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ABSTRACT

Memory organization plays a critical role in knowledge
acquisition. An agent must select a small subset of ex-
isting knowledge to serve as the basis for new learning;
otherwise each problem becomes more complex than the
previous. Selecting this subset remains a challenge, how-
ever. We propose that existing knowledge be organized in
order for a learning agent to achieve its full potential. The
SCALE algorithm is presented as a method for knowledge
acquisition and organization, and is used to demonstrate
both the computational and training benefits of memory
organization.

1. INTRODUCTION

Acquiring new knowledge is an essential element in intel-
ligent behavior. Humans are adept at learning and orga-
nizing knowledge from diverse sources over extended pe-
riods of time. Artificially intelligent agents can likewise
benefit from the ability to improve upon current knowl-
edge. Toward this end, the machine learning community
tends to view learning as a search problem. The task is to
find a specific relationship between input stimuli and tar-
get outcomes that accurately models the underlying con-
cept or function. This is one of the most basic forms of
learning, known as supervised learning.

Clark & Thornton (1997) refer to such direct input-to-
output mappings as type-1 learning. Suppose now that the
relationship between input and output is complex, so that
a given supervised algorithm cannot find a direct mapping
between inputs and output. Clark and Thornton refer to
this scenario as type-2 learning and assert that any solu-
tion to such a problem must involve finding one or more
intermediate representations of the stimuli. Although they
do not recommend a specific method, Clark and Thornton
state that type-2 learning requires the input stimulus to be
recoded until the gap between input and output becomes
sufficiently narrow for a type-1 algorithm to succeed.

The central issue associated with producing intermedi-
ate representations is again one of search. To solve type-
2 problems, an agent must be able to discover or other-
wise acquire new concepts, called building blocks, which
close the input-output gap. This is a necessarily vague
description. The agent does not know in advance what
these building blocks should represent, or how many lay-
ers will be needed. The agent knows only that it must
search for some new combination of input stimuli and ex-

isting building blocks that will improve the statistical reg-
ularity of the data. In the absence of additional informa-
tion, a brute force search is intractable as the search must
span the range of functions learnable by the agent.

Making matters worse, the agent also does not know
which existing building blocks will contribute to learning
a new block. Imagine a system in which, for each new
building block, the agent must consider all existing blocks
as a potential source of useful knowledge. The number of
input combinations considered by the agent would grow
for each new concept. Each new intermediate learning
problem becomes more computationally expensive than
the previous. Learning based on this method cannot scale
up.

In this paper, we take the view that intermediate rep-
resentations are just as important as the high-level target
knowledge. Development of intermediate representations
deserves at least as much learning effort and attention as
an agent’s high-level learning goals. Most importantly, we
propose that intermediate knowledge be organized in or-
der for the agent to achieve the full potential of its learning
capabilities.

2. ACQUIRING INTERMEDIATE KNOWLEDGE

The term many-layered learning refers to methods which,
in the spirit of type-2 learning, allow the agent to construct
as many layers of intermediate knowledge as needed (Ut-
goff & Stracuzzi, 2002). The structures may be nested
to an arbitrary depth, as required by the complexity of
the learning problem and the agent’s learning capabilities.
A many-layered approach differs from other methods in
that the original input space is not partitioned with respect
to the top-level concepts. Instead, the layers form new
spaces that are subsequently partitioned with respect to
the next layer. Each intermediate concept and each layer
may be viewed as adding new dimensions to the existing
space, or as forming an entirely new space.

The Stream-to-Layers (STL) algorithm by Utgoff &
Stracuzzi (2002) implements this idea. Here, the environ-
ment provides a stream of labeled training stimuli. Each
stimulus contains data for exactly one building block (con-
cept). As the training points arrive, each building block
attempts to learn its target concept. Those that are suc-
cessful become available as inputs to more complex, un-
learned blocks. Thus the algorithm constructs the basis for
complex concepts over time. STL makes no assumptions



about the ordering of the incoming data, simply construct-
ing intermediate representations by learning about each
building block wherever possible.

The STL algorithm yielded several positive results.
The algorithm learned and organized a layered network
of building-block concepts given an unorganized stream
of data. This is not to say that the algorithm reproduced
the original structures as conceived by the authors. STL
often found different yet equivalent representations of the
data, and displayed both the ability to learn and to separate
building blocks from multiple domains.

STL’s primary weakness is its approach to acquiring
new inputs. By considering all learned building blocks
as potential inputs to an unlearnable block, the algorithm
creates a situation in which the input dimensionality of
high-level concepts grows steadily throughout the learn-
ing process. Clearly this approach cannot scale up. A
more organized approach to dealing with potential inputs
is required.

3. THE SCALE ALGORITHM

The SCALE algorithm is designed to provide long-term
learning capabilities by building upon STL’s strengths. As
such, SCALE (Stracuzzi, 2005) improves upon many of
the methods originally designed for the STL algorithm.
From an abstract point of view, the two algorithms are
founded on the same basic idea: an agent with limited
immediate learning capabilities learns about complex do-
mains in the long-term by building up a basis of knowl-
edge one small block at a time.

A closer look however, shows that SCALE is con-
cerned not only with acquiring new blocks of knowledge,
but also with organizing and managing the concepts to fa-
cilitate their efficient application to future learning. We
begin with a brief overview of SCALE, and turn to mem-
ory organization methods in the following section.

3.1. Limited Learning Ability

Like STL, the SCALE algorithm is founded on the idea
that complex type-2 learning abilities are founded on sim-
ple type-1 learning mechanisms. Specifically, neither al-
gorithm can learn any concept that is not linearly separa-
ble. This restriction provides several attractive properties.
First, it is a learning bias not specifically designed for a
particular class of problems. Second, limited learning pro-
vides a comparatively small search space for each building
block concept, with simpler learning abilities providing
smaller search spaces. Third, the set of learnable func-
tions grows as the agent learns. Each new building block
expands the agent’s horizons.

Growth in knowledge learnable by the agent is key.
This space must be allowed to grow, otherwise the agent
could only learn concepts in the very simple class to which
it is restricted. The growth however, means that the search
space will once again become intractably large over time.
The building blocks learned by the agent therefore must
be organized so as to maintain a tractable search space.

3.2. Representational Language

The representational language defines a system’s capacity
to learn. If a concept cannot be expressed in a language,
then no amount of training will allow the system to ac-
quire that concept. Conversely, an overly powerful lan-
guage may cause learning to fail because the language de-
fines an intractably large hypothesis space (Utgoff, 1986).
Representational languages should always be merely ap-
propriate to the task at hand, providing a balanced trade-
off between sufficient learning capacity and a tractable hy-
pothesis space. This is a fundamental idea used in devel-
oping support vector machines (kernel selection depends
on the properties of the given problem) (Burges, 1998).

SCALE relies on form of first-order logic. Building
blocks are represented by predicates and may be viewed as
parameterized functions. A given predicate may be called
by any number of higher-level predicates, and multiple
times by a single predicate. This provides many opportu-
nities for knowledge transfer, and a significant reduction
in redundant learning over a propositional representation.

First-order logic provides more power than necessary
for layered learning. Several modifications and restric-
tions are placed on the language in order to suit the needs
of SCALE. Each restriction is motivated by compliance
with the agent’s limited learning ability. However, none
of the following restrictions reduce the agent’s ability to
learn complex features in the long run. The agent can al-
ways reconstruct them from simpler features.

1. Each predicate may only represent a linearly sepa-
rable concept. This is the primary enforcement of
the limited learning assumption.

2. Predicates have a limited number of arguments (ar-
ity). The number of unique bindings between the
arguments of one predicate and another grows ex-
ponentially with predicate arity.

3. The agent has a limited focus of attention. This is
the set of domain objects, such as cards in a poker
hand, under explicit consideration by the agent. In-
creasing the number of objects simultaneously con-
sidered by an agent increases the number of object-
variable binding combinations exponentially.

4. For brevity, we do not discuss quantification in this
paper.

These restrictions act very much along the same lines
as Miller’s magic number seven (1956), which refers to
the approximate upper limit on the number of objects a
person can keep in immediate memory. Miller argues that
humans use simple but powerful mechanisms to increase
their capacity. These mechanisms include increasing the
number of dimensions along which a stimulus may vary,
recoding objects into larger chunks, and handling objects
sequentially rather than simultaneously.

Figure 1 shows a sample SCALE representation along
with an example state for a cards domain such as poker or
solitaire. We assume that the input stimulus received by
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Figure 1. Illustration of SCALE’s representation.

the agent is rudimentary. Cards are indexed 0–51 such that
0–12 represent ace through king of spades, 13–25 repre-
sent hearts and so on for clubs and diamonds. The agent
receives the index and must learn to establish the card suit,
rank and color, along with any relationships among cards.

The domain objects are the cards, while the focus of
attention is some small subset of current interest. Each
predicate represents a card relation (such as card-is-red
or card-colors-differ), while the links between predicates
show dependencies. Each link also contains a binding of
arguments from the link-output to the link-input.

A typical evaluation proceeds top-down. For exam-
ple, an agent can test whether the cards in its focus of
attention have different colors, as in Figure 1. The cards
are first bound to the predicate argument variables, and
then colorsDiffer(

���
, ��� ) is evaluated. The predicate

colorsDiffer represents a learned linear threshold function
over its inputs, so the next step is to compute values for
these inputs. The arguments to colorsDiffer are therefore
bound, through specific mappings established via learn-
ing, to the predicate redBlack.

RedBlack(
���

, ��� ) is now evaluated via a similar pro-
cedure and found to be false while redBlack( ��� ,

���
), via

the right binding from colorsDiffer is found to be true. In
this case, colorsDiffer is represented by a logical-or over
its inputs, resulting in a final evaluation of true.

The language determines SCALE’s ability to repre-
sent knowledge, but says nothing of how knowledge is
formed. We turn now to the questions of how SCALE de-
termines predicate dependencies, threshold functions, and
argument mappings.

3.3. Learning Predicates

Learning in SCALE is a highly distributed and parallel
operation. Each building block (predicate) receives its
own supervised data, and attempts to learn independently
of other blocks. For the purposes of this paper, we as-
sume that the environment provides this data decomposi-
tion, and that some higher-level mechanism directs data
to the correct building block. Note that SCALE is an on-
line and incremental algorithm; all training examples are
processed upon receipt and immediately discarded.

The online and distributed nature of SCALE places
two requirements on the building-block (predicate) learn-
ing algorithm. Each building block must detect whether
the target knowledge has been successfully learned. Like-
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Figure 2. Illustration of predicate mapping enumeration.

wise, a building block must detect whether it is unlearn-
able with respect to the current knowledge basis (set of
input dependencies) and recent training points. To meet
these requirements, SCALE uses a modification of the
perceptron algorithm (Minsky & Papert, 1972) originally
developed for perceptron trees Utgoff (1989).

Briefly, the Perceptron Convergence and Cycling The-
orems (Minsky & Papert, 1972) are combined with em-
pirically established threshold values to provide precise
definitions for learned and unlearnable. A building block
with � input dependencies is learned if it correctly eval-
uates �	�
��� consecutive training examples. Similarly, the
block is unlearnable if it makes ������ consecutive weight
updates without exploring a new area of weight-space.
Given this ability to recognize blocks as learned and un-
learnable, each building block must determine a knowl-
edge basis that is sufficient for learning.

Using perceptrons, which are propositional, to repre-
sent predicates may initially appear to be an unusual ap-
plication. Closer inspection reveals that each unique argu-
ment mapping is equivalent to a single proposition. Re-
call SCALE restricts the number of arguments available
to a given predicate, ensuring that the number of possible
mappings between two predicates remains small. Thus the
predicate is propositionalized, with the perceptron treating
each argument mapping as a unique binary-valued input.

Figure 2 illustrates the approach with another exam-
ple from the cards domain. There are six possible map-
pings from the three-argument predicate threeOfAKind to
the two-argument twoOfAKind. Each mapping produces a
distinct evaluation of twoOfAKind. In this case, multiple
combinations of two mappings will produce the desired
relationship (say the first and third). Over the course of
many training stimuli, the perceptron underlying threeOf-
AKind gives large weight to two of these, while the others
receive small weight.

All learned knowledge becomes available as a poten-
tial basis for any unlearnable knowledge. However, the
question of which learned predicates are appropriate to a
specific unlearned predicate remains, and is the subject of
the next section.

4. MEMORY ORGANIZATION IN SCALE

There are three constraints on building-block organization
methods. The first stems from the goal of designing a sys-
tem capable of long-term learning. The number of build-



ing blocks may become quite large, so the organizational
method must scale up. Specifically, the number of com-
parisons between building blocks must grow slowly. No-
tice that even pairwise comparisons among blocks will be-
come impractical over time. The second constraint arises
from the organizational process itself. The goal is to re-
duce the number of potential inputs considered by each
building block during training. Thus there will be no stan-
dard input vector describing all building blocks. Finally,
the goal of memory organization in SCALE is to select
a set of related dependencies, not a minimal set of in-
puts. This allows useful redundancy and more flexibility
in predicate learning.

These constraints suggest that SCALE’s knowledge
organization problem does not fit into the formulations
popular in the machine learning community, such as fea-
ture selection and data clustering. Both methods tend to
rely heavily on pairwise comparisons and on the presence
of a common input vector. These approaches will be com-
putationally expensive with respect to SCALE

SCALE uses a combination of bottom-up (stimulus-
driven) evaluation, and fast variable selection algorithms
to establish dependencies. Bottom-up evaluation elimi-
nates many potential inputs to an unlearned predicate by
evaluating only predicates related to the current stimulus.
Two variable selection algorithms then work in conjunc-
tion with each predicate’s perceptron to prune further the
list of inputs.

4.1. Bottom-Up Evaluation

Each training stimulus in SCALE specifies three pieces of
information: (1) the predicate addressed by the example,
(2) the set of objects bound to the predicate’s arguments
(also serves as the focus of attention), and (3) the desired
Boolean output. In order for an unlearned predicate to
determine which of the learned predicates should serve
as inputs, evaluations for all learned predicates must be
determined with respect to the focus of attention.

SCALE evaluates individual predicates in a top-down
manner, but a purely top-down evaluation strategy must
visit every predicate in the network at least once per stim-
ulus. Even in a moderate sized domain, many predicates
may be completely irrelevant to a specific learning prob-
lem.

The bottom-up evaluation task is to determine the val-
ues of all predicates with respect to a small set of domain
objects (the focus of attention). Contrast this to a query
system, such as Prolog, whose task is to find a set (or all
sets) of bindings that make a given predicate true. The dif-
ference between the two problems is important. A query
system must search among all possible bindings to sat-
isfy a single predicate, while SCALE must search among
a limited number of possible bindings to satisfy as many
predicates as possible.

4.1.1. Definitions

We begin with a formal description of predicates and train-
ing examples. Let:

����� �����
	����

���
��� � be a predicate such that

� is a unique identifier for � ,

	�� is the set of argument variables for �

� is the set of input predicates (with fixed argu-

ment mappings) for � , and

� � is the set of predicates to which � is an input.

����� ����������� � be a training instance such that

� is a unique identifier for the target predicate,

� is the desired output, and

� is a set of bindings from objects to 	�� .
��� be the set of objects in the focus of attention.
��� be the set of ground predicates, or those that do

not depend on input from other features.

We also define the term improve with respect to a pred-
icate evaluation. The truth value of predicate � improves
the evaluation of ����� � � if the output value of � consti-
tutes evidence that ��� will produce a positive (true) out-
put value. With respect to the perceptrons underlying each
predicate, � improves ��� if the weighted evaluation of �
is greater than zero. This brings the left side of the percep-
tron evaluation rule (  "!#%$�&�' # � #)(+* ) closer to or beyond
the threshold value on the right side.

4.1.2. Algorithm

The main idea of bottom-up evaluation is to evaluate pred-
icates recursively as long as the evaluation of the current
(lower level) predicate improves the evaluation of its suc-
cessor (higher-level) predicates. Notice that each unique
binding from the focus � to arguments 	 � constitutes a
unique evaluation path. The number of possible binding
combinations is small however, since both , � , and , 	-�-,
are small and constant (five here).

Table 1 shows the algorithm for bottom-up evaluation.
The main loop iterates over the set � of ground predicates.
Each predicate � is evaluated with respect to all possible
bindings between � and 	�� . If the evaluation improves
any of � ’s successors, then the algorithm recurses. The
bindings of � are mapped to its successor �.� (against the
arrows in Figure 1). In some cases � � will have more
arguments than � , such as when �/��021�3
4
465�798;:=<?>A@ and�B�C�D0FEHG�5�798;:=<?>A@ in Figure 2. The extra arguments are
then bound to objects in � before bottom-up evaluation
continues.

4.1.3. An Example

An example from card solitaire illustrates both the method
and benefits of bottom-up evaluation. Figure 3 shows a
partial SCALE representation for this task. The agent
has already learned several lower-level concepts, but has
not yet acquired high-level concepts such as columnStack-
able. A card I & is column-stackable on card IKJ if the rank
of I & is one less than the rank of IKJ and the cards are of
opposite color. For simplicity we ignore domain aspects
related to card rank.



Given:
Set � of ground predicates
Example ��� ����������� �
Algorithm:
BottomUp � � � � � //main loop��� objects in �

for each � � � do� � set of all bindings between � and 	��
for each � ��� � do

BUEvaluator � � ��� � �
BUEvaluator � � ��� � //helper procedure� � set of bindings between � and 	�� given �

for each � ��� � do
bind � � to 	�� and evaluate �
for each �B��� ��� do

if � � is learned and � improves � � then
� � �������	� 
������������ � � � �B� �
BUEvaluator � ��� ��� � � �

Table 1. Online algorithm for bottom-up evaluation.

We begin with the assumption that the agent has just
received the following training instance for a new concept:
column-Stackable( � &������ , � J � � � ) = false. Thus the
agent’s focus of attention (the set � ) consists of the six
of hearts and the three of diamonds. The set of ground
predicates � consists of predicates spade and diamond.

Bottom-up evaluation first selects a predicate from � ,
say spade, and an initial binding from � , � ����� . The
predicate evaluates, resulting in spade( ��� ) = false. Next
each of spade’s output connections is tested. The output
value of false does not improve black, so evaluation halts
there. The predicate heart is improved (heart is true if the
card index is less than 26 and not a spade), so evaluation
continues along that path.

The next step is to map argument bindings. The ���
from � in spade to ' in heart (moves against the arrow
in Figure 3). Now the predicate heart( ��� ) evaluates to
true. Heart’s output connections are then tested reveal-
ing that red is improved by the result heart( ��� ) = true.
The algorithm therefore recurses and finds that red( ��� ) =
true (after a top-down evaluation of diamond), which im-
proves redBlack. Another round of recursion yields that
redBlack( � � , ��� ) = false. This outcome does not im-
prove colorsDiffer, so the recursion finally unwinds back
to spade.

The second round of bottom-up evaluation begins by
binding � � ��� in spade. Only two evaluations are per-
formed, on spade and heart before the recursion unwinds.
The algorithm then shifts to the diamond predicate and
proceeds in a manner very similar to that of spade.

There are two points to note in this example. First,
given the focus of attention ( ��� , ��� ), the predicate col-
orsDiffer is never evaluated. Second, evaluation along
many other paths through the representation halts prior to
reaching all of the predicates along the path. Many predi-
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Figure 3. Partial SCALE representation for solitaire.

cate/binding combinations, namely those unrelated to the
input stimulus, go untested. Ultimately, these combina-
tions are eliminated from consideration during input se-
lection at no computational cost. Only predicate/binding
combinations explicitly evaluated during bottom-up eval-
uation are eligible for input selection.

4.2. Forward Input Selection

SCALE’s approach to input selection is founded on the
limited learning assumption in two ways. First, many
learned predicates, as highlighted by bottom-up evalua-
tion, can be ignored during the selection process. The
portions of a representation unrelated to a given training
point are simply not good candidates. The second aspect
relates to the simplicity of the perceptron. More powerful
learning algorithms can detect and represent subtle rela-
tionships between inputs and output, but this makes pre-
dicting the utility of a given input difficult. The percep-
tron can represent only simple relationships, so predicting
which inputs may be useful, without incurring the cost of
training, is relatively simple.

There are only two basic types of inputs to a percep-
tron. Both cases can be coarsely detected without training
the perceptron. Excitatory inputs indicate when the per-
ceptron should evaluate positively. To detect an excitatory
input, SCALE computes the conditional probability �! �"$#&% �('*),+ � 0F3.--4 , � # !

� 0 3.--4 �*/ �!01�!2 that the unlearned
(output) predicate is true given that the learned predicate
is true. Probabilities closer to one indicate a stronger rela-
tionship (more overlap) between � # ! and �('*),+ .

Inhibitory inputs indicate when the perceptron should
evaluate negatively. Detecting inhibitory inputs is simi-
lar to detecting excitatory inputs. SCALE computes the
conditional probability ��3 � "$#&% �('*),+�� 0 3.--4 , � # !

�
7547698 4 �*/ �!01�:2 that the unlearned predicate is true given that
the learned predicate is false. Note that while both mea-
sures produce values in the range zero to one, they are not
complementary (they do not sum to one).

Given these detection measures, the algorithm for se-



Given:
Set of predicates � evaluated via BottomUp � � � � �
Predicate �/� � � � 	����

���
��� �
Example ��� ����������� �
Algorithm:
Select ��� � � � � �

for each �B��� � do
update �  � �	3

if � has seen enough examples then� � highest score predicates in �

� � 
��� �
initialize � for learning

Table 2. Online algorithm for selecting predicate inputs.

lecting inputs is straightforward. For a given training ex-
ample, the learned predicates are first evaluated bottom-
up. In the remaining steps, only predicates explicitly eval-
uated by the bottom-up procedure are considered. The ex-
citatory and inhibitory scores are computed over several
training instances. Candidate predicate(s) with the high-
est score are then added as input to � ' ),+ . The predicate� '*),+ then attempts to learn its target concept. Table 2 lists
the input selection algorithm.

4.3. Solidifying the Structure

So far, memory organization in SCALE has been primar-
ily concerned with reducing the number of potential inputs
to unlearned predicates. The combination of bottom-up
learning and forward input selection typically restricts the
number of new inputs acquired by an unlearned predicate
to just one or two at a time.

After the unlearned predicate selects new inputs, it re-
turns to training its perceptron. If the perceptron fails to
learn successfully, the predicate again tries to acquire new
inputs, repeating this process until the predicate is suc-
cessfully learned. Note that this select-then-train proce-
dure may loop many times before the necessary basis is
acquired. This is particularly true if the predicate repre-
sents very high-level knowledge.

When learning is successful, the final stage of prun-
ing unnecessary inputs begins. Pruning is important for
two reasons. First, bottom-up evaluation is most efficient
when the number of inputs to a given predicate is small.
Unnecessary inputs can quickly lead to unnecessary pred-
icate evaluations. Second, the presence of extra inputs can
affect generalization adversely.

SCALE employs an online version of the Randomized
Variable Elimination (RVE) algorithm (Stracuzzi & Ut-
goff, 2004). Briefly, RVE is motivated by the idea that,
in the presence of many irrelevant variables, the proba-
bility of successfully selecting several irrelevant variables
simultaneously at random is quite high. The algorithm
computes the cost of attempting to remove � input vari-
ables of � remaining variables given that � are relevant.
A sequence of values for � (given � and � ) is then found

by minimizing the aggregate cost of removing all �	�
�
irrelevant inputs. Note that � represents the number of re-
maining variables, while � denotes the total number of
variables in the original problem.

In summary, SCALE uses a combination of implicit
and explicit knowledge organization. Much of SCALE’s
learning effort goes toward feature selection, which ex-
plicitly sets knowledge dependencies. However, the im-
plicit organization produced through bottom-up evalua-
tion plays a key role in maintaining efficiency. SCALE’s
dependency selection algorithm may be viewed as a two-
part stepwise feature selection algorithm. Bottom-up eval-
uation serves as a filter for the set of considered depen-
dencies, while the conditional probability measures alter-
nate with the perceptron learners in a wrapper selection
approach. Alternatively, dependency selection in SCALE
may e viewed as a predicate clustering algorithm operat-
ing over a subset of the predicates (selected by bottom-up
evaluation) and using the conditional probability measures
as the similarity metric.

5. AN APPLICATION

We demonstrate SCALE’s organizational skills on an ex-
panded version of the cards domain discussed throughout
this article. The goal here is to demonstrate the influence
of memory organization on the larger knowledge acqui-
sition process. Of particular interest are changes in the
number of training stimuli required by the agent, changes
in the amount of computation required for learning, and
the agents general ability to detect relationships among
knowledge building blocks (predicates).

5.1. Cards Domain Overview

The cards domain is composed of predicates related to the
rules of solitaire. As previously noted, the agent must also
learn to recognize the suit, rank and color of cards based
solely on the card index. There are a total of 33 predicates,
two of which are ground predicates. The domain repre-
sentation requires nine layers as conceived by the author,
although SCALE may find a different organization.

Training data were generated at random and with re-
placement during execution. Thus, the recorded train-
ing times include the cost of data generation. Table 3
shows the final results produced by SCALE. The left side
of the table shows the order in which concepts became
learned, along with the CPU time, number of inputs and
number of examples required for learning. The right side
shows the same statistics, along with the concept layer
(or longest path from concept to a ground predicate), ulti-
mately achieved after all unnecessary inputs were pruned.

Note that the “learned inputs” column also shows the
total number of inputs available when the concept was
learned. Each arity-1 concept may take one input from
all other previously learned arity-1 concepts, while each
arity-2 concept may take two inputs from all previously
learned concepts. All times are aggregated across all con-
cepts, and are relative to a 1.13 GHz Pentium III proces-
sor.



Learned Completed
Concept Order Time (h:m:s) Inputs Examples Order Time (h:m:s) Inputs Examples Layer
diamond 1 1 0 / 0 3117 1 1 0 3170 0
spade 2 2 0 / 1 5498 2 2 0 5542 0
red 3 4 2 / 2 9528 3 4 2 10287 1
black 4 4 2 / 3 9697 4 5 2 10711 1
redBlack 5 9 5 / 8 17155 6 24 2 32374 2
club 6 9 1 / 4 17363 5 10 1 18581 1
colorsDiffer 7 11 10 / 12 20270 7 29 3 38380 3
heart 8 14 2 / 5 5903 10 1:29 1 26945 1
bothClub 9 27 3 / 16 36006 8 42 2 52106 2
bothSpade 10 59 2 / 18 72548 9 1:06 2 80051 1
king 11 1:05 6 / 6 79582 11 2:48 5 185328 2
ace 12 1:22 6 / 7 98208 14 4:11 5 278708 2
queen 13 1:51 7 / 8 129383 15 4:16 5 285043 3
rankOneOrLess 14 2:36 6 / 26 173808 16 4:46 6 323207 2
bothHeart 15 2:53 5 / 28 190016 12 3:16 4 216026 2
rankGreater 16 3:07 8 / 30 206407 20 10:53 6 876874 2
rankLess 17 3:31 13 / 32 234160 13 4:03 1 270214 4
jack 18 4:11 9 / 9 139404 21 13:57 7 590953 4
sameSuit 19 4:14 13 / 36 281962 17 5:46 7 401074 4
two 20 4:19 9 / 10 288215 22 16:04 6 1367719 4
ten 21 5:07 10 / 11 349702 19 10:03 8 792007 5
bothDiamond 22 6:59 2 / 42 506307 18 7:03 2 511705 1
three 23 7:42 10 / 12 286810 26 41:32 6 1725779 5
nine 24 12:00 12 / 13 322625 25 39:36 10 1091119 6
eight 25 13:40 14 / 14 1155257 24 38:58 9 3233442 7
four 26 14:06 13 / 15 397885 28 1:05:04 10 2710101 6
five 27 18:27 15 / 16 514755 33 1:14:58 9 4026922 7
seven 28 19:15 15 / 17 1042457 30 1:13:01 9 5132714 8
rankSame 29 20:56 14 / 56 589233 23 22:17 4 626534 4
six 30 46:57 18 / 18 1607050 27 50:54 12 1740028 9
rankOneGreater 31 1:10:03 38 / 60 3694841 29 1:11:42 4 3827154 5
columnStackable 32 1:12:15 28 / 62 5618831 31 1:13:57 2 5923287 6
bankStackable 33 1:12:49 32 / 64 2290050 32 1:14:02 2 2428876 6

Table 3. Results of running SCALE on the cards domain.

5.2. Results

There are two main points to note about SCALE’s perfor-
mance. First is that most concepts are learned quickly.
The first 29 concepts (predicates) learn in just over 20
CPU minutes total, and all learn within approximately 75
CPU minutes total. Removing irrelevant inputs requires
more CPU time, but this is expected. Improvements to
the dependency structure must not destroy existing knowl-
edge, and therefore must be made carefully. This is known
as stability (Quartz & Sejnowski, 1997).

The second key point is the general success of the or-
ganization process. All concepts completed initial learn-
ing using substantially fewer inputs than the number avail-
able. For example, rankSame selected only 14 of the 56
available inputs. This reduction serves to reduce evalua-
tion costs, reduce training costs (notice he large number
of examples required by the concepts that were less suc-
cessful in input selection), and improve concept general-
ization.

To further illustrate the effect of knowledge organiza-
tion, consider the learned structure as a whole. Given the

order in which concepts were learned, a total of 661 de-
pendencies were available. Less than half of these avail-
able dependencies were selected during concept learning
(ignoring the subsequent removal process). The number
of dependencies in the final structure (after removal) was
just 154. The structures used by SCALE during learning
were therefore very sparse compared to the structures that
would have been used by an agent with no knowledge or-
ganization.

6. DISCUSSION

One important aspect of memory organization is flexibil-
ity. The structuring of an agent’s knowledge must permit a
broad range of relationships among building blocks. The
alternative is redundant learning and recreation of existing
knowledge. In SCALE, building blocks are not explicitly
clustered or physically configured, although the weighted
connections learned by the perceptrons do indicate knowl-
edge dependencies. This approach has the advantage of
being both sufficiently structured to provide learning effi-
ciency, yet unrestrictive with respect to opportunities for
knowledge transfer.



Flexibility in memory organization may also be con-
sidered as a form of unsupervised learning. The agent is
free to select whichever organization allows the building-
blocks to be learned. There is no explicit training signal
to indicate dependencies.

With respect to representation, Valiant’s (2000) the-
oretical neuroidal architecture is similar to SCALE. The
architecture uses a first order representation with limits on
predicate complexity, arity and quantification. However,
Valiant assumes that local inputs and outputs are available
for each predicate during training to simplify theoretical
analysis. SCALE produces the inputs to each predicate
from the low-level stimulus, making no assumptions about
the accuracy of the result. The neuroidal architecture also
makes no attempt at knowledge organization.

SCALE also bears a broad resemblance to Bayesian
networks, which represent relationships among random
variables probabilistically. Although SCALE’s percep-
trons cannot be considered equivalent to the conditional
probability tables associated with nodes in a Bayes net,
they do represent the strength of dependence between two
entities. Predicates in SCALE are also strictly more gen-
eral than random variables in Bayes nets. With respect
to learning however, SCALE may be viewed as an incre-
mental algorithm for learning deterministic (noise-free)
Bayes nets with missing data. Missing data here refers
to the assumption that data appears in a stream of input-
output pairs for individual concepts instead of an entire
vector describing all concepts simultaneously. Thus the
SCALE learning problem is both easier (deterministic)
and harder (incremental and missing data) than standard
Bayesian network learning.

Although SCALE is not intended to act as a model for
human cognition, the method does resemble some of the
high-level processes. For example, bottom-up evaluation
is related to stimulus-driven neural activation. Similarly,
if we view the accumulation of values in the �: �1� 3 mea-
sures as a form of “growth”, then the forward input selec-
tion process is reminiscent of axonal growth. Likewise,
pruning of unnecessary connections from a predicate is
similar to the regression of unused dendritic pathways.
Unnecessary inputs exert little influence over predicates,
and are allowed to “wither away”.

7. CONCLUSION

Memory organization plays a critical role in knowledge
acquisition. A learning agent must be able to apply exist-
ing knowledge to new learning problems. However, dis-
tinguishing related and unrelated knowledge is a challeng-
ing task. Without some organization method, every piece
of existing knowledge must be considered as possibly re-
lated to the learning problem. This creates a situation in
which each new learning problem becomes more complex
than the previous. The SCALE algorithm provides a sim-
ple, yet effective approach to memory organization. The
algorithm uses a combination of implicit and explicit orga-
nizational techniques to improve the learning agent’s abil-
ity to acquire new knowledge.
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