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Abstract

We propose techniques based on graphical models to efficiently solve data association problems

arising in multiple target tracking with distributed sensor networks. Graphical models provide a powerful

framework for representing the statistical dependencies among a collection of random variables, and

are widely used in many applications (e.g., computer vision, error-correcting codes). We consider two

different types of data association problems, corresponding to whether or not it is known a priori which

targets are within the surveillance range of each sensor. We first demonstrate how to transform these two

problems to inference problems on graphical models. With this transformation, both problems can be

solved efficiently by local message-passing algorithms for graphical models, which solve optimization

problems in a distributed manner by exchange of information among neighboring nodes on the graph.

Moreover, a suitably reweighted version of the max-product algorithm yields provably optimal data

associations. These approaches scale well with the number of sensors in the network, and moreover are

well-suited to be realized in a distributed fashion. So as to address trade-offs between performance and

communication costs, we propose a communication-sensitive form of message-passing that is capable of

achieving near-optimal performance using far less communication. We demonstrate the effectiveness of

our approach with experiments on simulated data.
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I. INTRODUCTION

Recent years have witnessed the emergence of a new approach to sensing applications, involving

the deployment of a large number of small and relatively inexpensive sensors. Such ad hoc sensor

networks have the potential to provide enhanced spatio-temporal sensing coverage in ways that are

either prohibitively expensive or even impossible using more conventional approaches to sensing [1], [2].

However, realizing the potential of these large and distributed sensor networks requires the development

of techniques for distributed data association and estimation using sensing and wireless communication

nodes with constrained capacities for both computation and communication. This paper is devoted to

distributed techniques for solving data association problems, using the framework of graphical models.

Our primary motivation comes from problems that arise in multiple target tracking with distributed sensor

networks.

One central problem in multiple target tracking is data association—i.e., the problem of determining

the correct correspondence between measurements and tracks [3], [4]. One of the most widely-used

approaches to data association is the multiple hypothesis tracking (MHT)[5] algorithm. A distributed

version of the MHT algorithm was proposed by Chong et al. [6]. However, for a multi-sensor surveillance

system, the number of association hypotheses at each time frame increases exponentially with the number

of sensors in use, so that the cost of using either centralized or distributed MHT becomes prohibitive

for large-scale sensor network applications. Traditional approaches for data association usually exploit a

hierarchical architecture by introducing fusion nodes above the level of sensor nodes. Each fusion node

forms the local hypotheses based on the information from a few number of local sensors [7], and then

global hypotheses are constructed at an even higher level based on the pruned hypotheses at each fusion

node. However, since the total number of fusion nodes and the number of hypotheses kept at each fusion

node must be limited, only suboptimal solutions can be obtained.

In this paper, we propose a new approach to solving data association problems in a distributed fashion.

Our approach scales well with respect to the number of sensors, thereby rendering feasible optimal data

association in applications involving large-scale sensor networks. Moreover, even if applied to centralized

data association, our approach is still more efficient than the traditional ones. Our work makes use

of the framework of graphical models [8], [9]. This class of models are well-suited to represent the

structure of statistical dependencies in a collection of random variables. Accordingly, they are widely

used in many applications, including computer vision [10], speech recognition [11], and error-correcting

codes [12]. However, graphical models have not been ever applied on solving data association problems.
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The complexity of solving estimation problems in graphical models depends critically on the underlying

graph structure. On one hand, for graphs without cycles (i.e., trees), it is well-known that there exist

extremely efficient algorithms for performing optimal estimation [13], [14]. However, once there are

loops in a graph (as is most often the case in sensor networks), optimal estimation — or even suboptimal

estimation with guaranteed levels of performance — poses a significant challenge.

Several reasons underlie our choice of graphical models for addressing the data association problem

in sensor networks. First, a graphical model is well-suited to capture the structure of a sensor network,

which consists of nodes (for sensing, communication, and computation), as well as connections between

the nodes (for modeling statistical dependencies, and/or communication links). Second, there has recently

been significant progress in the development and analysis of efficient algorithms in graphs with cycles.

On one hand, there has been recent work on analyzing and understanding the behavior of the well-known

class of local message-passing algorithms on loopy graphs[15]–[18]; on the other hand, there are new,

more powerful algorithms, that can provide provably optimal solutions to problems such as maximum a

posteriori estimation in loopy graphical models [19]. Third, the algorithms commonly used for performing

estimation in graphical models involve parallel message-passing operations that are not only efficient,

but also well-suited to realization via physically-distributed processors in parallel, which is a crucial

requirement in many sensor network applications. Fourth, graphical models provide a suitable framework

for us to develop and analyze communication-constrained versions of message-passing algorithms, which

are necessary given the severe power and energy limitations of sensor networks.

A key issue addressed by our work is how to transform the data association and estimation problems

arising in distributed sensing scenarios into the formalism of graphical models. We describe our approach

to this issue in the context of two specific problems. In the first problem, we assume that the sensor

network is already organized, meaning that each sensor knows the set of targets it can observe, and each

sensor produces position/bearing/range measurements for the targets in its local surveillance region. With

this set-up, the goal is to determine an association between measurements and targets. One can envision

two approaches to constructing a graphical model for this data association problem: either by mapping

the sensors to nodes, or by mapping the targets to nodes. These two approaches are roughly analogous

to existing sensor-centric or target-centric approaches, respectively, to the data association problem. In

centralized data association, target-centric approaches have been favored [20], whereas a sensor-centric

approach appears more appealing for distributed processing in sensor networks [7]. Interestingly, our

analysis of sensor networks leads naturally to mixed sensor-target representations. In the second problem,

we consider a scenario where the sensor network must perform self-organization, meaning that it must
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be determined which sensor can see which target. For simplicity, we assume that sensors behave as

proximity indicators. The key issue is to estimate the distribution of targets over the surveillance area.

A method for solving this target distribution estimation problem can be viewed as a preprocessing step

for the first problem. We propose a region-based modeling approach, in which elementary variables to

be estimated are the numbers of targets in each of a set of disjoint subregions covering the surveillance

area. In particular, each subregion corresponds to the area surveyed by a distinct subset of sensors. The

measurements at each sensor correspond to the number of targets detected within the overall range of

that sensor, with some uncertainty due to noise. The various modeling approaches for these two specific

problems illustrate how the role of nodes in the graphical model changes according to the underlying

estimation problem of interest. For example, the nodes corresponds to sensors or targets in the first

problem, whereas they correspond to subregions or sensors in the second problem.

We proceed by transforming each problem described above to a suitable optimization problem in the

graphical model. We then show how such problems can be solved efficiently, by using local message-

passing algorithms that exploit sparsity inherent in the problem due to the local sensing structure. We use

both standard message-passing algorithms, and also the more recently developed tree-reweighted max-

product (TRMP) algorithm [19]. Whereas standard message-passing algorithms provide no correctness

guarantees on loopy graphs, the TRMP algorithm renders it possible to obtain optimal data association

(in the maximum a posteriori sense) even on graphs with cycles [19]. In these algorithms, distributed

inference is achieved iteratively through the exchange of information among neighboring nodes on the

graph in parallel, where each iteration requires a certain amount of communication between the nodes.

This parallel message-passing structure makes these algorithms especially suitable for a distributed

implementation, in which each node performs local processing and then transmits the results to its

neighbors on the graph. We demonstrate the effectiveness and the computational efficiency of this

approach on a number of simulated scenarios.

In a distributed implementation, the message passing operations correspond to communication between

the computation nodes in the sensor network. In the standard algorithms described above, the nodes

continue transmitting messages until the overall algorithm converges, without making any distinction

between messages that contain significant new information (compared to previous iterations) and ones that

do not. A key limitation of typical sensor networks is the budget for communication, since communication

consumes power, and the nodes are usually power-limited. Hence, it is of considerable interest to develop

algorithms that treat communication bandwidth as a limited resource that needs to be used wisely and

sparingly. To this end, we propose a new algorithm based on the message–passing algorithm, where we
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provide nodes with the authority to decide whether or not messages should be sent at each iteration, based

on statistical rules related to the information content of messages. We show that such communication-

sensitive algorithms can provide considerable savings in communication without much sacrifice in overall

decision-making performance. Furthermore, this approach provides insight into the trade-offs between

the performance achieved and the amount of communication needed by sensors, as well as into the

information flow dynamics inside sensor networks. For example, we observe that a node that has decided

not to communicate for a while may suddenly start passing messages again as new information finally

reaches it.

The remainder of this paper is organized as follows. Section II introduces the essential background of

graphical models and message-passing algorithms, as well as the tree-reweighted max-product algorithm.

Section III contains the mathematical formulation of the measurement-to-target association problem in an

organized sensor network and our approach to transforming it to an optimization problem on graphical

models. Section IV proceeds with the formulation and transformation of target distribution estimation

for sensor network self-organization. An adaptive technique, communication-sensitive message-passing,

is proposed in Section V. Experimental results are presented in Section VI. We summarize our work and

discuss directions for future research in Section VII.

II. BACKGROUND ON GRAPHICAL MODELS

A. Graphical Models

A graphical model consists of a collection of random variables that are associated with the nodes of a

graph. Although various formalisms [8] exist for graphical models, the work in this paper focuses entirely

on Markov random fields (MRF), which are based on undirected graphs. More formally, let ���������
	�� be

an undirected graph, where � is a set of nodes or vertices, and 	 is a set of edges. For each vertex ���� ,

let ��� be a random variable that takes values in the discrete set ���������������! ! ! "�$#&%'�)( . Concatenating

together these variables yields the *+�-,.�/, dimensional random vector ���������0�1,23���4( , which takes

value in the Cartesian product space �/5 .

The graphical model formalism requires that the random vector � satisfy certain Markov properties

associated with the graph � . For any subset 6'78� , we define �:9����-��; � ,<=��6>( . Let ? be a vertex

cutset in the graph, so that removing it separates the graph into at least two pieces @ and A . We say

that � is Markov with respect to the graph if ��B and ��C are conditionally independent given �ED . In this

case, the Hammersley-Clifford theorem [21] guarantees that the distribution FE�G��� can be factorized as

the product of functions defined on the cliques (i.e., fully-connected subsets of the vertex set � ) of the
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graph. In particular, associated with each clique � is a clique compatibility function ���'� ��� ���	��
���
that depends only on � � . With this notation, a MRF consists of a collection of random variables � and

the distribution FE�G��� that factorize as

FE�G��� � �
�
�
�����

��� �G������� (1)

where � is the set of all cliques of � , and � denotes a normalization constant.1 In many applications,

the random vector � is not observed; given instead are independent noisy observations � � ��� � ,2 ��� (
at all (or some) of the nodes, on which basis one would like to draw inferences about � . The effect of

including these measurements — i.e., the transformation from the prior distribution FE�G��� to the conditional

distribution FE�G� ,��E� — is simply to modify the factors in (1). As a result, we suppress explicit mention

of measurements in this section, since the problem of computing marginals for either FE�G� ,��E� or FE�G���
are of identical structure and complexity.

The distribution FE�G��� is central to various inference problems for graphical models. Of interest to

this paper are the problems of estimating the marginal distribution FE�G� � �>��� ��� s.t ��� "!#�  FE�G�%$ � for each

variable ��� and finding the maximum a posteriori (MAP) configuration &� �('�)+*-,.'�/ � ��021 F:�G��� . As we

describe in the following subsection, local message-passing algorithms, including the sum-product and

max-product algorithms, can be used to solve these problems efficiently, either in an exact or approximate

manner.

Throughout this paper, we focus on MRFs with pairwise compatibility functions, for which compat-

ibility functions are defined only for singleton cliques (individual nodes) and pairwise cliques (pairs of

nodes joined by edges). For a MRF with pairwise compatibility functions, the factorization of FE�G��� in (1)

takes the simpler form

FE�G����� �
�
�
�+��3

���"�G� ���
�

4 �+5 6879��:
���;6$�G� ���$�%6 ��� (2)

where ���"�G� ��� is the node compatibility function that depends only on the individual variable � � , and

���<6
�G� ���$�%6 � is the edge compatibility function that depends only on the variables ��� and �%6 joined by

edge �  �>=
� .
In principle, the pairwise assumption entails no loss of generality, since any MRF with higher order

clique compatibility functions can be converted to an equivalent MRF in such a pairwise form. Moreover,

it simplifies our exposition, since the most straightforward form of message-passing was originally

developed on tree-structured graphs, for which any MRF takes this pairwise form. Although there are

1We use this notation throughout the paper, where the value of ? may change from line to line.
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generalized forms of message-passing that entail operating on higher order cliques, these generalizations

usually involve clustering the nodes within a higher order clique to one node [22]. Since complexity of

message-passing algorithms grows exponentially in the cluster size, concerns of computational tractability

limit the appeal of such approaches. For these reasons, it is appropriate to limit our discussion to MRFs

with pairwise compatibility functions. The standard message-passing algorithms as well as the tree-

reweighted max-product algorithm are introduced in the next two subsections under this assumption.

B. Message-passing algorithms

Message-passing techniques [13], [23], [24], including the sum-product algorithm and the max-product

algorithm, are generalizations of the widely-used forward-backward algorithm and Viterbi algorithm on

Markov chains to arbitrary tree-structured graphs. There are different ways to schedule the passing order

of the messages [14]. Here we consider a parallel scheme, in which at each iteration, each node = passes

a message to each of its neighbors  ��� � =
� simultaneously and in parallel. The message in the � 6��
iteration, which we denote by ���6 � �G� ��� , is a function of the possible states �E�1��� � . This parallel message-

passing operation is inherently a distributed algorithm, so that it can be realized on physically distributed

processors.

The sum-product algorithm (also known as belief propagation) is used to compute the node marginal

distribution F:�G� � � . In this particular instance, the message � �6 � is computed recursively by

� �6 � �G� ����� �	�
� �

�
���<6
�G� ���$� $6 �"� 6 �G� $6 �

�� �� 4 687��$� � ������ 6 �G� $6 ���>� (3)

where � � =
���� is the set of neighbors of node = in the graph � excluding node  , and � is a normalization

constant (typically chosen to ensure that � �6 � ��� � sums to one). For any tree-structured graph, the message

update equation (3) converges to a unique fixed point ��� � �����6 � ( after a finite number of iterations.

The converged values of the messages � � can be used to compute the marginal distribution at node 
via

FE�G� � �0� � � � �G� � �
�� �� 4 � 7 � �� � �G� � �� (4)

The max-product algorithm is a similar form of message-passing that is used to find the MAP

configuration &� � �#&� �3, 4� �4( . One interpretation [17] of the max-product algorithm is as computing

the so-called max-marginals !0�"�G� ��� � � ,.'�/#" ���8� ��� !#�  %$ FE�G� $ � at each node. If, for each node, the max-

marginal ! � over �%$ � ��� � is attained at a unique value, then it can be shown [17] that the MAP

configuration &� is unique, with elements given by &� � � '�)+* ,.'�/ ��� � 0  !:���G�%$ � � . In the max-product
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algorithm, the messages are updated according to the recursion

� �6 � �G� ��� � � ,.'�/
� �

�
���<6
�G� �!�$� $6 �"� 6 �G� $6 �

�� �� 4 687 �$� � � ���� 6 �G� $6 � � � (5)

As with the sum-product algorithm, when applied to a tree-structured graph, the message update equa-

tion (5) converges to a unique fixed point � � � ��� �6 � ( after a finite number of iterations.

For tree-structured problems, both the sum-product and max-product algorithms produce exact solutions

with complexity
� �G#���� � , where # is the number of states per node, and � is the number of nodes on the

longest path in the graph. The same message-passing algorithms are also applied frequently to graphs with

cycles, where they serve as approximate methods. In the presence of cycles, the updates may not converge,

and need not compute the exact marginal distribution (for sum-product) or the MAP configuration (for

max-product). However, there are some results on the quality of the approximate MAP solutions [15]–[17]

and the approximate marginal distributions [18].

C. Tree-Reweighted Max-Product Algorithm

In this section, we describe a modified version of the max-product algorithm that is guaranteed to

output a provably optimal MAP configuration, or to acknowledge failure. One way to describe this tree-

reweighted max-product (TRMP) algorithm [19] is as a sequence of updates on trees of the graph, using

the ordinary max-product algorithm as a subroutine. The basic idea is to represent the original problem

on the graph with cycles as a convex combination of tree-structured problems. It can be shown [19] that

whenever the tree problems all share an optimal configuration in common, this configuration must be the

MAP configuration for the original problem. Based on this idea, the goal of the TRMP algorithm is to

find a convex combination of tree-structured problems that share a common optimum.

Let �� �-� � �	� � ( be a probability distribution over a set of spanning trees �
��� ,� � ���! ! ! ���� ( of the

graph. For each edge �  �>=$� � 	 , let � �;6 ����)����� � 2�>=
� ����� be the probability that edge �  �>=$� appears in a

tree � chosen randomly under �� . We require a choice of �� such that � �;6��'� for all edges of the graph.

With this notation, the updates take the following form:

1) For each spanning tree ��� ��1� ���! ! ! ���� , specify a set ��� ����� �� �>�!��;6 ( of compatibility functions

for the tree via:

� �� � ���#" �� ��� � ��<6 �%$ ���<6'&�()  
 ":�  �>=$�>� 	 �	� � �� 
2) For each tree � � ��:�����! ! ! "��� , run the max-product algorithm until convergence to obtain a set of

tree max-marginals ��!*�� ,  � �4( and messages ���+��<6 ,��  �>=$� � 	 �	�,� � ( .
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Fig. 1. A coverage configuration of multi-sensor multi-target data association. There are seven sensors ( 	�
 is the inner sensor

unlabeled) with detection ranges shown as dashed circles. Targets are shown as
�

and  . Each of the gray
�

targets falls into

the range of exactly one sensor. Black
�

targets are shared by two sensors and the two black  targets are shared by three

sensors. We assume this sensor-target coverage configuration is known.

3) Check if all trees agree on the assignments produced by the max-product algorithm. If yes, output

the assignment and stop. If not, update the compatibility functions by

� ������ ��� /�� � ����� � �	� � ����� * ! ���� " 3� ���

� ������;6 ��� /�� � ����� � �	� � ����� * � ��;6� ��;6 � �6 � � � ":�  �>=$� � 	 �
and return to step (1) with �! � �"��� .

It can be shown that this algorithm always has a fixed point for positive compatibilities. The algorithm

outputs the correct MAP assignment as long as the max-marginal for each node has a unique optimum,

which can be assumed safely in most cases. More details on TRMP and its link to a tree-based linear

programming relaxation can be found in [19].

III. DATA ASSOCIATION IN AN ORGANIZED NETWORK

Data association is recognized as the central problem of multi-sensor multi-target tracking. This section

is devoted to a core problem in data association, with the goal of exploring how graphical models can

be used effectively so as to exploit the intrinsic sparsity.

A. Problem Formulation

The set-up of the core problem that we consider is as follows. The existing tracks of � targets

�$# � �%# � �! ! ! ��%#'&�( with current probability density functions on location for each target are assumed to
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be known. Moreover, the targets are taken to be independent from one another. We have a surveillance

system consisting of * sensors �" � �  � �! ! ! ��  5 ( with limited but in general overlapping surveillance

regions. An example of such a scenario is shown in Fig. 1. Moreover, we assume the organization of

the sensor network has been accomplished (i.e., it is known from the sensor surveillance regions which

targets can be detected by a given sensor, although false alarms and missed detections are permitted).

We divide all targets into * small sets � � ��� � �! ! ! ���� 5 , where the set � � contains the targets covered

by the sensor  � . A target can be in several sets due to the overlapping coverage. Each sensor measures

the state of targets in its surveillance area and generates a set of position/range/bearing measurements
�
� �&��� ��� ��� � ����� �! ! ! "�	� � ( , with � � being the number of measurements generated by sensor  � . With

this set-up, the goal is to determine the most probable assignment of measurements to the targets. Any

assignment must be consistent, meaning that each measurement in
�
� is either assigned to at most one

of the targets in � � , or to none of the targets (hence declared to be a false alarm), and each target in � �
is associated with at most one measurement in

�
� , or otherwise corresponds to a missed detection for

sensor  � .
The measurement association for each sensor is coupled with the other sensors due to overlap in

sensor coverage regions and unknown nature of the target states. Therefore, we have to consider the

data association at all the sensors jointly in order to obtain the optimal data association. Let 
 denote

a random variable taking values in the whole association configuration space, representing the possible

associations. The essence of the data association problem is to obtain the MAP estimate

&
&� '�)+* ,.'�/� F:��
 �� , � �� (6)

Notice that with * sensors and each sensor covering � targets 
 has � ��� ��5 different configurations.

Although for each particular association configuration  , F:�� , � � could be computed, it is intractable

to enumerate each configuration of 
 and compute &
 for any nontrivial problems.

However, the sparsity inherent in the problem structure can be exploited so as to reduce the com-

putational complexity. Instead of attacking the data association problem as one huge problem modeled

by a single variable 
 with a huge state space, we can view 
 as the concatenation of a collection of

local random association variables, one defined for each sensor or for each target. With this view, it is

natural to construct a graphical model for the data association problem, which then allows us to make use

of the existing inference algorithms to efficiently compute MAP estimates of the association variables.

Constructing a graphical model requires identification of the graphical structure, and factorization of the

posterior probability FE��
 , � � into products of local compatibility functions defined on graph cliques.
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As we will show in subsequent subsections, there are a variety of different approaches to modeling

the data association problem, each of which leads to different types of graphical models. For instance,

defining an association variable for each sensor leads to a sensor-oriented modeling approach. On the other

hand, defining an association variable for each target corresponds to a target-oriented modeling approach.

Interestingly, we find that a hybrid modeling approach, combining elements of both the sensor-centric

and target-centric approaches, is best-suited for solving the data association problems in sensor networks,

using the inference algorithms for graphical models. The following subsection is devoted to a detailed

description of these modeling approaches.

B. Graphical models for data association

In this section, we explain in detail how we construct the graph and the compatibility functions for the

data association problem described in Section III-A. To simplify our discussion and notation, we assume

throughout Section III-B.1 to Section III-B.3 that there are no false alarms and no missed detections and

postpone the discussion on false alarms and missed detections to Section III-B.4. Without false alarms

and missed detections, the measurements generated and the targets covered by each sensor will be in

one-to-one correspondence. For simplicity of explanation only we further assume the same number of

targets, � , are covered by every sensor. With these assumptions, the number of measurements in each

sensor equals to � . We also assume that each association configuration is equally likely a priori, thus

factorizing F:��
 , � � is equivalent to factorizing the measurement likelihood FE� � ,�
 � . The task of

data association is equivalent to finding the association configuration that maximizes the measurement

likelihood.

We begin by describing how to construct a graphical model in which the nodes are in one-to-one

correspondence either with sensors or with targets. As we will see, for the sensor-oriented models, when

more than two sensors see any particular target, higher order clique compatibility functions appear and

the structure of the resulting graph becomes more complex. On the other hand, for the target-oriented

models, higher order clique compatibility functions can always be avoided, but the graph is quite densely

connected. These advantages and disadvantages of both models motivate the introduction of additional

nodes corresponding to small groups of targets into sensor-oriented models, thereby leading to a hybrid

but more tractable and sparse graphical structure.

1) Sensor-Oriented Modeling: The sensor-oriented modeling approach entails defining a set of asso-

ciation variables � � �$� � �! ! ! ��$� 5 , one for each sensor. Each association variable � � takes values in the

permutation space of the measurement set
�
� , and thus has � ��� � states. Each state of � � corresponds to
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(a)

��� ���
���

� � � �
� 

� �

(b)

���
� � ��� �	�� �

� �

Fig. 2. Two data association scenarios. (a) Two sensors with four targets. (b) Three sensors with five targets. Target 
 � is

covered by three sensors.

a valid association configuration of the measurements generated by sensor  � . We use ; � � #����1� � � � to

indicate that target #� is assigned the measurement � � � in the particular association configuration ; � for

sensor  � . Then the measurement likelihood in a certain association configuration  � ��; � �$; � �! ! ! ��$; 5 (
can be written as

FE� � � � � � �! ! ! "� � 5 ,)� � � ; � �! ! ! "�$� 5 � ; 5 � (7)

�
5�

� ! �
��
� � �

s.t� ��� � (	�
��� FE� � � � ,"; � � # � �0� � ��� �

���
�

� ��� �� �!�
��
� � �

s.t� ��� ��" �
��� �#� FE� � � � �>�%$�& ,"; � � # � � � � � � �$; $ � # � �0� �%$�& �

���
�

���� �'� (���!�)�*(
��
� � �

s.t� ��� ��+ �
��� �'� (	� FE� � � � �>�%$,& �>�.-�/ ,"; � � # � �0� � � � �$; $ � # � �0� �%$,& �$;0-�� # � �0� �.-,/<�

���
�

 ! ! 

where

� � �  ��� �$#*�3,�#�� � � � and #��21� �43 � "6587� 
(2�
� � �  �:9<� � �$#*�3,�#�� � � �<; � $ � and #��=1� �>3 � "6587� 
�:9 (2�

�@? � 
�:92�,A � � �$#*�3,�#�� � � �<; � $ ; �4- � and #��21� �43�� "B5@7��
�:9 �,A (2�
and � � is the set of targets covered by sensor  � . The above factorization defines both the graph structure

and the compatibility functions. Since the variables we need to estimate correspond to the sensors, we
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Fig. 3. Sensor-oriented models. (a) The model for the scenario shown in Fig. 2(a). (b) The model for the scenario shown in

Fig. 2(b).

place a node in the graph for each sensor, and define the node compatibility functions as

� � �G; � ���
� �

s.t� � � � ( �
��� FE� � � � ,); � � #��!� � � � � �� (8)

For two sensors that share a set of targets covered by none of the other sensors, as in the scenario shown

in Fig. 2(a), we connect the nodes for these two sensors with an edge because their association variables

are coupled directly by the targets they both cover, and define the edge compatibility function as

� � $ �G; � �$; $ � � � �
s.t� �,� ��" �
� � �#� FE� � � � �>�%$,&/,"; � � # � �0� � � � �$; $ � # � ��� �%$,& �� (9)

For example, Fig. 3(a) shows the sensor-oriented model for the scenario shown in Fig. 2(a).

This same idea can be applied more generally if we insist on using a graphical structure with nodes

in one-to-one mapping with sensors. In particular, if there are targets covered by A sensors with A���� ,
as in the scenario shown in Fig. 2(b), we connect these sensor nodes with each other to form a A -clique

(a clique containing A nodes), since they are coupled by the targets they all cover. We use the likelihood

of the measurements assigned to the targets covered by all sensors in the clique to define the clique

compatibility function. For example, if  � ,  $ and *- form a 3-clique, the clique compatibility function

is defined as

�2� + �G; � �$; $ �$;0- ��� � �
s.t� � � � + �
� � �#� (	� F:� � ��� �>�%$,& �>�.-�/ ,); � � #����0� � ��� �$; � � #������ �%$,& �$; � � #����0� �.-�/ �� (10)

Fig. 3(b) shows the sensor-oriented model for the scenario shown in Fig. 2(b).

With each node in the graphical model corresponding to a sensor, the sensor-oriented modeling approach

is amenable to implementation on sensor networks. However, when there are targets covered by A����
sensors, the sensors form a A -clique and result in a higher order clique compatibility function defined for

the whole clique. Unfortunately, the message-passing algorithms require pairwise compatibility functions,

as in (2). If the extensions for message-passing such as node aggregation are applied, the new graph will
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have a huge node with as many as � ��� � - states and could become intractable. It is more convenient here

to develop a description in terms of pairwise compatibilities.

2) Target-Oriented Modeling: Analogous to the centralized data association techniques where the

focus is usually on solving the data association for each target [20], we can formulate the data association

problem based on association variables defined for each target, i.e., 
&� ���� � ���� � �! ! ! ����� & ( . For target # � ,

�� � takes value in the Cartesian product of the measurement sets generated by sensors covering # � . We use

�; � �  � ��� � ��� to denote that in a particular association configuration �; � , target #�� is assigned measurement

� � � from sensor  � . Notice that for a globally valid association configuration, different targets cannot be

assigned to the same measurement, i.e., if �; 3 and �; � are the association for #3 and #�� respectively in a

globally valid association configuration, then �; 3��  � � 7� �; � �  � ��� " 
 Then the measurement likelihood in a

particular association configuration � �; � � �; � �! ! ! "� �; & ( can be factorized as

F:� � � � � � �! ! ! �� � 5 , �; � � �; � �! ! ! �� �; &/� (11)

� 5�

� ! �
��
� � �

s.t� ��� � ( �
� � FE� � � � , �;0���  � � � � � � �

���
�

� � � ����!�
��
� � �

s.t� ��� � " �
� � �'� F:� � ��� �>�%$,&/, �;0���  � �0� � � � � �;0�2�  $ � � �%$�&��

���
�

���� �'� (� �!� �*(
��
� � �

s.t� ��� � + �
� � �'� (:� FE� � � � �>�%$�& �>�.-�/ , �;0���  � ��� � � � � �; � �  $ �0� �%$�& � �; � � %- �0� �.-�/<�

���
�

 ! ! 

5�

� ! �
��
� �

� � �
s.t� � � � �,� � � � � % �

� � �;03 � �;0���$�
���
�

where

�
� � �;03 � �; �����

��	 �
 � if �;63 �  � ��� �;0���  � �
� otherwise  

(12)

The
�

functions here enforce the constraints that a measurement at a sensor can be assigned to only

one of the targets covered by the same sensor. These kinds of binary constraints are widely used

in graphical models for parity-check codes [25], thereby they are usually referred to as parity-check

compatibility functions. The above factorization indicates that with each node in the graph corresponding

to a target, the node compatibility function is defined by the likelihood of the measurements associated
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Fig. 4. Target-oriented models. (a) The model for scenario shown in Fig. 2(a). (b) The model for scenario shown in Fig. 2(b)

to the corresponding target. For example, � � �;B��� � FE� � � � , �;0���  � �3� � � � � if #�� is covered by only  � ;
or � � �; � ���-FE� � � � �>�%$,& , �; � �  � �=� � � � � �; � �  $ ��� �%$,& � if # � is covered by only  � and  $ , etc. Due to

interaction defined by the
�

functions, we need to connect the target nodes covered by the same sensor

with each other, and define the edge compatibility function as

� � �;63�� �; ������� % �
� � �;63 � �; ���� (13)

Fig. 4 shows the target-oriented models for the scenarios shown in Fig. 2.

With the target-oriented modeling approach, we can always obtain pairwise compatibility functions

even if there are targets covered by more than two sensors. The number of states is � - for a target

covered by A sensors. Compared with sensor-oriented models which have the largest node size of � ��� � -
after clustering the clique nodes, this is a significant reduction on node state space. However, the target-

oriented modeling approach usually yields a highly connected graph since the nodes for the targets

covered by the same sensor form a clique. Besides, the nodes inside the clique are tightly linked by

parity-check compatibility functions. The strong interaction between nodes can cause oscillation in the

dynamics of local message-passing algorithms, which can slow or prevent convergence.

3) Sensor-Target Hybrid Modeling: We now propose a sensor-target hybrid modeling approach. This

hybrid approach allows us to retain the framework of sensor-oriented models (thereby keeping the

algorithm close to the network architecture), and simultaneously leads to pairwise compatibility functions

with the largest node having � - states. As in the sensor-oriented models, we build one node for each

sensor. If no targets are covered by more than two sensors, we construct the graphical model in exactly

same way as the sensor-oriented models. If there are some targets covered by three or more sensors, we

incorporate the association variables for these targets into the models as well, and connect each target

with every sensor node that covers it. In this way, the clique compatibility function that would occur

in sensor-oriented models become the node compatibility function for the targets. For example, for the
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Fig. 5. Sensor-target hybrid model for scenario shown in Fig. 2(b). The square node corresponds to target 
 � observed by all

three sensors.
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Fig. 6. The sensor-target hybrid model for the example shown in Fig. 1. Circle nodes correspond to the sensors as labeled,

square nodes are for the two  targets observed by more than two sensors.

scenario in Fig. 2(b), we can write

FE� � � � �>�%$�& �>�.-,/ ,); � � #������ � � � �$; $ � #*����� �%$,& �$;6- � #������ �.-�/2� (14)

� FE� � � � �>�%$�& �>�.-,/ , �;0���  � �0� � � � � �; � �  $ � � �%$�& � �; � � %- ��� �.-�/ � � � �;0�)�$; � � � � �;0�)�$; $ � � � �; � �$;6-��
where

� � �; � �$; � ���
��	 �
 � if �;0� �  � ��� ; � � #����
� otherwise  

(15)

is the compatibility function defined on the edge connecting the target node with the corresponding

sensor node. This compatibility function ensures that the sensor association variable and target association

variable are consistent with each other to form a valid global association configuration. The hybrid model

for this scenario is shown in Fig. 5.

In summary, we construct the sensor-target hybrid models as follows. We first build one node for each
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sensor to represent the association configurations of this sensor. Two nodes are connected by an edge if

they share any target, and no third sensor covers this target. If there is any target shared by more than

two sensors, then we build one node for each such target and connect it with all the nodes that represent

the sensors which cover that particular target. As another example, Fig. 6 shows the graphical model for

the scenario in Fig. 1 using the sensor-target hybrid modeling approach.

4) False Alarms and Missed Detections: It is straightforward to extend our approach to deal with data

association in an environment where false alarms and missed detections are possible. In this subsection, we

discuss how to handle false alarms and missed detections in the sensor-target hybrid modeling approach.

Similar techniques can be applied on the sensor-oriented models and target-oriented models.

In the case of false alarms, it is possible that some of the measurements are not assigned to any

targets. On the other hand, in the case of missed detections, we need to consider the possibility that a

target might not produce any measurement at a sensor covering it. In order to take into account false

alarms at sensor  � , we augment each target set � � with a virtual target #�� such that each sensor has

its own virtual target, and this virtual target can only be assigned to a measurement generated by the

sensor  � . Similarly, we augment each measurement set
�
� with a virtual measurement ��� to take into

account the targets missed by  � . We use the notation ; � � #������ � � � to denote that measurement � � � is a

false alarm in a particular association configuration for sensor  � . Multiple measurements at a particular

sensor could be assigned to the virtual target #�� due to the fact that multiple false alarms could exist.

Similarly, we use the notation ; � � #����0� ��� to denote that target #� is missed by sensor  � in the particular

association configuration ; � . Multiple targets covered by  � could be assigned ��� , corresponding to the

fact that multiple targets could be missed. For the sensor nodes, the state space is now the permutation

space of the augmented measurement set where ��� can be used repeatedly. We evaluate the likelihood

of false alarm measurements in a particular association configuration through FE� � � � ,); � � #������ � � � � . We

also multiply the sensor node compatibility function with a probability that corresponds to the number

of detections and missed detections. For example, if sensor  � has A missed detections in ; � , and also

one measurement � ��� is deemed as a false alarm, then the node compatibility function is defined as

� � �G; � �0�
��
� � �

s.t� ��� � (��
� � F:� � ��� ,"; � � #����0� � � � �

���
� FE� � � &/,"; � � #������ � � &���!�� ! 4 � � - 7D � � % !ED � - (16)

where !	� and !ED are the false alarm probability and detection probability of the sensor respectively.

For the target nodes in the target-oriented models as well as in the sensor-target hybrid models, the

state space of the node is the Cartesian product of the augmented measurement sets generated by each
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sensor covering it. If in a particular state for a target node such that �; � �  � �0� ��� , then it means a virtual

measurement is assigned to # � by  � , i.e., # � is missed by  � . The compatibility function between a target

node and a sensor node is still the parity check function in this case, but the value of �; ���  � � and ; � � #����
could be the virtual measurement ��� .

C. Scalability

One major advantage of using techniques based on graphical models is that they scale well to large-

scale sensor networks. With the sensor-target hybrid models, all sensors and some targets have cor-

responding nodes in the graph. Without false alarms and missed detections, each sensor node has ���
states. The target node has � - states, where A is the number of sensors covering the corresponding

target. If the graph is of tree-structure, both message-passing algorithms and TRMP have the complexity
��� , '�/ � ��� ��� - � �2� *�� � ��� which corresponds to the worst case that every target is observed by A sensors.

For a typical tracking application with ���	� and A
��� , the complexity is about
� � � � - � *� ��� �

(comparing to � ��� �$5 for direct computation), i.e., linear with the number of sensors used in the network.

The above analysis can be extended to the scenarios where false alarms and missed detections exist

accordingly. Of course, there are loops in the graphical models arising from most sensor networks,

so that local message-passing algorithms typically need more iterations (and hence more computation)

to converge than in the case of trees. The tree-reweighted max-product (TRMP) algorithm involves

running max-product on several spanning–trees embedded in the graph. The construction of spanning–

trees introduces a certain amount of extra computation, but this computation cost is negligible as compared

to the inference cost because only a small number of spanning–trees are usually enough to cover the

original graph. With each tree having the above complexity, TRMP needs to iterate on these spanning

trees until agreement. Although these iterations can incur further computational cost, the benefit is the

guarantee of exact MAP estimates. The computation can still be fully distributed over the sensor network,

so that the load for each sensor remains reasonable. Consequently, our approach can be used to solve

data association problems in large-scale sensor networks. In Section VI, we provide simulated results on

problems of moderate size (namely, 25 sensors with up to 54 targets) so as to support this assertion.

IV. TARGET DISTRIBUTION ESTIMATION FOR NETWORK SELF-ORGANIZATION

A. Problem Formulation

In this section, we consider the problem of self-organization in a sensor network, where the goal is

to form estimates of how the targets are distributed in the surveillance area. Such estimation results are
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helpful for determining which targets are seen by which sensors, and thus can be viewed as a prepro-

cessing step that determines the graphical model structure for the data association problem formulated

in Section III. Specifically, we assume that the sensors are proximity indicators that can only detect and

indicate the presence of targets within their observation range (hence within their proximity), and we

consider a target distribution estimation problem to determine the number of targets covered by each

distinct subset of sensors. We consider a planar region where * sensors �" � �  � �! ! ! ��  5 ( are deployed

to monitor the surveillance area. Each sensor  � has some limited local signal processing capability to

generate a noisy observation � � about the likelihood of the number of targets it detected in its surveillance

range. Sensors are randomly distributed in the surveillance area such that part of the coverage area of

each sensor overlaps with the coverage area of its neighboring sensors. Thus, there are disjoint subregions

��� � ��� � �! ! ! ���� &�( , each covered by a distinct set of sensors (see Fig 7(a) for example). Let
�

� denote

the set of subregions covered by sensor  � . We define � � ��� � �$� � �! ! ! ��$� & ( to be a set of independent

random variables, where each � $ corresponds to the number of targets located in subregion � $ . Let FE�G� $ �
denote the prior for � $ . Our objective then is to estimate the posterior distribution of the number of

targets in each subregion given the sensor observations ��� ��� � �>� � �! ! ! "�>� 5 ( , i.e., FE�G� $ ,��E� for each � $ .

This target distribution estimation problem illustrates a challenge common to many fusion problems

using sensor networks. Specifically, the goal is to obtain a global decision based on local, imprecise and

redundant information provided by a large number of relatively simple and myopic sensors. Dealing with

such problems typically requires a large amount of computation. For example, in the target distribution

estimation problem, if the number of targets in each subregion has � possible values, then with �
regions, there are � & possibilities. For a large sensor network where the surveillance area consists of

many subregions, to enumerate all possibilities by brute force is usually infeasible. However, graphical

models can be used so as to take advantage of the sparsity inherent in the problem structure. For the

target distribution estimation problem, the sparsity originates from the fact that each sensor has only

limited coverage, and that � $ is Markov with respect to the graph structures embedded in the sensor

coverage topology. In the next subsection, we propose a sensor-subregion hybrid modeling approach to

construct the graphical models and use the sum-product algorithm to estimate FE�G� $ ,�� � �>� � �! ! ! "�>� 5 � .
B. Graphical Models for Target Distribution Estimation

Let � �-��� � $ ,� � ����� �! ! ! )�
* � 9 s.t. � $ � �

� ( be a set of auxiliary random variables, with � � $ being

the number of detections generated by sensor  � for subregion � $ , where � $ � �

� . We note that � � $ is not

necessarily equal to � $ since some targets in the subregion might not be detected and some detections
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Fig. 7. Sensor-subregion hybrid model for the target distribution estimation problem.

might be false alarms. We use
�
� to denote the set ��� � $ , 9 s.t � $ � �

� ( , and we assume we know

FE� � � ,
�
� � , then the marginal distribution FE�G� $ ,�� � �>� � �! ! ! ��>� 5 � can be written as

FE�G� $ ,�� � �>� � �! ! ! ��>� 5 �0� ���� � � s.t� � �
	 � FE� � , � �$��� FE� � ,)��� FE�G��� (17)

� � �� � � s.t� � �
	 � FE� � , �<� FE� � ,"��� FE�G���
� � �� � � s.t� � �
	 �

� 5�
� ! � FE� � � ,

�
� ��� �� &�

$ ! � FE�G� $ �
��

��
� �

�
��� �#�

s.t

� � �� � FE� � � $ ,)� $ �
���
�

The above factorization indicates that our graph contains sensor nodes and subregion nodes. A sensor

node and a subregion node are connected if and only if that particular sensor covers the corresponding

subregion. For sensor nodes, the node compatibility function is defined as � �
�
� � � �0� FE� � � , � � � . For the

subregion nodes, the node compatibility function is defined as � � � �G� $ ��� FE�G� $ � . For the edge connecting

 � and � $ such that � $ � �

� , the edge compatibility function is defined as

� �
� � � � � � $ �$� $ ��� FE� � � $ ,)� $ ��� (18)

where F:� � � $ ,�� $ � is a function of the false alarm rate and missed detection rate of sensor  � . 2 As an

example, Fig. 7(b) shows the sensor-subregion hybrid model for the scenario shown in Fig. 7(a).

For a network with * sensors and � subregions, the graphical model we obtain has * � � nodes.

Each state of a subregion node corresponds to the number of targets in the subregion, and each state of

2When there are no false alarms and missed detections, the number of targets detected by the sensor in each subregion is

exactly the true number of targets in that subregion, then the edge compatibility functions are reduced to parity check functions.
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a sensor node corresponds to a � -tuple of the detections in each subregion that the sensor covers. With

each subregion having � states and each sensor covering A subregions, the sensor nodes have � - states

if there are no false alarms and missed detections. The sum-product algorithm has the complexity of
��� � � - � *� � ��� on tree-structured graphs. With its scalability with respect to the number of sensors in

use, the approach proposed here can also be applied to other multi-sensor fusion applications.

V. COMMUNICATION-SENSITIVE MESSAGE-PASSING

In a distributed implementation, message-passing operations require communication between the sen-

sor nodes in the network. Although the parallel message-passing operation is inherently a distributed

algorithm and hence appealing for sensor network applications, the potentially unbounded amount of

communication incurred by this procedure poses a significant challenge. With the parallel message-

passing technique, each node is required to send a message to each of its neighbors at every iteration.

In current sensor technologies, power is a limited resource, and power consumption is dominated by the

cost of communication. Consequently, for local message-passing algorithms to be broadly applicable in

sensor networks, it is critical to reduce the amount of communication that they require.

One approach to reducing communication costs is simply to stop the algorithm early, prior to conver-

gence. This naive approach can fail, as it is likely that important information may never be generated

or transmitted. Consequently, we propose an adaptive approach that, while reducing the amount of

communication, does not lead to serious degradation in performance. In this approach, after a new

message is formed at a node, the node has the authority to make a decision about whether it needs to

transmit this message or not. A message will be sent only when it contains “significant” new information

compared to the message sent by the same node on the same edge in the previous iteration; otherwise

the message will not be sent. If the message in the current iteration is not sent, the destination node

uses the corresponding message from the previous iteration instead. In other words, during every round

of message-passing after the message � �6 � is generated, each node = computes � � � �6 � � � �����6 � � according

to a certain distance measure � ��� � � � and compares it with a message tolerance � . If � � � �6 � � � �����6 � ����� ,
message � �6 � will not be sent, and node  will use � �����6 � that it already received in the previous iteration

to do its own local computation. Integrating this technique into standard message-passing algorithms

leads to a new class of communication-sensitive message-passing (CSMSG) algorithms. In particular, we

obtain the communication-sensitive sum-product (CSSP) algorithm in the sum-product setting and the

communication-sensitive max-product (CSMP) algorithm in the max-product setting. With CSMSG, a

trade-off arises between the performance the algorithm can achieve and the amount of communication
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it requires. By using a proper message tolerance � , we can tune the algorithm to achieve a suboptimal

solution according to the budget for the communication cost. With smaller � , the algorithm obtains a more

accurate approximation to the value computed by standard message-passing. However, with smaller � the

amount of communication saving is decreased, since more messages exceed the message tolerance and

are transmitted. Yet even with very small � such that the loss of performance is trivial, the communication

saving compared with the standard message-passing might be still significant. In Section VI, we show

the tremendous communication saving of CSMSG compared with standard message-passing.

One key observation to justify the effectiveness of CSMSG is that the message � �6 � can be interpreted

as a sufficient statistic of � �6 �$� , the set of data in the subtree rooted at node = and are separated from

= in graph � by at most � edges. Thus, � �6 � differs from � �����6 � in that � �6 � contains the information

that � � ���6 � already contains as well as the information collected by nodes that are exactly � edges

away. However, for sensor network applications, the neighboring nodes in graphs usually correspond to

sensors that are deployed close to each other and thus collect similar information. Consequently, many

messages in two consecutive iterations are similar and the new messages need not be sent. The fact that

the messages are statistics also suggests that we can use the Kullback-Leibler (KL) divergence [26] to

measure the distance between the information content of two messages. The KL divergence is widely

used to measure the similarity of two probability distributions in the information theory literature. In this

case, it is defined as

� � � �6 � � � �����6 � � � �
�  
� �6 � ��� * � �6 � �G� � �� �����6 � �G� � �  (19)

Besides the communication savings gained by not transmitting messages below tolerance, the CSMSG

updates usually converge much faster than standard message-passing and thus reduces the amount of

communication further, especially on loopy graphs (where standard message-passing may fail to con-

verge). Note that CSMSG converges at the point when no nodes are active in sending messages. This

is equivalent to relaxing the convergence criterion for standard message-passing, allowing early stopping

when all nodes are satisfied that early stopping will not lead to loss of crucial information. Furthermore,

the convergence behavior of CSMSG suffers less from the effect of rumor propagation, which could result

in slow convergence rate as messages travel around cycles and are no longer independent to each other.

In particular, a message is sent out in CSMSG only when it contains enough (decided by the message

tolerance � ) new information than the old message. Empirically, we find that this stopping criterion helps

to suppress the effect of cycles, and can improve the convergence rate.

The overhead to implement CSMSG instead of standard message-passing is insignificant considering the
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potential savings in communication. In CSMSG, every sensor node requires some additional memory for

storing messages from the previous iteration, so that it can compare the new messages (that it generated)

with the old messages (that it generated), and use the old messages (that it received) when necessary. In

addition, we also require a mechanism for letting the sensor know when a new message has not been

sent, so that it needs to use the old message instead. One possibility is to pass one extra bit of information

on every link in each iteration to indicate if the nodes have new information or not. Alternatively, we

could synchronize the communication and design the protocol in a way such that the sensor will use the

old message after some latency period, whether the new message was not sent or simply lost on the way.

VI. EXPERIMENTAL RESULTS

A. Data Association in an Organized Network

We have tested our approach to the data association problem formulated in Section III on simulated

data. Our set-up is a surveillance system consisting of 25 sensors, forming a ��� � grid in the 2-D

plane. Each sensor measures the 2-D position of targets in its detection range. All sensors have the

same detection radius � � � . The targets are uniformly distributed in the surveillance area. Their prior

position distributions are assumed available, as for example acquired from the prediction step of a tracking

algorithm.

We use a Gaussian distribution around the true position of a target as the predicted position distribution.

The covariance is fixed as
� ��� ��� with � � � � . The measurements are corrupted by independent

Gaussian noise of zero mean and covariance � �	���
� . Each sensor has a detection rate of !�D ���� �� .
The number of false alarms at each sensor is randomized to zero with probability 0.85 and one with

probability 0.15. We adopt the sensor-target hybrid modeling approach for this experiment. We have

conducted our approach with various target density and measurement noise levels. As the target density

increases from two targets, three targets to four targets per sensor, the total number of targets in the

whole area increases from 17, to 33, to 54.

Fig. 8(a) shows the association error rate achieved by the tree-reweighted max-product (TRMP)

algorithm. The association error rate is calculated as the percentage of measurements that are associated

with wrong targets. Each data point is the average result of 50 trials. The results are optimal in the

MAP sense. The plots clearly show that with more intensified contention for measurements and with

increasing measurement noise, the association error goes up. Fig. 8(b) shows the corresponding amount

of communication required by the TRMP algorithm. The amount of communication is evaluated as the

total number of messages sent until TRMP converges normalized by the number of sensors. In the high
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Fig. 8. Data association at various target density and measurement noise levels with TRMP. (a) Association error rate vs. the

relative measurement noise variance � ����� �
. The standard deviation for each point is around 0.075. (b) Amount of communication

per sensor vs. the relative measurement noise variance. The standard deviation for each point is around 400.

Algorithm TRMP Standard MP CSMP, ���	��
� CSMP, �����
Error 25.84% 25.89% 27.88% 28.95%

Communication 1029.3 55.25 10.41 8.79

TABLE I

PERFORMANCE ACHIEVED AND COMMUNICATION NEEDED FOR DATA ASSOCIATION.

signal-to-noise ratio region (i.e., ���%1 � ���'�� � � ), the amount of communication goes up monotonically as

the measurement noise increases and the target density increases. However, when the measurement noise

becomes too large, the amount of communication dips. This behavior is intuitively reasonable, since the

measurements are getting closer and closer to other targets, so that a wrong association is more likely to

be achieved with less communication when the measurements become unreliable.

We also investigate the trade-off between the amount of communication and performance by applying

the standard max-product (MP) algorithm and communication-sensitive version of max-product (CSMP).

We use the message tolerance based on the KL divergence as introduced in Section V. Table I compares

the performance achieved and communication needed by TRMP, the standard MP and CSMP. The data are

the average results obtained from 50 trials on the scenarios corresponding to three targets per sensor case

and � �%1 � � � �� � in Fig. 8. The error rate generated by the TRMP algorithm is optimal in the MAP sense.

Table I shows that the standard MP algorithm and the CSMP algorithm with reasonable message thresholds
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Fig. 9. Trade-off between communication and performance for the data association problem using CSMP. The length of the

error bar at each data point shows two times of standard deviation. With ��� � 
 � , the association error rate keeps near-optimal

although the amount of communication is far less than the amount required by TRMP and standard MP. The error rate increases

sharply when � 
 ��� ����� , where some crucial messages are not transmitted.

have slightly higher error rates and can achieve near-optimal performance. Although all three algorithms

yield similar error rates in this case, there is a huge difference between the communication costs required

by the three algorithms. The TRMP algorithm consumes much more communication than the other two,

but is guaranteed to output the correct association. In contrast, both the standard max-product algorithm

and CSMP produce only approximate estimates on loopy graphs, but entail a lower communication

cost than TRMP. The communication cost associated with the CSMP updates is significantly less than

the standard max-product algorithm. Therefore, when communication is costly, CSMP is a preferable

algorithm in that it can achieve a near-optimal accuracy with far less communication (with the appropriate

choice of tolerance parameter). The trade-off curves for CSMP at various message tolerances are shown

in Fig. 9. It clearly shows that an interesting threshold exists around � � �� 	� . With smaller message

tolerances than this threshold, we can achieve a similar error rate as the standard max-product but with

much less communication. However, when the message tolerance exceeds this threshold, the error rate
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increases sharply with a further drop on communication. The error rate quickly rises close to the error

rate when we treat each node independently and generate the estimates based on local node compatibility

functions only. This reflects the fact that for a message tolerance above the threshold, some messages

that are crucial to obtain a reliable estimation are ignored. The existence of the threshold also suggests

that the message tolerance corresponding to it might be an ideal parameter when we want to pursue the

best performance-communication cost ratio. However, how to identify this message tolerance in advance

remains an open question.

With CSMP, we can show the information flow dynamics by displaying the message transmission in

each iteration. The information flow for one of the problems ( �>� �� � ) in Fig. 9 is shown in Fig. 10. In

the first iteration, every node sends messages to its neighbors to initialize the iteration. As the iteration

goes on, fewer and fewer nodes need to transmit messages, and only one node sends a message in the

last iteration. The nodes that have strong local information or strong interaction with their neighbors

usually need to send more messages in this whole process, as we see in the case of nodes �� and #�� in

Fig. 10. On the other hand, the nodes located in a cluster of nodes that have consistent observations with

each other usually stop passing messages earlier, for example, the five nodes in the upper left corner.

This observation suggests that the corresponding sensors can be shut off earlier for more power saving.

However, while the five nodes at the upper left corner can be shut off permanently after the second

iteration, there are other nodes (e.g., node  � � and node #�� ) which can be shut off temporarily and need

to start communication again later. In particular, as the information from the cluster of nodes around

�� and #�� arrives, node  � � resumes sending messages in iteration five because it may find its previous

estimate is inaccurate or the incoming information is important to its neighbors. The message from  � �
eventually wakes up #�� in iteration six.

B. Target Distribution Estimation for Network Self-Organization

We have carried out experiments for target distribution estimation using simulated data. The sensors

are proximity indicators, each of which generates a noisy likelihood function for the number of targets

in its surveillance region. Sensors are randomly deployed into a unit surveillance area, thereby dividing

the surveillance area to disjoint subregions according to the overlapping coverage. In each subregion,

a random number of targets are placed according to a prior distribution. The prior of � � , the number

of targets in each subregion, is of Poisson distribution with mean
�
� �	� � , where � � is the area of the

subregion. We assume that we know the number of targets in each subregion within an accuracy of 
 �

of the true number of targets.
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Fig. 10. Information flow dynamics for a data association problem using CSMP. Circle nodes correspond to sensors, and square

nodes correspond to targets covered by more than two sensors. The arrows adjacent to edges indicate active communication links

and message direction. Sensor 	 �#� resumes sending message in iteration five after it was shut off in iteration three. Consequently

target node 
 � is waked up in iteration six.
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Fig. 11. Error rate and amount of communication for target number estimation using sum-product. The length of the error bar

at each data point shows two times of standard deviation.

We enumerate the possible numbers of targets that the sensor could detect in each subregion and use

them as the states of the auxiliary variables � � $ . The detection rate of each sensor is set to !�D � �� �� , and

the number of false alarms generated by sensor  � for � � obeys a certain Poisson distribution with mean

proportional to the area of the subregion. With
�
� � ��� � $ ( , each sensor produces the observation according

to FE� � � ,
�
� ��� � � � � � � $ � � $ � � ��� , where ����� . Sensor-subregion hybrid models are constructed and the

sum-product algorithm is applied to obtain the marginal distribution of � � . To evaluate the performance

of the estimation, we pick &� � � '�)+* ,.'�/��
�
FE�G; � ,��E� after we obtain F:�G; � ,��E� , and the error rate is

calculated as

	 � � � � &
� ! � � ��

� � �� � ��� � (20)

where �; � is the true number of targets in subregion � � , � is the number of states for each � � , and � is

the total number of subregions.

Fig. 11(a) and Fig. 11(b) show the estimation error achieved and the communication cost required

by the sum-product algorithm at various sensor densities, respectively. The amount of communication is

evaluated as the total number of messages sent until sum-product converges normalized by the number

of sensors. Each data point is the average result of 50 trials. As the number of sensors increases, the

number of subregions increases from 94 to 100. The plots show that with increasing number of sensors,

we can achieve more accurate estimation. However, the amount of communication spent by each sensor

increases accordingly.

Table II compares the performance achieved and the communication required by the standard sum-



29

Algorithm Standard SP CSSP, ���	��
� CSSP, ��� � CSSP, ��� � 
 �
Error 13.48% 12.64% 12.79% 13.62%

Communication 369.56 14.65 14.38 14.28

TABLE II

PERFORMANCE ACHIEVED AND COMMUNICATION NEEDED FOR TARGET DISTRIBUTION ESTIMATION.
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Fig. 12. Trade-off between communication and performance for target distribution estimation using CSSP with various message

tolerances � . The length of the error bar at each data point shows two times of standard deviation. When ��� � 
� , CSSP achieves

comparable performance as the standard sum-product algorithm but with far less amount of communication. In the range

� 
� � � � � 
 � , error rate increases sharply as some crucial messages are ignored.

product (SP) algorithm and the communication-sensitive sum-product (CSSP) algorithm. The data corre-

sponds to that in Fig. 11 when 60 sensors are used. With � �8�� � , both algorithms have similar error rate

but CSSP spends much less communication per sensor. One interesting phenomena we have observed

is that with very small message tolerances (for example, ��� �� � ), CSSP yields smaller error rates

than the standard sum-product algorithm, even though CSSP requires less communication. This prompts

the question of whether the communication-sensitive version of message-passing algorithms have the
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Fig. 13. Information flow dynamics for a target number estimation problem of 25 subregions and 20 sensors. Circle nodes

represent subregions. Square nodes represent sensors. The sensors 	�� and 	�� overlap exactly with each other in terms of the

coverage area and form a strong interaction cluster. The sensor 	 � � only receives messages in iteration three and only sends

messages in iteration four. This oscillating pattern occurs frequently in graphical models with parity-check like compatibility

functions.
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potential to achieve more accurate estimates by preventing rumor propagation. Fig. 12 shows the trade-

off between communication and performance when various message tolerances are used on target number

estimation with 60 sensors. When � � �� � , the error rate increases dramatically. This reflects a critical

point where further decrease of communication will result in loss of information that is crucial to accurate

estimation. Fig. 13 shows the information flow dynamics for the target distribution estimation problem

of 25 subregions and 20 sensors with �1� �� � � . Notice that �� and �� cover the same four subregions.

These two sensor nodes together with the four subregion nodes they connect form a cluster of strong

interaction. In the first three iterations, these six nodes actively send messages to each other and their

influence propagates farther and farther. Even after they stop sending messages, the node  ? is still passing

the information from the cluster to nodes farther away. The node  � � reveals an oscillating pattern that

frequently occurs in graphical models with parity-check like compatibility functions. In the third iteration

node  � � only receives messages and in the next iteration it only sends messages. This pattern is a result

of the disagreement among the four nodes linked by  � � . Many more iterations are usually required for

the standard message-passing updates to settle down in such situations. However, as shown in Fig. 13,

the relaxed criterion of CSSP brings the nodes to harmony more swiftly.

VII. CONCLUSION

In this paper, we introduced techniques using the framework of graphical models to solve data asso-

ciation problems arising in distributed sensing scenarios. We proposed several different approaches to

modeling, in which nodes in the underlying graphical model were associated with different quantities in

the sensor network. For instance, for the measurement-to-target data association problem in an organized

network, we constructed graphical models by mapping sensors or targets to nodes. However, we also

showed that new sensor-target hybrid models are better suited to applying local message-passing algo-

rithms in sensor networks, as they exploit the structure and sparsity inherent to these data association

problems. For the target distribution estimation problem, we developed graphical models with nodes

corresponding to sensors and surveillance subregions. These data association and estimation problems

can be solved efficiently by using local message-passing algorithms, and a suitably reweighted form

of the max-product algorithm renders it possible to obtain the optimal (in the sense of maximum a

posteriori) data association. Our methods scale well with the number of sensors in the network and are

inherently distributed, which render them well-suited for application to distributed inference problems

in large-scale sensor networks. We also proposed communication-sensitive versions of local message-

passing, and found that they are capable of achieving near-optimal performance with a substantial savings
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in communication cost. Moreover, we found that consideration of communication-sensitive version of

message passing yielded insight into the dynamics of the message-passing used to carry out information

fusion. Experimental results based on simulated data show the effectiveness of our approach.

There are number of research directions that remain to be explored. First, it is of considerable interest

to integrate our graphical model-based approach into tracking algorithms. Doing so requires addressing

several issues that arise in the dynamic setting. For example, the uncertainty associated with the subset

of targets seen by a given sensor leads to uncertainty in the graph structure of a partially organized

network. Following the same idea as the deferred decision of multiple hypothesis tracking, we may

keep several most probable graphical structure candidates, and wait for the future data to help resolve

ambiguity in model structure. Doing so would require to connect models from several time frames so

as to form a dynamic Bayesian network (DBN) [27]. Another possible extension on the dynamic setting

is to the case of mobile sensors. Second, the relation between the graphical model and the underlying

physical sensor network needs to be explored. Our work shows that the graphical model structure need

not be the same as the topology of the physical sensor network. A node in a graphical model may

correspond to a concept other than a sensor (for example, a target, or a subregion). Messages may need

to be transmitted between two nodes that have no direct communication links. Moreover, the target

nodes in a sensor-target hybrid model need to be handed off dynamically among sensors. Finding the

structure of graphical models for a mobile sensor network remains to be explored. Consequently, protocol

and a routing algorithm to implement message-passing in a particular sensor network architecture is an

interesting topic for further research. Third, it is of interest to provide more theoretical analysis of the

communication-sensitive message-passing algorithms. An interesting open problem is how to identify

in advance the trade-off between the performance achieved and the communication (or computation)

saving. In addition, the CSMSG algorithm we proposed in this work is only a simple way to address the

communication challenge for sensor network applications, more advanced algorithms will be of interest.
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