 6 F E B R U A R Y 2 0 1 5

Macmillan Publishers Limited. All rights reserved©2015

Symmetry
detection

CNNs

(Mnih et al., Nature 2015)

Actor-Mimic
Architecture
for Transfer
in Deep RL

(Parisoto et al., ICLR 2016)

Statistical Models of Domain Adaptation
1.3 Real-Life Reasons for Dataset Shift 7

relationship P (y|x). Hence the learned form of the conditional model will no longer
be valid. Recognition of this is vital: just because a conditional model performs well
in the context of no dataset shift does not imply its validity or capability in the
context of dataset shift.

1.3 Real-Life Reasons for Dataset Shift

Whether using unconditional or conditional models, there is a presumption that the
distributions they specify are static; i.e., they do not change between the time we
learn them and the time we use them. If this is not true, and the distributions change
in some way, then we need to model for that change, or at least the possibility of
that change. To postulate such a model requires an examination of the reasons why
such a shift may occur.

Though there are no doubt an infinite set of potential reasons for these changes,
there are a number of ways of collectively characterizing many forms of shift into
qualitatively different groups. The following will be discussed in this chapter:

Simple covariate shift is when only the distributions of covariates x change and
everything else is the same.
Prior probability shift is when only the distribution over y changes and every-
thing else stays the same.
Sample selection bias is when the distributions differ as a result of an unknown
sample rejection process.
Imbalanced data is a form of deliberate dataset shift for computational or mod-
eling convenience.
Domain shift involves changes in measurement.
Source component shift involves changes in strength of contributing compo-
nents.

Each of these relates to a different form of model. Unsurprisingly, each form
suggests a particular approach for dealing with the change. As each model is
examined in the following sections, the particular nature of the shift will be
explained, some of the literature surrounding that type of dataset shift will be
mentioned, and a graphical illustration of the overall model will be given. The
graphical descriptions will take a common form: they will illustrate the probabilistic
graphical (causal) model for the generative model. Where the distributions of a
variable may change between train and test scenarios, the corresponding network
node is darkened. Each figure will also illustrate data undergoing the particular
form of shift by providing samples for the training (light) and test (dark) situations.
These diagrams should quickly illustrate the type of change that is occurring. In the
descriptions, a subscript tr will denote a quantity related to the training scenario,
and a subscript te will denote a quantity relating to the test scenario. Hence Ptr(y)
and Pte(y) are the probability of y in training and test situations respectively.

8 When Training and Test Sets Are Different: Characterizing Learning Transfer

Figure 1.1 Simple covariate shift. Here the causal model indicated the targets y are
directly dependent on the covariates x. In other words the predictive function and noise
model stay the same, it is just the typical locations x of the points at which the function
needs to be evaluated that change. In this figure and throughout, the causal model is given
on the left with the node that varies between training and test made darker. To the right
is some example data, with the training data in shaded light and the test data shaded
dark.

1.4 Simple Covariate Shift

The most basic form of dataset shift occurs when the data is generated according
to a model P (y|x)P (x) and where the distribution P (x) changes between training
and test scenarios. As only the covariate distribution changes, this has been called
covariate shift [Shimodaira, 2000]. See figure 1.1 for an illustration of the form of
causal model for covariate shift.

A typical example of covariate shift occurs in assessing the risk of future events
given current scenarios. Suppose the problem was to assess the risk of lung cancer
in five years (y) given recent past smoking habits (x). In these situations we can
be sure that the occurrence or otherwise of future lung cancer is not a causal factor
of current habits. So in this case a conditional relationship of the form P (y|x) is
a reasonable causal model to consider.1 Suppose now that changing circumstances
(e.g., a public smoking ban) affect the distribution over habits x. How do we account
for that in our prediction of risk for a new person with habits x∗?

It will perhaps come as little surprise that the fact that the covariate distribution
changes should have no effect on the model P (y|x∗). Intuitively this makes sense.
The smoking habits of some person completely independent of me should not affect
my risk of lung cancer if I make no change at all. From a modeling point of view
we can see that from our earlier observation in the static case this is simply a
conditional model: it gives the same prediction for given x, P (y|x) regardless of

1. Of course there are always possible confounding factors, but for the sake of this
illustration we choose to ignore that for now. It is also possible the samples are not drawn
independently and identically distributed due to population effects (e.g., passive smoking)
but that too is ignored here.

DATASET SHIFT IN
MACHINE LEARNING
EDITED BY JOAQUIN QUIÑONERO-CANDELA, MASASHI SUGIYAMA,
ANTON SCHWAIGHOFER, AND NEIL D. LAWRENCE

DATASET SH
IFT IN

 M
ACH

IN
E LEARN

IN
G

QUIÑONERO-CANDELA, SUGIYAM
A,

SCHW
AIGHOFER, AND LAW

RENCE, EDITORS

Dataset shift is a common problem in predictive modeling that
occurs when the joint distribution of inputs and outputs differs
between training and test stages. Covariate shift, a particular
case of dataset shift, occurs when only the input distribution
changes. Dataset shift is present in most practical applications,
for reasons ranging from the bias introduced by experimental
design to the irreproducibility of the testing conditions at
training time. (An example is email spam fi ltering, which may
fail to recognize spam that differs in form from the spam the
automatic fi lter has been built on.) Despite this, and despite
the attention given to the apparently similar problems of semi-
supervised learning and active learning, dataset shift has
received relatively little attention in the machine learning com-
munity until recently. This volume offers an overview of current
efforts to deal with dataset and covariate shift.
 The chapters offer a mathematical and philosophical
introduction to the problem, place dataset shift in relationship
to transfer learning, transduction, local learning, active learn-
ing, and semi-supervised learning, provide theoretical views
of dataset and covariate shift (including decision theoretic
and Bayesian perspectives), and present algorithms for covari-
ate shift.

DATASET SHIFT IN
MACHINE LEARNING
EDITED BY JOAQUIN QUIÑONERO-CANDELA,
MASASHI SUGIYAMA, ANTON SCHWAIGHOFER,
AND NEIL D. LAWRENCE

Joaquin Quiñonero-Candela is a Researcher in the Online Services
and Advertising Group at Microsoft Research Cambridge, UK.
Masashi Sugiyama is Associate Professor in the Department of
Computer Science at the Tokyo Institute of Technology. Anton
Schwaighofer is an Applied Researcher in the Online Services
and Advertising Group at Microsoft Research, Cambridge, UK.
Neil D. Lawrence is Senior Research Fellow and Member of the
Machine Learning and Optimisation Research Group in the
School of Computer Science at the University of Manchester.

CONTRIBUTORS
SHAI BEN-DAVID, STEFFEN BICKEL, KARSTEN BORGWARDT, MICHAEL BRÜCKNER, DAVID CORFIELD, AMIR GLOBERSON,
ARTHUR GRETTON, LARS KAI HANSEN, MATTHIAS HEIN, JIAYUAN HUANG, TAKAFUMI KANAMORI, KLAUS-ROBERT MÜLLER,
SAM ROWEIS, NEIL RUBENS, TOBIAS SCHEFFER, MARCEL SCHMITTFULL, BERNHARD SCHÖLKOPF, HIDETOSHI SHIMODAIRA,
ALEX SMOLA, AMOS STORKEY, MASASHI SUGIYAMA, CHOON HUI TEO

Neural Information Processing series

computer science/machine learning

THE MIT PRESS MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 02142 HTTP://MITPRESS.MIT.EDU

978-0-262-17005-5

Train Test

Simple Domain Adaptation Methods
For the purposes of discussion, we will suppose that
X = RF and that Y = {−1, +1}. However, most
of the techniques described in this section (as well
as our own technique) are more general.
There are several “obvious” ways to attack the

domain adaptation problem without developing new
algorithms. Many of these are presented and evalu-
ated by Daumé III and Marcu (2006).
The SRCONLY baseline ignores the target data and

trains a single model, only on the source data.
The TGTONLY baseline trains a single model only

on the target data.
The ALL baseline simply trains a standard learning

algorithm on the union of the two datasets.
A potential problem with the ALL baseline is that

ifN ≫ M , thenDs may “wash out” any affect
Dt might have. We will discuss this problem in
more detail later, but one potential solution is
to re-weight examples from Ds. For instance,
if N = 10 × M , we may weight each example
from the source domain by 0.1. The next base-
line, WEIGHTED, is exactly this approach, with
the weight chosen by cross-validation.

The PRED baseline is based on the idea of using
the output of the source classifier as a feature in
the target classifier. Specifically, we first train a
SRCONLY model. Then we run the SRCONLY
model on the target data (training, development
and test). We use the predictions made by
the SRCONLY model as additional features and
train a second model on the target data, aug-
mented with this new feature.

In the LININT baseline, we linearly interpolate
the predictions of the SRCONLY and the TG-
TONLY models. The interpolation parameter is
adjusted based on target development data.

These baselines are actually surprisingly difficult
to beat. To date, there are two models that have
successfully defeated them on a handful of datasets.
The first model, which we shall refer to as the PRIOR
model, was first introduced by Chelba and Acero
(2004). The idea of this model is to use the SR-
CONLY model as a prior on the weights for a sec-
ond model, trained on the target data. Chelba and
Acero (2004) describe this approach within the con-
text of a maximum entropy classifier, but the idea

is more general. In particular, for many learning
algorithms (maxent, SVMs, averaged perceptron,
naive Bayes, etc.), one regularizes the weight vec-
tor toward zero. In other words, all of these algo-
rithms contain a regularization term on the weights
w of the form λ ||w||22. In the generalized PRIOR
model, we simply replace this regularization term
with λ ||w − w

s||22, where w
s is the weight vector

learned in the SRCONLY model.1 In this way, the
model trained on the target data “prefers” to have
weights that are similar to the weights from the SR-
CONLY model, unless the data demands otherwise.
Daumé III and Marcu (2006) provide empirical evi-
dence on four datasets that the PRIOR model outper-
forms the baseline approaches.
More recently, Daumé III and Marcu (2006) pre-

sented an algorithm for domain adaptation for max-
imum entropy classifiers. The key idea of their ap-
proach is to learn three separate models. One model
captures “source specific” information, one captures
“target specific” information and one captures “gen-
eral” information. The distinction between these
three sorts of information is made on a per-example
basis. In this way, each source example is consid-
ered either source specific or general, while each
target example is considered either target specific or
general. Daumé III andMarcu (2006) present an EM
algorithm for training their model. This model con-
sistently outperformed all the baseline approaches
as well as the PRIOR model. Unfortunately, despite
the empirical success of this algorithm, it is quite
complex to implement and is roughly 10 to 15 times
slower than training the PRIOR model.

3 Adaptation by Feature Augmentation

In this section, we describe our approach to the do-
main adaptation problem. Essentially, all we are go-
ing to do is take each feature in the original problem
and make three versions of it: a general version, a
source-specific version and a target-specific version.
The augmented source data will contain only general
and source-specific versions. The augmented target

1For the maximum entropy, SVM and naive Bayes learn-
ing algorithms, modifying the regularization term is simple be-
cause it appears explicitly. For the perceptron algorithm, one
can obtain an equivalent regularization by performing standard
perceptron updates, but using (w + w

s)⊤x for making predic-
tions rather than simplyw

⊤
x.

Task Dom SRCONLY TGTONLY ALL WEIGHT PRED LININT PRIOR AUGMENT T<SWin
bn 4.98 2.37 2.29 2.23 2.11 2.21 2.06 1.98 + +
bc 4.54 4.07 3.55 3.53 3.89 4.01 3.47 3.47 + +

ACE- nw 4.78 3.71 3.86 3.65 3.56 3.79 3.68 3.39 + +
NER wl 2.45 2.45 2.12 2.12 2.45 2.33 2.41 2.12 = +

un 3.67 2.46 2.48 2.40 2.18 2.10 2.03 1.91 + +
cts 2.08 0.46 0.40 0.40 0.46 0.44 0.34 0.32 + +

CoNLL tgt 2.49 2.95 1.80 1.75 2.13 1.77 1.89 1.76 +
PubMed tgt 12.02 4.15 5.43 4.15 4.14 3.95 3.99 3.61 + +
CNN tgt 10.29 3.82 3.67 3.45 3.46 3.44 3.35 3.37 + +

wsj 6.63 4.35 4.33 4.30 4.32 4.32 4.27 4.11 + +
swbd3 15.90 4.15 4.50 4.10 4.13 4.09 3.60 3.51 + +
br-cf 5.16 6.27 4.85 4.80 4.78 4.72 5.22 5.15

Tree br-cg 4.32 5.36 4.16 4.15 4.27 4.30 4.25 4.90
bank- br-ck 5.05 6.32 5.05 4.98 5.01 5.05 5.27 5.41
Chunk br-cl 5.66 6.60 5.42 5.39 5.39 5.53 5.99 5.73

br-cm 3.57 6.59 3.14 3.11 3.15 3.31 4.08 4.89
br-cn 4.60 5.56 4.27 4.22 4.20 4.19 4.48 4.42
br-cp 4.82 5.62 4.63 4.57 4.55 4.55 4.87 4.78
br-cr 5.78 9.13 5.71 5.19 5.20 5.15 6.71 6.30

Treebank-brown 6.35 5.75 4.80 4.75 4.81 4.72 4.72 4.65 + +

Table 2: Task results.

ing up the feature space will help.
We additionally ran the MEGAM model (Daumé

III and Marcu, 2006) on these data (though not
in the multi-conditional case; for this, we consid-
ered the single source as the union of all sources).
The results are not displayed in Table 2 to save
space. For the majority of results, MEGAM per-
formed roughly comparably to the best of the sys-
tems in the table. In particular, it was not sta-
tistically significantly different that AUGMENT on:
ACE-NER, CoNLL, PubMed, Treebank-chunk-wsj,
Treebank-chunk-swbd3, CNN and Treebank-brown.
It did outperform AUGMENT on the Treebank-chunk
on the Treebank-chunk-br-* data sets, but only out-
performed the best other model on these data sets
for br-cg, br-cm and br-cp. However, despite its
advantages on these data sets, it was quite signifi-
cantly slower to train: a single run required about ten
times longer than any of the other models (including
AUGMENT), and also required five-to-ten iterations
of cross-validation to tune its hyperparameters so as
to achieve these results.

4.3 Model Introspection

One explanation of our model’s improved perfor-
mance is simply that by augmenting the feature
space, we are creating a more powerful model.
While this may be a partial explanation, here we
show that what the model learns about the various

* bn bc nw wl un cts

PER

GPE

ORG

LOC

Figure 1: Hinton diagram for feature /Aa+/ at cur-
rent position.

domains actually makes some plausible sense.
We perform this analysis only on the ACE-NER

data by looking specifically at the learned weights.
That is, for any given feature f , there will be seven
versions of f : one corresponding to the “cross-
domain” f and seven corresponding to each domain.
We visualize these weights, using Hinton diagrams,
to see how the weights vary across domains.
For example, consider the feature “current word

has an initial capital letter and is then followed by
one or more lower-case letters.” This feature is pre-
sumably useless for data that lacks capitalization in-
formation, but potentially quite useful for other do-
mains. In Figure 1 we shown a Hinton diagram for
this figure. Each column in this figure correspond
to a domain (the top row is the “general domain”).

(Daume’ and Marcu, 2006)

Mathematical Model of Sample Selection Bias

Outline of this article In Section 2, we present MMD and its
properties. In Section 3, we test the applicability of MMD in cross-
platform microarray comparability analysis and cancer diagnosis,
and evaluate it on a schema matching problem. We discuss our
findings in Section 4.

2 MMD AND THE TWO-SAMPLE PROBLEM

In statistics, the central question of data integration described above
is often referred to as the two-sample or homogeneity problem. The
principle underlying the maximum mean discrepancy is that we
want to find a function that assumes different expectations on
two different distributions. The hope then is that if we evaluate
this function on empirical samples from the distributions, it will
tell us whether the distributions they have been drawn from are
likely to differ. This leads to the following statistic, which is closely
related to a proposal by [Fortet and Mourier (1953)]. Here and
below,X denotes our input domain and is assumed to be a nonempty
compact set.

DEFINITION 2.1. Let F be a class of functions f:X!R. Let p and
q be Borel probability distributions, and let X ¼ (x1, . . . , xm) and
Y ¼ (y1, . . . , yn) be samples composed of independent and identic-
ally distributed observations drawn from p and q, respectively. We
define the maximum mean discrepancy (MMD) and its empirical
estimate as

MMD½F‚p‚q# :¼ sup
f2F
ðEp½f ðxÞ# & Eq½f ðyÞ#Þ

MMD½F‚X‚Y# :¼ sup
f2F

!
1

m

Xm

i¼1
f ðxiÞ &

1

n

Xn

i¼1
f ðyiÞ

"

Intuitively it is clear that if F is ‘rich enough’, MMD [F, p, q] will
vanish if and only if p ¼ q. Too rich an F, however, will result in a
statistic that differs significantly from zero for most finite samples X,
Y. For instance, if F is the class of all real valued functions onX, and
if X and Y are disjoint, then it is trivial to construct arbitrarily large
values of MMD[F, X, Y], for instance by ensuring that f j X is large
and f j Y ¼ 0. This phenomenon of overfitting can be avoided by
placing restrictions on the function class. That said, these restric-
tions ought not to prevent the MMD from detecting differences
between p and q when these are legitimately to be found. As we
shall see, one way to accomplish this tradeoff is by choosing F to be
the unit ball in a universal reproducing kernel Hilbert space, RKHS
for short.

We will propose a test of p ¼ q, based on an unbiased variant of
MMD [F, X, Y]1 which relies on the asymptotic Gaussianity of this
test statistic and on the guaranteed rapid convergence to this asymp-
totic regime. Thus, the performance guarantees provided by the test
apply in the case of a large sample size. The test has a computational
cost of O((m + n)2), although randomization techniques could be
employed to reduce the cost to essentially linear time-complexity (at
the expense of a somewhat reduced sensitivity).

2.1 MMD for kernel function classes

We now introduce a class of functions for which MMD may easily
be computed, while retaining the ability to detect all discrepancies
between p and q without making any simplifying assumptions. To

this end, let H be a complete inner product space (i.e., a Hilbert
space) of functions f:X ! R, where X is a nonempty compact set.
ThenH is termed a reproducing kernel Hilbert space if for all x 2 X,
the linear point evaluation functional mapping f! f(x) exists and is
continuous. In this case, f(x) can be expressed as an inner product via

f ðxÞ ¼ h ffðxÞiH ð1Þ

where f:X ! H is known as the feature space map from x to H.
Moreover, the inner product between two feature maps is called
the (positive definite) kernel, k(x, x0):¼hf(x), f(x0)iH. Of particular
interest are cases where we have an analytic expression for k that can
be computed quickly, despite H being high- or even infinite-
dimensional. An example of an infinite-dimensional H is that cor-
responding to the Gaussian kernel k(x, x0) ¼ exp(&kx & x0k2/(2s2)).
Wewill consider universal reproducing kernel Hilbert spaces in the

sense defined by Steinwart (2002). Although we do not go into tech-
nical detail here, we are guaranteed that RKHSs based on Gaussian
kernels are universal, as are string kernels (Section 2.3). See also
(Schölkopf et al., 2004) for an extensive list of further kernels.
When F is the unit ball in a universal RKHS, the following

theorem (Smola et al., 2006) guarantees that MMD[F, p, q] will
detect any discrepancy between p and q.

THEOREM 2.2. Let p, q be Borel probability measures on X a
compact subset of a metric space, and let H be a universal repro-
ducing kernel Hilbert space with unit ball F. Then MMD[F, p, q]¼
0 if and only if p ¼ q.

Moreover, denote by mp :¼ Ep[f(x)] the expectation of f(x)
in feature space (assuming that it exists).2 Then one may rewrite
MMD as

MMD½F‚p‚q# ¼ kmp&mqkH:
The main ideas for the proof can be summarized as follows. It is

known from probability theory (Dudley, 2002, Lemma 9.3.2) that
under the stated conditions, a sufficient condition for p¼ q is that for
all continuous functions f, we have

R
f dp¼

R
f dq. Such functions f,

however, can be arbitrarily well approximated using functions in a
universal RKHS (Steinwart, 2002). For the second part of the result,
observe that due to (1), we may rewrite the MMD as

MMD½F‚p‚q# ¼ sup
kf kH'1

Ep½ f ðxÞ# & Eq½ f ðyÞ#

¼ sup
kf kH'1

Ep½hfðxÞ‚ f iH# & Eq½hfðyÞ‚ f iH#

¼ sup
kf kH'1

hmp&mq‚ f iH ¼ kmp&mqkH:

The finite sample computation of MMD is greatly simplified by (2),
as shown in the corollary below:

COROLLARY 2.3. Under the assumptions of theorem 2.2 the fol-
lowing is an unbiased estimator of MMD2[F, p,q]:

MMD2½F‚X‚Y# ¼ 1

mðm & 1Þ
Xm

i6¼j
kðxi‚xjÞ

þ 1

nðn & 1Þ
Xn

i6¼j
kðyi‚yjÞ &

2

mn

Xm‚n

i‚ j¼1
kðxi‚yjÞ:

1Note that MMD[F, X, Y] as defined above is biased: even when p¼ q, it will
tend to give strictly positive results for finite sample sizes.

2A sufficient condition for this is kmpk2H < 1, which is rearranged as

Ep[k (x, x0)] < 1, where x and x0 are independent random variables

drawn according to p.

K.M.Borgwardt et al.

e50

(Borgwardt et al., Bioinformatics 2006)

Kernel Version of MMDwhere Ex̃∼s[·] is the expectation under distribution s. By
defining F as the set of functions in the unit ball in a univer-
sal RKHS H, it was shown that D′(F, s, t) = 0 if and only
if s = t [17].

Let X̃s = {x̃1
s, · · · , x̃

n
s } and X̃t = {x̃1

t , · · · , x̃
m
t } be

two sets of observations drawn i.i.d. from s and t, respec-
tively. An empirical estimate of the MMD can be computed
as

D(X̃s, X̃t) =

∥∥∥∥∥
1
n

n∑
i=1

φ(x̃i
s)− 1

m

m∑
j=1

φ(x̃j
t)

∥∥∥∥∥
H

=

(
n∑

i,j=1

k(x̃i
s, x̃

j
s)

n2
+

m∑
i,j=1

k(x̃i
t, x̃

j
t)

m2
− 2

n,m∑
i,j=1

k(x̃i
s, x̃

j
t)

nm

) 1
2

,

where φ(·) is the mapping to the RKHS H, and k(·, ·) =
⟨φ(·),φ(·)⟩ is the universal kernel associated with this map-
ping. In short, the MMD between the distributions of two
sets of observations is equivalent to the distance between
the sample means in a high-dimensional feature space.

3.2. Grassmann Manifolds
In our formulation, we model the projection of the source

and target data to a low-dimensional space as a point W on
a Grassmann manifold G(d,D). The Grassmann manifold
G(d,D) consists of the set of all linear d-dimensional sub-
spaces of RD. In particular, this lets us handle constraints
of the form W TW = Id. Learning the projection then
involves non-linear optimization on the Grassmann mani-
fold, which requires some notions of differential geometry
reviewed below.

In differential geometry, the shortest path between two
points on a manifold is a curve called a geodesic. The tan-
gent space at a point on a manifold is a vector space that
consists of the tangent vectors of all possible curves pass-
ing through this point. Parallel transport is the action of
transferring a tangent vector between two points on a man-
ifold. Unlike in flat spaces, this cannot be achieved by sim-
ple translation, but requires subtracting a normal component
at the end point [13].

On a Grassmann manifold, the above-mentioned opera-
tions have efficient numerical forms and can thus be used
to perform optimization on the manifold. In particular, we
make use of a conjugate gradient (CG) algorithm on the
Grassmann manifold [13]. CG techniques are popular non-
linear optimization methods with fast convergence rates.
These methods iteratively optimize the objective function
in linearly independent directions called conjugate direc-
tions [25]. CG on a Grassmann manifold can be summa-
rized by the following steps:

(i) Compute the gradient ∇fW of the objective function
f on the manifold at the current estimate W as

∇fW = ∂fW −WW T∂fW , (1)

with ∂fW the matrix of usual partial derivatives.

(ii) Determine the search direction H by parallel trans-
porting the previous search direction and combining
it with ∇fW .

(iii) Perform a line search along the geodesic at W in the
direction H .

These steps are repeated until convergence to a local mini-
mum, or until a maximum number of iterations is reached.

4. Domain Invariant Projection (DIP)
In this section, we introduce our approach to unsuper-

vised domain adaptation. We first derive the optimization
problem at the heart of our approach, and then discuss the
details of our Grassmann manifold optimization method.

4.1. Problem Formulation
Our goal is to find a representation of the data that is

invariant across different domains. Intuitively, with such
a representation, a classifier trained on the source domain
should perform equally well on the target domain. To
achieve invariance, we search for a projection to a low-
dimensional subspace where the source and target distribu-
tions are similar, or, in other words, a projection that mini-
mizes a distance measure between the two distributions.

More specifically, let Xs =
[
x1
s, · · · ,xn

s

]
be the D × n

matrix containing n samples from the source domain and
Xt =

[
x1
t , · · · ,xm

t

]
be the D × m matrix containing m

samples from the target domain. We search for a D×d pro-
jection matrix W , such that the distributions of the source
and target samples in the resulting d-dimensional subspace
are as similar as possible. In particular, we measure the
distance between these two distribution with the MMD dis-
cussed in Section 3.1. This distance can be expressed as

D(W TXs,W
TXt)=

∥∥∥∥∥
1
n

n∑

i=1

φ(W Txi
s)−

1
m

m∑

j=1

φ(W Txj
t)

∥∥∥∥∥
H

,

(2)
with φ(·) the mapping from RD to the high-dimensional

RKHS H. Note that, here, W appears inside φ(·) in or-
der to measure the MMD of the projected samples. This
is in contrast with sample re-weighting, or selection meth-
ods [21, 18, 14, 24] that place weights outside φ(·). There-
fore, these methods ultimately still compare the distribu-
tions in the original image feature space and may suffer
from the presence of domain-specific features.

Using the MMD, learning W can be expressed as the
optimization problem

W ∗ = argmin
W

D2(W TXs,W
TXt)

s.t. W TW = Id , (3)

771771

[Baktashmotlagh et al.,
ICCV 2013]

Kernel MMD on Orthogonal Subspaces

where the constraints enforce W to be orthogonal. Such
constraints prevent our model from wrongly matching the
two distributions by distorting the data, and make it very
unlikely that the resulting subspace only contains the noise
of both domains. Orthogonality constraints have proven ef-
fective in many subspace methods, such as PCA or CCA.

As shown in Section 3.1, the MMD in the RKHS H can
be expressed in terms of a kernel function k(·, ·). In partic-
ular here, we exploit the Gaussian kernel function, which is
known to be universal [27]. This lets us rewrite our objec-
tive function as

D2(W TXs,W
TXt) = (4)

1

n2

n∑

i,j=1

exp

(
− (xi

s − xj
s)

TWW T (xi
s − xj

s)

σ

)

+
1

m2

m∑

i,j=1

exp

(
− (xi

t − xj
t)

TWW T (xi
t − xj

t)

σ

)

− 2

mn

n,m∑

i,j=1

exp

(
− (xi

s − xj
t)

TWW T (xi
s − xj

t)

σ

)
.

Since the Gaussian kernel satisfies the universality con-
dition of the MMD, it is a natural choice for our approach.
However, it was shown that, in practice, choices of non-
universal kernels may be more appropriate to measure the
MMD [6]. In particular, the more general class of character-
istic kernels can also be employed. This class incorporates
all strictly positive definite kernels, such as the well-known
polynomial kernel. Therefore, here, we also consider us-
ing the polynomial kernel of degree two. The fact that this
kernel yields a distribution distance that only compares the
first and second moment of the two distributions [17] will
be shown to have little impact on our experimental results,
thus showing the robustness of our approach to the choice of
kernel. Replacing the Gaussian kernel with this polynomial
kernel in our objective function yields

D2(W TXs,W
TXt) = (5)

1

n2

n∑

i=1

n∑

j=1

(1 + xi
s
T
WW Txj

s)
2

+
1

m2

m∑

i=1

m∑

j=1

(1 + xi
t
T
WW Txj

t)
2

− 2

mn

n∑

i=1

m∑

j=1

(1 + xi
s
T
WW Txj

t)
2.

The two definitions of MMD introduced in Eqs. 4 and 5
can be computed efficiently in matrix form as

D2(W TXs,W
TXt) = Tr(KWL) , (6)

where

KW =

[
Ks,s Ks,t

Kt,s Kt,t

]
∈ R(n+m)×(n+m) , and

Lij =

⎧
⎨

⎩

1/n2 i, j ∈ S
1/m2 i, j ∈ T

−1/(nm) otherwise
,

with S and T the sets of source and target indices, respec-
tively. Each element in KW is computed using the kernel
function (either Gaussian, or polynomial), and thus depends
on W . Note that, with both kernels, KW can be computed
efficiently in matrix form (i.e., without looping over its ele-
ments). This yields the optimization problem

W ∗ = argmin
W

Tr (KWL)

s.t. W TW = Id , (7)

which is a nonlinear constrained problem. In practice, we
represent W as a point on a Grassmann manifold, which
yields an unconstrained optimization problem on the mani-
fold. As mentioned in Section 3.2, we make use of a conju-
gate gradient method on the manifold to obtain W ∗.

4.1.1 Encouraging Class Clustering (DIP-CC)

In the DIP formulation described above, learning the projec-
tion W is done in a fully unsupervised manner. Note, how-
ever, that even in the so-called unsupervised setting, domain
adaptation methods have access to the labels of the source
examples. Here, we show that our formulation naturally al-
lows us to exploit these labels while learning the projection.

Intuitively, we are interested in finding a projection that
not only minimizes the distance between the distribution of
the projected source and target data, but also yields good
classification performance. To this end, we search for a
projection that encourages samples with the same labels to
form a more compact cluster. This can be achieved by min-
imizing the distance between the projected samples of each
class and their mean. This yields the optimization problem

W ∗ =argmin
W

Tr(KWL) + λ
C∑

c=1

nc∑

i=1

∥∥∥W T (xi,c
s − µc)

∥∥∥
2

s.t. W TW = I , (8)

where C is the number of classes, nc the number of exam-
ples in class c, xi,c

s denotes the ith example of class c, and
µc the mean of the examples in class c. Note that in our for-
mulation, the mean of the projected examples is equivalent
to the projection of the mean. Note also that the regularizer
in Eq. 8 is related to the intra-class scatter in the objective
function of Linear Discriminant Analysis (LDA). While we
also tried to incorporate the other LDA term, which encour-
ages the means of different classes to be spread apart, we
found no benefits in doing so in our results.

772772

where Ex̃∼s[·] is the expectation under distribution s. By
defining F as the set of functions in the unit ball in a univer-
sal RKHS H, it was shown that D′(F, s, t) = 0 if and only
if s = t [17].

Let X̃s = {x̃1
s, · · · , x̃

n
s } and X̃t = {x̃1

t , · · · , x̃
m
t } be

two sets of observations drawn i.i.d. from s and t, respec-
tively. An empirical estimate of the MMD can be computed
as

D(X̃s, X̃t) =

∥∥∥∥∥
1
n

n∑
i=1

φ(x̃i
s)− 1

m

m∑
j=1

φ(x̃j
t)

∥∥∥∥∥
H

=

(
n∑

i,j=1

k(x̃i
s, x̃

j
s)

n2
+

m∑
i,j=1

k(x̃i
t, x̃

j
t)

m2
− 2

n,m∑
i,j=1

k(x̃i
s, x̃

j
t)

nm

) 1
2

,

where φ(·) is the mapping to the RKHS H, and k(·, ·) =
⟨φ(·),φ(·)⟩ is the universal kernel associated with this map-
ping. In short, the MMD between the distributions of two
sets of observations is equivalent to the distance between
the sample means in a high-dimensional feature space.

3.2. Grassmann Manifolds
In our formulation, we model the projection of the source

and target data to a low-dimensional space as a point W on
a Grassmann manifold G(d,D). The Grassmann manifold
G(d,D) consists of the set of all linear d-dimensional sub-
spaces of RD. In particular, this lets us handle constraints
of the form W TW = Id. Learning the projection then
involves non-linear optimization on the Grassmann mani-
fold, which requires some notions of differential geometry
reviewed below.

In differential geometry, the shortest path between two
points on a manifold is a curve called a geodesic. The tan-
gent space at a point on a manifold is a vector space that
consists of the tangent vectors of all possible curves pass-
ing through this point. Parallel transport is the action of
transferring a tangent vector between two points on a man-
ifold. Unlike in flat spaces, this cannot be achieved by sim-
ple translation, but requires subtracting a normal component
at the end point [13].

On a Grassmann manifold, the above-mentioned opera-
tions have efficient numerical forms and can thus be used
to perform optimization on the manifold. In particular, we
make use of a conjugate gradient (CG) algorithm on the
Grassmann manifold [13]. CG techniques are popular non-
linear optimization methods with fast convergence rates.
These methods iteratively optimize the objective function
in linearly independent directions called conjugate direc-
tions [25]. CG on a Grassmann manifold can be summa-
rized by the following steps:

(i) Compute the gradient ∇fW of the objective function
f on the manifold at the current estimate W as

∇fW = ∂fW −WW T∂fW , (1)

with ∂fW the matrix of usual partial derivatives.

(ii) Determine the search direction H by parallel trans-
porting the previous search direction and combining
it with ∇fW .

(iii) Perform a line search along the geodesic at W in the
direction H .

These steps are repeated until convergence to a local mini-
mum, or until a maximum number of iterations is reached.

4. Domain Invariant Projection (DIP)
In this section, we introduce our approach to unsuper-

vised domain adaptation. We first derive the optimization
problem at the heart of our approach, and then discuss the
details of our Grassmann manifold optimization method.

4.1. Problem Formulation
Our goal is to find a representation of the data that is

invariant across different domains. Intuitively, with such
a representation, a classifier trained on the source domain
should perform equally well on the target domain. To
achieve invariance, we search for a projection to a low-
dimensional subspace where the source and target distribu-
tions are similar, or, in other words, a projection that mini-
mizes a distance measure between the two distributions.

More specifically, let Xs =
[
x1
s, · · · ,xn

s

]
be the D × n

matrix containing n samples from the source domain and
Xt =

[
x1
t , · · · ,xm

t

]
be the D × m matrix containing m

samples from the target domain. We search for a D×d pro-
jection matrix W , such that the distributions of the source
and target samples in the resulting d-dimensional subspace
are as similar as possible. In particular, we measure the
distance between these two distribution with the MMD dis-
cussed in Section 3.1. This distance can be expressed as

D(W TXs,W
TXt)=

∥∥∥∥∥
1
n

n∑

i=1

φ(W Txi
s)−

1
m

m∑

j=1

φ(W Txj
t)

∥∥∥∥∥
H

,

(2)
with φ(·) the mapping from RD to the high-dimensional

RKHS H. Note that, here, W appears inside φ(·) in or-
der to measure the MMD of the projected samples. This
is in contrast with sample re-weighting, or selection meth-
ods [21, 18, 14, 24] that place weights outside φ(·). There-
fore, these methods ultimately still compare the distribu-
tions in the original image feature space and may suffer
from the presence of domain-specific features.

Using the MMD, learning W can be expressed as the
optimization problem

W ∗ = argmin
W

D2(W TXs,W
TXt)

s.t. W TW = Id , (3)

771771

[Baktashmotlagh et al.,
ICCV 2013]

Feature Construction Methods

Same laser
on Earth

as on Mars

Curiosity zapping a
rock with a laser

Map source
and target instances

to latent space
CCA,

manifold alignment

Single Subspace Methods

Canonical Correlational Analysis
(Hotelling, 1936)

Find u,v that maximizes

Displacement Horsepower Weight

 Acceleration MPG

Pioneer of the statistics
departments in the US!

UNC, Chapel Hill
Columbia University

Same laser
on Earth

as on Mars

Curiosity zapping a
rock with a laser

subspace alignment,
geodesic flow

kernels

Source
subspace

Target
subspace

Dual Subspace Methods

Manifold Learning

LLE, ISOMAP
Laplacian Eigenmaps

A Summary of Manifold Alignment Approaches

Given
correspondences

Given
labels

Unsupervised
alignment

Preserve Local geometry

Preserve Global geometry

One-step alignment

Two-step alignment

Feature-level

Instance-level

 Procrustes alignment Manifold Projections (MP) Extensions of MP

• Chang Wang, Peter Krafft, and Sridhar Mahadevan, “ Manifold Alignment ", appearing in
Manifold Learning: Theory and Applications, Taylor and Francis CRC Press, 2012.

Mathematical Notation

Manifold Alignment

X2

F1

g

X1

F2

Two-step alignment
Example: Procrustes alignment

X2X1

F1

Latent Space

X3

F1
+ F2

F2
+

F3 F3
+

One-step alignment
Example: Manifold Projections

• Chang Wang, Peter Krafft, and Sridhar Mahadevan, “ Manifold Alignment ", in Manifold
Learning: Theory and Applications, Taylor and Francis CRC Press, 2012.

Feature-Level Manifold Projection

],1[for

],,...,[

.],,...,[

1

1

liyx

RyyyY

RxxxX

ii

q
jn

p
im

∈↔

∈=

∈=

1 1
1 1ß

a

Manifold Projection

],1[for

],,...,[

.],,...,[

1

1

liyx

RyyyY

RxxxX

ii

q
jn

p
im

∈↔

∈=

∈=

Manifold Projection

∑∑∑∑ −+−+−=
ji

ji
yj

T
i

T

ji

ji
xj

T
i

T

i

ji
j

T
i

T

j

WyyWxxWyxC

C

,

,2

,

,2,2)(5.0)(5.0)(),(

 where,),(function cost theminimize to, functions mapping find want toWe

ββααβαµβα

βαβα

],1[for

],,...,[

.],,...,[

1

1

liyx

RyyyY

RxxxX

ii

q
jn

p
im

∈↔

∈=

∈=

Manifold Projection

∑∑∑∑ −+−+−=
ji

ji
yj

T
i

T

ji

ji
xj

T
i

T

i

ji
j

T
i

T

j

WyyWxxWyxC

C

,

,2

,

,2,2)(5.0)(5.0)(),(

 where,),(function cost theminimize to, functions mapping find want toWe

ββααβαµβα

βαβα

],1[for

],,...,[

.],,...,[

1

1

liyx

RyyyY

RxxxX

ii

q
jn

p
im

∈↔

∈=

∈=

- When 1:1 correspondence is given (xißàyi for i<=l):
- When many:many correspondence is given, set
corresponding entries to 1.
- When nothing is given, we can use local geometry
information to fill in this matrix. (IJCAI 2009)

The first term encourages the corresponding instances from different domains to be
projected to similar locations.
Wi,j=1, when xi and yj are in correspondence; 0, otherwise.

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

0
...

0
0

1
...

1
1

W

Comparison with CCA

],1[for

],,...,[

.],,...,[

1

1

liyx

RyyyY

RxxxX

ii

q
jn

p
im

∈↔

∈=

∈=

∑∑∑∑ −+−+−=
ji

ji
yj

T
i

T

ji

ji
xj

T
i

T

i

ji
j

T
i

T

j

WyyWxxWyxC

C

,

,2

,

,2,2)(5.0)(5.0)(),(

 where,),(function cost theminimize to, functions mapping find want toWe

ββααβαµβα

βαβα

How to compute projections?

.reigenvecto minimum theis where],,...,[)3(1
th

id iγγγ
β

α
=⎥

⎦

⎤
⎢
⎣

⎡

Optimal Solution: (1) Construct Z, L, D using X, Y and W (the correspondences).

 of seigenvalue smallestthe toing correspond rseigenvecto
the by givenare minimize to :1 Theorem (2)

.

),(,

γλγ

βαβα

TT ZDZZLZ

C

=

),,(],[WYXF=βα

 encecorrespond

Create a joint domain.
(use correspondences
to determine how to join
them)

Project the joint domain to
a lower dimensional space.

Protein Alignment
Two datasets:

X: 3*215 matrix Y: 3*215 matrix

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

0
...

0
0

1
...

1
1

W

10% points are in
correspondence

Protein Alignment
X and Y

. tosolution eigen minimum theis where],,...,[1 γλγγγγ
β

α TTth
is ZDZZLZi ==⎥

⎦

⎤
⎢
⎣

⎡

Protein Alignment

Reinforcement Learning Transfer using Manifold Alignment

Phase I: Learn cross-domain mapping

�S

↵T
(T)↵T

(S)

shared representation⇡?
(S)(·)traces from traces from target

GT

...

...

...

↵T
(T)

↵T
(S)

P

(S)
0

P

(T)
0

Phase II: Cross-domain transfer via �S

2.) reflect target

4.) transfer tracking signal

⇡?
(S)(.)3.) execute 1.) sample initial states

Source Domain Target Domain

GS

↵T+
(S)

↵T+
(T)

... ...

Figure 1: Transfer is split into two phases: (I) learning the
inter-state mapping �S via manifold alignment, and (II) ini-
tializing the target policy via mapping the source task policy.

By adopting an RL framework where policies are state-
feedback controllers, we show that we can use optimal state
trajectories from the source task to intelligently initialize a
control policy in the target task, without needing to explicitly
construct an inter-action mapping. We accomplish this by
learning a (pseudo-invertible) inter-state mapping between
the state spaces of a pair of tasks using manifold alignment,
which can then be used to transfer optimal sequences of
states to the target. The fact that our algorithm does not re-
quire learning an explicit inter-action mapping significantly
reduces its computational complexity.

Our approach consists of two phases (Figure 1). First, us-
ing traces gathered in the source and target tasks, we learn an
inter-state mapping �S using manifold alignment (“Phase I”
in Figure 1). To perform this step, we adapt the Unsuper-
vised Manifold Alignment (UMA) algorithm (Wang & Ma-
hadevan 2009), as detailed in the next section. Second, we
use �S to project state trajectories from the source to the tar-
get task (“Phase II” in Figure 1). These projected state tra-
jectories define a set of a tracking trajectories for the target
task that allow us to perform one step of policy gradient im-
provement in the target task. This policy improvement step
intelligently initializes the target policy, which results in su-
perior learning performance than starting from a randomly
initialized policy, as shown in our experiments. Although we
focus on policy gradient methods, our approach could eas-
ily be adapted to other policy search methods (e.g., PoWER,
REPS, etc.; see Kober et al. 2013).

Learning an Inter-State Mapping
Unsupervised Manifold Alignment (UMA) is a tech-
nique that efficiently discovers an alignment between two
datasets (Wang & Mahadevan 2009). UMA was developed
to align datasets for knowledge transfer between two super-
vised learning tasks. Here, we adapt UMA to an RL set-
ting by aligning source and target task state spaces with
potentially different dimensions mS and mT . To learn �S
relating S

(S) and S

(T), trajectories of states in the source
task, ⌧ ?

(S) =

n

s(i),(S)?
1 , . . . , s(i),(S)?

HS

onS

i=1
, are obtained by

following ⇡?
(S), and trajectories of states in the target task,

⌧(T) =

n

s
(j),(T)
1 , . . . , s

(j),(T)
HT

onT

j=1
, are obtained by utiliz-

ing ⇡(T), which is initialized using randomly selected policy
parameters. For simplicity of exposition, we assume that tra-
jectories in the source domain have length HS and those in
the target domain have length HT ; however, our algorithm is
capable of handling variable-length trajectories. We are in-
terested in the setting where data is scarcer in the target task
than in the source task (i.e., nT ⌧ nS).

Given trajectories from both the source and target tasks,
we flatten the trajectories (i.e., we treat the states as un-
ordered) and then apply the task-specific state transforma-
tion to obtain two sets of state feature vectors, one for the
source task and one for the target task. Specifically, we cre-
ate the following sets of points:

X

(S)
=

⇢

�

(S)
⇣

s

(1)(S)?
1

⌘

, . . . , �(S)
⇣

s

(1)(S)?
HS

⌘

,

�

(S)
⇣

s

(nS)(S)?
1

⌘

, . . . , �(S)
⇣

s

(nS)(S)?
HS

⌘

�

X

(T)
=

⇢

�

(T)
⇣

s

(1)(T)
1

⌘

, . . . , �(T)
⇣

s

(1)(T)
HT

⌘

,

�

(T)
⇣

s

(nT)(T)
1

⌘

, . . . , �(T)
⇣

s

(nT)(T)
HT

⌘

�

.

Given X

(S)
2 RmS⇥(HS⇥nS), X

(T)
2 RmT⇥(HT⇥nT), we

can apply the UMA algorithm (Wang & Mahadevan 2009)
with minimal modification, as described next.

Unsupervised Manifold Alignment (UMA) The first
step of applying UMA to learn the inter-state mapping is
to represent each transformed state in both the source and
target tasks in terms of its local geometry. We use the no-
tation R

x

(S)
i

2 R(k+1)⇥(k+1) to refer to the matrix of pair-
wise Euclidean distances among the k-nearest neighbors of
x

(S)
i 2 X

(S). Similarly, R

x

(T)
j

refers to the equivalent ma-

trix of distances for the k-nearest neighbors of x

(T)
j 2 X

(T).
The relations between local geometries in X

(S) and X

(T)

are represented by the matrix W2R(nS⇥HS)⇥(nT⇥HT) with
wi,j =exp

n

�dist
⇣

R
x

(S)
i

, R
x

(T)
j

⌘o

and distance metric

dist
⇣

R
x

(S)
i

, Rx(T)
j

⌘

=

min

1hk!

"

min

✓

�

�

�

oRx(T)
j

oh � �1R
x

(S)
i

�

�

�

F
, (4)

�

�

�

R
x

(S)
i

� �2oRx(T)
j

oh

�

�

�

F

◆

#

.

We use the notation o · oh to denote the hth variant of the k!

permutations of the rows and columns of the input matrix,
|| · ||F is the Frobenius norm, and �1 and �2 are defined as:

�1 =

tr
⇣

RT
x

(S)
i

oRx(T)
j

oh

⌘

tr
⇣

RT
x

(S)
i

R
x

(S)
i

⌘ �2 =

tr
⇣

oRx(T)
j

o

T
h R

x

(S)
i

⌘

tr
⇣

oRx(T)
j

o

T
h oRx(T)

j
oh

⌘ .

(Ammar et al., AAAI 2015)
Algorithm 1 Manifold Alignment Cross-Domain Transfer
for Policy Gradients (MAXDT-PG)

Inputs: Source and target tasks T

(S) and T

(T), optimal
source policy ⇡?

(S), # source and target traces nS and
nT , # nearest neighbors k, # target rollouts zT , initial #
of target states m.

Learn �S :
1: Sample nS optimal source traces, ⌧ ?

(S), and nT random
target traces, ⌧(T)

2: Using the modified UMA approach, learn ↵(S) and
↵(T) to produce �S = ↵T+

(T)↵
T
(S)[·]

Transfer & Initialize Policy:
3: Collect m initial target states s(T)

1 ⇠ P

(T)
0

4: Project these m states to the source by applying �+
S [·]

5: Apply the optimal source policy ⇡?
(S) on these projected

states to collect D

(S)
=

n

⌧ (S)
(i)

om

i=1

6: Project the samples in D

(S) to the target using �S [·] to
produce tracking target traces ˜

D

(T)

7: Compute tracking rewards using Eqn. (9)
8: Use policy gradients to minimize Eqn. (8), yielding ✓(0)

(T)

Improve Policy:
9: Start with ✓(0)

(T) and sample zT target rollouts
10: Follow policy gradients (e.g., episodic REINFORCE)

but using target rewards R

(T)

11: Return optimal target policy parameters ✓?
(T)

the robustness of the learned mapping by varying the num-
ber of source and target samples used for transfer and mea-
suring the resultant target task performance. In all cases we
compared the performance of MAXDT-PG to standard policy
gradient learners. Our results show that MAXDT-PG was able
to: a) learn a valid inter-state mapping with relatively little
data from the target task, and b) effectively transfer between
tasks from either the same or different domains.

Dynamical System Domains

We tested MAXDT-PG and standard policy gradient learn-
ing on four dynamical systems (Figure 2). On all systems,
the reward function was based on two factors: a) penalizing
states far from the goal state, and b) penalizing high forces
(actions) to encourage smooth, low-energy movements.

Simple Mass Spring Damper (SM): The goal with the
SM is to control the mass at a specified position with zero
velocity. The system dynamics are described by two state-
variables that represent the mass position and velocity, and
a single force F that acts on the cart in the x direction.

Cart Pole (CP): The goal is to swing up and then bal-
ance the pole vertically. The system dynamics are described
via a four-dimensional state vector hx, ˙

x, ✓, ˙✓i, represent-
ing the position, velocity of the cart, and the angle and an-
gular velocity of the pole, respectively. The actions consist
of a force that acts on the cart in the x direction.

F1F2

F3 F4

e

1B

e

2B

e3B

r

e11

e21e31

�

r

o

l

l

� yaw

�

p

i

t

c

h

F

hx, ˙

xi

h✓, ˙✓i

hx, ˙

xi

F

h✓1, ˙✓1i

h✓2, ˙✓2i

h✓3, ˙✓3i

F

hx, ˙

xi

(a) Simple Mass

F1F2

F3 F4

e

1B

e

2B

e3B

r

e11

e21e31

�

r

o

l

l

� yaw

�

p

i

t

c

h

F

hx, ˙

xi

h✓, ˙✓i

hx, ˙

xi

F

h✓1, ˙✓1i

h✓2, ˙✓2i

h✓3, ˙✓3i

F

hx, ˙

xi

(b) Cart Pole

F1F2

F3 F4

e

1B

e

2B

e3B

r

e11

e21e31

�

r

o

l

l

� yaw

�

p

i

t

c

h

F

hx, ˙

xi

h✓, ˙✓i

hx, ˙

xi

F

h✓1, ˙✓1i

h✓2, ˙✓2i

h✓3, ˙✓3i

F

hx, ˙

xi

(c) Three-Link Cart Pole

F1F2

F3 F4

e

1B

e

2B

e3B

r

e11

e21e31

�

r

o

l

l

� yaw

�

p

i

t

c

h

F

hx, ˙

xi

h✓, ˙✓i

hx, ˙

xi

F

h✓1, ˙✓1i

h✓2, ˙✓2i

h✓3, ˙✓3i

F

hx, ˙

xi

(d) Quadrotor

Figure 2: Dynamical systems used in the experiments.

Three-Link Cart Pole (3CP): The 3CP dynam-
ics are described via an eight-dimensional state vector
hx, ˙

x, ✓1, ˙✓1, ✓2, ˙✓2, ✓3, ˙✓3i, where x and ˙

x describe
the position and velocity of the cart and ✓j and ˙✓j represent
the angle and angular velocity of the jth link. The system is
controlled by applying a force F to the cart in the x direc-
tion, with the goal of balancing the three poles upright.

Quadrotor (QR): The system dynamics were adopted
from a simulator validated on real quadrotors (Bouabdal-
lah 2007; Voos & Bou Ammar 2010), and are described via
three angles and three angular velocities in the body frame
(i.e., e1B, e2B, and e3B). The actions consist of four rotor
torques {F1, F2, F3, F4}. Each task corresponds to a differ-
ent quadrotor configuration (e.g., different armature lengths,
etc.), and the goal is to stabilize the different quadrotors.

Same-Domain Transfer
We first evaluate MAXDT-PG on same-domain transfer.
Within each domain, we can obtain different tasks by vary-
ing the system parameters (e.g., for the SM system we varied
mass M , spring constant K, and damping constant b) as well
as the reward functions. We assessed the performance of us-
ing the transferred policy from MAXDT-PG versus standard
policy gradients by measuring the average reward on the tar-
get task vs. the amount of learning iterations in the target. We
also examined the robustness of MAXDT-PG’s performance
based on the number of source and target samples used to
learn �S . Rewards were averaged over 500 traces collected
from 150 initial states. Due to space constraints, we report
same-domain transfer results here; details of the tasks and
experimental procedure can be found in the appendix2.

Figure 3 shows MAXDT-PG’s performance using varying
numbers of source and target samples to learn �S . These re-
sults reveal that transfer-initialized policies outperform stan-
dard policy gradient initialization. Further, as the number of
samples used to learn �S increases, so does both the ini-
tial and final performance in all domains. All initializations
result in equal per-iteration computational cost. Therefore,
MAXDT-PG both improves sample complexity and reduces
wall-clock learning time.

Transfer in RL using Manifold Alignment
0 500 1000 1500

−7

−6

−5

−4

−3

−2

−1

Iterations

A
ve

ra
g
e
 R

e
w

a
rd

1000 Source 1000 Target Samples

500 Source 500 Target Samples

500 Source 300 Target Samples

100 Source 100 Target Samples

Standard Policy Gradients

(a) Simple Mass

0 500 1000 1500
−200

−180

−160

−140

−120

−100

−80

Iterations

(b) Cart Pole

0 500 1000 1500
−320

−315

−310

−305

−300

−295

−290

Iterations

(c) Three-Link Cart Pole

0 1000 2000 3000
−320

−310

−300

−290

−280

−270

−260

−250

−240

Iterations

(d) Quadrotor

Figure 3: Same-domain transfer results. All plots share the same legend and vertical axis label.

0 500 1000 1500
−250

−200

−150

−100

Iterations

A
ve

ra
g
e
 R

e
w

a
rd

1000 Source 1000 Target Samples

500 Source 500 Target Samples

500 Source 300 Target Samples

100 Source 100 Target Samples

Standard Policy Gradients

(a) Simple Mass to Cart Pole

0 500 1000 1500
−325

−320

−315

−310

−305

−300

Iterations

(b) Cart Pole to Three-Link CP

0 500 1000 1500 2000 2500 3000
−320

−315

−310

−305

−300

−295

−290

−285

Iterations

(c) Cart Pole to Quadrotor

0 10 20 30 40
0

5

10

15

20

25

30

35

40

Procrustes Measure

||
θ

tr
−

θ
* ||

2

Target: SM

Target: CP

Target: 3CP

Source: SM

Source: CP

Source: 3CP

(d) Alignment Quality vs Transfer

Figure 4: Cross-domain transfer results. Plots (a)–(c) depict target task performance, and share the same legend and axis labels.
Plot (d) shows the correlation between manifold alignment quality (Procrustes metric) and quality of the transferred knowledge.

Cross-Domain Transfer
Next, we consider the more difficult problem of cross-
domain transfer. The experimental setup is identical to the
same-domain case with the crucial difference that the state
and/or action spaces were different for the source and the tar-
get task (since the tasks were from different domains). We
tested three cross-domain transfer scenarios: simple mass to
cart pole, cart pole to three-link cart pole, and cart pole to
quadrotor. In each case, the source and target task have dif-
ferent numbers of state variables and system dynamics. De-
tails of these experiments are available in the appendix2.

Figure 4 shows the results of cross-domain transfer,
demonstrating that MAXDT-PG can achieve successful trans-
fer between different task domains. These results reinforce
the conclusions of the same-domain transfer experiments,
showing that a) transfer-initialized policies outperform stan-
dard policy gradients, even between different task domains
and b) initial and final performance improves as more sam-
ples are used to learn �S .

We also examined the correlation between the quality of
the manifold alignment, as assessed by the Procrustes metric
(Goldberg & Ritov 2009), and the quality of the transferred
knowledge, as measured by the distance between the trans-
ferred (✓tr) and the optimal (✓?) parameters (Figure 4(d)).
On both measures, smaller values indicate better quality.
Each data point represents a transfer scenario between two
different tasks, from either SM, CP, or 3CP; we did not con-
sider quadrotor tasks due to the required simulator time. Al-

though we show that the Procrustes measure is positively
correlated with transfer quality, we hesitate to recommend
it as a predictive measure of transfer performance. In our
approach, the cross-domain mapping is not guaranteed to be
orthogonal, and therefore the Procrustes measure is not theo-
retically guaranteed to accurately measure the quality of the
global embedding (i.e., Goldberg and Ritov’s (2009) Corol-
lary 1 is not guaranteed to hold), but the Procrustes measure
still appears correlated with transfer quality in practice.

We can conclude that MAXDT-PG is capable of: a) auto-
matically learning an inter-state mapping, and b) effectively
transferring between different domain systems. Even when
the source and target tasks are highly dissimilar (e.g., cart
pole to quadrotor), MAXDT-PG is capable of successfully
providing target policy initializations that outperform state-
of-the-art policy gradient techniques.

Conclusion
We introduced MAXDT-PG, a technique for autonomous
transfer between policy gradient RL algorithms. MAXDT-PG
employs unsupervised manifold alignment to learn an inter-
state mapping, which is then used to transfer samples and
initialize the target task policy. MAXDT-PG’s performance
was evaluated on four dynamical systems, demonstrating
that MAXDT-PG is capable of improving both an agent’s ini-
tial and final performance relative to using policy gradient
algorithms without transfer, even across different domains.

Transfer Learning from Mixture of Manifolds
(Boucher, Carey, Mahadevan, and Dyar, AAAI 2015)

Single manifold
(LLE, Laplacian Eigenmaps, Isomap) Low-rank Alignment (LRA)

(a) Single “Swiss roll”
manifold.

(b) Non-overlapping man-
ifolds.

(c) Mixture of manifolds.

Figure 1: Types of manifold data.

Manifold alignment calculates the embedded matrices
F

(X) and F

(Y) of shapes NX ⇥ d and NY ⇥ d for d 
min(DX , DY) that are the embedded representation of X
and Y in a shared, low-dimensional space. These embed-
dings aim to preserve both the intrinsic geometry within
each data set and the sample correspondences among the
data sets. More specifically, the embeddings minimize the
loss function V ,

V
⇣
F

(X)
, F

(Y)
⌘
=

µ

2

NXX

i=1

NYX

j=1

||F (X)
i � F

(Y)
j ||22W

(X,Y)
i,j

+

1� µ

2

NXX

i,j=1

||F (X)
i � F

(X)
j ||22W

(X)
i,j

+

1� µ

2

NYX

i,j=1

||F (Y)
i � F

(Y)
j ||22W

(Y)
i,j

(2)
where N is the total number of samples NX+NY , µ 2 [0, 1]

is the correspondence tuning parameter, and W

(X)
,W

(Y)

are the calculated similarity matrices of shapes NX ⇥ NX

and NY ⇥NY , such that

W

(X)
i,j =

⇢
k(Xi, Xj) : Xj is a neighbor of Xi

0 : otherwise (3)

for a given kernel function k(·, ·). W (Y)
i,j is defined in the

same fashion. Typically, k is set to be the nearest neighbor
set member function or the heat kernel
k(Xi, Xj) = exp

�
�|Xi �Xj |2

�
.

In the loss function of equation (2), the first line corre-
sponds to the alignment error between corresponding sam-
ples in different data sets. The second and third lines corre-
spond to the local reconstruction error for the data sets X

and Y respectively. This equation can be simplified using
block matrices by introducing a joint weight matrix W and
a joint embedding matrix F , where

W =


(1� µ)W

(X)
µW

(X,Y)

µW

(Y,X)
(1� µ)W

(Y)

�
(4)

and
F =


F

(X)

F

(Y)

�
. (5)

In (Wang and Mahadevan 2009) it is shown that the loss
function V can be reduced to a matrix trace formulation,

argmin

F :F>DF=I
V(F) = argmin

F :F>DF=I
tr(F

>
LF). (6)

where tr(·) is the matrix trace and L is the combinatorial
graph Laplacian L = D �W , where D is the diagonal ma-
trix of row sums D(i, i) =

P
j W (i, j). See (Chung 1996)

for a comprehensive introduction to the graph Laplacian and
its variants.

The constraint F>
DF = I ensures that the problem is

well posed and removes arbitrary scaling factors in the em-
bedding. It was shown in (Wang and Mahadevan 2009) that
the d columns of the embedding matrix F in equation (6)
are equal to the d smallest non-zero eigenvectors, the eigen-
vectors associated with the smallest non-zero eigenvalues,
of the Laplacian L in the generalized eigenvalue problem
LF = �DF .

Low Rank Embedding
Low rank embedding (LRE) is a variation on locally lin-
ear embedding (LLE) (Roweis and Saul 2000) that uses low
rank matrix approximations instead of LLE’s nearest neigh-
bor approach to calculate a reconstruction coefficients ma-
trix (Liu, Hao, and Su 2011). LRE is a two part algorithm.
Given a data set X , LRE begins by calculating the recon-
struction coefficients matrix R by minimizing the loss func-
tion,

min

R

1

2

||X �XR||2F + �||R||⇤, (7)

where ||X||F =

qP
i

P
j |xi.j |2 is the Frobenius matrix

norm and ||X||⇤ =

P
i �i(X) for singular values �i is the

spectral norm. In (Candès and Tao 2010) it was shown that
the spectral norm is a convex relaxation of the rank mini-
mization problem, and so the solution XR is a low rank ap-
proximation of the original data matrix X . To solve equation
(7), the alternating direction method of multipliers (ADMM)
(Boyd et al. 2011) is used.

To apply ADMM we introduce a new variable Z and
equation (7) becomes

min

Z,R

1

2

||X �XR||2F + �||Z||⇤, s.t. R = Z. (8)

To solve the constrained optimization problem of equation
(8), the augmented Lagrangian function ˆL is introduced,

ˆL(Z,R,L) =

1

2

||X �XR||2F + �||Z||⇤

+ hY,R� Zi+ �

2

||R� Z||2F , (9)

Multiple Objectives

(a) Single “Swiss roll”
manifold.

(b) Non-overlapping man-
ifolds.

(c) Mixture of manifolds.

Figure 1: Types of manifold data.

Manifold alignment calculates the embedded matrices
F

(X) and F

(Y) of shapes NX ⇥ d and NY ⇥ d for d 
min(DX , DY) that are the embedded representation of X
and Y in a shared, low-dimensional space. These embed-
dings aim to preserve both the intrinsic geometry within
each data set and the sample correspondences among the
data sets. More specifically, the embeddings minimize the
loss function V ,

V
⇣
F

(X)
, F

(Y)
⌘
=

µ

2

NXX

i=1

NYX

j=1

||F (X)
i � F

(Y)
j ||22W

(X,Y)
i,j

+

1� µ

2

NXX

i,j=1

||F (X)
i � F

(X)
j ||22W

(X)
i,j

+

1� µ

2

NYX

i,j=1

||F (Y)
i � F

(Y)
j ||22W

(Y)
i,j

(2)
where N is the total number of samples NX+NY , µ 2 [0, 1]

is the correspondence tuning parameter, and W

(X)
,W

(Y)

are the calculated similarity matrices of shapes NX ⇥ NX

and NY ⇥NY , such that

W

(X)
i,j =

⇢
k(Xi, Xj) : Xj is a neighbor of Xi

0 : otherwise (3)

for a given kernel function k(·, ·). W (Y)
i,j is defined in the

same fashion. Typically, k is set to be the nearest neighbor
set member function or the heat kernel
k(Xi, Xj) = exp

�
�|Xi �Xj |2

�
.

In the loss function of equation (2), the first line corre-
sponds to the alignment error between corresponding sam-
ples in different data sets. The second and third lines corre-
spond to the local reconstruction error for the data sets X

and Y respectively. This equation can be simplified using
block matrices by introducing a joint weight matrix W and
a joint embedding matrix F , where

W =


(1� µ)W

(X)
µW

(X,Y)

µW

(Y,X)
(1� µ)W

(Y)

�
(4)

and
F =


F

(X)

F

(Y)

�
. (5)

In (Wang and Mahadevan 2009) it is shown that the loss
function V can be reduced to a matrix trace formulation,

argmin

F :F>DF=I
V(F) = argmin

F :F>DF=I
tr(F

>
LF). (6)

where tr(·) is the matrix trace and L is the combinatorial
graph Laplacian L = D �W , where D is the diagonal ma-
trix of row sums D(i, i) =

P
j W (i, j). See (Chung 1996)

for a comprehensive introduction to the graph Laplacian and
its variants.

The constraint F>
DF = I ensures that the problem is

well posed and removes arbitrary scaling factors in the em-
bedding. It was shown in (Wang and Mahadevan 2009) that
the d columns of the embedding matrix F in equation (6)
are equal to the d smallest non-zero eigenvectors, the eigen-
vectors associated with the smallest non-zero eigenvalues,
of the Laplacian L in the generalized eigenvalue problem
LF = �DF .

Low Rank Embedding
Low rank embedding (LRE) is a variation on locally lin-
ear embedding (LLE) (Roweis and Saul 2000) that uses low
rank matrix approximations instead of LLE’s nearest neigh-
bor approach to calculate a reconstruction coefficients ma-
trix (Liu, Hao, and Su 2011). LRE is a two part algorithm.
Given a data set X , LRE begins by calculating the recon-
struction coefficients matrix R by minimizing the loss func-
tion,

min

R

1

2

||X �XR||2F + �||R||⇤, (7)

where ||X||F =

qP
i

P
j |xi.j |2 is the Frobenius matrix

norm and ||X||⇤ =

P
i �i(X) for singular values �i is the

spectral norm. In (Candès and Tao 2010) it was shown that
the spectral norm is a convex relaxation of the rank mini-
mization problem, and so the solution XR is a low rank ap-
proximation of the original data matrix X . To solve equation
(7), the alternating direction method of multipliers (ADMM)
(Boyd et al. 2011) is used.

To apply ADMM we introduce a new variable Z and
equation (7) becomes

min

Z,R

1

2

||X �XR||2F + �||Z||⇤, s.t. R = Z. (8)

To solve the constrained optimization problem of equation
(8), the augmented Lagrangian function ˆL is introduced,

ˆL(Z,R,L) =

1

2

||X �XR||2F + �||Z||⇤

+ hY,R� Zi+ �

2

||R� Z||2F , (9)

Minimize reconstruction
error Minimize

model complexity

Proximal
Mappings

Operator
Splitting

Mirror
Descent

ADMM
(Dual Decomposition)

Monotone
Inclusion

0 2 T (x)

0 2 A(x) +B(x)

xk+1 r ⇤(r (xk)� ↵k@f(x))

prox

f

(v) = argmin

x

(f(x) +

1

2

kx� vk22)

MARS Alignment

(CCD) that records the energy emitted. This data set was
created in support of the Mars Science Laboratory mission
for the ChemCam instrument, a LIBS spectrometer on the
rover Curiosity.

The task of this experiment is calibration transfer (CT).
CT is a transfer learning problem well-studied in chemo-
metrics (Feudalea et al. 2002; Zheng et al. 2014; Ridder,
Ver Steeg, and Price 2014), but largely ignored by the ma-
chine learning community. The general setup of the problem
is the following. The spectra of a set of samples (e.g., rocks,
powders) are recorded on two different instruments or on
the same instrument under two varying conditions. The goal
is to find a mapping or an alignment between the two sets
of spectra. Frequently in all types of spectroscopic studies
there is a need to ensure that possible differences in environ-
mental or experimental conditions are mitigated or negated.
CT provides an excellent solution to the task of reconciling
data in inter- and intra-lab comparisons on Earth and in ex-
traterrestrial applications.

In this experiment, the samples were recorded on the same
instrument under two laser power settings, a lower power
(3% attenuation) and a higher power (5% attenuation). The
spectra were first preprocessed according to (Wiens et al.
2013). The resultant spectra are 5485-dimensional vectors
where each feature corresponds to the response of a particu-
lar wavelength channel between 225-925 nm.

Figure 3: Five mineral spectra selected at random from the
LIBS data set. The left hand side shows the spectra recorded
with a low power laser, and the right hand side shows the
corresponding spectra recorded at a high power.

The task of this experiment was to align the set of low
power spectra with the set of high power spectra. A low
power spectrum was considered correctly aligned if the cor-
responding high power spectrum was within its 3-nearest
neighbor in the embedded space.

For all models evaluated, the correspondence weight was
set to µ = 0.8, based upon the ratio of train/test data.
All competing models required an addition nearest neigh-
bor hyperparameter. This hyperparameter was optimized
using grid search and cross validation. For affine matching
and Procrustes alignment the number of neighbors used was
k = 10, and for traditional manifold alignment k = 4. For
all of these competing methods, a binary weight was used

in the graph construction because it universally proved more
accurate than the heat kernel for this experiment.

The 5-fold cross validation results are shown in Figure
4. In each iteration, correspondences are provided for 80
spectra while the other 20 spectra are used for evaluation.
The experiment was repeated 20 times with a random parti-
tioning of folds. LRA outperformed all other models tested
achieving an accuracy of 46.6% at d = 8, while the next best
performing model, affine matching, had an accuracy of 42%
at d = 7.

The error bars in this experiment (Figure 4) are larger than
those in the following language experiments (Figure 5) due
to the relatively small size of the 100 spectra data set.

Figure 4: Cross validation results of 100 sample spectra
alignment with 1-� error bars.

In this last test, it was assumed that all of the spectra were
recorded at both power settings, but in reality CT is often
used when only a portion of the sample set is recorded under
both conditions.

For example, a researcher may have a large database
recorded at high power that they use to fit a regression model
for predicting the chemical compositions (% weight) of the
spectra. As is common, the researcher also has a smaller
calibration set recorded at both high and low powers. Un-
fortunately, an unforeseen instrument malfunction occurred
allowing the spectrometer to only use low power. To pre-
dict subsequent low power spectra using the high power
database, an alignment must be calculated.

To simulate this situation, we calculated an alignment us-
ing 30 samples at both powers for the calibration set, 50
samples at only high power for the large database, and 20
samples at only low power. The 20 low power samples rep-
resent the out-of-sample spectra recorded after instrument
malfunction. To note, this results in a non-square correspon-
dence matrix C

(X,Y).
Next, a multivariate linear regression model was trained

to predict 10 major elements of the minerals (e.g. SiO2,
Al2O3,CaO) using the embedded high power database and
the embedded calibration samples. To evaluate the regres-
sion model, the compositions of the 20 embedded low power
spectra were predicted and compared to ground-truth com-
position values.

(CCD) that records the energy emitted. This data set was
created in support of the Mars Science Laboratory mission
for the ChemCam instrument, a LIBS spectrometer on the
rover Curiosity.

The task of this experiment is calibration transfer (CT).
CT is a transfer learning problem well-studied in chemo-
metrics (Feudalea et al. 2002; Zheng et al. 2014; Ridder,
Ver Steeg, and Price 2014), but largely ignored by the ma-
chine learning community. The general setup of the problem
is the following. The spectra of a set of samples (e.g., rocks,
powders) are recorded on two different instruments or on
the same instrument under two varying conditions. The goal
is to find a mapping or an alignment between the two sets
of spectra. Frequently in all types of spectroscopic studies
there is a need to ensure that possible differences in environ-
mental or experimental conditions are mitigated or negated.
CT provides an excellent solution to the task of reconciling
data in inter- and intra-lab comparisons on Earth and in ex-
traterrestrial applications.

In this experiment, the samples were recorded on the same
instrument under two laser power settings, a lower power
(3% attenuation) and a higher power (5% attenuation). The
spectra were first preprocessed according to (Wiens et al.
2013). The resultant spectra are 5485-dimensional vectors
where each feature corresponds to the response of a particu-
lar wavelength channel between 225-925 nm.

Figure 3: Five mineral spectra selected at random from the
LIBS data set. The left hand side shows the spectra recorded
with a low power laser, and the right hand side shows the
corresponding spectra recorded at a high power.

The task of this experiment was to align the set of low
power spectra with the set of high power spectra. A low
power spectrum was considered correctly aligned if the cor-
responding high power spectrum was within its 3-nearest
neighbor in the embedded space.

For all models evaluated, the correspondence weight was
set to µ = 0.8, based upon the ratio of train/test data.
All competing models required an addition nearest neigh-
bor hyperparameter. This hyperparameter was optimized
using grid search and cross validation. For affine matching
and Procrustes alignment the number of neighbors used was
k = 10, and for traditional manifold alignment k = 4. For
all of these competing methods, a binary weight was used

in the graph construction because it universally proved more
accurate than the heat kernel for this experiment.

The 5-fold cross validation results are shown in Figure
4. In each iteration, correspondences are provided for 80
spectra while the other 20 spectra are used for evaluation.
The experiment was repeated 20 times with a random parti-
tioning of folds. LRA outperformed all other models tested
achieving an accuracy of 46.6% at d = 8, while the next best
performing model, affine matching, had an accuracy of 42%
at d = 7.

The error bars in this experiment (Figure 4) are larger than
those in the following language experiments (Figure 5) due
to the relatively small size of the 100 spectra data set.

Figure 4: Cross validation results of 100 sample spectra
alignment with 1-� error bars.

In this last test, it was assumed that all of the spectra were
recorded at both power settings, but in reality CT is often
used when only a portion of the sample set is recorded under
both conditions.

For example, a researcher may have a large database
recorded at high power that they use to fit a regression model
for predicting the chemical compositions (% weight) of the
spectra. As is common, the researcher also has a smaller
calibration set recorded at both high and low powers. Un-
fortunately, an unforeseen instrument malfunction occurred
allowing the spectrometer to only use low power. To pre-
dict subsequent low power spectra using the high power
database, an alignment must be calculated.

To simulate this situation, we calculated an alignment us-
ing 30 samples at both powers for the calibration set, 50
samples at only high power for the large database, and 20
samples at only low power. The 20 low power samples rep-
resent the out-of-sample spectra recorded after instrument
malfunction. To note, this results in a non-square correspon-
dence matrix C

(X,Y).
Next, a multivariate linear regression model was trained

to predict 10 major elements of the minerals (e.g. SiO2,
Al2O3,CaO) using the embedded high power database and
the embedded calibration samples. To evaluate the regres-
sion model, the compositions of the 20 embedded low power
spectra were predicted and compared to ground-truth com-
position values.

Cross-Language IR

Setting d = 8, the experiment was repeated 30 times
with randomized sets. The regression model trained on LRA
achieved on average a 1.8%, 4.8%, and 8.1% improvement
in RMSEP over affine matching, Procrustes alignment, and
traditional manifold alignment, respectively. This shows
that the high accuracy of LRA in alignment translates to im-
proved performance in the final predictive model.

European Parliament Proceedings
In this second set of experiments, we used the transcribed
proceedings of the European Parliament(Koehn 2005) for a
standard cross-language document retrieval task. The task
is simply stated: given a document in one language, find
its matching document in the second language. The parlia-
ment corpus was collected between April 1996 and Novem-
ber 2011 and transcribed into 21 European languages. In
the corpus, each utterance of a speaker was transcribed into
paragraphs of typically 2-5 sentences. This data set is com-
monly used when comparing manifold alignment style algo-
rithms (Wang and Mahadevan 2008; 2009; 2013).

In the first experiment, we align the German corpus with
the English corpus, and in the second experiment we align
the Italian corpus with the English corpus. We chose these
languages because each had approximately 1.9 million sen-
tence pairs.

To represent the utterances a bag-of-words model was
used, where the 2500 most frequently occurring words were
considered, after filtering for stop-words. Unlike methods
like (Gale and Church 1993) and (Resnik and Smith 2003)
that used domain knowledge in their model preprocessing,
we used a simple statistical model to compare the different
alignment methods more directly. To pare down the data
set for efficient experimentation, only sentences with more
than 45 words were used, resulting in a subset of approx-
imately 2500 sentence pairs for both English/German and
English/Italian experiments. For accurate method compar-
ison, we used 5-fold cross validation. In each fold, 80%
of the sentence correspondences were provided and the re-
maining 20% of the sentences were used for evaluation. To
evaluate a sentence alignment, we define a correct transla-
tion as a sentence embedding where the true correspondence
pair appears within the 10-nearest neighbors in the embed-
ded space.

All methods used the same default correspondence weight
µ = 0.5. Grid search and cross validation were used to tune
the number of nearest neighbors for all competing models.
For affine matching and Procrustes alignment k = 125, and
for manifold alignment k = 5.

The results of the text alignment test are shown in Fig-
ure 5. LRA outperformed all other evaluated models in the
English-German experiment, with an accuracy of 90% at
embedding dimension d = 100 and 88.4% at d = 140.
In contrast, the best accuracy achieved by any competing
method was 63.1% using affine matching. In the English-
Italian test, the accuracy of every method was greater, but
LRA continued to outperform all other methods tested.

Traditional manifold alignment was clearly the worst-
performing model. Affine matching and Procrustes align-
ment are both two-step algorithms in the sense that they rely

on a second transformation after the embedding step. In con-
trast, manifold alignment and LRA are one-step algorithms
that incorporate these constraints into their embeddings and
so could be seen to place more importance on their ability
to recover the shared manifold of the data sets. This skewed
performance between methods suggests that the corpora are
drawn from mixtures of manifolds.

Figure 5: Cross validation results of EU parallel corpus
with 2410 Italian-English sentences pairs and 2110 German-
English sentences pairs.

Conclusion
This paper presents a novel algorithm for manifold align-
ment that can align data sets drawn from a mixture of man-
ifolds. Unlike previous manifold alignment algorithms that
rely on nearest neighbor graph construction, LRA instead
uses a low rank matrix constraint to calculate its reconstruc-
tion weight matrix, which has been demonstrated to be less
prone to short-circuit connections. We have demonstrated
the effectiveness of the algorithm at two seemingly unre-
lated real-world tasks: calibration transfer for spectroscopic
data and cross-language information retrieval. In both tasks,
LRA outperformed all other evaluated methods.

As manifold learning and alignment techniques are ap-
plied to more complex tasks, the mixture of manifolds prob-
lem has become increasingly apparent. The proposed Low
Rank Alignment is the first such alignment method to grace-
fully handle arbitrary manifold mixtures, a benefit which is
reflected in the task performance comparisons.

This problem space has room for a large amount of future
work, whether adapting existing algorithms for mixtures of
manifolds or creating novel mixture-friendly methods.

References
Anderson, T. 2003. An introduction to multivariate statis-

tical analysis. Wiley series in probability and mathemati-
cal statistics. Probability and mathematical statistics. Wiley-
Interscience.
Belkin, M., and Niyogi, P. 2001. Laplacian eigenmaps and
spectral techniques for embedding and clustering. Advances

in neural information processing systems 585–591.

Manifold Warping
(Hoa, Carey, Mahadevan: AAAI, 2012)

Dynamic Time Warping

Manifold Alignment

+

Iterate:
•Find projection to lower-dimensional
space
•Find new set of correspondences

Activity Recognition
S. Mahadevan, R. Wang, S. Dernbach, B. Foster, P. Krafft, J. Leahey, H. Vu, C. Wang (IBM Research)

Department of Computer Science, University of Massachusetts, Amherst

Manifold Alignment of
High-Dimensional Datasets

Manifold warping produces better embedding and alignment than canonical time warping

Supported by Gran Nos. NSF CCF-1025120, IIS-0534999, and IIS-0803288.

Introduction

Problem: How to transfer knowledge across tasks?

Solution:
1.Find manifold-based projections of original data
2.Align projected data in lower-dimensional space
3.Accelerate and visualize using GPU

Applications:
•Cross lingual information retrieval
•Activity recognition
•Reinforcement learning

 Two-step alignment
 Example: Procrustes alignment

 One-step alignment
 Example: Manifold Projections

Manifold Warping

Combine manifold alignment and dynamic time warping
(ala Canonical Time Warping) to align two time series
datasets in a new, lower-dimensional space.

Sparse Manifold Alignment

Use Lasso to find a sparse solution.

GPU-Accelerated Alignment

Using the GPU we are able to perform faster than
computation on CPU by taking advantage of the parallel
nature of low rank matrices. Speeding up the SVD
bottleneck yields faster alignments. We compare:
•Matlab SVD (CPU)
•Mark Tygert’s Approximate SVD (CPU)
•QUIC-SVD Approximate SVD (GPU)

The non-linear alignment unrolls the 3D structure of the swiss roll.
Given
correspondences

Given
labels

Unsupervised
alignment

Preserve Local geometry

Preserve Global geometry

One-step alignment

Two-step alignment

Feature-level

Instance-level

 Procrustes alignment Manifold Projections (MP) Extensions of MP

Vision data set: aligning rotation process of different
objects

Kitchen data set: aligning different views of the same
tasks

The resulted alignment path of manifold warping is much closer to the ground truth alignment

Vu, Carey, and Mahadevan, AAAI 2012

CCA+DTW (Zhou, NIPS 2009)

Social Network Alignment

S. Mahadevan, R. Wang, S. Dernbach, B. Foster, P. Krafft, J. Leahey, H. Vu, C. Wang (IBM Research)

Department of Computer Science, University of Massachusetts, Amherst

Manifold Alignment of
High-Dimensional Datasets

Manifold warping produces better embedding and alignment than canonical time warping

Supported by Gran Nos. NSF CCF-1025120, IIS-0534999, and IIS-0803288.

Introduction

Problem: How to transfer knowledge across tasks?

Solution:
1.Find manifold-based projections of original data
2.Align projected data in lower-dimensional space
3.Accelerate and visualize using GPU

Applications:
•Cross lingual information retrieval
•Activity recognition
•Reinforcement learning

 Two-step alignment
 Example: Procrustes alignment

 One-step alignment
 Example: Manifold Projections

Manifold Warping

Combine manifold alignment and dynamic time warping
(ala Canonical Time Warping) to align two time series
datasets in a new, lower-dimensional space.

Sparse Manifold Alignment

Use Lasso to find a sparse solution.

GPU-Accelerated Alignment

Using the GPU we are able to perform faster than
computation on CPU by taking advantage of the parallel
nature of low rank matrices. Speeding up the SVD
bottleneck yields faster alignments. We compare:
•Matlab SVD (CPU)
•Mark Tygert’s Approximate SVD (CPU)
•QUIC-SVD Approximate SVD (GPU)

The non-linear alignment unrolls the 3D structure of the swiss roll.
Given
correspondences

Given
labels

Unsupervised
alignment

Preserve Local geometry

Preserve Global geometry

One-step alignment

Two-step alignment

Feature-level

Instance-level

 Procrustes alignment Manifold Projections (MP) Extensions of MP

Vision data set: aligning rotation process of different
objects

Kitchen data set: aligning different views of the same
tasks

The resulted alignment path of manifold warping is much closer to the ground truth alignment

Wang, Liu, Vu, and Mahadevan, 2012

DBLP Social Network

3.2 Gravitational collapse of trajectories
Another interesting phenomenon observed from Figures 3
and 4 (which is not accounted for by previous methods), is
that of gravitational collapse of trajectories.

In the current formulation of the link prediction problem,
the dynamic graph has a fixed vertex set. The edge set
increases in time as edges are never deleted (for the DBLP
example, this means that if two authors have been linked,
they remain linked). It then follows that the diameters of
successive graphs (successive network snapshots) are
eventually decreasing as the number of shortest paths
increases. The graph embedding and the trajectories of each
vertex reflect this property. By analogy to the astronomical
gravity effect which attracts the mass and eventually every
atom will collapse into a singularity, we call this
gravitational collapse of trajectories. In the social networks
context this corresponds to the convergence of the graphs
representing the network to a complete graph.

3.3 Trajectory Modeling Results
Both linear and quadratic regressions are applied for the
estimation and prediction of the author coordinates in year
2004. We fit the model with the first two primary MDS
dimensions. For each type of aligned data, the linear fitting
has better AIC and BIC scores. Table 1 summarizes the
means and the standard deviations of the learning errors for
the four types of alignment algorithms. The Procrustes
Alignment yields the smallest mean weighed error. It is not
surprised that the data without any alignment has errors
significantly larger than those from alignment.

Figure 5 presents the scatter plots of ground truth
coordinates vs. estimated and predicted coordinates for the
network in 2004. Prediction has wider variance than
estimation, due to the exclusion of the last year data.
Alignment plays a significant role in modeling the dynamic
graph. The Procrustes alignment method with linear
random effect regression performs well in both estimation
and prediction, which strongly supports the claim that
under this framework, the nature of dynamic social network
is sufficiently captured by a simple model.

Figure 3. Trajectories of four different alignments for the real-world DBLP data set with 2,538 core authors: No alignment;
Alignment to previous year recursively; Aligned to the 1st year; Procrustes alignment to the 1st year. In all panels, each horizontal
layer demonstrates the 2D graph embedding of each year. Each corresponding vertex (author) is linked by line segments going
upward. As arrows pointed out in the 1st panel, without alignment, the trajectories have huge variance and fluctuate dramatically.
All 3 alignments have reduced the trajectory variance with different levels, among which the Procrustes perform the best.

Figure 4. Gravitational collapse of trajectories to singularity. Left panel: trajectories after manifold alignment for the real-world
DBLP data set with 2,538 core authors. Right panel: the conceptual idea of all trajectories converges to singularity (complete
graph). Refer to Figure 2 for details. The collapsing phenomenon can be visually inspected, which indicates the diameters of the
graphs are shrinking.

Smooth Transfer Learning
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XX, NO. XX, XX/ XX 3

GN,d
Labeled source
domain (X)

S1

S1.2

S1.4

S2

Unlabeled
target domain
(X~)

S1.6
S1.8

(a)

S1

S1.2

S1.4

S1.6

S1

S1.2

S1.4

S1.6

Discriminative
learner (D)

S1

S1.2

S1.4

S1.6

Intermediate cross-domain
data representations (X’)

S1.8

S2

S1.8

S2

S1.8

S2

(b)

Fig. 1. An illustration of the two-stage unsupervised adaptation using linear domain representations [29]. (a): Generating
intermediate domains between source and target by representing the domain shift using the geodesic path. With labeled
data X from source domain corresponding to two classes + and £, and unlabeled data ˜X from target domain belonging to
class £, we first derive generative subspaces S1 and S2 using PCA. Then by viewing S1 and S2 as points on a Grassmann
manifold GN,d (green and red dots), we sample points along the geodesic between them (dashed line) to obtain geometrically
meaningful intermediate subspaces (yellow dots). (b): Performing classification by projecting labeled source data£, + (green)
and unlabeled target data £ (red) onto these subspaces to obtain intermediate cross-domain data representations X 0 and
training a discriminative classifier D using source labels to predict the identity of target. (All figures are best viewed in color).

Semi-supervised domain adaptation had not re-
ceived substantial attention in the computer vision
community until Saenko et al., [45] proposed a metric
learning approach that could use labeled data for
few categories from the target domain, to predict
the domain change for unlabeled target categories
as well. Extensions to account for asymmetric kernel
transforms were also considered in [37]. The authors
of [45], [37] considered objects found in a typical office
setting such as a computer, coffee mug and telephone,
where the domain change was caused by the mode
of acquisition such as a dslr camera, webcam and
from Amazon. Around the same time, Bergamo and
Torresani [9] studied the domain shift between ob-
jects in the Caltech-256 dataset and their counterparts
obtained from a Bing image search, and performed
an empirical analysis of several variants of SVM for
this problem. Accompanied by these efforts, Lai and
Fox [38] performed object recognition from 3D point
clouds by generalizing the small amount of labeled
training data onto the pool of weakly labeled data
obtained from the internet.

Presence of multiple domains within the source
and/or target is common as well [41], [20], and there
are efforts focusing on the consolidation of knowledge
from different source domains or utilizing only the
most informative source domains. For instance, Yang
et al., [57] developed an adaptive SVM by leveraging
the existing source classifiers to design a classifier that
is relevant to the target domain, and Duan et al., [22]
proposed a multiple kernel learning-based approach
by simultaneously learning the optimal linear combi-
nation coefficients of base kernels and the target clas-
sifier. There could also be cases where we might only
know that the source and/or target contain multi-

domain data, but not their grouping into individual
domains. Hoffman et al., [32] addressed such issues
through a probabilistic framework that first separates
the source data into latent clusters, and then extended
the approach in [37] to define a mixture-transform
model for adaptation.

Challenges caused by domain shift get more com-
plicated in unsupervised DA, due to the absence of
any labeled correspondence between the domains.
Differing from the set of many greedy and clustering-
based solutions [48], [33], [14], Blitzer et al., [13],
[11] proposed a structural correspondence learning
approach that selects some ‘pivot’ features that would
occur ‘frequently’ in both domains. Ben-David et
al., [6] generalized the results of [13] by presenting
a theoretical analysis on the feature representation
functions that should be used to minimize domain
divergence, as well as classification error. More in-
sights are provided in [10], [40], [12], [15], [27]. An-
other related method by Wang and Mahadevan [52]
formulated this problem in terms of unsupervised
manifold alignment, where the manifolds on which
the source and target domains lie are aligned by
preserving a notion of the ‘neighborhood structure’
of the data points. All these methods primarily focus
on natural language processing and essentially looked
for domain-invariants.

Our approach for unsupervised adaptation primar-
ily caters to object recognition where, without making
assumptions on domain invariant features, we pro-
pose a two-stage data-driven approach that generates
intermediate domains between source and target to
account for the domain shift. Following our initial
work reported in [29], which also discussed semi-
supervised and multi-domain adaptation settings,

Smooth path
between source and

target

Subspace Alignment

❖ CCA and manifold alignment are based on aligning
instances

❖ They assume a discrete source and target domain

❖ They are non-incremental methods

❖ We present an alternative approach based on aligning
subspaces

Figure 1: Illustration of our subspace alignment method. The source domain is represented by the source subspace
Xs and the target domain by target subspace Xt. Then we align/transform the source subspace such that the aligned
source subspace Xa = XsM is as close as possible to the target subspace in the Bregman divergence perspective
(i.e. DD1 > DD2). Then we project source data to the target aligned source subspace and the target data to the
target subspace.

are projected onto these subspaces and a classifier is
learned. In [12], Gong et al. propose a geodesic flow
kernel which models incremental changes between the
source and target domains. In both papers, a set of inter-
mediate subspaces are used to model the shift between
the two domains.

In this paper, we also make use of subspaces, one for
each domain. We construct a subspace of size d, e.g.
composed of the d most important eigenvectors induced
by principle component analysis (PCA). However, we
do not construct a set of intermediate subspaces. Fol-
lowing the theoretical recommendations of Ben-David
et al. [3], we suggest to directly reduce the discrep-
ancy between the two domains by moving the source
and target subspaces closer. This is achieved by opti-
mizing a mapping function that transforms the source
subspace into the target one. Based on this simple idea,
we design a new DA approach called subspace align-
ment. The idea behind our method is illustrated in Fig-
ure 1. The source domain is represented by the source
subspace Xs and the target domain by target subspace
Xt. Then we align/transform the source subspace us-
ing matrix M such that the aligned source subspace
Xa = M ·Xs is as close as possible to the target sub-

space in the Bregman divergence perspective. Then we
project source data to the target aligned source subspace
(Xa) and the target data to the target subspace and learn
a classifier on Xa subspace. We use this classifier to
classify data in the target subspace. The advantage of
our method is two-fold: (1) by adapting the bases of the
subspaces, our approach is global as it manipulates the
global co-variance matrices. This allows us to induce
robust classifiers not subject to local perturbations (in
contrast to metric learning-based domain adaptation ap-
proaches that need to consider pairwise or triplet-based
constraints for inducing the metric) and (2) by aligning
the source and target subspaces, our method is intrin-
sically regularized: we do not need to tune regulariza-
tion parameters in the objective as imposed by a lot of
optimization-based DA methods.

Our subspace alignment is achieved by optimizing
a mapping function which takes the form of a trans-
formation matrix M. We show that the optimal solu-
tion corresponds in fact to the covariance matrix be-
tween the source and target eigenvectors. From this
transformation matrix, we derive a similarity function
Sim(yS,yT) to compare a source data yS with a target
example yT. Thanks to a consistency theorem, we prove

2

Subspace Alignment (Fernando et al., CVPR 2014)

Subspace Alignment

sented by uppercase letters such as X .
In section 3.1, we explain how to generate the source

and target subspaces of size d. Then, we present our
DA method in section 3.2 which consists in learning
a transformation matrix M that maps the source sub-
space to the target one. In section 3.3, we present two
methods to find the subspace dimensionality which is
the only parameter in our method. We present a metric
learning-based source subspace creation method in sec-
tion 3.4 which uses labels of source data and our novel
large margin subspace alignment in section 3.5. In sec-
tion 3.6 we present a new domain divergence measure
suitable for local classifiers such as the nearest neigh-
bour classifier. Finally, in section 3.7 we give a mutual
information based perspective to our method.

3.1 Subspace generation
Even though both the source and target data lie in the
same D-dimensional space, they have been drawn ac-
cording to different distributions. Consequently, rather
than working on the original data themselves, we sug-
gest to handle more robust representations of the source
and target domains and to learn the shift between these
two domains. First, we transform every source and tar-
get data to a D-dimensional z-normalized vector (i.e.
of zero mean and unit standard deviation). Note that
z-normalization is an important step in most of the
subspace-based DA methods such as GFK [12] and
GFS [13]. Then, using PCA, we select for each do-
main the d eigenvectors corresponding to the d largest
eigenvalues. These eigenvectors are used as bases of the
source and target subspaces, respectively denoted by XS
and XT (XS,XT 2 RD⇥d). Note that X 0

S and X 0
T are or-

thonormal (thus, X 0
SXS = Id and X 0

T XT = Id where Id is
the identity matrix of size d). In the following, XS and
XT are used to learn the shift between the two domains.
Sometimes, we refer XS and XT as subspaces, where we
actually refer to the basis vectors of the subspace.

3.2 Domain adaptation with subspace
alignment

As already presented in section 2, two main strategies
are used in subspace based DA methods. The first one
consists in projecting both source and target data to a
common shared subspace. However, since this only
exploits shared features in both domains, it is not al-
ways optimal. The second one aims to build a (poten-
tially large) set of intermediate representations. Beyond

the fact that such a strategy can be costly, projecting
the data to intermediate common shared subspaces may
lead to data explosion.

In our method, we suggest to project each source
(yS) and target (yT) data (where yS,yT 2 R1⇥D) to its
respective subspace XS and XT by the operations ySXS
and yTXT , respectively. Then, we learn a linear trans-
formation that maps the source subspace to the target
one. This step allows us to directly compare source
and target samples in their respective subspaces with-
out unnecessary data projections. To achieve this task,
we use a subspace alignment approach. We align basis
vectors by using a transformation matrix M from XS to
XT (M 2Rd⇥d). M is learned by minimizing the follow-
ing Bregman matrix divergence:

F(M) = ||XSM�XT ||2F (1)

M⇤ = argminM(F(M)) (2)

where ||.||2F is the Frobenius norm. Since XS and XT
are generated from the first d eigenvectors, it turns out
that they tend to be intrinsically regularized1. There-
fore, we suggest not to add a regularization term in the
Eq. 1. It is thus possible to obtain a simple solution of
Eq. 2 in closed form. Because the Frobenius norm is in-
variant to orthonormal operations, we can re-write the
objective function in Eq. 1 as follows:

M⇤ = argminM||X 0
SXSM�X 0

SXT ||2F (3)
= argminM||M�X 0

SXT ||2F .

From this result, we can conclude that the optimal M⇤

is obtained as M⇤ = X 0
SXT . This implies that the new

coordinate system is equivalent to Xa = XSX 0
SXT . We

call Xa the target aligned source coordinate system. It
is worth noting that if the source and target domains are
the same, then XS = XT and M⇤ is the identity matrix.

Matrix M⇤ transforms the source subspace coordinate
system into the target subspace coordinate system by
aligning the source basis vectors with the target ones. is

In order to compare a source data yS with a target data
yT, one needs a similarity function Sim(yS,yT). Pro-
jecting yS and yT in their respective subspace XS and

1We experimented with several regularization methods on the
transformation matrix M such as 2-norm, trace norm, and Frobenius
norm regularization. None of these regularization strategies improved
over using no regularization.

5

sented by uppercase letters such as X .
In section 3.1, we explain how to generate the source

and target subspaces of size d. Then, we present our
DA method in section 3.2 which consists in learning
a transformation matrix M that maps the source sub-
space to the target one. In section 3.3, we present two
methods to find the subspace dimensionality which is
the only parameter in our method. We present a metric
learning-based source subspace creation method in sec-
tion 3.4 which uses labels of source data and our novel
large margin subspace alignment in section 3.5. In sec-
tion 3.6 we present a new domain divergence measure
suitable for local classifiers such as the nearest neigh-
bour classifier. Finally, in section 3.7 we give a mutual
information based perspective to our method.

3.1 Subspace generation
Even though both the source and target data lie in the
same D-dimensional space, they have been drawn ac-
cording to different distributions. Consequently, rather
than working on the original data themselves, we sug-
gest to handle more robust representations of the source
and target domains and to learn the shift between these
two domains. First, we transform every source and tar-
get data to a D-dimensional z-normalized vector (i.e.
of zero mean and unit standard deviation). Note that
z-normalization is an important step in most of the
subspace-based DA methods such as GFK [12] and
GFS [13]. Then, using PCA, we select for each do-
main the d eigenvectors corresponding to the d largest
eigenvalues. These eigenvectors are used as bases of the
source and target subspaces, respectively denoted by XS
and XT (XS,XT 2 RD⇥d). Note that X 0

S and X 0
T are or-

thonormal (thus, X 0
SXS = Id and X 0

T XT = Id where Id is
the identity matrix of size d). In the following, XS and
XT are used to learn the shift between the two domains.
Sometimes, we refer XS and XT as subspaces, where we
actually refer to the basis vectors of the subspace.

3.2 Domain adaptation with subspace
alignment

As already presented in section 2, two main strategies
are used in subspace based DA methods. The first one
consists in projecting both source and target data to a
common shared subspace. However, since this only
exploits shared features in both domains, it is not al-
ways optimal. The second one aims to build a (poten-
tially large) set of intermediate representations. Beyond

the fact that such a strategy can be costly, projecting
the data to intermediate common shared subspaces may
lead to data explosion.

In our method, we suggest to project each source
(yS) and target (yT) data (where yS,yT 2 R1⇥D) to its
respective subspace XS and XT by the operations ySXS
and yTXT , respectively. Then, we learn a linear trans-
formation that maps the source subspace to the target
one. This step allows us to directly compare source
and target samples in their respective subspaces with-
out unnecessary data projections. To achieve this task,
we use a subspace alignment approach. We align basis
vectors by using a transformation matrix M from XS to
XT (M 2Rd⇥d). M is learned by minimizing the follow-
ing Bregman matrix divergence:

F(M) = ||XSM�XT ||2F (1)

M⇤ = argminM(F(M)) (2)

where ||.||2F is the Frobenius norm. Since XS and XT
are generated from the first d eigenvectors, it turns out
that they tend to be intrinsically regularized1. There-
fore, we suggest not to add a regularization term in the
Eq. 1. It is thus possible to obtain a simple solution of
Eq. 2 in closed form. Because the Frobenius norm is in-
variant to orthonormal operations, we can re-write the
objective function in Eq. 1 as follows:

M⇤ = argminM||X 0
SXSM�X 0

SXT ||2F (3)
= argminM||M�X 0

SXT ||2F .

From this result, we can conclude that the optimal M⇤

is obtained as M⇤ = X 0
SXT . This implies that the new

coordinate system is equivalent to Xa = XSX 0
SXT . We

call Xa the target aligned source coordinate system. It
is worth noting that if the source and target domains are
the same, then XS = XT and M⇤ is the identity matrix.

Matrix M⇤ transforms the source subspace coordinate
system into the target subspace coordinate system by
aligning the source basis vectors with the target ones. is

In order to compare a source data yS with a target data
yT, one needs a similarity function Sim(yS,yT). Pro-
jecting yS and yT in their respective subspace XS and

1We experimented with several regularization methods on the
transformation matrix M such as 2-norm, trace norm, and Frobenius
norm regularization. None of these regularization strategies improved
over using no regularization.

5

Incremental Subspace Alignment

k(St
0 + �St

0)M
t+1 � (St

1 + �St
1)k2F

M t+1 = M t + �M t

M t+1 = (St
0 + �St

0)
T (St

1 + �ST
1)

Grassmannian Manifolds

Grassmann Discriminant Analysis

Yi
Yj

θ 2

G(m, D)

u1
v1

θ1 , ..., θm

span(Yi)
span(Yj)

RD

Figure 1. Principal angles and Grassmann distances. Let span(Yi) and span(Yj) be two subspaces in the Euclidean space
RD on the left. The distance between two subspaces span(Yi) and span(Yj) can be measured by the principal angles
✓ = [✓1, ... , ✓m]0 using the usual innerproduct of vectors. In the Grassmann manifold viewpoint, the subspaces span(Yi)
and span(Yj) are considered as two points on the manifold G(m, D), whose Riemannian distance is related to the principal
angles by d(Yi, Yj) = k✓k2. Various distances can be defined based on the principal angles.

two metrics with other metrics used in the literature.

Several subspace-based classification methods have
been previously proposed (Yamaguchi et al., 1998;
Sakano, 2000; Fukui & Yamaguchi, 2003; Kim et al.,
2007). However, these methods adopt an inconsistent
strategy: feature extraction is performed in the Eu-

clidean space when non-Euclidean distances are used.
This inconsistency can result in complications and
weak guarantees. In our approach, the feature ex-
traction and the distance measurement are integrated
around the Grassmann kernel, resulting in a simpler
and better-understood formulation.

The rest of the paper is organized as follows. In Sec. 2
and 3 we introduce the Grassmann manifolds and de-
rive various distances on the space. In Sec. 4 we
present a kernel view of the problem and emphasize the
advantages of using positive definite metrics. In Sec. 5
we propose the Grassmann Discriminant Analysis and
compare it with other subspace-based discrimination
methods. In Sec. 6 we test the proposed algorithm for
face recognition and object categorization tasks. We
conclude in Sec. 7 with a discussion.

2. Grassmann Manifold and Principal

Angles

In this section we briefly review the Grassmann man-
ifold and the principal angles.

Definition 1 The Grassmann manifold G(m,D) is

the set of m-dimensional linear subspaces of the RD
.

The G(m,D) is a m(D�m)-dimensional compact Rie-
mannian manifold.1 An element of G(m,D) can be

1G(m, D) can be derived as a quotient space of orthog-
onal groups G(m, D) = O(D)/O(m) ⇥ O(D � m), where

represented by an orthonormal matrix Y of size D by
m such that Y

0
Y = Im, where Im is the m by m iden-

tity matrix. For example, Y can be the m basis vectors
of a set of pictures in RD. However, the matrix rep-
resentation of a point in G(m,D) is not unique: two
matrices Y

1

and Y

2

are considered the same if and only
if span(Y

1

) = span(Y
2

), where span(Y) denotes the
subspace spanned by the column vectors of Y . Equiva-
lently, span(Y

1

) = span(Y
2

) if and only if Y

1

R

1

= Y

2

R

2

for some R

1

, R

2

2 O(m). With this understanding, we
will often use the notation Y when we actually mean
its equivalence class span(Y), and use Y

1

= Y

2

when
we mean span(Y

1

) = span(Y
2

), for simplicity.

Formally, the Riemannian distance between two sub-
spaces is the length of the shortest geodesic connecting
the two points on the Grassmann manifold. However,
there is a more intuitive and computationally e�cient
way of defining the distances using the principal angles

(Golub & Loan, 1996).

Definition 2 Let Y

1

and Y

2

be two orthonormal

matrices of size D by m. The principal an-

gles 0  ✓

1

 · · ·  ✓m  ⇡/2 between two subspaces

span(Y
1

) and span(Y
2

), are defined recursively by

cos ✓k = max
uk2span(Y1)

max
vk2span(Y2)

uk
0
vk, subject to

uk
0
uk = 1, vk

0
vk = 1,

uk
0
ui = 0, vk

0
vi = 0, (i = 1, ..., k � 1).

In other words, the first principal angle ✓

1

is the small-
est angle between all pairs of unit vectors in the first
and the second subspaces. The rest of the principal

O(m) is the group of m by m orthonormal matrices. We
refer the readers to (Wong, 1967; Absil et al., 2004) for
details on the Riemannian geometry of the space.

1809-1877

2D Example

All 1D subspaces
are rotations of each

other and must
pass through the origin

Grassmannian

Subspace 1

Subspace 2

Rotations in n-dimensions

Lie Group

e

i✓ = cos(✓) + isin(✓)

Sphere
in n-dim

Lie Algebra

Geodesics on Lie Groups

Grassmann Discriminant Analysis

Yi
Yj

θ 2

G(m, D)

u1
v1

θ1 , ..., θm

span(Yi)
span(Yj)

RD

Figure 1. Principal angles and Grassmann distances. Let span(Yi) and span(Yj) be two subspaces in the Euclidean space
RD on the left. The distance between two subspaces span(Yi) and span(Yj) can be measured by the principal angles
✓ = [✓1, ... , ✓m]0 using the usual innerproduct of vectors. In the Grassmann manifold viewpoint, the subspaces span(Yi)
and span(Yj) are considered as two points on the manifold G(m, D), whose Riemannian distance is related to the principal
angles by d(Yi, Yj) = k✓k2. Various distances can be defined based on the principal angles.

two metrics with other metrics used in the literature.

Several subspace-based classification methods have
been previously proposed (Yamaguchi et al., 1998;
Sakano, 2000; Fukui & Yamaguchi, 2003; Kim et al.,
2007). However, these methods adopt an inconsistent
strategy: feature extraction is performed in the Eu-

clidean space when non-Euclidean distances are used.
This inconsistency can result in complications and
weak guarantees. In our approach, the feature ex-
traction and the distance measurement are integrated
around the Grassmann kernel, resulting in a simpler
and better-understood formulation.

The rest of the paper is organized as follows. In Sec. 2
and 3 we introduce the Grassmann manifolds and de-
rive various distances on the space. In Sec. 4 we
present a kernel view of the problem and emphasize the
advantages of using positive definite metrics. In Sec. 5
we propose the Grassmann Discriminant Analysis and
compare it with other subspace-based discrimination
methods. In Sec. 6 we test the proposed algorithm for
face recognition and object categorization tasks. We
conclude in Sec. 7 with a discussion.

2. Grassmann Manifold and Principal

Angles

In this section we briefly review the Grassmann man-
ifold and the principal angles.

Definition 1 The Grassmann manifold G(m,D) is

the set of m-dimensional linear subspaces of the RD
.

The G(m,D) is a m(D�m)-dimensional compact Rie-
mannian manifold.1 An element of G(m,D) can be

1G(m, D) can be derived as a quotient space of orthog-
onal groups G(m, D) = O(D)/O(m) ⇥ O(D � m), where

represented by an orthonormal matrix Y of size D by
m such that Y

0
Y = Im, where Im is the m by m iden-

tity matrix. For example, Y can be the m basis vectors
of a set of pictures in RD. However, the matrix rep-
resentation of a point in G(m,D) is not unique: two
matrices Y

1

and Y

2

are considered the same if and only
if span(Y

1

) = span(Y
2

), where span(Y) denotes the
subspace spanned by the column vectors of Y . Equiva-
lently, span(Y

1

) = span(Y
2

) if and only if Y

1

R

1

= Y

2

R

2

for some R

1

, R

2

2 O(m). With this understanding, we
will often use the notation Y when we actually mean
its equivalence class span(Y), and use Y

1

= Y

2

when
we mean span(Y

1

) = span(Y
2

), for simplicity.

Formally, the Riemannian distance between two sub-
spaces is the length of the shortest geodesic connecting
the two points on the Grassmann manifold. However,
there is a more intuitive and computationally e�cient
way of defining the distances using the principal angles

(Golub & Loan, 1996).

Definition 2 Let Y

1

and Y

2

be two orthonormal

matrices of size D by m. The principal an-

gles 0  ✓

1

 · · ·  ✓m  ⇡/2 between two subspaces

span(Y
1

) and span(Y
2

), are defined recursively by

cos ✓k = max
uk2span(Y1)

max
vk2span(Y2)

uk
0
vk, subject to

uk
0
uk = 1, vk

0
vk = 1,

uk
0
ui = 0, vk

0
vi = 0, (i = 1, ..., k � 1).

In other words, the first principal angle ✓

1

is the small-
est angle between all pairs of unit vectors in the first
and the second subspaces. The rest of the principal

O(m) is the group of m by m orthonormal matrices. We
refer the readers to (Wong, 1967; Absil et al., 2004) for
details on the Riemannian geometry of the space.

In a Lie group, gradients live in the tangent space,
not in the group

Log map: Lie group to tangent space
Exponential map: tangent space to Lie group

Subspace Manifolds306 ALAN EDELMAN, TOMÁS ARIAS, AND STEVEN SMITH

Table 2.1
Representations of subspace manifolds.

Space Symbol Matrix rep. Quotient rep.

Orthogonal group On Q –

Stiefel manifold Vn, p Y On/On�p

Grassmann manifold Gn, p None

(
Vn, p/Op

or
On/ (Op ⇥On�p)

)

sections 2.4 and 2.5. Finally, we describe how to incorporate these formulae into
conjugate gradient and Newton methods in section 2.6.

2.1. Manifolds arising in numerical linear algebra. For simplicity of expo-
sition, but for no fundamental reason, we will concentrate on real matrices. All ideas
carry over naturally to complex matrices. Spaces of interest are as follows:

1. The orthogonal group On consisting of n-by-n orthogonal matrices;
2. The Stiefel manifold Vn, p consisting of n-by-p “tall-skinny” orthonormal ma-

trices;
3. The Grassmann manifold Gn, p obtained by identifying those matrices in Vn, p

whose columns span the same subspace (a quotient manifold).
Table 2.1 summarizes the definitions of these spaces. Our description of Gn, p is

necessarily more abstract than On or Vn, p. Gn, p may be defined as the set of all
p-dimensional subspaces of an n-dimensional space.

We shall benefit from two di↵erent yet equivalent modes of describing our spaces:
concrete representations and quotient space representations. Table 2.2 illustrates how
we store elements of Vn, p and Gn, p in a computer. A point in the Stiefel manifold
Vn, p is represented by an n-by-p matrix. A point on the Grassmann manifold Gn, p is
a linear subspace, which may be specified by an arbitrary orthogonal basis stored as
an n-by-p matrix. An important di↵erence here is that, unlike points on the Stiefel
manifold, the choice of matrix is not unique for points on the Grassmann manifold.

The second mode of representation, the more mathematical, is useful for ob-
taining closed-form expressions for the geometrical objects of interest. It is also the
“proper” theoretical setting for these manifolds. Here, we represent the manifolds as
quotient spaces. Points in the Grassmann manifold are equivalence classes of n-by-p
orthogonal matrices, where two matrices are equivalent if their columns span the same
p-dimensional subspace. Equivalently, two matrices are equivalent if they are related
by right multiplication of an orthogonal p-by-p matrix. Therefore, Gn, p = Vn, p/Op.
On the computer, by necessity, we must pick a representative of the equivalence class
to specify a point.

Tangent SpacesORTHOGONALITY CONSTRAINTS 307

Table 2.2
Computational representation of subspace manifolds.

Space Data structure represents Tangents �

Stiefel manifold Y one point Y T� = skew-symmetric

Grassmann manifold Y entire equivalence class Y T� = 0

The Stiefel manifold may also be defined as a quotient space but arising from the
orthogonal group. Here, we identify two orthogonal matrices if their first p columns
are identical or, equivalently, if they are related by right multiplication of a matrix
of the form (I

0

0

Q), where Q is an orthogonal (n � p)-by-(n � p) block. Therefore,

Vn, p = On/On�p. With the Stiefel manifold so represented, one has yet another
representation of the Grassmann manifold, Gn, p = On/(Op ⇥On�p).

2.2. The Stiefel manifold in Euclidean space. The Stiefel manifold Vn, p
may be embedded in the np-dimensional Euclidean space of n-by-p matrices. When
p = 1, we simply have the sphere, while when p = n, we have the group of orthogonal
matrices known as On. These two special cases are the easiest and arise in numerical
linear algebra the most often.

Much of this section, which consists of three subsections, is designed to be a
painless and intuitive introduction to di↵erential geometry in Euclidean space. Sec-
tion 2.2.1 is elementary. It derives formulas for projections onto the tangent and
normal spaces. In section 2.2.2, we derive formulas for geodesics on the Stiefel mani-
fold in Euclidean space. We then discuss parallel translation in section 2.2.3.

In the two special cases when p = 1 and p = n, the Euclidean metric and the
canonical metric to be discussed in section 2.4 are the same. Otherwise they di↵er.

2.2.1. Tangent and normal space. Intuitively, the tangent space at a point
is the plane tangent to the submanifold at that point, as shown in Figure 2.1. For
d-dimensional manifolds, this plane is a d-dimensional vector space with origin at the
point of tangency. The normal space is the orthogonal complement. On the sphere,
tangents are perpendicular to radii, and the normal space is radial. In this subsection,
we will derive the equations for the tangent and normal spaces on the Stiefel manifold.
We also compute the projection operators onto these spaces.

An equation defining tangents to the Stiefel manifold at a point Y is easily ob-
tained by di↵erentiating Y TY = I, yielding Y T� + �TY = 0, i.e., Y T� is skew-
symmetric. This condition imposes p(p+ 1)/2 constraints on �, or, equivalently, the
vector space of all tangent vectors � has dimension

np� p(p+ 1)

2
=

p(p� 1)

2
+ p(n� p).(2.1)

Both sides of (2.1) are useful for the dimension counting arguments that will be
employed.

308 ALAN EDELMAN, TOMÁS ARIAS, AND STEVEN SMITH

Manifold

Normal

Tangent

Fig. 2.1. The tangent and normal spaces of an embedded or constraint manifold.

The normal space is defined to be the orthogonal complement of the tangent
space. Orthogonality depends upon the definition of an inner product, and because
in this subsection we view the Stiefel manifold as an embedded manifold in Euclidean
space, we choose the standard inner product

ge(�1

,�
2

) = tr �T
1

�
2

(2.2)

in np-dimensional Euclidean space (hence the subscript e), which is also the Frobenius
inner product for n-by-p matrices. We shall also write h�

1

,�
2

i for the inner product,
which may or may not be the Euclidean one. The normal space at a point Y consists
of all matrices N which satisfy

tr �TN = 0

for all � in the tangent space. It follows that the normal space is p(p + 1)/2 dimen-
sional. It is easily verified that if N = Y S, where S is p-by-p symmetric, then N is in
the normal space. Since the dimension of the space of such matrices is p(p+ 1)/2, we
see that the normal space is exactly the set of matrices {Y S }, where S is any p-by-p
symmetric matrix.

Let Z be any n-by-p matrix. Letting sym(A) denote (A+AT)/2 and skew(A) =
(A�AT)/2, it is easily verified that at Y

⇡N (Z) = Y sym(Y TZ)(2.3)

defines a projection of Z onto the normal space. Similarly, at Y ,

⇡T (Z) = Y skew(Y TZ) + (I � Y Y T)Z(2.4)

is a projection of Z onto the tangent space at Y (this is also true of the canonical
metric to be discussed in section 2.4). Equation (2.4) suggests a form for the tangent
space of Vn, p at Y that will prove to be particularly useful. Tangent directions �
at Y then have the general form

� = Y A+ Y?B(2.5)

= Y A+ (I � Y Y T)C,(2.6)

Geodesic Flow Kernels

Φ(t), 0 ≤ t ≤ 1Source
subspace

Target
subspace

+

+

+ +

×

×

× ×
x

Φ(0) Φ(1)

Figure 1. Main idea of our geodesic flow kernel-based approach
for domain adaptation (Best viewed in color). We embed source
and target datasets in a Grassmann manifold. We then construct
a geodesic flow between the two points and integrate an infi-
nite number of subspaces along the flow �(t). Concretely, raw
features are projected into these subspaces to form an infinite-
dimensional feature vector z1 2 H1. Inner products between
these feature vectors define a kernel function that can be com-
puted over the original feature space in closed-form. The kernel
encapsulates incremental changes between subspaces that underly
the difference and commonness between the two domains. The
learning algorithms thus use this kernel to derive low-dimensional
representations that are invariant to the domains.

cal histogram based features of low-level visual descriptors
do not enjoy having pivot “visual words” — in general, no
single feature dimension from a particular histogram bin is
discriminative enough to differentiate visual categories.

On the other hand, many visual data are assumed to lie in
low-dimensional subspaces. Given data from two domains,
how can we exploit the subspaces in these datasets, which
can be telltale in revealing the underlying difference and
commonness between the domains?

Moreover, given multiple source domains and a target
domain, how can we select which source domain to pair
with the target domain? This is an especially important
problem to address in order to apply domain adaptation to
real-world problems. For instance, in the context of ob-
ject recognition, we can choose from multiple datasets as
our source domain: ImageNet, Caltech-101/256, PASCAL
VOC, etc. It is much more cost-effective to be able to select
one (or a limited few) that are likely to adapt well to the
target domain, instead of trying each one of them.

To address the first challenge, we propose a kernel-based
method for domain adaptation. The proposed geodesic flow
kernel is computed over the subspaces of the source and the
target domains. It integrates an infinite number of subspaces
that lie on the geodesic flow from the source subspace to
the target one. The flow represents incremental changes
in geometric and statistical properties between the two do-
mains. Being mindful of all these changes, our learning
algorithm extracts those subspace directions that are truly
domain-invariant. Fig. 1 sketches the main idea.

To address the second challenge, we introduce a metric
called Rank of Domain (ROD) that can be used to rank a list
of source domains based on how suitable they are to domain
adaptation. The metric integrates two pieces of information:
how much the subspaces of the source and the target do-
mains overlap, and how similarly the target and source data
are distributed in the subspaces. In our experiments, ROD

correlates well with adaptation performance.
We demonstrate the effectiveness of the proposed ap-

proaches on benchmark tasks of object recognition. The
proposed methods outperform significantly state-of-the-art
methods for domain adaptation. Additionally, as a novel ap-
plication of these methods, we investigate the dataset bias
problem, recently studied in [27]. Through their analysis,
the authors identified a few datasets of high “market value”,
suggesting that they are less biased, and more representative
of real-world objects. We re-examine these datasets with a
new perspective: are such high-valued datasets indeed use-
ful in improving a target domain’s performance? Our anal-
ysis suggests it would be beneficial to also consider “ease
of adaptability” in assessing the value of datasets.

Contributions. To summarize, our main contributions are:
i) a kernel-based domain adaptation method that exploits
intrinsic low-dimensional structures in the datasets (sec-
tion 3.3); the method is easy to implement, with no parame-
ters to cross-validate (sections 3.4 and 4.4); ii) a metric that
can predict which source domain is better suited for adap-
tation to a target domain, without using labeled target data
(sections 3.5 and 4.5); iii) empirical studies validating the
advantages of our approaches over existing approaches on
benchmark datasets (section 4.2 and 4.3); iv) a new perspec-
tive from re-examining cross-dataset generalization using
domain adaptation (section 4.6).

2. Related Work

Domain adaptation has been extensively studied in many
areas, including in statistics and machine learning [26, 18,
2, 23], speech and language processing [7, 5, 21], and more
recently computer vision [3, 14, 25, 20].

Of particular relevance to our work is the idea of learning
new feature representations that are domain-invariant, thus
enabling transferring classifiers from the source domain to
the target domain [2, 5, 4, 7, 22]. Those approaches are
especially appealing to unsupervised domain adaptation as
they do not require labeled target data. Other methods for
unsupervised domain adaptation have been explored, for ex-
ample, with transductive SVMs [3] or iteratively relabeling
(the target domain) [6]. Note that the latter approach de-
pends very much on tuning several parameters, which re-
quires extensive computation of training many SVMs.

Gopalan et al’s work is the closest to ours in spirit [14].
They have also explored the idea of using geodesic flows to
derive intermediate subspaces that interpolate between the
source and target domains. A crucial difference of that work
from ours is that they sample a finite number of subspaces
and stack these subspaces into a very high-dimensional pro-
jection matrix. Our kernel method is both conceptually and
computationally simpler and eliminates the need to tune
many parameters needed in Gopalan et al’s approach. We

Gong et al., CVPR 2012

Word Analogy Results

1 2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

GFK vs Mikolov

Er
ro

r

Word Plurals

matrices. They are given by the following pair of SVDs,

P

T
SPT = U1�V

T, R

T
SPT = �U2⌃V

T . (2)

� and ⌃ are d⇥d diagonal matrices. The diagonal elements
are cos ✓i and sin ✓i for i = 1, 2, . . . , d. Particularly, ✓i are
called the principal angles between PS and PT :

0  ✓1  ✓2  · · ·  ✓d  ⇡/2 (3)

They measure the degree that subspaces “overlap”. More-
over, �(t) and ⌃(t) are diagonal matrices whose elements
are cos(t✓i) and sin(t✓i) respectively.

Compute geodesic flow kernel (GFK) The geodesic flow
parameterizes how the source domain smoothly changes
to the target domain. Consider the subspace �(t) for a
t 2 (0, 1) and compute �(t)T

x, ie, the projection of a fea-
ture vector x into this subspace. If x is from the source
domain and t is close to 1, then the projection will appear
more likely coming from the target domain and conversely
for t close to 0. Thus, using the projection to build a classi-
fier would result in a model using a set of features that are
characteristic of both domains. Hence, this classifier would
likely perform well on the target domain.

Which (or which set of) t should we use then? Our an-
swer is surprising at the first glance: all of them! Intuitively,
by expanding the original features with projections into all
subspaces, we force a measurement of similarity (as we will
be using inner products to construct classifiers) that is ro-
bust to any variation that leans either toward the source or
towards the target or in between. In other words, the net
effect is a representation that is insensitive to idiosyncrasies
in either domain. Computationally, however, we cannot use
this representation explicitly. Nevertheless, we next show
that there is no need to actually compute, store and manip-
ulate infinitely many projections.

For two original D-dimensional feature vectors xi and
xj , we compute their projections into �(t) for a continu-
ous t from 0 to 1 and concatenate all the projections into
infinite-dimensional feature vectors z1

i and z

1
j . The inner

product between them defines our geodesic-flow kernel,

hz1
i , z1

j i =
Z 1

0
(�(t)T

xi)
T
(�(t)T

xj) dt = x

T
iGxj (4)

where G 2 RD⇥D is a positive semidefinite matrix. This is
precisely the “kernel trick”, where a kernel function induces
inner products between infinite-dimensional features.

The matrix G can be computed in a closed-form from
previously defined matrices:

G = [PSU1 RSU2]

"
⇤1 ⇤2

⇤2 ⇤3

#"
U

T
1P

T
S

U

T
2R

T
S

#
(5)

where ⇤1 to ⇤3 are diagonal matrices, whose diagonal ele-
ments are

�1i = 1+

sin(2✓i)

2✓i
,�2i =

cos(2✓i)� 1

2✓i
,�3i = 1� sin(2✓i)

2✓i
.

(6)
Detailed derivations are given in the Supplementary.

Our approach is both conceptually and computationally
simpler when compared to the previous SGF approach. In
particular, we do not need to tune any parameters — the
only free parameter is the dimensionality of the subspaces
d, which we show below how to automatically infer.

3.4. Subspace disagreement measure (SDM)

For unsupervised domain adaptation, we must be able
to select the optimal d automatically, with unlabeled data
only. We address this challenge by proposing a subspace
disagreement measure (SDM).

To compute SDM, we first compute the PCA subspaces
of the two datasets, PCAS and PCAT . We also com-
bine the datasets into one dataset and compute its subspace
PCAS+T . Intuitively, if the two datasets are similar, then
all three subspaces should not be too far away from each
other on the Grassmannian. The SDM captures this notion
and is defined in terms of the principal angles (cf. eq. (3)),

D(d) = 0.5 [sin↵d + sin�d] (7)

where ↵d denotes the d-th principal angle between the
PCAS and PCAS+T and �d between PCAT and PCAS+T .
sin↵d or sin�d is called the minimum correlation dis-
tance [16].

Note that D(d) is at most 1. A small value indicates
that both ↵d and �d are small, thus PCAS and PCAT are
aligned (at the d-th dimension). At its maximum value of
1, the two subspaces have orthogonal directions (i.e., ↵d =

�d = ⇡/2). In this case, domain adaptation will become
difficult as variances captured in one subspace would not be
able to transfer to the other subspace.

To identify the optimal d, we adopt a greedy strategy:

d⇤ = min{d|D(d) = 1}. (8)

Intuitively, the optimal d⇤ should be as high as possible (to
preserve variances in the source domain for the purpose of
building good classifiers) but should not be so high that the
two subspaces start to have orthogonal directions.

3.5. Rank of domain (ROD)

Imagine we need to build a classifier for a target domain
for object recognition. We have several datasets, Caltech-
101, PASCAL VOC, and ImageNet to choose from as the
source domain. Without actually running our domain adap-
tation algorithms and building classifiers, is it possible to

hxi, xjiG =
x

T
i Gxj

k
p
Gxjk2k

p
Gxjk2

My approach

Mikolov

car cars woman X

Comparisons
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Relation CosADD CosMUL GFKCosADD GFKCosMUL

Google

capital-common-countries 89.52% 98.22% 100% 100%

capital-world 51.25% 80.43% 72.61% 76.68%
city-in-state 7.62% 43.12% 46.00% 69.59%

currency 18.57% 15.17% 33.43% 27.86%
family (gender inflections) 69.36% 81.42% 94.26% 93.67%
gram1-adjective-to-adverb 30.54% 39.91% 89.31% 86.18%
gram2-opposite 39.40% 45.32% 75.00% 73.02%
gram3-comparative 73.49% 88.81% 92.71% 91.96%
gram4-superlative 33.80% 67.61% 86.17% 90.43%

gram5-present-participle 80.01% 92.32% 99.81% 99.71%
gram6-nationality-adjective 92.49% 95.30% 98.93% 98.43%
gram7-past-tense 84.29% 93.79% 99.80% 99.29%
gram8-plural (nouns) 80.03% 90.16% 98.19% 97.67%
gram9-pluran-verbs 82.52% 91.72% 97.81% 97.58

MSR
adjectives 35.90% 47.19% 59.55% 60.44%

nouns 69.91% 83.04% 84.10% 83.90%
verbs 81.26% 91.86% 89.03% 88.86%

Table 3: Relation wise accuracy in Google and MSR datasets. Representations are learnt using
SGNS with win=5 and pos=False. GFK-based methods perform better than their non-GFK based
counterparts in all but one relation type.

GFK based approaches. We can see average rank for GFK based methods are significantly lower
that their non-GFK based counterparts in most of the cases.

Config Model CosADD CosMUL GFKCosADD GFKCosMUL
win=2,
pos=True

SGNS 262.81 178.46 214.28 149.42

SVD 332.73 128.01 279.41 108.53

win=5,
pos=True

SGNS 165.69 116.81 124.67 86.46

SVD 255.38 74.71 225.87 64.35

win=2,
pos=False

SGNS 110.74 74.94 83.36 53.19

SVD 196.47 98.14 149.58 76.38

win=5,
pos=False

SGNS 60.03 41.61 39.25 28.05

SVD 116.65 61.53 101.03 53.00

Table 4: Average Rank obtained by various similarity measures in Google dataset. win refers to the
window size. pos is True if position of the context is considered and False otherwise.

Config Model CosADD CosMUL GFKCosADD GFKCosMUL
win=2,
pos=True

SGNS 18.14 13.41 16.10 12.33

SVD 23.51 15.38 21.84 12.45

win=5,
pos=True

SGNS 13.68 11.26 12.37 10.60

SVD 20.90 11.34 22.03 11.33

win=2,
pos=False

SGNS 11.73 8.89 10.45 8.32

SVD 19.07 14.29 19.55 14.38
win=5
pos=False

SGNS 8.17 6.77 8.06 7.31

SVD 14.85 9.14 15.88 11.13

Table 5: Average Rank obtained by various similarity measures in MSR dataset. win refers to the
window size. pos is True if position of the context is considered and False otherwise.

An interesting question is how the performance of the GFK based methods varies with the dimen-
sionality of the subspace embedding. All the results in the above tables for our proposed GFK
method are based on reducing the dimensionality of word embedding from the original D = 500 to

7

Correspondence Optimized DA

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Optimized Subspace Alignment for Domain Adaptation

Edelman et al. (1998) for a more comprehensive discus-
sion. A Grassmannian manifold, denoted Gr(k,m), is a
matrix manifold consisting of all k-dimensional subspaces
of an ambient m-dimensional Euclidean space. For exam-
ple, the set of all planes in a 3-dimensional space forms the
Grassmannian Gr(2, 3). An individual point S 2 Gr(k,m)

on the manifold is itself a subspace. Consequently, such
points are usually represented by a matrix ˆ

S 2 Rm⇥k con-
taining orthonormal basis vectors that span the subspace.
Often, we will not need to distinguish between the sub-
space S and a corresponding basis ˆ

S, and let S refer to
either depending on the context.

3.1. Geodesic Flow:

Given a pair of points S0 and S1 on a Grassmannian, we
can interpolate between them by considering the shortest
path along the manifold that connects them. This path
is called the geodesic flow between S0 and S1 (Edelman
et al., 1998). Formally, the geodesic flow is parameter-
ized by a single parameter t, and is defined by �(t) =

S0 exp(tB)S1, where B is skew-symmetric and exp refers
to the matrix exponential. The matrix B defines the direc-
tion in which the geodesic extends. The resulting path is
such that �(0) = S0, �(1) = S1, and �(t) for t between 0

and 1 is an intermediate subspace between S0 and S1.

Target DomainSource
Domain

Geodesic

“Intermediate”
Domain

Figure 1. The Grassmannian manifold, showing two points on the
manifold corresponding to source and target domains, as well as
the geodesic flow between them. Each point in this manifold itself
is a subspace.

As it is represented above, computing the geodesic flow is
inefficient because evaluating the matrix exponential is an
expensive operation. Alternatively, the path can be com-
puted efficiently using the following equation, which only
requires computing singular value decompositions and ma-
trix products.

�(t) = S0U0�(t)�R0U1⌃(t) (1)

Here, R0 2 Rm⇥(m�k) is a basis for the orthogonal com-
plement of S0, while U0 2 Rk⇥k and U1 2 R(m�k)⇥k are
orthonormal matrices defined by the pair of singular value
decompositions

S

T

0 S0 = U0�V
T

, R

T

0 S0 = �U1⌃V
T

. (2)

The decompositions in equation 2 encode important infor-
mation about the subspaces S0 and S1. For example, the
singular values contained along the main diagonal of the
k ⇥ k matrices � and ⌃, are equal to cos(✓

i

) and sin(✓

i

),
i = 1, ..., k. The ✓

i

values in these equations are particu-
larly informative, as they are the principal angles between
S0 and S1. These angles describe the degree of overlap
between the subspaces, and as a result define a natural dis-
tance between them. This distance is called the arc-length
distance and is given by the equation d(S0, S1) = ||✓||2.
Furthermore, while there are infinitely many valid bases for
S0 and for S1, there is particular pair of bases that are re-
lated to the principal angles. These are called the canonical
bases for S0 and S1. The canonical bases have the unique
property that the angle between the ith pair of basis vec-
tors is equal to ✓

i

. As such, they are the directions that best
describe the angles between the two subspaces. The canon-
ical bases for S0 and S1 are defined by S0U1 and S1V , as
shown in Knyazev & Zhu (2012).

3.2. Optimization on the Grassmannian:

Gradient ascent is a well known technique for maximiza-
tion, whereby the gradient rf

x

of a differentiable convex
function at a location x is used to obtain a new location
x

0
= x + ↵rf

x

that is closer to the optimum. The pa-
rameter ↵ controls the size of the update at each step. This
same procedure can be modified to perform optimization
on the Grassmannian manifold. Given a gradient direction
G 2 Rm⇥k at a point S, we project it onto the tangent
space of the Grassmannian at the current location. The
new location is then obtained moving a distance ↵ along
the surface of the geodesic in the direction of the projected
gradient. Because this procedure plays a central role in our
proposed method, we include a detailed description of it
here.

The first step of the algorithm requires projecting G onto
the tangent space at S

t

. For a point S on the Grassman-
nian Gr(k,m), the tangent space at S is a k-dimensional
Euclidean space that describes the differential structure of
the manifold at that point. Similar to the tangent of a dif-
ferentiable function, an infinitesimal step along any vector
in the tangent space remains on the manifold. As shown
in Edelman et al. (1998), the Grassmannian tangent space
at a point S consists of all matrices � 2 Rm⇥k such that
S

T

� = 0. From this definition, we see that the orthogonal
complement of S forms a basis for the tangent space at S.
Given a gradient matrix G 2 Rm⇥k, the projection of G
onto the tangent space at S is computed using the equation

⇡

TS

(G) =

✓
I � 1

2

SS

T

◆
G. (3)

Once ⇡
TS

(G) has been computed, the next step in gradient

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Optimized Subspace Alignment for Domain Adaptation

Figure 2. Illustration of the proposed Optimized Subspace Alignment (OSA) method. The source domain is represented as source
subspace (XS) and the target domain is represented as target subspace (XT). We first learn discriminative subspaces for source (X⇤

S)
and target (X⇤

T) in a joint way. We then align the optimized source subspace (X⇤
S) such that it is as close as possible to the optimized

target subspace in the Bregman divergence perspective (i.e. �D1 >�D2) as in subspace alignment. Finally, we project source data to
X⇤

SM and the target data to X⇤
T to compute similarity.

subspaces that are identified. Subspaces obtained using
PCA describe the source and target datasets well individu-
ally, but do not necessarily yield the most effective features
for a given task. For example, in image classification, sub-
spaces that are orthogonal to useless or noisy features such
as background or blur artifacts might result in better classi-
fication accuracy compared to subspaces that accurately de-
scribe all features of the source and target datasets. We pro-
pose a novel semi-supervised algorithm for domain adapta-
tion that addresses this concern by learning subspaces that
are useful while still describing their respective datasets
well.

Our method begins by initializing the source and target sub-
spaces using PCA and then proceeds by using a small set of
examples to optimize them to the relationship being mod-
eled. The objective function used for this optimization is
shown below:

f(S0, S1) =

X

xi,xj2Xt

x

i

S0S
T

0 S1S
T

1 x
T

j

|X
t

|

� 1

2

||X0 �X0S0S
T

0 ||2F � 1

2

||X1 �X1S1S
T

1 ||2F (6)

where X

t

is a set of pairs of vectors x

i

and x

j

that share
the relation of interest, with the vectors drawn from the

source and target distributions respectively. In a classifi-
cation task, for example, X

t

would contain pairs such that
x

i

and x

j

have the same class label. The first term prior-
itizes subspaces that cause the correspondence pairs to be
similar after applying subspace alignment. The second and
third terms ensure that the learned subspaces still represent
their respective datasets well.

Optimization of this objective is complicated by the con-
straint that S0 and S1 must be orthonormal. Therefore, we
apply gradient descent on the Grassmannian manifold as
described in section 3.2. First, the gradient of the objective
function with respect to S0 and S1 is derived. For clarity,
we complete the derivation for each term in equation 6 sep-
arately, and start by computing the gradient with respect to
S0. Addressing the first term,

x

i

S0S
T

0 S1S
T

1 x
T

j

|X
t

| /
�
x

T

i

�
T

�
S0S

T

0 S1S
T

1 x
T

j

�

= tr
⇣
x

T

i

�
S0S

T

0 S1S
T

1 x
T

j

�
T

⌘

= tr
�
x

T

i

x

j

S1S
T

1 S0S
T

0

�

= tr
�
A

ij

S0S
T

0

�

Giguere, 2016

CODA

Correspondence Optimized DA
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Optimized Subspace Alignment for Domain Adaptation

Figure 2. Illustration of the proposed Optimized Subspace Alignment (OSA) method. The source domain is represented as source
subspace (XS) and the target domain is represented as target subspace (XT). We first learn discriminative subspaces for source (X⇤

S)
and target (X⇤

T) in a joint way. We then align the optimized source subspace (X⇤
S) such that it is as close as possible to the optimized

target subspace in the Bregman divergence perspective (i.e. �D1 >�D2) as in subspace alignment. Finally, we project source data to
X⇤

SM and the target data to X⇤
T to compute similarity.

optimize them to the relationship being modeled. The ob-
jective function used for this optimization is shown below:

f(S0, S1) =

X

xi,xj2Xt

x

i

S0S
T

0 S1S
T

1 x
T

j

|X
t

|

� 1

2

||X0 �X0S0S
T

0 ||2F � 1

2

||X1 �X1S1S
T

1 ||2F (6)

where X

t

is a set of pairs of vectors x

i

and x

j

that share
the relation of interest, where the vectors are drawn from
the source and target distributions respectively. In a classi-
fication task, for example, X

t

would contain pairs such that
x

i

and x

j

have the same class label. The first term prior-
itizes subspaces that cause the correspondence pairs to be
similar after applying subspace alignment. The second and
third terms ensure that the learned subspaces still represent
their respective datasets well.

Optimization of this objective is complicated by the con-
straint that S0 and S1 must be orthonormal. Therefore, we
apply gradient descent on the Grassmannian manifold as
described in section 3.2. First, the gradient of the objective
function with respect to S0 and S1 is derived. For clarity,
we complete the derivation for each term in equation 6 sep-
arately, and start by computing the gradient with respect to

S0. First we address the first term,

x

i

S0S
T

0 S1S
T

1 x
T

j

|X
t

| /
�
x

T

i

�
T

�
S0S

T

0 S1S
T

1 x
T

j

�

= tr
⇣
x

T

i

�
S0S

T

0 S1S
T

1 x
T

j

�
T

⌘

= tr
�
x

T

i

x

j

S1S
T

1 S0S
T

0

�

= tr
�
A

ij

S0S
T

0

�

where A

ij

= x

T

i

x

j

S1S
T

1 . As a result,

@

@S0

x

i

S0S
T

0 S1S
T

1 x
T

j

|X
t

| =

1

|X
t

|
�
A

ij

+A

T

ij

�
S0

Next, we address the second term:

�1

2

||X0 �X0S0S
T

0 ||2F = �1

2

tr
�
X0(I � S0S

T

0)X
T

0

�

=

1

2

tr
�
X0S0S

T

0 X
T

0

�
� 1

2

tr
�
X0X

T

0

�

Taking the gradient with respect to S0:

� @

@S0

1

2

||X0 �X0S0S
T

0 ||2F = X0X
T

0 S0

Computer Vision Testbed

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Optimized Subspace Alignment for Domain Adaptation

Figure 3. Example images from the COFFEE-MUG category in
Caltech-256, Amazon, DSLR and Webcam datasets. (Best viewed
in color.)

(Saenko et al., 2010), and contain images downloaded from
Amazon (A), images captured from a webcam (W), and im-
ages captured using a DSLR digital camera (D). The fourth
domain we use is a subset of the Caltech-256 (C) dataset
(Griffin et al., 2007), as used in (Gong et al., 2012). Ex-
amples of images from each of these domains are shown in
figure 5. In total, the four domains contain 2533 images in
total.

5.2. Experimental Procedure

The labels and features used for our experiments
are as in Gong et al. (2012), which we briefly
restate here. First, there are 10 classes of im-
ages determined by their subject. These classes
are BACKPACK, TOURING-BIKE, CALCULATOR,
HEADPHONES, COMPUTER-KEYBOARD, LAPTOP-101,
COMPUTER-MONITOR, COMPUTER-MOUSE,
COFFEE-MUG, and VIDEO-PROJECTOR. Each class
is represented in each of the domains. SURF features
were used and the images were encoded with 800-bin
histograms using a codebook trained from a subset of
Amazon images. Finally, the histograms were normalized
and corrected to have zero mean and unit standard devia-
tion along each dimension. These were then used as input
features to the alignment methods.

Our experimental procedure followed that of previous work
with slight modification. We conduct trials on each pair of
domains. However, we observed that there was a great deal
of variance in the outcome of the experiments when only
using 20 trials, so we evaluated using 100 trials instead.
This variance was not observed when testing unsupervised
alignment methods, leading us to hypothesize that it is in-

troduced in the semi-supervised case due to the added ran-
domness in the choice of labeled examples. For each trial,
we sampled labeled data from the source dataset and unla-
beled data from the target dataset. These formed the train-
ing and testing set for that trial. Because we are testing
semi-supervised alignment, we sampled additional labeled
data from the target domain to form a set of examples. No
samples were allowed to appear in both the example and
testing sets for a given trial. The labeled examples were
not used to augment the training set for OSA during op-
timization, and were instead used in the objective function
as described in section 4.2. However, during evaluation, the
labeled samples were projected using the target projection
and used as candidates for matching the test set. For each
trial, the mean classification accuracy is reported for a 1-
Nearest Neighbor (NN) classifier and for a SVM classifier,
as in (Fernando et al., 2013).

In our comparisons, we consider the following methods.
NA: No adaptation is applied. The image features them-
selves are used as input to the classifier.
PCA

S

: PCA is used to construct a subspace that approx-
imates the source domain. The source and target are both
projected onto this subspace, and the resulting features are
used for classification.
PCA

T

: As PCA
S

, except that the subspace is constructed
from the target domain.
GFK: Similarity between source and target samples are
defined using the geodesic flow kernel proposed in Gong
et al. (2012). GFK computes similarity by projecting the
samples onto intermediate subspaces between the source
S0 and target S1 and measuring their inner product in that
space. However, rather than consider a single intermediate
subspace, GFK implicitly computes the integral of the
projected inner product over all subspaces between S0 and
S1. In our comparisons, the distance between neighbors
(for the NN classifier) and the SVM kernel matrix are
computed using the GFK between the source and target
domains.
GFS: Geodesic flow sampling, proposed in (Gopalan
et al., 2011). GFS constructs features for classification
by sampling a number of subspaces on the geodesic flow
between S0 and S1. Unlike GFK, a discrete number of
subspaces are sampled. For each source and target sample,
the features resulting from projecting the sample onto each
subspace are concatenated, producing a new source and
target dataset. Dimensionality reduction is applied and the
output features are used for classification.
SA: Subspace alignment, as described in section 4.1. SA
produces a source and target transformation that give rise
to a similarity measure through the inner product of the
transformed features. This similarity is subsequently used
for classification.
OSA: Our proposed optimized subspace alignment algo-

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

Optimized Subspace Alignment for Domain Adaptation

Table 1. Recognition accuracy with semi-supervised DA with NN classifier(Office dataset + Caltech10).

Method C!A D!A W!A A!C D!C W!C A!D C!D W!D A!W C!W D!W
NA 23.10 31.30 30.80 24.00 22.40 20.80 28.10 26.50 44.30 31.60 25.20 55.50
PCA

S

37.60 29.50 34.60 31.60 27.20 31.70 33.30 38.60 70.80 35.10 33.80 71.30
PCA

T

44.30 44.90 44.10 36.30 34.20 33.80 54.70 54.70 70.30 61.20 60.60 76.80
GFS 42.00 44.90 43.00 37.50 32.90 32.90 46.90 50.20 75.20 54.20 54.20 78.60
GFK 42.00 45.00 42.80 37.70 32.70 32.80 47.00 49.50 75.00 53.70 54.20 78.70
SA 45.30 45.80 44.80 38.40 35.80 34.10 55.10 56.60 82.30 60.30 60.70 84.80
OSA 49.98 48.37 47.42 35.52 34.95 35.71 56.70 54.37 65.34 62.18 64.44 74.81

Table 2. Recognition accuracy with semi-supervised DA with SVM classifier(Office dataset + Caltech10).

Method C!A D!A W!A A!C D!C W!C A!D C!D W!D A!W C!W D!W
NA 45.10 32.80 28.20 37.80 28.40 23.80 38.60 39.30 71.80 38.70 64.60 83.10
PCA

S

46.20 37.70 35.60 37.10 31.60 29.30 39.10 33.70 66.80 36.10 76.60 83.10
PCA

T

43.60 38.50 34.30 36.60 31.60 27.80 39.10 34.10 64.20 36.80 67.90 83.10
GFK 45.40 36.30 32.10 38.80 28.50 26.30 39.50 39.10 70.30 41.10 77.70 83.10
SA 44.70 41.60 39.30 40.60 34.80 32.60 40.90 41.10 77.60 38.20 82.20 87.10
OSA 46.51 46.38 45.86 36.17 34.95 34.27 49.79 49.82 73.16 58.89 53.99 78.26

rithm, as described in section 4.2. Similarly to SA, the
resulting similarity measure is used to define similarities
between samples for classification. To select the dimen-
sionality of the subspace, we use the technique in (Gong
et al., 2012) based on the subspace disagreement measure.

5.3. Results

In this section, we present the result of our method com-
pared to existing approaches on the image classification
task. The results for existing methods are reproduced from
Fernando et al. (2013). It is important to note that their
experimental setup only computed averages over 20 trials,
compared to the results for OSA which were averaged over
100 trials. For describing each experiment, we use the syn-
tax A ! B to denote the experiment with source domain
A and target domain B.

In table 1, we report the results of using the nearest neigh-
bor classifier with the alignment methods listed above. Our
approach exceeds the state of the art in 7 out of the 12
domains. Interestingly, OSA produces relatively poor re-
sults in the D ! W and W ! D experiments. Visual
inspection of images from these domains shows that they
are very similar. This implies that in circumstances where
the source and target datasets are already similar, subspaces
computed using PCA may be sufficient for alignment. As a
result, subsequent optimization of the subspaces may tend
to overfit the example set, degrading classification accu-
racy. The relatively high accuracy for the PCA

S

and PCA
T

compared to other domains further supports this hypothe-
sis.

Table 2 contains results using an SVM classifier. As in the
NN experiments, OSA attains better results than the other
methods in 8 out of 12 domains. Despite the flexibility
of SVM models, the SVM generally achieves lower accu-
racies than the NN classifier. This is consistent with the
results of SA and GFK.

6. Conclusion
In this paper, we provided a novel semi-supervised do-
main adaptation method called optimized subspace align-
ment (OSA). Our method is able to learn subspaces that
simultaneously describe the source and target distributions
and also provide useful features for classification. Using
the theory of Grassmannian manifolds, we not only provide
a clear perspective on subspace alignment, but also enable
our method to perform a potentially difficult, constrained
optimization problem in an efficient and elegant way. In
a standard image classification setting, OSA surpasses the
state of the art in 15 out of 24 experiments, and achieves
comparable results in most of the remaining cases.

In the future, we hope to extend OSA to text domains, as
well as explore the use of Grassmannian optimization in
domain adaptation methods that utilize deep learning ar-
chitectures.

Domain Invariant Projection
[Baktashmotlagh et al.,

ICCV 2013]

DIP is based on doing gradients on the Grassmannian manifold
to optimize the kernelized MMD metric

where Ex̃∼s[·] is the expectation under distribution s. By
defining F as the set of functions in the unit ball in a univer-
sal RKHS H, it was shown that D′(F, s, t) = 0 if and only
if s = t [17].

Let X̃s = {x̃1
s, · · · , x̃

n
s } and X̃t = {x̃1

t , · · · , x̃
m
t } be

two sets of observations drawn i.i.d. from s and t, respec-
tively. An empirical estimate of the MMD can be computed
as

D(X̃s, X̃t) =

∥∥∥∥∥
1
n

n∑
i=1

φ(x̃i
s)− 1

m

m∑
j=1

φ(x̃j
t)

∥∥∥∥∥
H

=

(
n∑

i,j=1

k(x̃i
s, x̃

j
s)

n2
+

m∑
i,j=1

k(x̃i
t, x̃

j
t)

m2
− 2

n,m∑
i,j=1

k(x̃i
s, x̃

j
t)

nm

) 1
2

,

where φ(·) is the mapping to the RKHS H, and k(·, ·) =
⟨φ(·),φ(·)⟩ is the universal kernel associated with this map-
ping. In short, the MMD between the distributions of two
sets of observations is equivalent to the distance between
the sample means in a high-dimensional feature space.

3.2. Grassmann Manifolds
In our formulation, we model the projection of the source

and target data to a low-dimensional space as a point W on
a Grassmann manifold G(d,D). The Grassmann manifold
G(d,D) consists of the set of all linear d-dimensional sub-
spaces of RD. In particular, this lets us handle constraints
of the form W TW = Id. Learning the projection then
involves non-linear optimization on the Grassmann mani-
fold, which requires some notions of differential geometry
reviewed below.

In differential geometry, the shortest path between two
points on a manifold is a curve called a geodesic. The tan-
gent space at a point on a manifold is a vector space that
consists of the tangent vectors of all possible curves pass-
ing through this point. Parallel transport is the action of
transferring a tangent vector between two points on a man-
ifold. Unlike in flat spaces, this cannot be achieved by sim-
ple translation, but requires subtracting a normal component
at the end point [13].

On a Grassmann manifold, the above-mentioned opera-
tions have efficient numerical forms and can thus be used
to perform optimization on the manifold. In particular, we
make use of a conjugate gradient (CG) algorithm on the
Grassmann manifold [13]. CG techniques are popular non-
linear optimization methods with fast convergence rates.
These methods iteratively optimize the objective function
in linearly independent directions called conjugate direc-
tions [25]. CG on a Grassmann manifold can be summa-
rized by the following steps:

(i) Compute the gradient ∇fW of the objective function
f on the manifold at the current estimate W as

∇fW = ∂fW −WW T∂fW , (1)

with ∂fW the matrix of usual partial derivatives.

(ii) Determine the search direction H by parallel trans-
porting the previous search direction and combining
it with ∇fW .

(iii) Perform a line search along the geodesic at W in the
direction H .

These steps are repeated until convergence to a local mini-
mum, or until a maximum number of iterations is reached.

4. Domain Invariant Projection (DIP)
In this section, we introduce our approach to unsuper-

vised domain adaptation. We first derive the optimization
problem at the heart of our approach, and then discuss the
details of our Grassmann manifold optimization method.

4.1. Problem Formulation
Our goal is to find a representation of the data that is

invariant across different domains. Intuitively, with such
a representation, a classifier trained on the source domain
should perform equally well on the target domain. To
achieve invariance, we search for a projection to a low-
dimensional subspace where the source and target distribu-
tions are similar, or, in other words, a projection that mini-
mizes a distance measure between the two distributions.

More specifically, let Xs =
[
x1
s, · · · ,xn

s

]
be the D × n

matrix containing n samples from the source domain and
Xt =

[
x1
t , · · · ,xm

t

]
be the D × m matrix containing m

samples from the target domain. We search for a D×d pro-
jection matrix W , such that the distributions of the source
and target samples in the resulting d-dimensional subspace
are as similar as possible. In particular, we measure the
distance between these two distribution with the MMD dis-
cussed in Section 3.1. This distance can be expressed as

D(W TXs,W
TXt)=

∥∥∥∥∥
1
n

n∑

i=1

φ(W Txi
s)−

1
m

m∑

j=1

φ(W Txj
t)

∥∥∥∥∥
H

,

(2)
with φ(·) the mapping from RD to the high-dimensional

RKHS H. Note that, here, W appears inside φ(·) in or-
der to measure the MMD of the projected samples. This
is in contrast with sample re-weighting, or selection meth-
ods [21, 18, 14, 24] that place weights outside φ(·). There-
fore, these methods ultimately still compare the distribu-
tions in the original image feature space and may suffer
from the presence of domain-specific features.

Using the MMD, learning W can be expressed as the
optimization problem

W ∗ = argmin
W

D2(W TXs,W
TXt)

s.t. W TW = Id , (3)

771771
Riemannian

gradient
Euclidean
gradient

Domain Invariant Projection

where Ex̃∼s[·] is the expectation under distribution s. By
defining F as the set of functions in the unit ball in a univer-
sal RKHS H, it was shown that D′(F, s, t) = 0 if and only
if s = t [17].

Let X̃s = {x̃1
s, · · · , x̃

n
s } and X̃t = {x̃1

t , · · · , x̃
m
t } be

two sets of observations drawn i.i.d. from s and t, respec-
tively. An empirical estimate of the MMD can be computed
as

D(X̃s, X̃t) =

∥∥∥∥∥
1
n

n∑
i=1

φ(x̃i
s)− 1

m

m∑
j=1

φ(x̃j
t)

∥∥∥∥∥
H

=

(
n∑

i,j=1

k(x̃i
s, x̃

j
s)

n2
+

m∑
i,j=1

k(x̃i
t, x̃

j
t)

m2
− 2

n,m∑
i,j=1

k(x̃i
s, x̃

j
t)

nm

) 1
2

,

where φ(·) is the mapping to the RKHS H, and k(·, ·) =
⟨φ(·),φ(·)⟩ is the universal kernel associated with this map-
ping. In short, the MMD between the distributions of two
sets of observations is equivalent to the distance between
the sample means in a high-dimensional feature space.

3.2. Grassmann Manifolds
In our formulation, we model the projection of the source

and target data to a low-dimensional space as a point W on
a Grassmann manifold G(d,D). The Grassmann manifold
G(d,D) consists of the set of all linear d-dimensional sub-
spaces of RD. In particular, this lets us handle constraints
of the form W TW = Id. Learning the projection then
involves non-linear optimization on the Grassmann mani-
fold, which requires some notions of differential geometry
reviewed below.

In differential geometry, the shortest path between two
points on a manifold is a curve called a geodesic. The tan-
gent space at a point on a manifold is a vector space that
consists of the tangent vectors of all possible curves pass-
ing through this point. Parallel transport is the action of
transferring a tangent vector between two points on a man-
ifold. Unlike in flat spaces, this cannot be achieved by sim-
ple translation, but requires subtracting a normal component
at the end point [13].

On a Grassmann manifold, the above-mentioned opera-
tions have efficient numerical forms and can thus be used
to perform optimization on the manifold. In particular, we
make use of a conjugate gradient (CG) algorithm on the
Grassmann manifold [13]. CG techniques are popular non-
linear optimization methods with fast convergence rates.
These methods iteratively optimize the objective function
in linearly independent directions called conjugate direc-
tions [25]. CG on a Grassmann manifold can be summa-
rized by the following steps:

(i) Compute the gradient ∇fW of the objective function
f on the manifold at the current estimate W as

∇fW = ∂fW −WW T∂fW , (1)

with ∂fW the matrix of usual partial derivatives.

(ii) Determine the search direction H by parallel trans-
porting the previous search direction and combining
it with ∇fW .

(iii) Perform a line search along the geodesic at W in the
direction H .

These steps are repeated until convergence to a local mini-
mum, or until a maximum number of iterations is reached.

4. Domain Invariant Projection (DIP)
In this section, we introduce our approach to unsuper-

vised domain adaptation. We first derive the optimization
problem at the heart of our approach, and then discuss the
details of our Grassmann manifold optimization method.

4.1. Problem Formulation
Our goal is to find a representation of the data that is

invariant across different domains. Intuitively, with such
a representation, a classifier trained on the source domain
should perform equally well on the target domain. To
achieve invariance, we search for a projection to a low-
dimensional subspace where the source and target distribu-
tions are similar, or, in other words, a projection that mini-
mizes a distance measure between the two distributions.

More specifically, let Xs =
[
x1
s, · · · ,xn

s

]
be the D × n

matrix containing n samples from the source domain and
Xt =

[
x1
t , · · · ,xm

t

]
be the D × m matrix containing m

samples from the target domain. We search for a D×d pro-
jection matrix W , such that the distributions of the source
and target samples in the resulting d-dimensional subspace
are as similar as possible. In particular, we measure the
distance between these two distribution with the MMD dis-
cussed in Section 3.1. This distance can be expressed as

D(W TXs,W
TXt)=

∥∥∥∥∥
1
n

n∑

i=1

φ(W Txi
s)−

1
m

m∑

j=1

φ(W Txj
t)

∥∥∥∥∥
H

,

(2)
with φ(·) the mapping from RD to the high-dimensional

RKHS H. Note that, here, W appears inside φ(·) in or-
der to measure the MMD of the projected samples. This
is in contrast with sample re-weighting, or selection meth-
ods [21, 18, 14, 24] that place weights outside φ(·). There-
fore, these methods ultimately still compare the distribu-
tions in the original image feature space and may suffer
from the presence of domain-specific features.

Using the MMD, learning W can be expressed as the
optimization problem

W ∗ = argmin
W

D2(W TXs,W
TXt)

s.t. W TW = Id , (3)

771771

4.1.2 Semi-Supervised DIP (SS-DIP)

The formulations of DIP given in Eqs. 7 and 8 fall into the
unsupervised domain adaptation category, since they do not
exploit any labeled target examples. However, our formula-
tion can very naturally be extended to the semi-supervised
settings. To this end, it must first be noted that, after learn-
ing W , we train a classifier in the resulting latent space
(i.e., on W ∗Tx). In the unsupervised setting, this classifier
is only trained using the source examples.

With Semi-Supervised DIP (SS-DIP), the labeled target
examples can be taken into account in two different man-
ners. In the unregularized formulation of Eq. 7, since no
labels are used when learning W , we only employ the la-
beled target examples along with the source ones to train
the final classifier. With the class-clustering regularizer of
Eq. 8, we utilize the target labels in the regularizer when
learning W , as well as when learning the final classifier.

4.2. Optimization on a Grassmann Manifold
All versions of our DIP formulation yield nonlinear, con-

strained optimization problems. To tackle this challenging
scenario, we first note that the constraints on W make it
a point on a Grassmann manifold. This lets us rewrite our
constrained optimization problem as an unconstrained prob-
lem on the manifold G(d,D). Optimization on Grassmann
manifolds has proven effective at avoiding bad local min-
ima [1]. More specifically, manifold optimization methods
often have better convergence behavior than iterative pro-
jection methods, which can be crucial with a nonlinear ob-
jective function [1].

While our optimization problem has become uncon-
strained, it remains nonlinear. To effectively address this,
we make use of a conjugate gradient method on the man-
ifold. Recall from Section 3.2 that CG on a Grassmann
manifold involves (i) computing the gradient on the man-
ifold∇fW , (ii) estimating the search direction H , and (iii)
performing a line search along a geodesic. Eq. 1 shows that
the gradient on the manifold depends on the partial deriva-
tives of the objective function w.r.t. W , i.e., ∂f/∂W . The
general form of ∂f/∂W in our formulation is

∂f

∂W
=

n∑

i,j=1

Gss(i, j)

n2
+

m∑

i,j=1

Gtt(i, j)

m2
−2

n,m∑

i,j=1

Gst(i, j)

mn
,

where Gss(·, ·), Gtt(·, ·) and Gst(·, ·) are matrices of size
D × d. With the definition of MMD in Eq. 4 based on the
Gaussian kernel kG(·, ·), the matrix, e.g., Gss(i, j) takes
the form

Gss(i, j) = −
2

σ
kG(x

i
s,x

j
s)(x

i
s − xj

s)(x
i
s − xj

s)
TW ,

and similarly for Gtt(·, ·) and Gst(·, ·). With the MMD
of Eq. 5 based on the degree 2 polynomial kernel kP (·, ·),

Figure 1. Comparison of our approach with TCA on the task of
indoor WiFi localization.

Gss(i, j) becomes

Gss(i, j) = 2kP (x
i
s,x

j
s)(x

i
sx

j
s
T
+ xj

sx
i
s
T
)W ,

and similarly for Gtt(·, ·) and Gst(·, ·). As f itself,
∂f/∂W can be efficiently computed in matrix form.

In our experiments, we first applied PCA to the concate-
nated source and target data, kept all the data variance, and
initialized W to the truncated identity matrix. We observed
that learning W typically converges in only a few iterations.

5. Experiments
We evaluated our approach on the tasks of indoor WiFi

localization and visual object recognition, and compare its
performance against the state-of-the art methods in each
task. In all our experiments, we set the variance σ of the
Gaussian kernel to the median squared distance between all
source examples, and the weight λ of the regularizer to 4/σ
when using the regularizer.

5.1. Cross-domain WiFi Localization
We first evaluated our approach on the task of indoor

WiFi localization using the public wifi data set published in
the 2007 IEEE ICDM Contest for domain adaptation [29].
The goal of indoor WiFi localization is to predict the lo-
cation (labels) of WiFi devices based on received signal
strength (RSS) values collected during different time peri-
ods (domains). The dataset contains 621 labeled examples
collected during time period A (i.e., source) and 3128 unla-
beled examples collected during time period B (i.e., target).

We followed the transductive evaluation setting intro-
duced in [24] to compare our DIP methods with TCA
and SSTCA, which are considered state-of-the-art on this
dataset. Nearest-neighbor was employed as the final classi-
fier for our algorithms and for the baselines. In our experi-
ments, we used all the source data and 400 randomly sam-
pled target examples. In Fig. 1, we report the mean Average

773773

4.1.2 Semi-Supervised DIP (SS-DIP)

The formulations of DIP given in Eqs. 7 and 8 fall into the
unsupervised domain adaptation category, since they do not
exploit any labeled target examples. However, our formula-
tion can very naturally be extended to the semi-supervised
settings. To this end, it must first be noted that, after learn-
ing W , we train a classifier in the resulting latent space
(i.e., on W ∗Tx). In the unsupervised setting, this classifier
is only trained using the source examples.

With Semi-Supervised DIP (SS-DIP), the labeled target
examples can be taken into account in two different man-
ners. In the unregularized formulation of Eq. 7, since no
labels are used when learning W , we only employ the la-
beled target examples along with the source ones to train
the final classifier. With the class-clustering regularizer of
Eq. 8, we utilize the target labels in the regularizer when
learning W , as well as when learning the final classifier.

4.2. Optimization on a Grassmann Manifold
All versions of our DIP formulation yield nonlinear, con-

strained optimization problems. To tackle this challenging
scenario, we first note that the constraints on W make it
a point on a Grassmann manifold. This lets us rewrite our
constrained optimization problem as an unconstrained prob-
lem on the manifold G(d,D). Optimization on Grassmann
manifolds has proven effective at avoiding bad local min-
ima [1]. More specifically, manifold optimization methods
often have better convergence behavior than iterative pro-
jection methods, which can be crucial with a nonlinear ob-
jective function [1].

While our optimization problem has become uncon-
strained, it remains nonlinear. To effectively address this,
we make use of a conjugate gradient method on the man-
ifold. Recall from Section 3.2 that CG on a Grassmann
manifold involves (i) computing the gradient on the man-
ifold∇fW , (ii) estimating the search direction H , and (iii)
performing a line search along a geodesic. Eq. 1 shows that
the gradient on the manifold depends on the partial deriva-
tives of the objective function w.r.t. W , i.e., ∂f/∂W . The
general form of ∂f/∂W in our formulation is

∂f

∂W
=

n∑

i,j=1

Gss(i, j)

n2
+

m∑

i,j=1

Gtt(i, j)

m2
−2

n,m∑

i,j=1

Gst(i, j)

mn
,

where Gss(·, ·), Gtt(·, ·) and Gst(·, ·) are matrices of size
D × d. With the definition of MMD in Eq. 4 based on the
Gaussian kernel kG(·, ·), the matrix, e.g., Gss(i, j) takes
the form

Gss(i, j) = −
2

σ
kG(x

i
s,x

j
s)(x

i
s − xj

s)(x
i
s − xj

s)
TW ,

and similarly for Gtt(·, ·) and Gst(·, ·). With the MMD
of Eq. 5 based on the degree 2 polynomial kernel kP (·, ·),

Figure 1. Comparison of our approach with TCA on the task of
indoor WiFi localization.

Gss(i, j) becomes

Gss(i, j) = 2kP (x
i
s,x

j
s)(x

i
sx

j
s
T
+ xj

sx
i
s
T
)W ,

and similarly for Gtt(·, ·) and Gst(·, ·). As f itself,
∂f/∂W can be efficiently computed in matrix form.

In our experiments, we first applied PCA to the concate-
nated source and target data, kept all the data variance, and
initialized W to the truncated identity matrix. We observed
that learning W typically converges in only a few iterations.

5. Experiments
We evaluated our approach on the tasks of indoor WiFi

localization and visual object recognition, and compare its
performance against the state-of-the art methods in each
task. In all our experiments, we set the variance σ of the
Gaussian kernel to the median squared distance between all
source examples, and the weight λ of the regularizer to 4/σ
when using the regularizer.

5.1. Cross-domain WiFi Localization
We first evaluated our approach on the task of indoor

WiFi localization using the public wifi data set published in
the 2007 IEEE ICDM Contest for domain adaptation [29].
The goal of indoor WiFi localization is to predict the lo-
cation (labels) of WiFi devices based on received signal
strength (RSS) values collected during different time peri-
ods (domains). The dataset contains 621 labeled examples
collected during time period A (i.e., source) and 3128 unla-
beled examples collected during time period B (i.e., target).

We followed the transductive evaluation setting intro-
duced in [24] to compare our DIP methods with TCA
and SSTCA, which are considered state-of-the-art on this
dataset. Nearest-neighbor was employed as the final classi-
fier for our algorithms and for the baselines. In our experi-
ments, we used all the source data and 400 randomly sam-
pled target examples. In Fig. 1, we report the mean Average

773773

DIP Results in Computer Vision
Method A→ C A→ D A→W C → A C → D C →W W → A W → C W → D

NO ADAPT-1NN 26 25.5 29.8 23.7 25.5 25.8 23 20 59.2
NO ADAPT-SVM 41.7 41.4 34.2 51.8 54.1 46.8 31.1 31.5 70.7

TCA[24] 35.0 36.3 27.8 41.4 45.2 32.5 24.2 22.5 80.2
GFK[15] 42.2 42.7 40.7 44.5 43.3 44.7 31.8 30.8 75.6
SCL[5] 42.3 36.9 34.9 49.3 42.0 39.3 34.7 32.5 83.4
KMM[18] 42.2 42.7 42.4 48.3 53.5 45.8 31.9 29.0 72.0
LM[14] 45.5 47.1 46.1 56.7 57.3 49.5 40.2 35.4 75.2

DIP 47.4 50.3 47.5 55.7 60.5 58.3 42.6 34.2 88.5
DIP-CC 47.2 49.04 47.8 58.7 61.2 58 40.9 37.2 91.7
DIP(Poly) 47.3 49.1 45.1 56.1 58.6 57 42.8 36.5 89.8
DIP-CC(Poly) 47.4 48.4 46.1 56.4 58.6 58 42.7 36.5 89.8

Table 1. Recognition accuracies on 9 pairs of source/target domains using the evaluation protocol of [14]. C: Caltech, A: Amazon,
W : Webcam, D: DSLR.

Figure 2. Sample images from the monitor category. From left to
right: Amazon, Webcam, DSLR, and Caltech.

Error Distance (AED) over 10 different random samples for
different subspace dimensionalities. AED =

∑
i l(xi)−yi

N
where xi is a vector of RSS values, l(xi) is the predicted
location and yi is the corresponding ground truth location.
Note that our algorithms outperform TCA in both unsuper-
vised and supervised settings.

5.2. Visual Object Recognition
We then evaluated our approach on the task of visual

object recognition using the benchmark domain adaptation
dataset introduced in [26]. This dataset contains images
from four different domains: Amazon, DSLR, Webcam,
and Caltech. The Amazon domain consists of images ac-
quired in a highly-controlled environment with studio light-
ing conditions. These images capture the large intra-class
variations of 31 classes, but typically show the objects only
from one canonical viewpoint. The DSLR domain consists
of high resolution images of 31 categories that are taken
with a digital SLR camera in a home environment under
natural lighting. The Webcam images were acquired in
a similar environment as the DSLR ones, but have much
lower resolution and contain significant noise, as well as
color and white balance artifacts. The last domain, Cal-
tech [19], consists of images of 256 object classes down-
loaded from Google images. Following [15], we use the 10
object classes common to all four datasets. This yields 2533
images in total, with 8 to 151 images per category per do-
main. Fig. 2 depicts sample images from the four domains.

For our evaluation, we used the features provided
by [15], which were obtained using the protocol described
in [26]. More specifically, all images were converted to

grayscale and resized to have the same width. Local scale-
invariant interest points were detected by the SURF detec-
tor [2], and a 64-dimensional rotation invariant SURF de-
scriptor was extracted from the image patch around each
interest point. A codebook of size 800 was then generated
from a subset of the Amazon dataset using k-means clus-
tering on the SURF descriptors. The final feature vector
for each image is the normalized histogram of visual words
obtained from this codebook.

In all our experiments, we used the subspace disagree-
ment measure of [15] to automatically determine the dimen-
sionality of the projection matrix W . For recognition, we
trained an SVM classifier with a polynomial kernel of de-
gree 2 on the projected source examples. Our results are
presented as DIP for the original model and DIP-CC for the
class-clustering regularized one.

In a first experiment on this dataset, we used the evalua-
tion protocol introduced in [14]: For each source/target pair,
all the available examples in both domains are exploited at
once, rather than splitting the datasets into multiple train-
ing/testing partitions.1 This protocol was motivated by the
fact that, in [14], selecting landmarks requires a sufficient
number of source examples to be available. For the same
reason, the DSLR dataset is never used as source domain,
since it contains too few examples per class. We compare
our DIP and DIP-CC results, with Gaussian or polynomial
kernel in MMD, with those obtained by several state-of-
the-art methods: transfer component analysis (TCA) [24],
geodesic flow kernel (GFK) [15], geodesic flow sampling
(GFS) [16], structural correspondence learning (SCL) [5],
kernel mean matching (KMM) [18] and landmark selec-
tion (LM) [14]. Table 1 shows the recognition accuracies
on the target examples for the 9 pairs of source and target
domains. For this protocol, our method (with and without
class-clustering regularizer) outperforms the state-of-the-art
techniques in all cases. Note that, in this case, our class-
clustering regularizer is not crucial to achieve good accu-

1This evaluation protocol was explained to us by the authors of [14].

774774

Batch vs. Incremental Methods

❖ Both MA and SA domain adaptation methods are batch
mode techniques

❖ They require having all the data upfront, and involve a
matrix eigenvector (SVD) computation

❖ Given a new instance, the whole solution has to be
recomputed

❖ Can we design an incremental method?

Incremental Subspace Tracking

Subspace Tracking

LOCAL CONVERGENCE OF AN ALGORITHM FOR SUBSPACE
IDENTIFICATION FROM PARTIAL DATA

LAURA BALZANO⇤ AND STEPHEN J. WRIGHT†

Abstract. GROUSE (Grassmannian Rank-One Update Subspace Estimation) is an iterative
algorithm for identifying a linear subspace of Rn from data consisting of partial observations of
random vectors from that subspace. This paper examines local convergence properties of GROUSE,
under assumptions on the randomness of the observed vectors, the randomness of the subset of
elements observed at each iteration, and incoherence of the subspace with the coordinate directions.
Convergence at an expected linear rate is demonstrated under certain assumptions. The case in
which the full random vector is revealed at each iteration allows for much simpler analysis, and
is also described. GROUSE is related to incremental SVD methods and to gradient projection
algorithms in optimization.

Key words. Subspace Identification, Optimization

1. Introduction. We seek to identify an unknown subspace S of dimension d
in Rn, described by an n⇥d matrix Ū whose orthonormal columns span S. Our data
consist of a sequence of vectors vt of the form

vt = Ūst, (1.1)

where st 2 Rd is a random vector whose elements are independent and identically
distributed (i.i.d.) in N (0, 1). Critically, we observe only a subset ⌦t ⇢ {1, 2, . . . , n}
of the components of vt.

GROUSE [2, 3] (Grassmannian Rank-One Update Subspace Estimation) is an
algorithm that generates a sequence {Ut}t=0,1,... of n⇥ d matrices with orthonormal
columns with the goal thatR(Ut) ! S (whereR(·) denotes range). Partial observation
of the vector vt is used to update Ut to Ut+1. We present GROUSE (slightly modified
from earlier descriptions) as Algorithm 1.

1.1. Applications of Subspace Identification. Subspace identification prob-
lems arise in a great variety of applications. They are the simplest form of the more
general class of problems in which we seek to identify a low-dimensional manifold in
a high-dimensional ambient space from a sequence of incomplete observations. Sub-
space identification finds applications in medical [1] and hyperspectral [14] imaging,
communications [19], source localization and target tracking in radar and sonar [12],
computer vision for object tracking [8], and in control for system identification [21, 20],
where one is interested in estimating the range space of the observability matrix of
a system. Subspaces have also been used to represent images of a single scene un-
der varying illuminations [6] and to model origin-destination flows in a computer
network [13]. Environmental monitoring of soil and crop conditions [10], water con-
tamination [16], and seismological activity [22] can all be summarized e�ciently by
low-dimensional subspace representations.

1.2. GROUSE. Each iteration of the GROUSE algorithm (Algorithm 1) essen-
tially performs a gradient projection step onto the Grassmannian manifold of sub-
spaces of dimension d, based on the latest partially observed sample [vt]⌦t of the

⇤Department of Electrical Engineering and Computer Science, University of Michigan.
girasole@umich.edu

†Department of Computer Sciences, University of Wisconsin-Madison. swright@cs.wisc.edu

1

ar
X

iv
:1

30
6.

33
91

v2
 [

cs
.N

A
]

1
Ju

l 2
01

4

Key Theorem
(Edelman et al, SIAM)

320 ALAN EDELMAN, TOMÁS ARIAS, AND STEVEN SMITH

to use n2 parameters to represent a point on the Grassmann manifold (which has
dimension p(n�p)), but in certain ab initio physics computations [43], the projection
matrices Y Y T that arise in practice tend to require only O(n) parameters for their
representation.

Returning to the n-by-p representation of points on the Grassmann manifold, the
tangent space is easily computed by viewing the Grassmann manifold as the quotient
space Gn, p = Vn, p/Op. At a point Y on the Stiefel manifold then, as seen in (2.5),
tangent vectors take the form � = Y A + Y?B, where A is p-by-p skew-symmetric,
B is (n � p)-by-p, and Y? is any n-by-(n � p) matrix such that (Y, Y?) is orthogo-
nal. From (2.61) it is clear that the vertical space at Y is the set of vectors of the
form

� = Y A;(2.62)

therefore, the horizontal space at Y is the set of vectors of the form

� = Y?B.(2.63)

Because the horizontal space is equivalent to the tangent space of the quotient, the
tangent space of the Grassmann manifold at [Y] is given by all n-by-p matrices � of
the form in (2.63) or, equivalently, all n-by-p matrices � such that

Y T� = 0.(2.64)

Physically, this corresponds to directions free of rotations mixing the basis given by
the columns of Y .

We already saw in section 2.3.2 that the Euclidean metric is in fact equivalent to
the canonical metric for the Grassmann manifold. That is, for n-by-p matrices �

1

and �
2

such that Y T�i = 0 (i = 1, 2),

gc(�1

,�
2

) = tr �T
1

(I � 1

2

Y Y T)�
2

,

= tr �T
1

�
2

,

= ge(�1

,�
2

).

2.5.1. Geodesics (Grassmann). A formula for geodesics on the Grassmann
manifold was given via (2.32); the following theorem provides a useful method for
computing this formula using n-by-p matrices.

Theorem 2.3. If Y (t) = Qet(
0
B
�BT

0)In, p, with Y (0) = Y and Ẏ (0) = H, then

Y (t) = (Y V U)

✓
cos ⌃t
sin ⌃t

◆
V T ,(2.65)

where U⌃V T
is the compact singular value decomposition of H.

Proof 1. It is easy to check that either formulation for the geodesic satisfies the
geodesic equation Ÿ + Y (Ẏ T Ẏ) = 0, with the same initial conditions.

Proof 2. Let B = (U
1

, U
2

)(⌃

0

)V T be the singular value decomposition of B (U
1

n-by-p, U
2

p-by-(n � p), ⌃ and V p-by-p). A straightforward computation involving
the partitioned matrix

✓
0 �BT

B 0

◆
=

✓
V 0 0
0 U

1

U
2

◆0

@
0 �⌃ 0
⌃ 0 0
0 0 0

1

A

0

@
V T 0
0 UT

1

0 UT
2

1

A(2.66)

ORTHOGONALITY CONSTRAINTS 315

As opposed to the canonical metric for the Stiefel manifold, this metric is in fact
equivalent to the Euclidean metric (up to multiplication by 1/2) defined in (2.2).

The orthogonal group geodesic

Q(t) = Q(0) exp t

✓
0 �BT

B 0

◆
(2.32)

has horizontal tangent

Q̇(t) = Q(t)

✓
0 �BT

B 0

◆
(2.33)

at every point along the curve Q(t); therefore,

Grassmann geodesics = [Q(t)],(2.34)

where [Q(t)] is given by (2.28) and (2.32). This formula gives us an easy method for
computing geodesics on the Grassmann manifold using n-by-p matrices, as will be
seen in section 2.5.

The method for parallel translation along geodesics in the Grassmann manifold
is the same as for the Stiefel manifold, although it turns out the Grassmann manifold
has additional structure that makes this task easier. Let

A =

✓
0 �AT

A 0

◆
and B =

✓
0 �BT

B 0

◆
(2.35)

be two horizontal vectors at Q = I. It is easily verified that [A,B] is in fact a vertical
vector of the form of (2.29). If the vertical component of (2.17) is infinitesimally
removed, we are left with the trivial di↵erential equation

Ḃ = 0.(2.36)

Therefore, the parallel translation of the tangent vector Q(0)B along the geodesic
Q(t) = Q(0)eAt is simply given by the expression

⌧B(t) = Q(0)eAtB,(2.37)

which is of course horizontal at Q(t). Here, we introduce the notation ⌧ to indicate
the transport of a vector; it is not a scalar multiple of the vector. It will be seen in
section 2.5 how this formula may be computed using O(np2) operations.

As an aside, if H and V represent the horizontal and vertical spaces, respectively,
it may be verified that

[V, V] ⇢ V, [V,H] ⇢ H, [H,H] ⇢ V.(2.38)

The first relationship follows from the fact that V is a Lie algebra, the second follows
from the reductive homogeneous space structure [54] of the Grassmann manifold, also
possessed by the Stiefel manifold, and the third follows the symmetric space structure
[47, 54] of the Grassmann manifold, which the Stiefel manifold does not possess.

2.4. The Stiefel manifold with its canonical metric.

GROUSE
Algorithm 1 GROUSE

Given U0, an n⇥ d orthonormal matrix, with 0 < d < n;
Set t := 1;
repeat

Take ⌦t and (vt)⌦t from (1);
Define wt := argminw k[Ut]⌦tw � [vt]⌦tk22;
Define pt := Utwt; [rt]⌦t := [vt]⌦t � [pt]⌦t ;
[rt]⌦C

t
:= 0; �t := krtk kptk;

Choose ⌘t > 0 and set

Ut+1 := Ut + (cos(�t⌘t)� 1)

pt
kptk

wT
t

kwtk

+ sin(�t⌘t)
rt
krtk

wT
t

kwtk
. (2)

t := t+ 1;
until termination

Algorithm 2 Incremental SVD [4]
Start with null matrixes U0, V0, ⌃0;
Set t := 0;
repeat

Given new column vector vt;
Define wt := argminw kUtw � vtk22 = UT

t vt;
Define

pt := Utwt; rt := vt � pt;

(Set r0 := v0 when t = 0);
Noting that

⇥
Ut⌃tV T

t vt
⇤
=

h
Ut

rt
krtk

i 
⌃t wt

0 krtk

� 
Vt 0

0 1

�T
,

compute the SVD of the update matrix:

⌃t wt

0 krtk

�
=

ˆU ˆ

⌃

ˆV T , (3)

and set

Ut+1 :=

h
Ut

rt
krtk

i
ˆU, ⌃t+1 :=

ˆ

⌃,

Vt+1 :=


Vt 0

0 1

�
ˆV .

t := t+ 1;
until termination

IV. RELATING GROUSE TO INCREMENTAL SVD

Algorithms 1 and 2 are motivated in different ways and
therefore differ in significant respects. We now describe a vari-
ant — Algorithm 3 — that is suited to the setting addressed by
GROUSE, and show that it is in fact equivalent to GROUSE.
Algorithm 3, includes the following modifications.

• Since only the subvector (vt)⌦t is available, the missing
components of vt (corresponding to indices in the com-
plement ⌦

C
t := {1, 2, . . . , n} \ ⌦t) must be “imputed”

from the revealed components and from the current
subspace estimate Ut.

• The singular value matrix ⌃t is not carried over from one
iteration to the next. In effect, the singular value estimates
are all reset to 1 at each iteration.

• We allow an arbitrary rotation operator Wt to be applied
to the columns of Ut at each iteration. This does not affect
the range space of Ut, which is the current estimate of
the underlying subspace S .

• The matrix Ut is not permitted to grow beyond d columns.

Algorithm 3 iSVD for Partially Observed Vectors
Given U0, an n⇥ d orthonormal matrix, with 0 < d < n;
Set t := 1;
repeat

Take ⌦t and (vt)⌦t from (1);
Define wt := argminw k(Ut)⌦tw � (vt)⌦tk22;
Define

[ṽt]i :=

⇢
[vt]i i 2 ⌦t

[Utwt]i i 2 ⌦

C
t
;

pt := Utwt; rt := ṽt � pt;

Noting that
⇥
Ut ṽt

⇤
=

h
Ut

rt
krtk

i I wt

0 krtk

�
,

we compute the SVD of the update matrix:

I wt

0 krtk

�
=

˜Ut
˜

⌃t
˜V T
t , (4)

and define ˆUt to be the (d + 1) ⇥ d matrix obtained by
removing the last column from ˜Ut.
Set Ut+1 :=

h
Ut

rt
krtk

i
ˆUWt, where Wt is an arbitrary

d⇥ d orthogonal matrix.
t := t+ 1;

until termination

Algorithm 3 is quite similar to an algorithm proposed in [3]
(see Algorithm 4) but differs in its handling of the singular
values. In [3], the singular values are carried over from
one iteration to the next, but previous estimates are “down-
weighted” to place more importance on the vectors (vt)⌦t

from recent iterations. This feature is useful in a scenario
in which the underlying subspace S is changing in time.

(Balzano et al., 2010)

LOCAL CONVERGENCE OF AN ALGORITHM FOR SUBSPACE
IDENTIFICATION FROM PARTIAL DATA

LAURA BALZANO⇤ AND STEPHEN J. WRIGHT†

Abstract. GROUSE (Grassmannian Rank-One Update Subspace Estimation) is an iterative
algorithm for identifying a linear subspace of Rn from data consisting of partial observations of
random vectors from that subspace. This paper examines local convergence properties of GROUSE,
under assumptions on the randomness of the observed vectors, the randomness of the subset of
elements observed at each iteration, and incoherence of the subspace with the coordinate directions.
Convergence at an expected linear rate is demonstrated under certain assumptions. The case in
which the full random vector is revealed at each iteration allows for much simpler analysis, and
is also described. GROUSE is related to incremental SVD methods and to gradient projection
algorithms in optimization.

Key words. Subspace Identification, Optimization

1. Introduction. We seek to identify an unknown subspace S of dimension d
in Rn, described by an n⇥d matrix Ū whose orthonormal columns span S. Our data
consist of a sequence of vectors vt of the form

vt = Ūst, (1.1)

where st 2 Rd is a random vector whose elements are independent and identically
distributed (i.i.d.) in N (0, 1). Critically, we observe only a subset ⌦t ⇢ {1, 2, . . . , n}
of the components of vt.

GROUSE [2, 3] (Grassmannian Rank-One Update Subspace Estimation) is an
algorithm that generates a sequence {Ut}t=0,1,... of n⇥ d matrices with orthonormal
columns with the goal thatR(Ut) ! S (whereR(·) denotes range). Partial observation
of the vector vt is used to update Ut to Ut+1. We present GROUSE (slightly modified
from earlier descriptions) as Algorithm 1.

1.1. Applications of Subspace Identification. Subspace identification prob-
lems arise in a great variety of applications. They are the simplest form of the more
general class of problems in which we seek to identify a low-dimensional manifold in
a high-dimensional ambient space from a sequence of incomplete observations. Sub-
space identification finds applications in medical [1] and hyperspectral [14] imaging,
communications [19], source localization and target tracking in radar and sonar [12],
computer vision for object tracking [8], and in control for system identification [21, 20],
where one is interested in estimating the range space of the observability matrix of
a system. Subspaces have also been used to represent images of a single scene un-
der varying illuminations [6] and to model origin-destination flows in a computer
network [13]. Environmental monitoring of soil and crop conditions [10], water con-
tamination [16], and seismological activity [22] can all be summarized e�ciently by
low-dimensional subspace representations.

1.2. GROUSE. Each iteration of the GROUSE algorithm (Algorithm 1) essen-
tially performs a gradient projection step onto the Grassmannian manifold of sub-
spaces of dimension d, based on the latest partially observed sample [vt]⌦t of the

⇤Department of Electrical Engineering and Computer Science, University of Michigan.
girasole@umich.edu

†Department of Computer Sciences, University of Wisconsin-Madison. swright@cs.wisc.edu

1

ar
X

iv
:1

30
6.

33
91

v2
 [

cs
.N

A
]

1
Ju

l 2
01

4

Derivation of GROUSE

problem studied in [11, 6]. To see the equivalence, let ⌦ = {(k, t) : k 2 ⌦t 1  t  T}, and let
V = [v1, . . . , vT]. Then

F̄ (S) =
TX

t=1

min
a

kU⌦ta� v⌦tk2

= min
A2Rd⇥T

X

(i,j)2⌦

(UA� V)2ij

That is, the global optimization problem can be written as minU,A
P

(i,j)2⌦(UA � V)2ij , which is
precisely the starting point for the algorithms and analyses in [11, 6]. The authors in [11] use a
gradient descent algorithm to jointly minimize both U and A while [6] minimizes this cost function
by first solving for A and then taking a gradient step with respect to U . In the present work, we
consider optimizing this cost function one column at a time. We show that by using our online
algorithm, where each measurement vt corresponds to a random column of the matrix V , we achieve
state-of-the-art performance on matrix completion problems.

3 Stochastic Gradient Descent on the Grassmannian

The set of all subspaces of Rn of dimension d is denotedG(n, d) and is called the Grassmannian. The
Grassmannian is a compact Riemannian manifold, and its geodesics can be explicitly computed [7].
An element S 2 G(n, d) can be represented by any n ⇥ d matrix U whose columns form an
orthonormal basis for S. Our algorithm derives from an application of incremental gradient descent
on the Grassmannian manifold. We first compute a gradient of the cost function F , and then follow
this gradient along a short geodesic curve in the Grassmannian.

We follow the program developed in [7]. To compute the gradient of F on the Grassmannian
manifold, we first need to compute the partial derivatives of F with respect to the components of
U . For a generic subspace, the matrix UT

⌦t
U⌦t has full rank provided that |⌦t| > d, and hence the

cost function (1) is di↵erentiable almost everywhere. Let �⌦t be the n⇥ n diagonal matrix which
has 1 in the jth diagonal entry if j 2 ⌦t and has 0 otherwise. We can rewrite

F (S; t) = min
a

k�⌦t(Ua� vt)k2

from which it follows that the derivative of F with respect to the elements of U is

dF

dU
= �2(�⌦t(vt � Uw))wT

= �2rwT (3)

where r := �⌦t(vt � Uw) denotes the (zero padded) residual vector and w is the least-squares
solution in (1).

Using Equation (2.70) in [7], we can calculate the gradient on the Grassmannian from this
partial derivative

rF = (I � UUT)
dF

dU

= �2(I � UUT)rwT = �2rwT .

3

problem studied in [11, 6]. To see the equivalence, let ⌦ = {(k, t) : k 2 ⌦t 1  t  T}, and let
V = [v1, . . . , vT]. Then

F̄ (S) =
TX

t=1

min
a

kU⌦ta� v⌦tk2

= min
A2Rd⇥T

X

(i,j)2⌦

(UA� V)2ij

That is, the global optimization problem can be written as minU,A
P

(i,j)2⌦(UA � V)2ij , which is
precisely the starting point for the algorithms and analyses in [11, 6]. The authors in [11] use a
gradient descent algorithm to jointly minimize both U and A while [6] minimizes this cost function
by first solving for A and then taking a gradient step with respect to U . In the present work, we
consider optimizing this cost function one column at a time. We show that by using our online
algorithm, where each measurement vt corresponds to a random column of the matrix V , we achieve
state-of-the-art performance on matrix completion problems.

3 Stochastic Gradient Descent on the Grassmannian

The set of all subspaces of Rn of dimension d is denotedG(n, d) and is called the Grassmannian. The
Grassmannian is a compact Riemannian manifold, and its geodesics can be explicitly computed [7].
An element S 2 G(n, d) can be represented by any n ⇥ d matrix U whose columns form an
orthonormal basis for S. Our algorithm derives from an application of incremental gradient descent
on the Grassmannian manifold. We first compute a gradient of the cost function F , and then follow
this gradient along a short geodesic curve in the Grassmannian.

We follow the program developed in [7]. To compute the gradient of F on the Grassmannian
manifold, we first need to compute the partial derivatives of F with respect to the components of
U . For a generic subspace, the matrix UT

⌦t
U⌦t has full rank provided that |⌦t| > d, and hence the

cost function (1) is di↵erentiable almost everywhere. Let �⌦t be the n⇥ n diagonal matrix which
has 1 in the jth diagonal entry if j 2 ⌦t and has 0 otherwise. We can rewrite

F (S; t) = min
a

k�⌦t(Ua� vt)k2

from which it follows that the derivative of F with respect to the elements of U is

dF

dU
= �2(�⌦t(vt � Uw))wT

= �2rwT (3)

where r := �⌦t(vt � Uw) denotes the (zero padded) residual vector and w is the least-squares
solution in (1).

Using Equation (2.70) in [7], we can calculate the gradient on the Grassmannian from this
partial derivative

rF = (I � UUT)
dF

dU

= �2(I � UUT)rwT = �2rwT .

3

problem studied in [11, 6]. To see the equivalence, let ⌦ = {(k, t) : k 2 ⌦t 1  t  T}, and let
V = [v1, . . . , vT]. Then

F̄ (S) =
TX

t=1

min
a

kU⌦ta� v⌦tk2

= min
A2Rd⇥T

X

(i,j)2⌦

(UA� V)2ij

That is, the global optimization problem can be written as minU,A
P

(i,j)2⌦(UA � V)2ij , which is
precisely the starting point for the algorithms and analyses in [11, 6]. The authors in [11] use a
gradient descent algorithm to jointly minimize both U and A while [6] minimizes this cost function
by first solving for A and then taking a gradient step with respect to U . In the present work, we
consider optimizing this cost function one column at a time. We show that by using our online
algorithm, where each measurement vt corresponds to a random column of the matrix V , we achieve
state-of-the-art performance on matrix completion problems.

3 Stochastic Gradient Descent on the Grassmannian

The set of all subspaces of Rn of dimension d is denotedG(n, d) and is called the Grassmannian. The
Grassmannian is a compact Riemannian manifold, and its geodesics can be explicitly computed [7].
An element S 2 G(n, d) can be represented by any n ⇥ d matrix U whose columns form an
orthonormal basis for S. Our algorithm derives from an application of incremental gradient descent
on the Grassmannian manifold. We first compute a gradient of the cost function F , and then follow
this gradient along a short geodesic curve in the Grassmannian.

We follow the program developed in [7]. To compute the gradient of F on the Grassmannian
manifold, we first need to compute the partial derivatives of F with respect to the components of
U . For a generic subspace, the matrix UT

⌦t
U⌦t has full rank provided that |⌦t| > d, and hence the

cost function (1) is di↵erentiable almost everywhere. Let �⌦t be the n⇥ n diagonal matrix which
has 1 in the jth diagonal entry if j 2 ⌦t and has 0 otherwise. We can rewrite

F (S; t) = min
a

k�⌦t(Ua� vt)k2

from which it follows that the derivative of F with respect to the elements of U is

dF

dU
= �2(�⌦t(vt � Uw))wT

= �2rwT (3)

where r := �⌦t(vt � Uw) denotes the (zero padded) residual vector and w is the least-squares
solution in (1).

Using Equation (2.70) in [7], we can calculate the gradient on the Grassmannian from this
partial derivative

rF = (I � UUT)
dF

dU

= �2(I � UUT)rwT = �2rwT .

3

problem studied in [11, 6]. To see the equivalence, let ⌦ = {(k, t) : k 2 ⌦t 1  t  T}, and let
V = [v1, . . . , vT]. Then

F̄ (S) =
TX

t=1

min
a

kU⌦ta� v⌦tk2

= min
A2Rd⇥T

X

(i,j)2⌦

(UA� V)2ij

That is, the global optimization problem can be written as minU,A
P

(i,j)2⌦(UA � V)2ij , which is
precisely the starting point for the algorithms and analyses in [11, 6]. The authors in [11] use a
gradient descent algorithm to jointly minimize both U and A while [6] minimizes this cost function
by first solving for A and then taking a gradient step with respect to U . In the present work, we
consider optimizing this cost function one column at a time. We show that by using our online
algorithm, where each measurement vt corresponds to a random column of the matrix V , we achieve
state-of-the-art performance on matrix completion problems.

3 Stochastic Gradient Descent on the Grassmannian

The set of all subspaces of Rn of dimension d is denotedG(n, d) and is called the Grassmannian. The
Grassmannian is a compact Riemannian manifold, and its geodesics can be explicitly computed [7].
An element S 2 G(n, d) can be represented by any n ⇥ d matrix U whose columns form an
orthonormal basis for S. Our algorithm derives from an application of incremental gradient descent
on the Grassmannian manifold. We first compute a gradient of the cost function F , and then follow
this gradient along a short geodesic curve in the Grassmannian.

We follow the program developed in [7]. To compute the gradient of F on the Grassmannian
manifold, we first need to compute the partial derivatives of F with respect to the components of
U . For a generic subspace, the matrix UT

⌦t
U⌦t has full rank provided that |⌦t| > d, and hence the

cost function (1) is di↵erentiable almost everywhere. Let �⌦t be the n⇥ n diagonal matrix which
has 1 in the jth diagonal entry if j 2 ⌦t and has 0 otherwise. We can rewrite

F (S; t) = min
a

k�⌦t(Ua� vt)k2

from which it follows that the derivative of F with respect to the elements of U is

dF

dU
= �2(�⌦t(vt � Uw))wT

= �2rwT (3)

where r := �⌦t(vt � Uw) denotes the (zero padded) residual vector and w is the least-squares
solution in (1).

Using Equation (2.70) in [7], we can calculate the gradient on the Grassmannian from this
partial derivative

rF = (I � UUT)
dF

dU

= �2(I � UUT)rwT = �2rwT .

3

Derivation of GROUSE
The final equality follows because the residual vector r is orthogonal to all of the columns of U .
This can be verified from the definitions of r and w.

A gradient step along the geodesic with tangent vector �rF is given by Equation (2.65) in [7],
and is a function of the singular values and vectors of rF . It is trivial to compute the singular
value decomposition of rF , as it is rank one. The sole non-zero singular value is � = 2||r||||w|| and
the corresponding left and right singular vectors are r

krk and w
kwk respectively. Let x2, . . . , xd be an

orthonormal set orthogonal to r and y2, . . . , yd be an orthonormal set orthogonal to w. Then

�2rwT =
h
� r

krk x2 . . . xd
i
⇥ diag(�, 0, . . . , 0)⇥

h
w

kwk y2 . . . yd
iT

forms an SVD for the gradient. Now using (2.65) from [7], we find that for ⌘ > 0, a step of length
⌘ in the direction rF is given by

U(⌘) = U +
(cos(�⌘)� 1)

kwk2 UwwT + sin(�⌘)
r

krk
wT

kwk

= U +

✓
sin(�⌘)

r

krk + (cos(�⌘)� 1)
p

kpk

◆
wT

kwk

where p := Uw, the predicted value of the projection of the vector v onto S.
This geodesic update rule is remarkable for a number of reasons. First of all, it consists only

of a rank-one modification of the current subspace basis U . Second, the term sin(�⌘)
krkkwk = sin(�⌘)

� is
on the order of ⌘ when �⌘ is small. That is, for small values of � and ⌘ this expression looks
like a normal step along the gradient direction �2rwT given by (3). From the Taylor series of the

cosine, we see that the second term is approximately equal to �2⌘2 pwT

kpkkwk . That is, this term serves
as a second order correction to keep the iterates on the Grassmannian. Surprisingly, this simple
additive term maintains the orthogonality, obviating the need for orthogonalizing the columns of U
after a gradient step. Below, we will also discuss how this iterate relates to more familiar iterative
algorithms from linear algebra which use full information.

The GROUSE algorithm simply follows geodesics along the gradients of F with a prescribed set
of step-sizes ⌘. The full computation is summarized in Algorithm 1. Our derivations have shown
that computing a gradient step only requires the solution of the least squares problem (1), the
computation of p and r, and then a rank one update to the previous subspace.

Each step of GROUSE can be performed e�ciently with standard linear algebra packages.
Computing the weights in Step 2 of Algorithm 1 requires solving a least squares problem in |⌦t|
equations and d unknowns. Such a system is solvable in at most O(|⌦t|d2) flops in the worst case.
Predicting the component of v that lies in the current subspace requires a matrix vector multiply
that can be computed in O(nd) flops. Computing the residual then only requires O(|⌦t|) flops, as
we will always have zeros in the entries indexed by the complement of ⌦t. Computing the norms of
r and p can be done in O(n) flops. The final subspace update consists of adding a rank one matrix
to an n ⇥ d matrix and can be computed in O(nd) flops. Totaling all of these computation times
gives an overall complexity estimate of O(nd+ |⌦t|d2) flops per subspace update.

4

The final equality follows because the residual vector r is orthogonal to all of the columns of U .
This can be verified from the definitions of r and w.

A gradient step along the geodesic with tangent vector �rF is given by Equation (2.65) in [7],
and is a function of the singular values and vectors of rF . It is trivial to compute the singular
value decomposition of rF , as it is rank one. The sole non-zero singular value is � = 2||r||||w|| and
the corresponding left and right singular vectors are r

krk and w
kwk respectively. Let x2, . . . , xd be an

orthonormal set orthogonal to r and y2, . . . , yd be an orthonormal set orthogonal to w. Then

�2rwT =
h
� r

krk x2 . . . xd
i
⇥ diag(�, 0, . . . , 0)⇥

h
w

kwk y2 . . . yd
iT

forms an SVD for the gradient. Now using (2.65) from [7], we find that for ⌘ > 0, a step of length
⌘ in the direction rF is given by

U(⌘) = U +
(cos(�⌘)� 1)

kwk2 UwwT + sin(�⌘)
r

krk
wT

kwk

= U +

✓
sin(�⌘)

r

krk + (cos(�⌘)� 1)
p

kpk

◆
wT

kwk

where p := Uw, the predicted value of the projection of the vector v onto S.
This geodesic update rule is remarkable for a number of reasons. First of all, it consists only

of a rank-one modification of the current subspace basis U . Second, the term sin(�⌘)
krkkwk = sin(�⌘)

� is
on the order of ⌘ when �⌘ is small. That is, for small values of � and ⌘ this expression looks
like a normal step along the gradient direction �2rwT given by (3). From the Taylor series of the

cosine, we see that the second term is approximately equal to �2⌘2 pwT

kpkkwk . That is, this term serves
as a second order correction to keep the iterates on the Grassmannian. Surprisingly, this simple
additive term maintains the orthogonality, obviating the need for orthogonalizing the columns of U
after a gradient step. Below, we will also discuss how this iterate relates to more familiar iterative
algorithms from linear algebra which use full information.

The GROUSE algorithm simply follows geodesics along the gradients of F with a prescribed set
of step-sizes ⌘. The full computation is summarized in Algorithm 1. Our derivations have shown
that computing a gradient step only requires the solution of the least squares problem (1), the
computation of p and r, and then a rank one update to the previous subspace.

Each step of GROUSE can be performed e�ciently with standard linear algebra packages.
Computing the weights in Step 2 of Algorithm 1 requires solving a least squares problem in |⌦t|
equations and d unknowns. Such a system is solvable in at most O(|⌦t|d2) flops in the worst case.
Predicting the component of v that lies in the current subspace requires a matrix vector multiply
that can be computed in O(nd) flops. Computing the residual then only requires O(|⌦t|) flops, as
we will always have zeros in the entries indexed by the complement of ⌦t. Computing the norms of
r and p can be done in O(n) flops. The final subspace update consists of adding a rank one matrix
to an n ⇥ d matrix and can be computed in O(nd) flops. Totaling all of these computation times
gives an overall complexity estimate of O(nd+ |⌦t|d2) flops per subspace update.

4

The final equality follows because the residual vector r is orthogonal to all of the columns of U .
This can be verified from the definitions of r and w.

A gradient step along the geodesic with tangent vector �rF is given by Equation (2.65) in [7],
and is a function of the singular values and vectors of rF . It is trivial to compute the singular
value decomposition of rF , as it is rank one. The sole non-zero singular value is � = 2||r||||w|| and
the corresponding left and right singular vectors are r

krk and w
kwk respectively. Let x2, . . . , xd be an

orthonormal set orthogonal to r and y2, . . . , yd be an orthonormal set orthogonal to w. Then

�2rwT =
h
� r

krk x2 . . . xd
i
⇥ diag(�, 0, . . . , 0)⇥

h
w

kwk y2 . . . yd
iT

forms an SVD for the gradient. Now using (2.65) from [7], we find that for ⌘ > 0, a step of length
⌘ in the direction rF is given by

U(⌘) = U +
(cos(�⌘)� 1)

kwk2 UwwT + sin(�⌘)
r

krk
wT

kwk

= U +

✓
sin(�⌘)

r

krk + (cos(�⌘)� 1)
p

kpk

◆
wT

kwk

where p := Uw, the predicted value of the projection of the vector v onto S.
This geodesic update rule is remarkable for a number of reasons. First of all, it consists only

of a rank-one modification of the current subspace basis U . Second, the term sin(�⌘)
krkkwk = sin(�⌘)

� is
on the order of ⌘ when �⌘ is small. That is, for small values of � and ⌘ this expression looks
like a normal step along the gradient direction �2rwT given by (3). From the Taylor series of the

cosine, we see that the second term is approximately equal to �2⌘2 pwT

kpkkwk . That is, this term serves
as a second order correction to keep the iterates on the Grassmannian. Surprisingly, this simple
additive term maintains the orthogonality, obviating the need for orthogonalizing the columns of U
after a gradient step. Below, we will also discuss how this iterate relates to more familiar iterative
algorithms from linear algebra which use full information.

The GROUSE algorithm simply follows geodesics along the gradients of F with a prescribed set
of step-sizes ⌘. The full computation is summarized in Algorithm 1. Our derivations have shown
that computing a gradient step only requires the solution of the least squares problem (1), the
computation of p and r, and then a rank one update to the previous subspace.

Each step of GROUSE can be performed e�ciently with standard linear algebra packages.
Computing the weights in Step 2 of Algorithm 1 requires solving a least squares problem in |⌦t|
equations and d unknowns. Such a system is solvable in at most O(|⌦t|d2) flops in the worst case.
Predicting the component of v that lies in the current subspace requires a matrix vector multiply
that can be computed in O(nd) flops. Computing the residual then only requires O(|⌦t|) flops, as
we will always have zeros in the entries indexed by the complement of ⌦t. Computing the norms of
r and p can be done in O(n) flops. The final subspace update consists of adding a rank one matrix
to an n ⇥ d matrix and can be computed in O(nd) flops. Totaling all of these computation times
gives an overall complexity estimate of O(nd+ |⌦t|d2) flops per subspace update.

4

Incremental Subspace Alignment

k(St
0 + �St

0)M
t+1 � (St

1 + �St
1)k2F

M t+1 = M t + �M t

M t+1 = (St
0 + �St

0)
T (St

1 + �ST
1)

CO-DIP-DA
Correspondence optimized domain invariant projection

for domain adaptation (Mahadevan, 2016)

Combines minimization of kernelized maximum mean discrepancy
with CODA

Uses a convex combination of gradients from DIP and CODA

Comparison of DA Methods

Subspace Dimension
0 1 2 3 4 5 6 7 8 9 10

0

2

4

6

8

10

12

14

16

18

20
MSR: Average Rank

CosAdd
SA
ISA
MSA
CODA
CO-DIP-DA
GFK
OGFK
CosMUL
CosAdd-Resid
SA-Resid
MSA-Resid
CODA-Resid
GFK-Resid

Comparison of DA Methods

Subspace Dimension
1 2 3 4 5 6 7 8 9 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MSR: Average Hits

CosAdd
SA
ISA
MSA
OSA
OSA-DIP
GFK
OGFK
CosMUL
CosAdd-Resid
SA-Resid
MSA-Resid
OSA-Resid
GFK-Resid

Computer Vision: Comparison of DA Methods

Computer Vision Testbed: Comparison of DA Methods

Spine flow along manifolds

Figure 1. This image illustrates the SSF (Sampling Spline Flow)
versus the SGF (Sampling Geodesic Flow) [18, 19]. The SGF
deals with multiple sources by computing the respective mean and
then a geodesic curve is defined between the mean-source and the
target domain. The SSF uses smooth polynomial functions de-
scribed by splines on the manifold to interpolate between all the
sources and the target domain. The spline can be computed as an
approximation (the curve passes close to the intermediate points)
or exact spline [35]. The goal is to compute a curve able to extract
more meaningful information from the sources.

2. Problem Description

In this section we outline the procedure to perform
recognition under domain shift presented in [18, 19]. We
adapted the formulation to include multi-sources.

We assume m source domains (i = 0, ..,m� 1) and one
target domain (i = m). We denote the source data (labeled)
as Xi = {xij}Ni

j=1 2 <D (i = 0, ..,m� 1).
Let yij 2 {1, 2, 3, ...C} be the label of xij (C classes).

The data from the target (unlabeled) is denoted as Xi =

{xij}Ni
j=1 2 <D (i = m), corresponding to the same C

classes. The D⇥d subspaces Si are obtained using principal
component analysis on Xi (i = 0, ..,m), (d < D) [18, 19].

The d-dimensional subspaces in <D will be treated as
points in the Grassmann manifold Gd,D.

The intermediate subspaces are obtained by sampling
along the curve on the manifold, i.e. the geodesic curve
as in SGF [18, 19] or a spline curve SSF (our work).

Let S0 refer to a collection of m0 subspaces including the
m sources, the target and the intermediate subspaces. Let
x0
ij represent the dm0 ⇥ 1 vector formed by concatenating

the projection of xij onto all subspaces in S0 [18, 19].
A discriminative classifier is trained using as input

D(X 0, Y 0
), where X 0 is the dm0 ⇥ N labeled data matrix

(from sources) and Y 0 is the respective N ⇥ 1 label’s vec-
tor. The number of columns (N) of the matrix X 0 depend
on the number of sources used to train the classifier, i.e. the
curve and the respective set of subspaces S0 are obtained
using all the m source domains, but we can use as input to
the classifier only the data from some source domains.

The procedure to build the classifier is the same that was
used in SGF (please refer to [18, 19] for more technical de-
tails).

3. Rolling Maps on Riemannian Manifolds
The mathematical description of rolling motions of

smooth manifolds has attracted some attention since the un-
derstanding on how to perform such virtual motions allows
to estimate interpolating curves, solve optimal control and
other complex problems on manifolds [30, 37, 38, 8]. Un-
like other techniques for solving interpolation problems on
manifolds, the association of rolling motions with unwrap-
ping and wrapping technics, results in curves defined in ex-
plicit form.

Invoking the Whitney’s theorem [21]: for a proper
choice of n � k, a k-dimensional Riemannian manifold
can be isometrically embedded into some Euclidean space
<n. Assuming the embedding space, rolling motions can
be defined as rigid motions subject to specific constraints
i.e. holonomic (rolling conditions) and nonholonomic (no-
slip , no-twist conditions) [30, 37, 8].

Let M and ¯M be two oriented connected Riemannian
manifolds with equal dimension both embedded in the same
Euclidean space <n and let ¯M be the stationary manifold.
The rolling motion describes how M rolls over ¯M without
slip and twist [30, 37, 8].

The action of the special Euclidean group SEn = SOnn
<n on <n is used to describe the rigid motion [30, 8].
The semi-direct product of the special orthogonal group
(SOn, (·)) by the additive group (<n, (+)) is represented
by the symbol n.

It is considered that SOn � P ⇢ M, for any P 2 M,
i.e. SOn acts transitively on M. Let R 2 SOn be a rotation
and s 2 <n be a translation. Elements h 2 SEn are usually
defined by pairs h = (R, s).

The action of SEn on <n is represented as [30, 8] :

SEn⇥<n ! <n, (h,P) 7! h�P = R�P+s. (1)

Henceforth, the tangent space at P 2 M is denoted by
TPM and (TPM)

? represents the normal space (with re-
spect to the Euclidean metric) [30, 8]. A rolling motion is
characterized by a rolling map, which is a curve in SEn that
fulfills some requirements.

In this paper we consider the special case when ¯M is the
affine tangent space V ⇠

=

TP0M (at the point P0 2 M).
The k-dimensional V is also a subspace embedded in <n

[30, 8].
A rolling map, describing how M rolls upon ¯M, without

slip or twist, along a smooth rolling curve ↵ : [0, T] ! M,
is a smooth map (formal definition as given by Sharpe [37])

h : [0, T] ! SEn = SOnn<n t 7! h(t) = (R(t), s(t)),
(2)

(Caseiro et al., CVPR 2015)

How to model
multiple source

domains?

Rolling Riemannian Manifolds

Figure 1. Rolling Map :M rolls upon M̄ = V ⇠= TP0Mwithout
slip or twist, along a rolling curve ↵ : [0, T] !M [22].

ditions) and nonholonomic constraints (no-slip and no-twist
conditions). The most classical of all rolling motions is that
of the 2-dimensional sphere rolling over the tangent plane
at a point, along a curve, in which the nonholonomic con-
straints are satisfied by the absence of sliding and spinning
and the holonomic constraints compels the sphere to stay
tangent to the tangent plane during the movement.

Recalling the general definition of rolling, as in [21], this
rolling motion describes how two oriented connected Rie-
mannian manifolds M and ¯M, having the same dimension
and both embedded in the same Euclidean space <n, roll
over each other without slip and twist. Whitney’s theorem
[10], guarantees that a k-dimensional Riemannian manifold
can be isometrically embedded into some Euclidean space
<n for an appropriate choice of n � k.

We assume that ¯M is stationary and M rolls over ¯M.
This is a rigid motion and so can be described by the ac-
tion of the special Euclidean group SEn = SOn n <n on
<n. The symbol n represents the semi-direct product of the
special orthogonal group (SOn, (·)) by the additive group
(<n

, (+)). We also assume that SOn acts transitively on
M, that is, SOn � P ⇢ M, for any P 2 M. Elements
h 2 SEn are typically represented by pairs h = (R, s),
where R 2 SOn defines a rotation and s 2 <n defines a
translation. The action of SEn on <n is usually defined by:

SEn ⇥<n ! <n
, (h,P) 7! h �P = R �P + s. (1)

In what follows, if P is a point belonging to a manifold
M, TPM denotes de tangent space to the manifold M at
the point P and (TPM)

? denotes the normal space to M
(with respect to the Euclidean metric) at P. A rolling mo-
tion is described by a rolling map, which is a curve in SEn

satisfying several conditions. We give the formal definition
of a rolling map, as presented in [21].

Definition 1 A rolling map, describing how M rolls upon
¯M, without slip or twist, along a smooth rolling curve

↵ : [0, T] !M, is a smooth map

h : [0, T] ! SEn = SOn n <n

t 7! h(t) = (R(t), s(t))

, (2)

satisfying the holonomic (rolling conditions) and nonholo-
nomic constraints (no-slip and no-twist conditions):

• C1 - Rolling conditions

– h(t) � ↵(t) =: ↵dev(t) 2 ¯M
– Th(t)�↵(t)(h(t) �M) = T↵dev(t)

¯M

• C2 - No-slip conditions

– ˙

h(t) � h(t)

�1 � ↵dev(t) = 0

• C3 - No-twist conditions

– (Tangential part)
(

˙

h(t) � h(t)

�1
) � T↵dev(t)

¯M ⇢ (T↵dev(t)
¯M)

?

– (Normal part)
(

˙

h(t) � h(t)

�1
) � (T↵dev(t)

¯M)

? ⇢ (T↵dev(t)
¯M)

The curve ↵dev : [0, T] ! ¯M, defined in the first rolling
condition (C1), is called the development curve of ↵(t) on
¯M. The second rolling condition (C2) means that the tan-

gent spaces coincide at every point of contact.
In order to understand better the nonholonomic con-

straints, it is necessary to define the actions appearing in
the no-slip and no-twist conditions. This is well explained
in [16], in terms of the action (1) of SEn on <n, and also
included here for the sake of clarity. If x 2 <n is a point
and ⌘ 2 <n is a vector, i.e., there exists a smooth curve
y 2 (�", ") ! <n such that ẏ(0) = ⌘, then

ḣ(t) � x = d
d � (h(�) � x)

˛̨
�=t

;

“
ḣ(t) � h

�1(t)
”
� x = d

d � ((h(�) � h

�1(t)) � x)
˛̨
�=t

;

“
ḣ(t) � h

�1(t)
”
� ⌘ = d

d � ((ḣ(t) � h

�1(t)) � y(�))
˛̨
˛
�=0

.

(3)
In our work we are interested in the particular case when
¯M is the affine tangent space at a point P0 2M hereafter

denoted by V to simplify notations, and ↵(0) = P0. V is
also a k-dimensional subspace embedded in <n.

2.1. Algorithm

Let X1, ...,Xm 2M, be an input set of m samples used
to train a multi-class classifier. Recall that the idea is to
project all the data X1, ...,Xm from the manifold M onto
the affine tangent space V at a particular point P0 2 M
and then perform the classification in V . In order to ap-
ply the rolling map, the samples X1, ...,Xm in M must
be sorted (ordered) according to Algorithm 1, to obtain the
sorted samples P1, ...,Pm 2 M. P0 2 M is fixed a pri-
ori (at this point we do not care how P0 is selected), T is a
positive real number and 0 = t0 < t1 < ... < tm = T is a
partition of the time interval [0, T].

434343

Deep Transfer Learning

Lecture 1 - !
!
!

Fei-Fei Li & Andrej Karpathy!

1998

2012

LeCun et al.

Krizhevsky
et al.

of transistors # of pixels used in training

of transistors # of pixels used in training

107

1014

106

109

GPUs

5"Jan"15'33'

Large-scale Image
recognition

Lecture 1 - !
!
!

Fei-Fei Li & Andrej Karpathy! 5"Jan"15'22'

22K'categories'and'14M'images&

www.image.net.org'

Deng, Dong, Socher, Li, Li, & Fei-Fei, 2009

•  Animals'
•  Bird'
•  Fish'
•  Mammal'
•  Invertebrate'

'

•  Plants'
•  Tree'
•  Flower'

•  Food'
•  Materials'

•  Structures'
•  ArHfact'

•  Tools'
•  Appliances'
•  Structures'

•  Person'
•  Scenes'

•  Indoor'
•  Geological'FormaHons'

•  Sport'AcHviHes'
'

Deep&Learning&for&Computer&Vision&

•  Most&deep&learning&groups&
have&(un8l&recently)&largely&
focused&on&computer&vision&

•  Break&through&paper:&
ImageNet&Classifica8on&with&
Deep&Convolu8onal&Neural&
Networks&by&Krizhevsky&et&
al.&2012&

Richard&Socher& Lecture&1,&Slide&18&18&
Zeiler&and&Fergus&(2013)&

8 Olga Russakovsky* et al.

PASCAL ILSVRC

b
ir
d
s

· · ·

ca
ts

· · ·

d
og

s

· · ·

Fig. 2 The ILSVRC dataset contains many more fine-grained classes compared to the standard PASCAL VOC benchmark;
for example, instead of the PASCAL “dog” category there are 120 di↵erent breeds of dogs in ILSVRC2012-2014 classification
and single-object localization tasks.

are 1000 object classes and approximately 1.2 million
training images, 50 thousand validation images and 100
thousand test images. Table 2 (top) documents the size
of the dataset over the years of the challenge.

3.2 Single-object localization dataset construction

The single-object localization task evaluates the ability
of an algorithm to localize one instance of an object
category. It was introduced as a taster task in ILSVRC
2011, and became an o�cial part of ILSVRC in 2012.

The key challenge was developing a scalable crowd-
sourcing method for object bounding box annotation.
Our three-step self-verifying pipeline is described in Sec-
tion 3.2.1. Having the dataset collected, we perform
detailed analysis in Section 3.2.2 to ensure that the
dataset is su�ciently varied to be suitable for evalu-
ation of object localization algorithms.

Object classes and candidate images. The object classes
for single-object localization task are the same as the
object classes for image classification task described
above in Section 3.1. The training images for localiza-
tion task are a subset of the training images used for
image classification task, and the validation and test
images are the same between both tasks.

Bounding box annotation. Recall that for the image
classification task every image was annotated with one

object class label, corresponding to one object that is
present in an image. For the single-object localization
task, every validation and test image and a subset of the
training images are annotated with axis-aligned bound-
ing boxes around every instance of this object.

Every bounding box is required to be as small as
possible while including all visible parts of the object
instance. An alternate annotation procedure could be
to annotate the full (estimated) extent of the object:
e.g., if a person’s legs are occluded and only the torso
is visible, the bounding box could be drawn to include
the likely location of the legs. However, this alterna-
tive procedure is inherently ambiguous and ill-defined,
leading to disagreement among annotators and among
researchers (what is the true “most likely” extent of
this object?). We follow the standard protocol of only
annotating visible object parts (Russell et al., 2007; Ev-
eringham et al., 2010).5

3.2.1 Bounding box object annotation system

We summarize the crowdsourced bounding box anno-
tation system described in detail in (Su et al., 2012).
The goal is to build a system that is fully automated,

5 Some datasets such as PASCAL VOC (Everingham et al.,
2010) and LabelMe (Russell et al., 2007) are able to provide
more detailed annotations: for example, marking individual
object instances as being truncated. We chose not to provide
this level of detail in favor of annotating more images and
more object instances.

)HL�)HL�/L�	�$QGUHM�.DUSDWK\ /HFWXUH���� ��)HE�����)HL�)HL�/L�	�$QGUHM�.DUSDWK\ /HFWXUH���� ��)HE�������

7KH�ZHLJKWV�RI�WKLV�QHXURQ�YLVXDOL]HG

)HL�)HL�/L�	�$QGUHM�.DUSDWK\ /HFWXUH���� ��)HE�����)HL�)HL�/L�	�$QGUHM�.DUSDWK\ /HFWXUH���� ��)HE�������

9LVXDOL]LQJ�DUELWUDU\�QHXURQV�DORQJ�WKH�ZD\�WR�WKH�WRS���

9LVXDOL]LQJ�DQG�8QGHUVWDQGLQJ�&RQYROXWLRQDO�1HWZRUNV
=HLOHU�	�)HUJXV������

)HL�)HL�/L�	�$QGUHM�.DUSDWK\ /HFWXUH���� ��)HE�����)HL�)HL�/L�	�$QGUHM�.DUSDWK\ /HFWXUH���� ��)HE�������

9LVXDOL]LQJ�DUELWUDU\�QHXURQV�DORQJ�WKH�ZD\�WR�WKH�WRS���

9LVXDOL]LQJ�DQG�8QGHUVWDQGLQJ�&RQYROXWLRQDO�1HWZRUNV
=HLOHU�	�)HUJXV������)HL�)HL�/L�	�$QGUHM�.DUSDWK\ /HFWXUH���� ��)HE�����)HL�)HL�/L�	�$QGUHM�.DUSDWK\ /HFWXUH���� ��)HE�������

9LVXDOL]LQJ�DUELWUDU\�QHXURQV�DORQJ�WKH�ZD\�WR�WKH�WRS���

)HL�)HL�/L�	�$QGUHM�.DUSDWK\ /HFWXUH���� ��)HE�����)HL�)HL�/L�	�$QGUHM�.DUSDWK\ /HFWXUH���� ��)HE�������

9LVXDOL]LQJ�DUELWUDU\�QHXURQV�DORQJ�WKH�ZD\�WR�WKH�WRS���

9LVXDOL]LQJ�DQG�8QGHUVWDQGLQJ�&RQYROXWLRQDO�1HWZRUNV
=HLOHU�	�)HUJXV������

)HL�)HL�/L�	�$QGUHM�.DUSDWK\ /HFWXUH���� ��)HE�����)HL�)HL�/L�	�$QGUHM�.DUSDWK\ /HFWXUH���� ��)HE�������

9LVXDOL]LQJ�DUELWUDU\�QHXURQV�DORQJ�WKH�ZD\�WR�WKH�WRS���

9LVXDOL]LQJ�DQG�8QGHUVWDQGLQJ�&RQYROXWLRQDO�1HWZRUNV
=HLOHU�	�)HUJXV������

Lecture 1 - !
!
!

Fei-Fei Li & Andrej Karpathy!

ConvoluHon'
Pooling'
SoMmax'
Other'

GoogLeNet VGG MSRA SuperVision

[Krizhevsky NIPS 2012]

Year 2012 Year 2014 Year 2010

Dense'grid'descriptor:'
HOG,'LBP'

Coding:'local'coordinate,'
super"vector'

Pooling,'SPM'

Linear'SVM'

NEC-UIUC

[Lin CVPR 2011] [Szegedy arxiv 2014] [Simonyan arxiv 2014] [He arxiv 2014]

5"Jan"15'31'

Classifying Objects in Hubble Images
Ongoing project with Professor Daniela Calzetti, UMass Astronomy

Hubble Classification using Deep Learning

Fei-Fei Li & Andrej Karpathy Lecture 8 - 2 Feb 2015Fei-Fei Li & Andrej Karpathy Lecture 9 - 4 Feb 201531

Transfer Learning with CNNs

1. Train on
Imagenet

2. If small dataset: fix
all weights (treat CNN
as fixed feature
extractor), retrain only
the classifier

i.e. swap the Softmax
layer at the end

3. If you have medium sized
dataset, “finetune” instead:
use the old weights as
initialization, train the full
network or only some of the
higher layers

retrain bigger portion of the
network, or even all of it.

Slide courtesy of Fei Fei Li and Andrej Karpathy

Fei-Fei Li & Andrej Karpathy Lecture 8 - 2 Feb 2015Fei-Fei Li & Andrej Karpathy Lecture 9 - 4 Feb 201533

CNN Features off-the-shelf: an Astounding Baseline for Recognition
[Razavian et al, 2014]

Slide courtesy of Fei Fei Li and Andrej Karpathy

Slide courtesy of Fei Fei Li and Andrej Karpathy

Fei-Fei Li & Andrej Karpathy Lecture 8 - 2 Feb 2015Fei-Fei Li & Andrej Karpathy Lecture 9 - 4 Feb 201536

How transferable are features in deep neural networks?
[Yosinski et al., 2014]

Split ImageNet
classes in half to
two sets: A/B.

Train on A, fix the
first n layers, reinit
layers n+, train on
B, test on B val.

=> performance
degrades because
representation
higher up is too A-
specific

Fei-Fei Li & Andrej Karpathy Lecture 8 - 2 Feb 2015Fei-Fei Li & Andrej Karpathy Lecture 9 - 4 Feb 201537

How transferable are features in deep neural networks?
[Yosinski et al., 2014]

Split ImageNet
classes in half to
two sets: A/B.

Train on A, reinit
layers n+, train on
B, test on B val.

=> the information
from once seeing
data from A seems
to linger, gives
better generalization

Slide courtesy of Fei Fei Li and Andrej Karpathy

Fei-Fei Li & Andrej Karpathy Lecture 8 - 2 Feb 2015Fei-Fei Li & Andrej Karpathy Lecture 9 - 4 Feb 201542

more generic

more specific

very similar
dataset

very different
dataset

very little data Use Linear
Classifier on top
layer

You’re in
trouble… Try
linear classifier
from different
stages

quite a lot of
data

Finetune a few
layers

Finetune a
larger number of
layers

Slide courtesy of Fei Fei Li and Andrej Karpathy

Stacked auto encoders
❖ Auto encoders are deep learning networks that learn to

reproduce their inputs

❖ The idea is to find a low-dimensional compression of the
input

❖ They can be applied to domain adaptation and transfer
learning by giving them unlabeled source and target
examples as input

❖ Denoising stacked auto encoders are given noisy inputs
and required to reproduce the noiseless version

Linear Denoising AutoEncoder

corrupted inputuncorrupted input

mSDA for Domain Adaptation

ically of similar sentiment (e.g. “good” or “love”). Hence,
the source-trained classifier can assign weights even to fea-
tures that never occur in its original domain representation,
which are “re-constructed” by the SDA.

Although SDAs generate excellent features for domain
adaptation, they have several drawbacks: 1. Training with
(stochastic) gradient descent is slow and hard to paral-
lelize (although a dense-matrix GPU implementation ex-
ists (Bergstra et al., 2010) and an implementation based
on reconstruction sampling exists (Dauphin Y., 2011) for
sparse inputs); 2. There are several hyper-parameters
(learning rate, number of epochs, noise ratio, mini-batch
size and network structure), which need to be set by cross
validation — this is particularly expensive as each individ-
ual run can take several hours; 3. The optimization is in-
herently non-convex and dependent on its initialization.

3. SDA with Marginalized Corruption
In this section we introduce a modified version of SDA,
which preserves its strong feature learning capabilities, and
alleviates the concerns mentioned above through speedups
of several orders of magnitudes, fewer meta-parameters,
faster model-selection and layer-wise convexity.

3.1. Single-layer Denoiser

The basic building block of our framework is a one-layer
denoising autoencoder. We take the inputs x1, . . . ,xn from
D=DS[DT and corrupt them by random feature removal
— each feature is set to 0 with probability p�0. Let us
denote the corrupted version of xi as x̃i. As opposed to
the two-level encoder and decoder in SDA, we reconstruct
the corrupted inputs with a single mapping W : Rd!Rd,
that minimizes the squared reconstruction loss

1

2n

nX

i=1

kxi �Wx̃ik2. (1)

To simplify notation, we assume that a constant feature is
added to the input, xi = [xi; 1], and an appropriate bias
is incorporated within the mapping W = [W,b]. The
constant feature is never corrupted.

The solution to (1) depends on which features of each input
are randomly corrupted. To lower the variance, we perform
multiple passes over the training set, each time with dif-
ferent corruption. We solve for the W that minimizes the
overall squared loss

Lsq(W) =
1

2mn

mX

j=1

nX

i=1

kxi �Wx̃i,jk2, (2)

where x̃i,j represents the jth corrupted version of the orig-
inal input xi.

Algorithm 1 mDA in MATLABTM.
function [W,h]=mDA(X,p);

X=[X;ones(1,size(X,2))];

d=size(X,1);

q=[ones(d-1,1).

*

(1-p); 1];

S=X

*

X’;

Q=S.

*

(q

*

q’);

Q(1:d+1:end)=q.

*

diag(S);

P=S.

*

repmat(q’,d,1);

W=P(1:end-1,:)/(Q+1e-5

*

eye(d));

h=tanh(W

*

X);

Let us define the design matrix X = [x1, . . . ,xn] 2Rd⇥n

and its m-times repeated version as X= [X, . . . ,X]. Fur-
ther, we denote the corrupted version of X as X̃. With this
notation, the loss in eq. (1) reduces to

Lsq(W)=
1

2nm
tr
⇣

X�W

e
X

⌘> ⇣
X�W

e
X

⌘�
. (3)

The solution to (3) can be expressed as the well-known
closed-form solution for ordinary least squares (Bishop,
2006):

W = PQ

�1 with Q = e
X

e
X

> and P = X

e
X

>. (4)

(In practice this can be computed as a system of linear
equations, without the costly matrix inversion.)

3.2. Marginalized Denoising Autoencoder

The larger m is, the more corruptions we average over. Ide-
ally we would like m ! 1, effectively using infinitely
many copies of noisy data to compute the denoising trans-
formation W.

By the weak law of large numbers, the matrices P and Q,
as defined in (3), converge to their expected values as m
becomes very large. If we are interested in the limit case,
where m!1, we can derive the expectations of Q and P,
and express the corresponding mapping W as

W = E[P]E[Q]�1. (5)

In the remainder of this section, we compute the expecta-
tions of these two matrices. For now, let us focus on

E[Q] =
nX

i=1

E
⇥
x̃ix̃

>
i

⇤
. (6)

An off-diagonal entry in the matrix x̃ix̃
>
i is uncorrupted if

the two features ↵ and � both “survived” the corruption,
which happens with probability (1 � p)2. For the diago-
nal entries, this holds with probability 1 � p. Let us de-
fine a vector q = [1 � p, . . . , 1 � p, 1]> 2 Rd+1, where
q↵ represents the probability of a feature ↵ “surviving” the
corruption. As the constant feature is never corrupted, we

mSDA for Domain Adaptation

ically of similar sentiment (e.g. “good” or “love”). Hence,
the source-trained classifier can assign weights even to fea-
tures that never occur in its original domain representation,
which are “re-constructed” by the SDA.

Although SDAs generate excellent features for domain
adaptation, they have several drawbacks: 1. Training with
(stochastic) gradient descent is slow and hard to paral-
lelize (although a dense-matrix GPU implementation ex-
ists (Bergstra et al., 2010) and an implementation based
on reconstruction sampling exists (Dauphin Y., 2011) for
sparse inputs); 2. There are several hyper-parameters
(learning rate, number of epochs, noise ratio, mini-batch
size and network structure), which need to be set by cross
validation — this is particularly expensive as each individ-
ual run can take several hours; 3. The optimization is in-
herently non-convex and dependent on its initialization.

3. SDA with Marginalized Corruption
In this section we introduce a modified version of SDA,
which preserves its strong feature learning capabilities, and
alleviates the concerns mentioned above through speedups
of several orders of magnitudes, fewer meta-parameters,
faster model-selection and layer-wise convexity.

3.1. Single-layer Denoiser

The basic building block of our framework is a one-layer
denoising autoencoder. We take the inputs x1, . . . ,xn from
D=DS[DT and corrupt them by random feature removal
— each feature is set to 0 with probability p�0. Let us
denote the corrupted version of xi as x̃i. As opposed to
the two-level encoder and decoder in SDA, we reconstruct
the corrupted inputs with a single mapping W : Rd!Rd,
that minimizes the squared reconstruction loss

1

2n

nX

i=1

kxi �Wx̃ik2. (1)

To simplify notation, we assume that a constant feature is
added to the input, xi = [xi; 1], and an appropriate bias
is incorporated within the mapping W = [W,b]. The
constant feature is never corrupted.

The solution to (1) depends on which features of each input
are randomly corrupted. To lower the variance, we perform
multiple passes over the training set, each time with dif-
ferent corruption. We solve for the W that minimizes the
overall squared loss

Lsq(W) =
1

2mn

mX

j=1

nX

i=1

kxi �Wx̃i,jk2, (2)

where x̃i,j represents the jth corrupted version of the orig-
inal input xi.

Algorithm 1 mDA in MATLABTM.
function [W,h]=mDA(X,p);

X=[X;ones(1,size(X,2))];

d=size(X,1);

q=[ones(d-1,1).

*

(1-p); 1];

S=X

*

X’;

Q=S.

*

(q

*

q’);

Q(1:d+1:end)=q.

*

diag(S);

P=S.

*

repmat(q’,d,1);

W=P(1:end-1,:)/(Q+1e-5

*

eye(d));

h=tanh(W

*

X);

Let us define the design matrix X = [x1, . . . ,xn] 2Rd⇥n

and its m-times repeated version as X= [X, . . . ,X]. Fur-
ther, we denote the corrupted version of X as X̃. With this
notation, the loss in eq. (1) reduces to

Lsq(W)=
1

2nm
tr
⇣

X�W

e
X

⌘> ⇣
X�W

e
X

⌘�
. (3)

The solution to (3) can be expressed as the well-known
closed-form solution for ordinary least squares (Bishop,
2006):

W = PQ

�1 with Q = e
X

e
X

> and P = X

e
X

>. (4)

(In practice this can be computed as a system of linear
equations, without the costly matrix inversion.)

3.2. Marginalized Denoising Autoencoder

The larger m is, the more corruptions we average over. Ide-
ally we would like m ! 1, effectively using infinitely
many copies of noisy data to compute the denoising trans-
formation W.

By the weak law of large numbers, the matrices P and Q,
as defined in (3), converge to their expected values as m
becomes very large. If we are interested in the limit case,
where m!1, we can derive the expectations of Q and P,
and express the corresponding mapping W as

W = E[P]E[Q]�1. (5)

In the remainder of this section, we compute the expecta-
tions of these two matrices. For now, let us focus on

E[Q] =
nX

i=1

E
⇥
x̃ix̃

>
i

⇤
. (6)

An off-diagonal entry in the matrix x̃ix̃
>
i is uncorrupted if

the two features ↵ and � both “survived” the corruption,
which happens with probability (1 � p)2. For the diago-
nal entries, this holds with probability 1 � p. Let us de-
fine a vector q = [1 � p, . . . , 1 � p, 1]> 2 Rd+1, where
q↵ represents the probability of a feature ↵ “surviving” the
corruption. As the constant feature is never corrupted, we

mSDA for Domain Adaptation

ically of similar sentiment (e.g. “good” or “love”). Hence,
the source-trained classifier can assign weights even to fea-
tures that never occur in its original domain representation,
which are “re-constructed” by the SDA.

Although SDAs generate excellent features for domain
adaptation, they have several drawbacks: 1. Training with
(stochastic) gradient descent is slow and hard to paral-
lelize (although a dense-matrix GPU implementation ex-
ists (Bergstra et al., 2010) and an implementation based
on reconstruction sampling exists (Dauphin Y., 2011) for
sparse inputs); 2. There are several hyper-parameters
(learning rate, number of epochs, noise ratio, mini-batch
size and network structure), which need to be set by cross
validation — this is particularly expensive as each individ-
ual run can take several hours; 3. The optimization is in-
herently non-convex and dependent on its initialization.

3. SDA with Marginalized Corruption
In this section we introduce a modified version of SDA,
which preserves its strong feature learning capabilities, and
alleviates the concerns mentioned above through speedups
of several orders of magnitudes, fewer meta-parameters,
faster model-selection and layer-wise convexity.

3.1. Single-layer Denoiser

The basic building block of our framework is a one-layer
denoising autoencoder. We take the inputs x1, . . . ,xn from
D=DS[DT and corrupt them by random feature removal
— each feature is set to 0 with probability p�0. Let us
denote the corrupted version of xi as x̃i. As opposed to
the two-level encoder and decoder in SDA, we reconstruct
the corrupted inputs with a single mapping W : Rd!Rd,
that minimizes the squared reconstruction loss

1

2n

nX

i=1

kxi �Wx̃ik2. (1)

To simplify notation, we assume that a constant feature is
added to the input, xi = [xi; 1], and an appropriate bias
is incorporated within the mapping W = [W,b]. The
constant feature is never corrupted.

The solution to (1) depends on which features of each input
are randomly corrupted. To lower the variance, we perform
multiple passes over the training set, each time with dif-
ferent corruption. We solve for the W that minimizes the
overall squared loss

Lsq(W) =
1

2mn

mX

j=1

nX

i=1

kxi �Wx̃i,jk2, (2)

where x̃i,j represents the jth corrupted version of the orig-
inal input xi.

Algorithm 1 mDA in MATLABTM.
function [W,h]=mDA(X,p);

X=[X;ones(1,size(X,2))];

d=size(X,1);

q=[ones(d-1,1).

*

(1-p); 1];

S=X

*

X’;

Q=S.

*

(q

*

q’);

Q(1:d+1:end)=q.

*

diag(S);

P=S.

*

repmat(q’,d,1);

W=P(1:end-1,:)/(Q+1e-5

*

eye(d));

h=tanh(W

*

X);

Let us define the design matrix X = [x1, . . . ,xn] 2Rd⇥n

and its m-times repeated version as X= [X, . . . ,X]. Fur-
ther, we denote the corrupted version of X as X̃. With this
notation, the loss in eq. (1) reduces to

Lsq(W)=
1

2nm
tr
⇣

X�W

e
X

⌘> ⇣
X�W

e
X

⌘�
. (3)

The solution to (3) can be expressed as the well-known
closed-form solution for ordinary least squares (Bishop,
2006):

W = PQ

�1 with Q = e
X

e
X

> and P = X

e
X

>. (4)

(In practice this can be computed as a system of linear
equations, without the costly matrix inversion.)

3.2. Marginalized Denoising Autoencoder

The larger m is, the more corruptions we average over. Ide-
ally we would like m ! 1, effectively using infinitely
many copies of noisy data to compute the denoising trans-
formation W.

By the weak law of large numbers, the matrices P and Q,
as defined in (3), converge to their expected values as m
becomes very large. If we are interested in the limit case,
where m!1, we can derive the expectations of Q and P,
and express the corresponding mapping W as

W = E[P]E[Q]�1. (5)

In the remainder of this section, we compute the expecta-
tions of these two matrices. For now, let us focus on

E[Q] =
nX

i=1

E
⇥
x̃ix̃

>
i

⇤
. (6)

An off-diagonal entry in the matrix x̃ix̃
>
i is uncorrupted if

the two features ↵ and � both “survived” the corruption,
which happens with probability (1 � p)2. For the diago-
nal entries, this holds with probability 1 � p. Let us de-
fine a vector q = [1 � p, . . . , 1 � p, 1]> 2 Rd+1, where
q↵ represents the probability of a feature ↵ “surviving” the
corruption. As the constant feature is never corrupted, we

(Chen et al., ICML 2012)

m copies of input X

mSDA for Domain Adaptation

ically of similar sentiment (e.g. “good” or “love”). Hence,
the source-trained classifier can assign weights even to fea-
tures that never occur in its original domain representation,
which are “re-constructed” by the SDA.

Although SDAs generate excellent features for domain
adaptation, they have several drawbacks: 1. Training with
(stochastic) gradient descent is slow and hard to paral-
lelize (although a dense-matrix GPU implementation ex-
ists (Bergstra et al., 2010) and an implementation based
on reconstruction sampling exists (Dauphin Y., 2011) for
sparse inputs); 2. There are several hyper-parameters
(learning rate, number of epochs, noise ratio, mini-batch
size and network structure), which need to be set by cross
validation — this is particularly expensive as each individ-
ual run can take several hours; 3. The optimization is in-
herently non-convex and dependent on its initialization.

3. SDA with Marginalized Corruption
In this section we introduce a modified version of SDA,
which preserves its strong feature learning capabilities, and
alleviates the concerns mentioned above through speedups
of several orders of magnitudes, fewer meta-parameters,
faster model-selection and layer-wise convexity.

3.1. Single-layer Denoiser

The basic building block of our framework is a one-layer
denoising autoencoder. We take the inputs x1, . . . ,xn from
D=DS[DT and corrupt them by random feature removal
— each feature is set to 0 with probability p�0. Let us
denote the corrupted version of xi as x̃i. As opposed to
the two-level encoder and decoder in SDA, we reconstruct
the corrupted inputs with a single mapping W : Rd!Rd,
that minimizes the squared reconstruction loss

1

2n

nX

i=1

kxi �Wx̃ik2. (1)

To simplify notation, we assume that a constant feature is
added to the input, xi = [xi; 1], and an appropriate bias
is incorporated within the mapping W = [W,b]. The
constant feature is never corrupted.

The solution to (1) depends on which features of each input
are randomly corrupted. To lower the variance, we perform
multiple passes over the training set, each time with dif-
ferent corruption. We solve for the W that minimizes the
overall squared loss

Lsq(W) =
1

2mn

mX

j=1

nX

i=1

kxi �Wx̃i,jk2, (2)

where x̃i,j represents the jth corrupted version of the orig-
inal input xi.

Algorithm 1 mDA in MATLABTM.
function [W,h]=mDA(X,p);

X=[X;ones(1,size(X,2))];

d=size(X,1);

q=[ones(d-1,1).

*

(1-p); 1];

S=X

*

X’;

Q=S.

*

(q

*

q’);

Q(1:d+1:end)=q.

*

diag(S);

P=S.

*

repmat(q’,d,1);

W=P(1:end-1,:)/(Q+1e-5

*

eye(d));

h=tanh(W

*

X);

Let us define the design matrix X = [x1, . . . ,xn] 2Rd⇥n

and its m-times repeated version as X= [X, . . . ,X]. Fur-
ther, we denote the corrupted version of X as X̃. With this
notation, the loss in eq. (1) reduces to

Lsq(W)=
1

2nm
tr
⇣

X�W

e
X

⌘> ⇣
X�W

e
X

⌘�
. (3)

The solution to (3) can be expressed as the well-known
closed-form solution for ordinary least squares (Bishop,
2006):

W = PQ

�1 with Q = e
X

e
X

> and P = X

e
X

>. (4)

(In practice this can be computed as a system of linear
equations, without the costly matrix inversion.)

3.2. Marginalized Denoising Autoencoder

The larger m is, the more corruptions we average over. Ide-
ally we would like m ! 1, effectively using infinitely
many copies of noisy data to compute the denoising trans-
formation W.

By the weak law of large numbers, the matrices P and Q,
as defined in (3), converge to their expected values as m
becomes very large. If we are interested in the limit case,
where m!1, we can derive the expectations of Q and P,
and express the corresponding mapping W as

W = E[P]E[Q]�1. (5)

In the remainder of this section, we compute the expecta-
tions of these two matrices. For now, let us focus on

E[Q] =
nX

i=1

E
⇥
x̃ix̃

>
i

⇤
. (6)

An off-diagonal entry in the matrix x̃ix̃
>
i is uncorrupted if

the two features ↵ and � both “survived” the corruption,
which happens with probability (1 � p)2. For the diago-
nal entries, this holds with probability 1 � p. Let us de-
fine a vector q = [1 � p, . . . , 1 � p, 1]> 2 Rd+1, where
q↵ represents the probability of a feature ↵ “surviving” the
corruption. As the constant feature is never corrupted, we

Marginalized Stacked DA

mSDA for Domain Adaptation

ically of similar sentiment (e.g. “good” or “love”). Hence,
the source-trained classifier can assign weights even to fea-
tures that never occur in its original domain representation,
which are “re-constructed” by the SDA.

Although SDAs generate excellent features for domain
adaptation, they have several drawbacks: 1. Training with
(stochastic) gradient descent is slow and hard to paral-
lelize (although a dense-matrix GPU implementation ex-
ists (Bergstra et al., 2010) and an implementation based
on reconstruction sampling exists (Dauphin Y., 2011) for
sparse inputs); 2. There are several hyper-parameters
(learning rate, number of epochs, noise ratio, mini-batch
size and network structure), which need to be set by cross
validation — this is particularly expensive as each individ-
ual run can take several hours; 3. The optimization is in-
herently non-convex and dependent on its initialization.

3. SDA with Marginalized Corruption
In this section we introduce a modified version of SDA,
which preserves its strong feature learning capabilities, and
alleviates the concerns mentioned above through speedups
of several orders of magnitudes, fewer meta-parameters,
faster model-selection and layer-wise convexity.

3.1. Single-layer Denoiser

The basic building block of our framework is a one-layer
denoising autoencoder. We take the inputs x1, . . . ,xn from
D=DS[DT and corrupt them by random feature removal
— each feature is set to 0 with probability p�0. Let us
denote the corrupted version of xi as x̃i. As opposed to
the two-level encoder and decoder in SDA, we reconstruct
the corrupted inputs with a single mapping W : Rd!Rd,
that minimizes the squared reconstruction loss

1

2n

nX

i=1

kxi �Wx̃ik2. (1)

To simplify notation, we assume that a constant feature is
added to the input, xi = [xi; 1], and an appropriate bias
is incorporated within the mapping W = [W,b]. The
constant feature is never corrupted.

The solution to (1) depends on which features of each input
are randomly corrupted. To lower the variance, we perform
multiple passes over the training set, each time with dif-
ferent corruption. We solve for the W that minimizes the
overall squared loss

Lsq(W) =
1

2mn

mX

j=1

nX

i=1

kxi �Wx̃i,jk2, (2)

where x̃i,j represents the jth corrupted version of the orig-
inal input xi.

Algorithm 1 mDA in MATLABTM.
function [W,h]=mDA(X,p);

X=[X;ones(1,size(X,2))];

d=size(X,1);

q=[ones(d-1,1).

*

(1-p); 1];

S=X

*

X’;

Q=S.

*

(q

*

q’);

Q(1:d+1:end)=q.

*

diag(S);

P=S.

*

repmat(q’,d,1);

W=P(1:end-1,:)/(Q+1e-5

*

eye(d));

h=tanh(W

*

X);

Let us define the design matrix X = [x1, . . . ,xn] 2Rd⇥n

and its m-times repeated version as X= [X, . . . ,X]. Fur-
ther, we denote the corrupted version of X as X̃. With this
notation, the loss in eq. (1) reduces to

Lsq(W)=
1

2nm
tr
⇣

X�W

e
X

⌘> ⇣
X�W

e
X

⌘�
. (3)

The solution to (3) can be expressed as the well-known
closed-form solution for ordinary least squares (Bishop,
2006):

W = PQ

�1 with Q = e
X

e
X

> and P = X

e
X

>. (4)

(In practice this can be computed as a system of linear
equations, without the costly matrix inversion.)

3.2. Marginalized Denoising Autoencoder

The larger m is, the more corruptions we average over. Ide-
ally we would like m ! 1, effectively using infinitely
many copies of noisy data to compute the denoising trans-
formation W.

By the weak law of large numbers, the matrices P and Q,
as defined in (3), converge to their expected values as m
becomes very large. If we are interested in the limit case,
where m!1, we can derive the expectations of Q and P,
and express the corresponding mapping W as

W = E[P]E[Q]�1. (5)

In the remainder of this section, we compute the expecta-
tions of these two matrices. For now, let us focus on

E[Q] =
nX

i=1

E
⇥
x̃ix̃

>
i

⇤
. (6)

An off-diagonal entry in the matrix x̃ix̃
>
i is uncorrupted if

the two features ↵ and � both “survived” the corruption,
which happens with probability (1 � p)2. For the diago-
nal entries, this holds with probability 1 � p. Let us de-
fine a vector q = [1 � p, . . . , 1 � p, 1]> 2 Rd+1, where
q↵ represents the probability of a feature ↵ “surviving” the
corruption. As the constant feature is never corrupted, we

mSDA for Domain Adaptation

ically of similar sentiment (e.g. “good” or “love”). Hence,
the source-trained classifier can assign weights even to fea-
tures that never occur in its original domain representation,
which are “re-constructed” by the SDA.

Although SDAs generate excellent features for domain
adaptation, they have several drawbacks: 1. Training with
(stochastic) gradient descent is slow and hard to paral-
lelize (although a dense-matrix GPU implementation ex-
ists (Bergstra et al., 2010) and an implementation based
on reconstruction sampling exists (Dauphin Y., 2011) for
sparse inputs); 2. There are several hyper-parameters
(learning rate, number of epochs, noise ratio, mini-batch
size and network structure), which need to be set by cross
validation — this is particularly expensive as each individ-
ual run can take several hours; 3. The optimization is in-
herently non-convex and dependent on its initialization.

3. SDA with Marginalized Corruption
In this section we introduce a modified version of SDA,
which preserves its strong feature learning capabilities, and
alleviates the concerns mentioned above through speedups
of several orders of magnitudes, fewer meta-parameters,
faster model-selection and layer-wise convexity.

3.1. Single-layer Denoiser

The basic building block of our framework is a one-layer
denoising autoencoder. We take the inputs x1, . . . ,xn from
D=DS[DT and corrupt them by random feature removal
— each feature is set to 0 with probability p�0. Let us
denote the corrupted version of xi as x̃i. As opposed to
the two-level encoder and decoder in SDA, we reconstruct
the corrupted inputs with a single mapping W : Rd!Rd,
that minimizes the squared reconstruction loss

1

2n

nX

i=1

kxi �Wx̃ik2. (1)

To simplify notation, we assume that a constant feature is
added to the input, xi = [xi; 1], and an appropriate bias
is incorporated within the mapping W = [W,b]. The
constant feature is never corrupted.

The solution to (1) depends on which features of each input
are randomly corrupted. To lower the variance, we perform
multiple passes over the training set, each time with dif-
ferent corruption. We solve for the W that minimizes the
overall squared loss

Lsq(W) =
1

2mn

mX

j=1

nX

i=1

kxi �Wx̃i,jk2, (2)

where x̃i,j represents the jth corrupted version of the orig-
inal input xi.

Algorithm 1 mDA in MATLABTM.
function [W,h]=mDA(X,p);

X=[X;ones(1,size(X,2))];

d=size(X,1);

q=[ones(d-1,1).

*

(1-p); 1];

S=X

*

X’;

Q=S.

*

(q

*

q’);

Q(1:d+1:end)=q.

*

diag(S);

P=S.

*

repmat(q’,d,1);

W=P(1:end-1,:)/(Q+1e-5

*

eye(d));

h=tanh(W

*

X);

Let us define the design matrix X = [x1, . . . ,xn] 2Rd⇥n

and its m-times repeated version as X= [X, . . . ,X]. Fur-
ther, we denote the corrupted version of X as X̃. With this
notation, the loss in eq. (1) reduces to

Lsq(W)=
1

2nm
tr
⇣

X�W

e
X

⌘> ⇣
X�W

e
X

⌘�
. (3)

The solution to (3) can be expressed as the well-known
closed-form solution for ordinary least squares (Bishop,
2006):

W = PQ

�1 with Q = e
X

e
X

> and P = X

e
X

>. (4)

(In practice this can be computed as a system of linear
equations, without the costly matrix inversion.)

3.2. Marginalized Denoising Autoencoder

The larger m is, the more corruptions we average over. Ide-
ally we would like m ! 1, effectively using infinitely
many copies of noisy data to compute the denoising trans-
formation W.

By the weak law of large numbers, the matrices P and Q,
as defined in (3), converge to their expected values as m
becomes very large. If we are interested in the limit case,
where m!1, we can derive the expectations of Q and P,
and express the corresponding mapping W as

W = E[P]E[Q]�1. (5)

In the remainder of this section, we compute the expecta-
tions of these two matrices. For now, let us focus on

E[Q] =
nX

i=1

E
⇥
x̃ix̃

>
i

⇤
. (6)

An off-diagonal entry in the matrix x̃ix̃
>
i is uncorrupted if

the two features ↵ and � both “survived” the corruption,
which happens with probability (1 � p)2. For the diago-
nal entries, this holds with probability 1 � p. Let us de-
fine a vector q = [1 � p, . . . , 1 � p, 1]> 2 Rd+1, where
q↵ represents the probability of a feature ↵ “surviving” the
corruption. As the constant feature is never corrupted, we

mSDA for Domain Adaptation

have qd+1=1. If we further define the scatter matrix of the
original uncorrupted input as S = XX

>, we can express
the expectation of the matrix Q as

E[Q]↵,� =

⇢
S↵�q↵q� if ↵ 6= �
S↵�q↵ if ↵ = �

. (7)

Similarly, we obtain the expectation of P in closed-form as
E[P]↵� = S↵�q� .

With the help of these expected matrices, we can com-
pute the reconstructive mapping W directly in closed-form
without ever explicitly constructing a single corrupted in-
put x̃i. We refer to this algorithm as marginalized De-
noising Autoencoder (mDA). Algorithm 1 shows a 10-line
MATLABTM implementation. The mDA has several ad-
vantages over traditional denoisers: 1. It requires only
a single sweep through the data to compute the matrices
E[Q], E[P]; 2. Training is convex and a globally optimal
solution is guaranteed; 3. The optimization is performed in
non-iterative closed-form.

3.3. Nonlinear feature generation and stacking

Arguably two of the key contributors to the success of the
SDA are its nonlinearity and the stacking of multiple lay-
ers of denoising autoencoders to create a “deep” learning
architecture. Our framework has the same capabilities.

In SDAs, the nonlinearity is injected through the nonlin-
ear encoder function h(·), which is learned together with
the reconstruction weights W. Such an approach makes
the training procedure highly non-convex and requires it-
erative procedures to learn the model parameters. To pre-
serve the closed-form solution from the linear mapping in
section 3.2 we insert nonlinearity into our learned repre-
sentation after the weights W are computed. A nonlinear
squashing-function is applied on the output of each mDA.
Several choices are possible, including sigmoid, hyperbolic
tangent, tanh(), or the rectifier function (Nair & Hinton,
2010). Throughout this work, we use the tanh() function.

Inspired by the layer-wise stacking of SDA, we stack sev-
eral mDA layers by feeding the output of the (t�1)th mDA
(after the squashing function) as the input into the tth mDA.
Let us denote the output of the tth mDA as ht and the orig-
inal input as h

0 = x. The training is performed greedily
layer by layer: each map W

t is learned (in closed-form)
to reconstruct the previous mDA output ht�1 from all pos-
sible corruptions and the output of the tth layer becomes
h

t = tanh(Wt
h

t�1). In our experiments, we found that
even without the nonlinear squashing function, stacking
still improves the performance. However, the nonlinearity
improves over the linear stacking significantly. We refer to
the stacked denoising algorithm as marginalized Stacked
Denoising Autoencoder (mSDA). Algorithm 2 shows a 8-
lines MATLABTM implementation of mSDA.

Algorithm 2 mSDA in MATLABTM.
function [Ws,hs]=mSDA(X,p,l);

[d,n]=size(X);

Ws=zeros(d,d+1,l);

hs=zeros(d,n,l+1);

hs(:,:,1)=X;

for t=1:l

[Ws(:,:,t), hs(:,:,t+1)]=mDA(hs(:,:,t),p);

end;

3.4. mSDA for Domain Adaptation

We apply mSDA to domain adaptation by first learning fea-
tures in an unsupervised fashion on the union of the source
and target data sets. One observation reported in (Glo-
rot et al., 2011) is that if multiple domains are available,
sharing the unsupervised pre-training of SDA across all do-
mains is beneficial compared to pre-training on the source
and target only. We observe a similar trend with our ap-
proach. The results reported in section 5 are based on fea-
tures learned on data from all available domains. Once a
mSDA is trained, the output of all layers, after squashing,
tanh(Wt

h

t�1), combined with the original features h

0,
are concatenated and form the new representation. All in-
puts are transformed into the new feature space. A linear
Support Vector Machine (SVM) (Chang & Lin, 2011) is
then trained on the transformed source inputs and tested
on the target domain. There are two meta-parameters in
mSDA: the corruption probability p and the number of lay-
ers l. In our experiments, both are set with 5-fold cross
validation on the labeled data from the source domain. As
the mSDA training is almost instantaneous, this grid search
is almost entirely dominated by the SVM training time.

4. Extension for High Dimensional Data
Many data sets (e.g. bag-of-words text documents) are nat-
urally high dimensional. As the dimensionality increases,
hill-climbing approaches used in SDAs can become pro-
hibitively expensive. In practice, a work-around is to trun-
cate the input data to the r⌧d most common features (Glo-
rot et al., 2011). Unfortunately, this prevents SDAs from
utilizing important information found in rarer features. (As
we show in section 5, including these rarer features leads
to significantly better results.) High dimensionality also
poses a challenge to mSDA, as the system of linear equa-
tions in (5) of complexity O(d3) becomes too costly. In
this section we describe how to approximate this calcula-
tion with a simple division into d

r sub-problems of O(r3).

We combine the concept of “pivot features” from Blitzer
et al. (2006) and the use of most-frequent features
from Glorot et al. (2011). Instead of learning a single map-
ping W 2 Rd⇥(d+1) to reconstruct all corrupted features,
we learn multiple mappings but only reconstruct the r⌧d

mSDA for Domain Adaptation

have qd+1=1. If we further define the scatter matrix of the
original uncorrupted input as S = XX

>, we can express
the expectation of the matrix Q as

E[Q]↵,� =

⇢
S↵�q↵q� if ↵ 6= �
S↵�q↵ if ↵ = �

. (7)

Similarly, we obtain the expectation of P in closed-form as
E[P]↵� = S↵�q� .

With the help of these expected matrices, we can com-
pute the reconstructive mapping W directly in closed-form
without ever explicitly constructing a single corrupted in-
put x̃i. We refer to this algorithm as marginalized De-
noising Autoencoder (mDA). Algorithm 1 shows a 10-line
MATLABTM implementation. The mDA has several ad-
vantages over traditional denoisers: 1. It requires only
a single sweep through the data to compute the matrices
E[Q], E[P]; 2. Training is convex and a globally optimal
solution is guaranteed; 3. The optimization is performed in
non-iterative closed-form.

3.3. Nonlinear feature generation and stacking

Arguably two of the key contributors to the success of the
SDA are its nonlinearity and the stacking of multiple lay-
ers of denoising autoencoders to create a “deep” learning
architecture. Our framework has the same capabilities.

In SDAs, the nonlinearity is injected through the nonlin-
ear encoder function h(·), which is learned together with
the reconstruction weights W. Such an approach makes
the training procedure highly non-convex and requires it-
erative procedures to learn the model parameters. To pre-
serve the closed-form solution from the linear mapping in
section 3.2 we insert nonlinearity into our learned repre-
sentation after the weights W are computed. A nonlinear
squashing-function is applied on the output of each mDA.
Several choices are possible, including sigmoid, hyperbolic
tangent, tanh(), or the rectifier function (Nair & Hinton,
2010). Throughout this work, we use the tanh() function.

Inspired by the layer-wise stacking of SDA, we stack sev-
eral mDA layers by feeding the output of the (t�1)th mDA
(after the squashing function) as the input into the tth mDA.
Let us denote the output of the tth mDA as ht and the orig-
inal input as h

0 = x. The training is performed greedily
layer by layer: each map W

t is learned (in closed-form)
to reconstruct the previous mDA output ht�1 from all pos-
sible corruptions and the output of the tth layer becomes
h

t = tanh(Wt
h

t�1). In our experiments, we found that
even without the nonlinear squashing function, stacking
still improves the performance. However, the nonlinearity
improves over the linear stacking significantly. We refer to
the stacked denoising algorithm as marginalized Stacked
Denoising Autoencoder (mSDA). Algorithm 2 shows a 8-
lines MATLABTM implementation of mSDA.

Algorithm 2 mSDA in MATLABTM.
function [Ws,hs]=mSDA(X,p,l);

[d,n]=size(X);

Ws=zeros(d,d+1,l);

hs=zeros(d,n,l+1);

hs(:,:,1)=X;

for t=1:l

[Ws(:,:,t), hs(:,:,t+1)]=mDA(hs(:,:,t),p);

end;

3.4. mSDA for Domain Adaptation

We apply mSDA to domain adaptation by first learning fea-
tures in an unsupervised fashion on the union of the source
and target data sets. One observation reported in (Glo-
rot et al., 2011) is that if multiple domains are available,
sharing the unsupervised pre-training of SDA across all do-
mains is beneficial compared to pre-training on the source
and target only. We observe a similar trend with our ap-
proach. The results reported in section 5 are based on fea-
tures learned on data from all available domains. Once a
mSDA is trained, the output of all layers, after squashing,
tanh(Wt

h

t�1), combined with the original features h

0,
are concatenated and form the new representation. All in-
puts are transformed into the new feature space. A linear
Support Vector Machine (SVM) (Chang & Lin, 2011) is
then trained on the transformed source inputs and tested
on the target domain. There are two meta-parameters in
mSDA: the corruption probability p and the number of lay-
ers l. In our experiments, both are set with 5-fold cross
validation on the labeled data from the source domain. As
the mSDA training is almost instantaneous, this grid search
is almost entirely dominated by the SVM training time.

4. Extension for High Dimensional Data
Many data sets (e.g. bag-of-words text documents) are nat-
urally high dimensional. As the dimensionality increases,
hill-climbing approaches used in SDAs can become pro-
hibitively expensive. In practice, a work-around is to trun-
cate the input data to the r⌧d most common features (Glo-
rot et al., 2011). Unfortunately, this prevents SDAs from
utilizing important information found in rarer features. (As
we show in section 5, including these rarer features leads
to significantly better results.) High dimensionality also
poses a challenge to mSDA, as the system of linear equa-
tions in (5) of complexity O(d3) becomes too costly. In
this section we describe how to approximate this calcula-
tion with a simple division into d

r sub-problems of O(r3).

We combine the concept of “pivot features” from Blitzer
et al. (2006) and the use of most-frequent features
from Glorot et al. (2011). Instead of learning a single map-
ping W 2 Rd⇥(d+1) to reconstruct all corrupted features,
we learn multiple mappings but only reconstruct the r⌧d

mSDA for Domain Adaptation

have qd+1=1. If we further define the scatter matrix of the
original uncorrupted input as S = XX

>, we can express
the expectation of the matrix Q as

E[Q]↵,� =

⇢
S↵�q↵q� if ↵ 6= �
S↵�q↵ if ↵ = �

. (7)

Similarly, we obtain the expectation of P in closed-form as
E[P]↵� = S↵�q� .

With the help of these expected matrices, we can com-
pute the reconstructive mapping W directly in closed-form
without ever explicitly constructing a single corrupted in-
put x̃i. We refer to this algorithm as marginalized De-
noising Autoencoder (mDA). Algorithm 1 shows a 10-line
MATLABTM implementation. The mDA has several ad-
vantages over traditional denoisers: 1. It requires only
a single sweep through the data to compute the matrices
E[Q], E[P]; 2. Training is convex and a globally optimal
solution is guaranteed; 3. The optimization is performed in
non-iterative closed-form.

3.3. Nonlinear feature generation and stacking

Arguably two of the key contributors to the success of the
SDA are its nonlinearity and the stacking of multiple lay-
ers of denoising autoencoders to create a “deep” learning
architecture. Our framework has the same capabilities.

In SDAs, the nonlinearity is injected through the nonlin-
ear encoder function h(·), which is learned together with
the reconstruction weights W. Such an approach makes
the training procedure highly non-convex and requires it-
erative procedures to learn the model parameters. To pre-
serve the closed-form solution from the linear mapping in
section 3.2 we insert nonlinearity into our learned repre-
sentation after the weights W are computed. A nonlinear
squashing-function is applied on the output of each mDA.
Several choices are possible, including sigmoid, hyperbolic
tangent, tanh(), or the rectifier function (Nair & Hinton,
2010). Throughout this work, we use the tanh() function.

Inspired by the layer-wise stacking of SDA, we stack sev-
eral mDA layers by feeding the output of the (t�1)th mDA
(after the squashing function) as the input into the tth mDA.
Let us denote the output of the tth mDA as ht and the orig-
inal input as h

0 = x. The training is performed greedily
layer by layer: each map W

t is learned (in closed-form)
to reconstruct the previous mDA output ht�1 from all pos-
sible corruptions and the output of the tth layer becomes
h

t = tanh(Wt
h

t�1). In our experiments, we found that
even without the nonlinear squashing function, stacking
still improves the performance. However, the nonlinearity
improves over the linear stacking significantly. We refer to
the stacked denoising algorithm as marginalized Stacked
Denoising Autoencoder (mSDA). Algorithm 2 shows a 8-
lines MATLABTM implementation of mSDA.

Algorithm 2 mSDA in MATLABTM.
function [Ws,hs]=mSDA(X,p,l);

[d,n]=size(X);

Ws=zeros(d,d+1,l);

hs=zeros(d,n,l+1);

hs(:,:,1)=X;

for t=1:l

[Ws(:,:,t), hs(:,:,t+1)]=mDA(hs(:,:,t),p);

end;

3.4. mSDA for Domain Adaptation

We apply mSDA to domain adaptation by first learning fea-
tures in an unsupervised fashion on the union of the source
and target data sets. One observation reported in (Glo-
rot et al., 2011) is that if multiple domains are available,
sharing the unsupervised pre-training of SDA across all do-
mains is beneficial compared to pre-training on the source
and target only. We observe a similar trend with our ap-
proach. The results reported in section 5 are based on fea-
tures learned on data from all available domains. Once a
mSDA is trained, the output of all layers, after squashing,
tanh(Wt

h

t�1), combined with the original features h

0,
are concatenated and form the new representation. All in-
puts are transformed into the new feature space. A linear
Support Vector Machine (SVM) (Chang & Lin, 2011) is
then trained on the transformed source inputs and tested
on the target domain. There are two meta-parameters in
mSDA: the corruption probability p and the number of lay-
ers l. In our experiments, both are set with 5-fold cross
validation on the labeled data from the source domain. As
the mSDA training is almost instantaneous, this grid search
is almost entirely dominated by the SVM training time.

4. Extension for High Dimensional Data
Many data sets (e.g. bag-of-words text documents) are nat-
urally high dimensional. As the dimensionality increases,
hill-climbing approaches used in SDAs can become pro-
hibitively expensive. In practice, a work-around is to trun-
cate the input data to the r⌧d most common features (Glo-
rot et al., 2011). Unfortunately, this prevents SDAs from
utilizing important information found in rarer features. (As
we show in section 5, including these rarer features leads
to significantly better results.) High dimensionality also
poses a challenge to mSDA, as the system of linear equa-
tions in (5) of complexity O(d3) becomes too costly. In
this section we describe how to approximate this calcula-
tion with a simple division into d

r sub-problems of O(r3).

We combine the concept of “pivot features” from Blitzer
et al. (2006) and the use of most-frequent features
from Glorot et al. (2011). Instead of learning a single map-
ping W 2 Rd⇥(d+1) to reconstruct all corrupted features,
we learn multiple mappings but only reconstruct the r⌧d

MSDA Results
mSDA for Domain Adaptation

D−>B E−>B K−>B B−>D E−>D K−>D B−>E D−>E K−>E B−>K D−>K E−>K
−4

−2

0

2

4

6

8

10

12

Tr
an

sf
er

 L
os

s
(%
)

D−>B E−>B K−>B B−>D E−>D K−>D B−>E D−>E K−>E B−>K D−>K E−>K
−4
−2

0
2
4
6
8

10
12

Baseline
PCA
SCL (Blitzer et. al., 2007)
CODA (Chen et. al., 2011)
SDA (Glorot et. al., 2011)
mSDA (l=5)

Figure 1. Detailed comparison across all twelve domain adaptation task in the small Amazon benchmark data. The reviews are from
the domains Books, Kitchen appliances, Electronics, DVDs. With an exception of B ! E and D ! E, mSDA5 leads to the lowest
transfer-loss.

most frequent features (here, r = 5000). For an input xi

we denote the shortened r-dimensional vector of only the r
most-frequent features as zi 2Rr. We perform this recon-
struction with S random non-overlapping sub-sets of input
features. Without loss of generality, we assume that the
feature-dimensions in the input space are in random order

and divide-up the input vectors as xi =
h
x

1
i
>

, . . . ,xS
i
>
i>

.
For each one of these sub-spaces we learn an independent
mapping W

s which minimizes

Ls(W
s) =

1

2n

nX

i=1

SX

s=1

kzi �W

s
x̃

s
ik2. (8)

Each mapping W

s can be solved in closed-form as in (5),
following the method described in section 3.2. We define
the output of the first layer in the resulting mSDA as the
average of all reconstructions,

h

1 = tanh

1

S

SX

s=1

W

s
x

s

!
. (9)

Once the first layer, of dimension r ⌧ d, is built, we can
stack multiple layers on top of it using the regular mSDA as
described in section 3.3 and Algorithm 2. It is worth point-
ing out that, although features might be separated in differ-
ent sub-sets within the first layer, they can still be combined
in subsequent layers of the mSDA.

5. Results
We evaluate mSDA on the Amazon reviews benchmark data
sets (Blitzer et al., 2006) together with several other algo-
rithms for representation learning and domain adaptation.
The dataset contains more than 340, 000 reviews from 25
different types of products from Amazon.com. For simplic-
ity (and comparability), we follow the convention of (Chen
et al., 2011b; Glorot et al., 2011) and only consider the
binary classification problem whether a review is positive

(higher than 3 stars) or negative (3 stars or lower). As
mSDA and SDA focus on feature learning, we use the raw
bag-of-words (bow) unigram/bigram features as their input.
To be fair to other algorithms that we compare to, we also
pre-process with tf-idf (Salton & Buckley, 1988) and use
the transformed feature vectors as their input if that leads
to better results. Finally, we remove five domains which
contain less than 1, 000 reviews.

Different domains in the complete set vary substantially in
terms of number of instances and class distribution. Some
domains (books and music) have hundreds of thousands
of reviews, while others (food and outdoor) have only a
few hundred. There are a total of 380 possible transfer
tasks (e.g. Apparel ! Baby). The proportion of nega-
tive examples in different domains also differs greatly. To
counter the effect of class- and size-imbalance, a more con-
trolled smaller dataset was created by Blitzer et al. (2006),
which contains reviews of four types of products: books,
DVDs, electronics, and kitchen appliances. Here, each do-
main consists of 2, 000 labeled inputs and approximately
4, 000 unlabeled ones (varying slightly between domains)
and the two classes are exactly balanced. Almost all prior
work provides results only on this smaller set with its more
manageable twelve transfer tasks. We focus most of our
comparative analysis on this smaller set but also provide
results on the entire data for completeness.

Methods. As baseline, we train a linear SVM on the
raw bag-of-words representation of the labeled source and
test it on target. We also include the results of the same
setup with dense features obtained by projecting the entire
data set (labeled and unlabeled source+target) onto a low-
dimensional sub-space with PCA (we refer to this setting
as PCA). Besides these two baselines, we evaluate the effi-
cacy of a linear SVM trained on features learned by mSDA
and two alternative feature learning algorithms, Structural
Correspondence Learning (SCL) (Blitzer et al., 2006) and

Amazon sentiment analysis dataset

MSDA vs. SDA
mSDA for Domain Adaptation

101 102 103 104 105 1061

1.05

1.1

1.15

1.2

1.25

1.3

1.35

Baseline
SDA (Glorot et. al., 2011)
mSDA (l=1,2,3,4,5)

101 102 103 104 1051

1.1

1.2

1.3

1.4

1.5

Baseline
PCA
SCL (Blitzer et. al., 2007)
CODA (Chen et. al., 2011)
SDA (Glorot et. al., 2011)
mSDA (l=1,2,3,4,5)

Training time in seconds (log)

Tr
an

sf
er

 R
at

io

l=1

l=5

Amazon Benchmark (small) Amazon Benchmark (complete)

Training time in seconds (log)Training time in seconds (log)

l=1

l=5

Figure 2. Transfer ratio and training times on the small (left) and full (right) Amazon Benchmark data. Results are averaged across the
twelve and 380 domain adaptation tasks in the respective data sets (5, 000 features). The graphs compare the results of mSDA with
baseline, SDA and, on the small data set, with CODA, SCL and PCA. The speedups of mSDA over SDA, with similar transfer ratio, is
180⇥ on the small task and 230⇥ on the complete benchmark.

1-layer1 SDA (Glorot et al., 2011). Finally, we also com-
pare against CODA (Chen et al., 2011b), a state-of-the-art
domain adaptation algorithm which is based on sample-
and feature-selection, applied to tf-idf features. For CODA,
SDA and SCL we use implementations provided by the au-
thors. All hyper-parameters are set by 5-fold cross valida-
tion on the source training set2.

Metrics. Following Glorot et al. (2011), we evaluate our
results with the transfer error e(S, T) and the in-domain
error e(T, T). The transfer error e(S, T) denotes the clas-
sification error of a classifier trained on the labeled source
data and tested on the unlabeled target data. The in-domain
error e(T, T) denotes the classification error of a classifier
that is trained on the labeled target data and tested on the
unlabeled target data. Similar to Glorot et al. (2011) we
measure the performance of a domain adaptation algorithm
in terms of the transfer loss, defined as e(S, T)�eb(T, T),
where eb(T, T) defines the in-domain error of the baseline.
In other words, the transfer loss measures how much higher
the error of an adapted classifier is in comparison to a lin-
ear SVM that is trained on actual labeled target bow data.

The various domain-adaptation tasks vary substantially in
difficulty, which is why we do not average the trans-
fer losses (which would be dominated by a few most
difficult tasks). Instead, we average the transfer ratio,
e(S, T)/eb(T, T), the ratio of the transfer error over the
in-domain error. As with the transfer loss, a lower transfer
ratio implies better domain adaptation.

1We were only able to obtain the 1-layer implementation from
the authors. Anecdotally, multiple-layer SDA only leads to small
improvements on this benchmark set but increases the training
time drastically.

2We keep the default values of some of the parameters in SCL,
e.g. the number of stop-words removed and stemming parameters
— as they were already tuned for this benchmark set by the au-
thors.

For timing purposes, we ignore the time of the SVM train-
ing and only report the mSDA or SDA training time. As
both algorithms are unsupervised, we do not re-train for
different transfer tasks within a benchmark set — instead
we learn one representation on the union of all domains.
CODA (Chen et al., 2011a) does not take advantage of data
besides source and target and we report the average train-
ing time per transfer task.3 All experiments were conducted
on an off-the-shelf desktop with dual 6-core Intel i7 CPUs
clocked at 2.66Ghz.

5.1. Comparison with Related Work

In the first set of experiments, we use the setting from (Glo-
rot et al., 2011) on the small Amazon benchmark set. The
input data is reduced to only the 5, 000 most frequent terms
of unigrams and bigrams as features.

Comparison per task. Figure 1 presents a detailed com-
parison of the transfer loss across the twelve domain adap-
tation tasks using the various methods mentioned. A linear
SVM trained on the features generated by SDA and mSDA
clearly outperform all the other methods. For several tasks,
the transfer loss goes to negative — in other words, a SVM
trained on the transformed source data has higher accuracy
than one trained on the original target data. This is a strong
indication that the learned new representation bridges the
gap between domains. It is worth pointing out that in ten
out of the twelve tasks mSDA achieves a lower transfer-loss
than SDA.

Timing. Figure 2 (left) depicts the transfer ratio as a func-
tion of training time required for different algorithms, av-
eraged over 12 tasks. The time is plotted in log scale. We
can make three observations: 1. SDA outperforms all other
related work in terms of transfer-ratio, but is also the slow-

3In CODA, the feature splitting and classifier training are in-
separable and we necessarily include both in our timing.

Generative Adversarial Networks
(Goodfellow et al., NIPS 2014; Ganlin, et al., JMLR 2016)

“For effective domain transfer to be achieved, predictions must be
made based on features that cannot discriminate between the training

(source) and test (target) domains.”

Ganin, Ustinova, Ajakan, Germain, Larochelle, Laviolette, Marchand and Lempitsky

Figure 1: The proposed architecture includes a deep feature extractor (green) and a deep
label predictor (blue), which together form a standard feed-forward architecture.
Unsupervised domain adaptation is achieved by adding a domain classifier (red)
connected to the feature extractor via a gradient reversal layer that multiplies
the gradient by a certain negative constant during the backpropagation-based
training. Otherwise, the training proceeds standardly and minimizes the label
prediction loss (for source examples) and the domain classification loss (for all
samples). Gradient reversal ensures that the feature distributions over the two
domains are made similar (as indistinguishable as possible for the domain classi-
fier), thus resulting in the domain-invariant features.

predictor and into the domain classifier (with loss weighted by �). The only di↵erence is
that in (13), the gradients from the class and domain predictors are subtracted, instead of
being summed (the di↵erence is important, as otherwise SGD would try to make features
dissimilar across domains in order to minimize the domain classification loss). Since SGD—
and its many variants, such as ADAGRAD (Duchi et al., 2010) or ADADELTA (Zeiler,
2012)—is the main learning algorithm implemented in most libraries for deep learning, it
would be convenient to frame an implementation of our stochastic saddle point procedure
as SGD.

Fortunately, such a reduction can be accomplished by introducing a special gradient
reversal layer (GRL), defined as follows. The gradient reversal layer has no parameters
associated with it. During the forward propagation, the GRL acts as an identity trans-
formation. During the backpropagation however, the GRL takes the gradient from the
subsequent level and changes its sign, i.e., multiplies it by �1, before passing it to the
preceding layer. Implementing such a layer using existing object-oriented packages for deep
learning is simple, requiring only to define procedures for the forward propagation (identity
transformation), and backpropagation (multiplying by �1). The layer requires no parame-
ter update.

The GRL as defined above is inserted between the feature extractor G
f

and the domain
classifier G

d

, resulting in the architecture depicted in Figure 1. As the backpropagation
process passes through the GRL, the partial derivatives of the loss that is downstream

12

GAN objective functionIn other words, D and G play the following two-player minimax game with value function V (G,D):

min

G

max

D

V (D,G) = E
x⇠pdata(x)[logD(x)] + E

z⇠pz(z)[log(1�D(G(z)))]. (1)

In the next section, we present a theoretical analysis of adversarial nets, essentially showing that
the training criterion allows one to recover the data generating distribution as G and D are given
enough capacity, i.e., in the non-parametric limit. See Figure 1 for a less formal, more pedagogical
explanation of the approach. In practice, we must implement the game using an iterative, numerical
approach. Optimizing D to completion in the inner loop of training is computationally prohibitive,
and on finite datasets would result in overfitting. Instead, we alternate between k steps of optimizing
D and one step of optimizing G. This results in D being maintained near its optimal solution, so
long as G changes slowly enough. This strategy is analogous to the way that SML/PCD [31, 29]
training maintains samples from a Markov chain from one learning step to the next in order to avoid
burning in a Markov chain as part of the inner loop of learning. The procedure is formally presented
in Algorithm 1.

In practice, equation 1 may not provide sufficient gradient for G to learn well. Early in learning,
when G is poor, D can reject samples with high confidence because they are clearly different from
the training data. In this case, log(1 � D(G(z))) saturates. Rather than training G to minimize
log(1�D(G(z))) we can train G to maximize logD(G(z)). This objective function results in the
same fixed point of the dynamics of G and D but provides much stronger gradients early in learning.

. . .

(a) (b) (c) (d)

Figure 1: Generative adversarial nets are trained by simultaneously updating the discriminative distribution
(D, blue, dashed line) so that it discriminates between samples from the data generating distribution (black,
dotted line) p

x

from those of the generative distribution pg (G) (green, solid line). The lower horizontal line is
the domain from which z is sampled, in this case uniformly. The horizontal line above is part of the domain
of x. The upward arrows show how the mapping x = G(z) imposes the non-uniform distribution pg on
transformed samples. G contracts in regions of high density and expands in regions of low density of pg . (a)
Consider an adversarial pair near convergence: pg is similar to pdata and D is a partially accurate classifier.
(b) In the inner loop of the algorithm D is trained to discriminate samples from data, converging to D

⇤(x) =
pdata(x)

pdata(x)+pg(x) . (c) After an update to G, gradient of D has guided G(z) to flow to regions that are more likely
to be classified as data. (d) After several steps of training, if G and D have enough capacity, they will reach a
point at which both cannot improve because pg = pdata. The discriminator is unable to differentiate between
the two distributions, i.e. D(x) = 1

2 .

4 Theoretical Results

The generator G implicitly defines a probability distribution p

g

as the distribution of the samples
G(z) obtained when z ⇠ p

z

. Therefore, we would like Algorithm 1 to converge to a good estimator
of pdata, if given enough capacity and training time. The results of this section are done in a non-
parametric setting, e.g. we represent a model with infinite capacity by studying convergence in the
space of probability density functions.

We will show in section 4.1 that this minimax game has a global optimum for p
g

= pdata. We will
then show in section 4.2 that Algorithm 1 optimizes Eq 1, thus obtaining the desired result.

3

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used k = 1, the least expensive option, in our
experiments.

for number of training iterations do
for k steps do

• Sample minibatch of m noise samples {z(1)
, . . . , z

(m)} from noise prior p
g

(z).
• Sample minibatch of m examples {x(1)

, . . . ,x

(m)} from data generating distribution
pdata(x).
• Update the discriminator by ascending its stochastic gradient:

r
✓d

1

m

mX

i=1

h
logD

⇣
x

(i)
⌘
+ log

⇣
1�D

⇣
G

⇣
z

(i)
⌘⌘⌘i

.

end for
• Sample minibatch of m noise samples {z(1)

, . . . , z

(m)} from noise prior p
g

(z).
• Update the generator by descending its stochastic gradient:

r
✓g

1

m

mX

i=1

log

⇣
1�D

⇣
G

⇣
z

(i)
⌘⌘⌘

.

end for
The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.

4.1 Global Optimality of p
g

= pdata

We first consider the optimal discriminator D for any given generator G.
Proposition 1. For G fixed, the optimal discriminator D is

D

⇤
G

(x) =

p

data

(x)

p

data

(x) + p

g

(x)

(2)

Proof. The training criterion for the discriminator D, given any generator G, is to maximize the
quantity V (G,D)

V (G,D) =

Z

x

pdata(x) log(D(x))dx+

Z

z

p

z

(z) log(1�D(g(z)))dz

=

Z

x

pdata(x) log(D(x)) + p

g

(x) log(1�D(x))dx (3)

For any (a, b) 2 R2 \ {0, 0}, the function y ! a log(y) + b log(1 � y) achieves its maximum in
[0, 1] at a

a+b

. The discriminator does not need to be defined outside of Supp(pdata) [Supp(p

g

),
concluding the proof.

Note that the training objective for D can be interpreted as maximizing the log-likelihood for es-
timating the conditional probability P (Y = y|x), where Y indicates whether x comes from pdata
(with y = 1) or from p

g

(with y = 0). The minimax game in Eq. 1 can now be reformulated as:

C(G) =max

D

V (G,D)

=E
x⇠pdata [logD

⇤
G

(x)] + E
z⇠pz [log(1�D

⇤
G

(G(z)))] (4)
=E

x⇠pdata [logD
⇤
G

(x)] + E
x⇠pg [log(1�D

⇤
G

(x))]

=E
x⇠pdata


log

pdata(x)

Pdata(x) + p

g

(x)

�
+ E

x⇠pg


log

p

g

(x)

pdata(x) + p

g

(x)

�

4

Results on Amazon Sentiment AnalysisDomain-Adversarial Neural Networks

Original data mSDA representation

Source Target DANN NN SVM DANN NN SVM

books dvd .784 .790 .799 .829 .824 .830

books electronics .733 .747 .748 .804 .770 .766

books kitchen .779 .778 .769 .843 .842 .821

dvd books .723 .720 .743 .825 .823 .826

dvd electronics .754 .732 .748 .809 .768 .739

dvd kitchen .783 .778 .746 .849 .853 .842

electronics books .713 .709 .705 .774 .770 .762

electronics dvd .738 .733 .726 .781 .759 .770

electronics kitchen .854 .854 .847 .881 .863 .847

kitchen books .709 .708 .707 .718 .721 .769

kitchen dvd .740 .739 .736 .789 .789 .788

kitchen electronics .843 .841 .842 .856 .850 .861

(a) Classification accuracy on the Amazon reviews data set

Original data

DANN NN SVM

DANN .50 .87 .83

NN .13 .50 .63

SVM .17 .37 .50

mSDA representations

DANN NN SVM

DANN .50 .92 .88

NN .08 .50 .62

SVM .12 .38 .50

(b) Pairwise Poisson binomial test

Table 1: Classification accuracy on the Amazon reviews data set, and Pairwise Poisson
binomial test.

• For the DANN algorithm, the adaptation parameter � is chosen among 9 values
between 10�2 and 1 on a logarithmic scale. The hidden layer size l is either 50 or 100.
Finally, the learning rate µ is fixed at 10�3.

• For the NN algorithm, we use exactly the same hyper-parameters grid and training
procedure as DANN above, except that we do not need an adaptation parameter.
Note that one can train NN by using the DANN implementation (Algorithm 1) with
� = 0.

• For the SVM algorithm, the hyper-parameter C is chosen among 10 values between
10�5 and 1 on a logarithmic scale. This range of values is the same as used by Chen
et al. (2012) in their experiments.

As presented at Section 5.1.2, we used reverse cross validation selecting the hyper-parameters
for all three learning algorithms, with early stopping as the stopping criterion for DANN
and NN.

17

Summary

❖ Transfer learning is a broad topic that has been studied
for many decades

❖ Classical approaches:

❖ Structure mapping finds a way to transfer
relationships from source to target

❖ Determination rules provide a logical formulation
for transfer learning

Summary

❖ Statistical Approaches:

❖ Canonical correlational analysis (CCA) finds a
lower-dimensional subspace where projected source
and target vectors are maximally correlated

❖ Manifold alignment generalizes CCA to unlabeled
data and also enables its use for data that lies on a
manifold

Summary
❖ Subspace identification:

❖ Subspace alignment finds a linear transformation that
makes the source look like the target

❖ Geodesic flow kernels find the shortest path geodesic on
the Grassmannian manifold from source subspace to
target subspace

❖ Correspondence optimized domain-invariant projection
provides a way to choose the source and target subspaces
using a small number of correspondences

Summary
❖ Deep transfer learning:

❖ Train a deep neural network on data (e.g., Imagenet)

❖ Reuse some of the weights from the first N convolutional layers and
retrain the subsequent layers

❖ Stacked denoising auto encoders (SDA) are multi-level networks that
learn to reproduce an uncorrupted version of a set of noisy input examples

❖ Marginalized SDAs are a hybrid linear-nonlinear approach where the
linear weights are trained using least-squares

❖ Generative adversarial networks find a representation where source and
target data look indistinguishable

Future Challenges
❖ Transfer learning admits a plethora of approaches, but

lacks a clear unifying framework

❖ Two major themes:

❖ Find correlations between source and target (CCA)

❖ Find symmetries across source and target (CNNs)

❖ More sophisticated ideas from group representations can
be used

❖ Generalization of CNNs that extract deeper symmetries

Background Reading

DATASET SHIFT IN
MACHINE LEARNING
EDITED BY JOAQUIN QUIÑONERO-CANDELA, MASASHI SUGIYAMA,
ANTON SCHWAIGHOFER, AND NEIL D. LAWRENCE

DATASET SH
IFT IN

 M
ACH

IN
E LEARN

IN
G

QUIÑONERO-CANDELA, SUGIYAMA,
SCHW

AIGHOFER, AND LAW
RENCE, EDITORS

Dataset shift is a common problem in predictive modeling that
occurs when the joint distribution of inputs and outputs differs
between training and test stages. Covariate shift, a particular
case of dataset shift, occurs when only the input distribution
changes. Dataset shift is present in most practical applications,
for reasons ranging from the bias introduced by experimental
design to the irreproducibility of the testing conditions at
training time. (An example is email spam fi ltering, which may
fail to recognize spam that differs in form from the spam the
automatic fi lter has been built on.) Despite this, and despite
the attention given to the apparently similar problems of semi-
supervised learning and active learning, dataset shift has
received relatively little attention in the machine learning com-
munity until recently. This volume offers an overview of current
efforts to deal with dataset and covariate shift.
 The chapters offer a mathematical and philosophical
introduction to the problem, place dataset shift in relationship
to transfer learning, transduction, local learning, active learn-
ing, and semi-supervised learning, provide theoretical views
of dataset and covariate shift (including decision theoretic
and Bayesian perspectives), and present algorithms for covari-
ate shift.

DATASET SHIFT IN
MACHINE LEARNING
EDITED BY JOAQUIN QUIÑONERO-CANDELA,
MASASHI SUGIYAMA, ANTON SCHWAIGHOFER,
AND NEIL D. LAWRENCE

Joaquin Quiñonero-Candela is a Researcher in the Online Services
and Advertising Group at Microsoft Research Cambridge, UK.
Masashi Sugiyama is Associate Professor in the Department of
Computer Science at the Tokyo Institute of Technology. Anton
Schwaighofer is an Applied Researcher in the Online Services
and Advertising Group at Microsoft Research, Cambridge, UK.
Neil D. Lawrence is Senior Research Fellow and Member of the
Machine Learning and Optimisation Research Group in the
School of Computer Science at the University of Manchester.

CONTRIBUTORS
SHAI BEN-DAVID, STEFFEN BICKEL, KARSTEN BORGWARDT, MICHAEL BRÜCKNER, DAVID CORFIELD, AMIR GLOBERSON,
ARTHUR GRETTON, LARS KAI HANSEN, MATTHIAS HEIN, JIAYUAN HUANG, TAKAFUMI KANAMORI, KLAUS-ROBERT MÜLLER,
SAM ROWEIS, NEIL RUBENS, TOBIAS SCHEFFER, MARCEL SCHMITTFULL, BERNHARD SCHÖLKOPF, HIDETOSHI SHIMODAIRA,
ALEX SMOLA, AMOS STORKEY, MASASHI SUGIYAMA, CHOON HUI TEO

Neural Information Processing series

computer science/machine learning

THE MIT PRESS MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 02142 HTTP://MITPRESS.MIT.EDU

978-0-262-17005-5

Background Reading

Hoa Vu, CJ Carey, and Sridhar Mahadevan, “ Manifold Warping: Manifold Alignment over Time " , Proceedings of the 26th Conference on Artificial Intelligence
(AAAI), July 22-26, 2012, Toronto, Canada.

Chang Wang and Sridhar Mahadevan, “ Manifold Alignment Preserving Global Geometry " , Technical Report, UMass Computer Science Department UM-
CS-2012-031, 2012.

Chang Wang, Bo Liu, Hoa Vu, and Sridhar Mahadevan, “ Sparse Manifold Alignment " , Technical Report, UMass Computer Science UM-2012-030, 2012.

Chang Wang and Sridhar Mahadevan, “ Heterogeneous Domain Adaptation using Manifold Alignment " , Proceedings of the International Joint Conference on Artificial
Intelligence (IJCAI), July 18-23, 2011, Barcelona, Spain.

Chang Wang and Sridhar Mahadevan, “ Jointly Learning Data-Depdendent Label and Locality-Preserving Projections " , Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI), July 18-23, 2011, Barcelona, Spain.

Chang Wang, Peter Krafft, and Sridhar Mahadevan, “ Manifold Alignment ", appearing in Manifold Learning: Theory and Applications, Taylor and Francis CRC Press.

Chang Wang and Sridhar Mahadevan, "Multiscale Manifold Alignment" , Univ. of Massachusetts TR UM-CS-2010-049, 2010.

Chang Wang and Sridhar Mahadevan, "Learning Locality Preserving Discriminative Features" , Univ. of Massachusetts TR UM-CS-2010-048, 2010.

Chang Wang and Sridhar Mahadevan, “ Manifold Alignment Preserving Global Geometry ", Proceedings of the IJCAI Conference, August 3-9, 2013, Beijing, China.

Sridhar Mahadevan and Prasad Tadepalli, "Quantifying Prior Determination Knowledge using the PAC Learning Model", Machine Learning , vol. 17, pp. 69-105, 1994

http://www.cs.umass.edu/~mahadeva/papers/ManifoldWarping.pdf
http://www.cs.umass.edu/~mahadeva/papers/UM-CS-2012-031.pdf
http://www.cs.umass.edu/~mahadeva/papers/UM-CS-2012-030.pdf
http://www.cs.umass.edu/~mahadeva/papers/IJCAI2011-DA.pdf
http://www.cs.umass.edu/~mahadeva/papers/IJCAI2011-FL.pdf
http://www.cs.umass.edu/~mahadeva/papers/bookchapter.pdf
http://www.cs.umass.edu/~mahadeva/papers/UM-CS-2010-049.pdf
http://www.cs.umass.edu/~mahadeva/papers/UM-CS-2010-048.pdf
http://www.cs.umass.edu/~mahadeva/papers/IJCAI-2013-Global.pdf
http://www.cs.umass.edu/~mahadeva/papers/mlj-pac-paper.ps.Z

