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Abstract

Noncooperative game theory provides a norma-
tive framework for analyzing strategic interactions.
However, for the toolbox to be operational, the so-
lutions it defines will have to becomputed. In this
paper, we provide a single reduction that 1) demon-
stratesNP-hardness of determining whether Nash
equilibria with certain natural properties exist, and
2) demonstrates the#P-hardness of counting Nash
equilibria (or connected sets of Nash equilibria).
We also show that 3) determining whether a pure-
strategy Bayes-Nash equilibrium exists isNP-
hard, and that 4) determining whether a pure-
strategy Nash equilibrium exists in a stochastic
(Markov) game isPSPACE-hard even if the game
is invisible (this remainsNP-hard if the game is fi-
nite). All of our hardness results hold even if there
are only two players and the game is symmetric.

1 Introduction
Noncooperative game theory provides a normative frame-
work for analyzing strategic interactions of agents. However,
for the toolbox to be operational, the solutions it defines will
have to becomputed[22]. There has been growing interest
in the computational complexity of natural questions in game
theory. Starting at least as early as the 1970s, complexity the-
orists have focused on the complexity of playing particular
highly structured games (usually board games, such as chess
or Go[10], but also games such as Geography or QSAT[23]).
These games tend to be alternating-move zero-sum games
with enormous state spaces, which can nevertheless be con-
cisely represented due to the simple rules governing the tran-
sition between states. As a result, effort on finding results
for general classes of games has often focused on complex
languages in which such structured games can be concisely
represented.

Real-world strategic settings are generally not nearly as
structured, nor do they generally possess the other proper-
ties (most notably, zero-sumness) of board games and the
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like. Algorithms for analyzing this more general class of
games strategically are a necessary component of sophisti-
cated agents that are to play such games. Additionally, they
are needed bymechanism designerswho have (some) con-
trol over the rules of the game and would like the outcome of
the game to have certain properties, such as maximum social
welfare.

Noncooperative game theory provides languages for rep-
resenting large classes of strategic settings, as well as so-
phisticated notions of what it means to ”solve” such games.
The best known solution concept is that ofNash equilib-
rium [16], where the players’ strategies are such that no in-
dividual player can derive any benefit from deviating from its
strategy. The question of how complex it is to construct such
an equilibrium has been dubbed “a most fundamental com-
putational problem whose complexity is wide open” and “to-
gether with factoring, [...] the most important concrete open
question on the boundary ofP today” [19].

While this question remains open, important concrete ad-
vances have been made in determining the complexity of re-
lated questions. For example, 2-person zero-sum games can
be solved using linear programming[12] in polynomial time.
As another example, determining the existence of a joint
strategy where each player gets expected payoff at leastk
isNP -complete in a concisely representable extensive form
game where both players receive the same utility[2].1 As
yet another example, in 2-player general-sum normal form
games, determining the existence of Nash equilibriawith cer-
tain propertiesis NP -hard [4]. Finally, the complexity of
best-responding, of guaranteeing payoffs, and of finding an
equilibrium in repeated and sequential games has been stud-
ied in [1, 7, 11, 18, 25].

In this paper we provide new complexity results on ques-
tions related to Nash equilibria. In Section 2 we provide
a single reduction which significantly improves on many of
Gilboa and Zemel’s results on determining the existence of
Nash equilibria with certain properties. In Section 3, we
use the same reduction to show that counting the number
of Nash equilibria (or connected sets of Nash equilibria) is
#P-hard. In Section 4 we show that determining whether a

1This game can be converted to a normal form game as well, but
it will grow exponentially in size, and the hardness result does not
go through.



pure-strategy Bayes-Nash equilibrium exists isNP-hard. Fi-
nally, in Section 5 we show that determining whether a pure-
strategy Nash equilibrium exists in a stochastic (Markov)
game isPSPACE-hard even if the game is invisible (this
remainsNP-hard if the game is finite). All of our hardness
results hold even if there are only two players and the game
is symmetric.

2 Equilibria with certain properties in normal
form games

When one analyzes the strategic structure of a game, espe-
cially from the viewpoint of a mechanism designer who tries
to construct good rules for a game, finding a single equilib-
rium is far from satisfactory. More desirable equilibria may
exist: in this case the game becomes more attractive, espe-
cially if one can coax the players into playing a desirable
equilibrium. Also, less desirable equilibria may exist: in this
case the game becomes less attractive. Before we can make
a definite judgment about the quality of the game, we would
like to know the answers to questions such as: What is the
game’s most desirable equilibrium? Is there a unique equilib-
rium? If not, how many equilibria are there? Algorithms that
tackle these questions would be useful both to players and to
the mechanism designer.

Furthermore, algorithms that answer certain existence
questions may pave the way to designing algorithms that con-
struct a Nash equilibrium. For example, if we had an algo-
rithm that told us whether there exists any equilibrium where
a certain player plays a certain strategy, this could be useful in
eliminating possibilities in the search for a Nash equilibrium.

However, all the existence questions that we have investi-
gated turn out to beNP-hard. These are not the first results
of this nature; most notably, Gilboa and Zemel provide some
NP-hardness results in the same spirit[4]. We provide a sin-
gle reduction which in demonstrates (sometimes stronger ver-
sions of) most of their hardness results, and interesting new
results. Additionally, as we show in Section 3, the reduction
shows#P-hardness of counting the number of equilibria.

We first need some standard definitions from game theory.

Definition 1 In a normal form game, we are given a set of
agentsA, and for each agenti, a strategy setΣi and a utility
functionui : Σ1 × Σ2 × . . .× Σ|A| → <.

Definition 2 A mixed strategyσi for playeri is a probability
distribution overΣi. A special case of a mixed strategy is
a pure strategy, where all of the probability mass is on one
element ofΣi.

Definition 3 (Nash[16]) Given a normal form game, a
Nash equilibrium (NE)is vector of mixed strategies, one
for each agenti, such that no agent has an incentive
to deviate from its mixed strategy given that the others
do not deviate. That is, for anyi and any alternative
mixed strategyσ′i, we haveE[ui(s1, s2, . . . , si, . . . , s|A|)] ≥
E[ui(s1, s2, . . . , s

′
i, . . . , s|A|)], where eachsi is drawn from

σi, ands′i fromσ′i.

Now we are ready to present our reduction.

Definition 4 Letφ be a Boolean formula in conjunctive nor-
mal form. LetV be its set of variables (with|V | = n), L
the set of corresponding literals (a positive and a negative
one for each variable)2, andC its set of clauses. The func-
tion v : L → V gives the variable corresponding to a lit-
eral, e.g. v(x1) = v(−x1) = x1. We defineG(φ) to be
the following symmetric 2-player game in normal form. Let
Σ ≡ Σ1 = Σ2 = L ∪ V ∪ C ∪ {f}. Let the utility functions
be
• u1(l1, l2) = u2(l2, l1) = 1 for all l1, l2 ∈ L with l1 6=
−l2;
• u1(l,−l) = u2(−l, l) = −2 for all l ∈ L;
• u1(l, x) = u2(x, l) = −2 for all l ∈ L, x ∈ Σ− L;
• u1(v, l) = u2(l, v) = 2 for all v ∈ V , l ∈ L with
v(l) 6= v;

• u1(v, l) = u2(l, v) = 2 − n for all v ∈ V , l ∈ L with
v(l) = v;

• u1(v, x) = u2(x, v) = −2 for all v ∈ V , x ∈ Σ− L;
• u1(c, l) = u2(l, c) = 2 for all c ∈ C, l ∈ L with l /∈ c;
• u1(c, l) = u2(l, c) = 2 − n for all c ∈ C, l ∈ L with
l ∈ c;

• u1(c, x) = u2(x, c) = −2 for all c ∈ C, x ∈ Σ− L;
• u1(f, f) = u2(f, f) = 0;
• u1(f, x) = u2(x, f) = 1 for all x ∈ Σ− {f}.

Theorem 1 If (l1, l2, . . . , ln) (wherev(li) = xi) satisfiesφ,
then there is a Nash equilibrium ofG(φ) where both players
play li with probability 1

n , with expected utility 1 for each
player. The only other Nash equilibrium is the one where
both players playf , and receive expected utility 0 each.

Proof: We first demonstrate that these combinations of
mixed strategies indeed do constitute Nash equilibria. If
(l1, l2, . . . , ln) (wherev(li) = xi) satisfiesφ and the other
player playsli with probability 1

n , playing one of theseli as
well gives utility 1. On the other hand, playing the negation
of one of theseli gives utility 1

n (−2) + n−1
n (1) < 1. Play-

ing some variablev gives utility 1
n (2 − n) + n−1

n (2) = 1
(since one of theli that the other player sometimes plays
hasv(li) = v). Playing some clausec gives utility at most
1
n (2 − n) + n−1

n (2) = 1 (since one of theli that the other
player sometimes plays occurs in clausec, since theli satisfy
φ). Finally, playingf gives utility 1. It follows that playing
any one of theli that the other player sometimes plays is an
optimal response, and hence that both players playing each
of theseli with probability 1

n is a Nash equilibrium. Clearly,
both players playingf is also a Nash equilibrium since play-
ing anything else when the other playsf gives utility−2.

Now we demonstrate that there are no other Nash equilib-
ria. If the other player always playsf , the unique best re-
sponse is to also playf since playing anything else will give
utility −2. Otherwise, given a mixed strategy for the other
player, consider a player’s expected utility given that the other
player does not playf . (That is, the probability distribution
over the other player’s strategies is proportional to the proba-
bility distribution constituted by that player’s mixed strategy,

2Thus, if x1 is a variable,x1 and−x1 are literals. We make a
distinction between the variablex1 and the literalx1.



exceptf occurs with probability 0). If this expected utility is
less than 1, the player is strictly better off playingf (which
gives utility 1 when the other player does not playf , and
also performs better than the original strategy when the other
player does playf ). So this cannot occur in equilibrium.

There are no Nash equilibria where one player always
playsf but the other does not, so suppose both players playf
with probability less than one. Consider the expected social
welfare (E[u1 + u2]), given that neither player playsf . It
is easily verified that there is no outcome with social welfare
greater than 2. Also, any outcome in which one player plays
an element ofV or C has social welfare strictly below 2. It
follows that if either player ever plays an element ofV orC,
the expected social welfare given that neither player playsf
is strictly below 2. By linearity of expectation it follows that
the expected utility of at least one player is strictly below 1
given that neither player playsf , and by the above reasoning,
this player would be strictly better off playingf instead of its
randomization over strategies other thanf . It follows that no
element ofV orC is ever played in a Nash equilibrium.

So, we can assume both players only put positive probabil-
ity on strategies inL∪{f}. Then, if the other player puts pos-
itive probability onf , playingf is a strictly better response
than any element ofL (since both give utility 1 if the other
player plays an element ofL, but f does better if the other
player playsf ). It follows that the only equilibrium wheref
is ever played is the one where both players always playf .

Now we can assume that both players only put positive
probability on elements ofL. Suppose that for somel ∈ L,
the probability that a given player plays eitherl or−l is less
than 1

n . Then the expected utility for the other player of play-
ing v(l) is strictly greater than1n (2− n) + n−1

n (2) = 1, and
hence this cannot be a Nash equilibrium. So we can assume
that for anyl ∈ L, the probability that a given player plays
eitherl or−l is precisely1

n .
If there is an element ofL such that player 1 puts posi-

tive probability on it and player 2 on its negation, both play-
ers have expected utility less than 1 and would be better off
switching tof . So, in a Nash equilibrium, if player 1 playsl
with some probability, player 2 must playl with probability
1
n , and thus player 1 must playl with probability 1

n . Thus
we can assume that for each variable, exactly one of its cor-
responding literals is played with probability1n by both play-
ers. It follows that in any Nash equilibrium (besides the one
where both players playf ), literals that are sometimes played
indeed correspond to an assignment to the variables.

All that is left to show is that if this assignment does not
satisfyφ, it does not correspond to a Nash equilibrium. Let
c ∈ C be a clause that is not satisfied by the assignment, that
is, none of its literals are ever played. Then playingc would
give utility 2, and both players would be better off playing
this.

Hence, there exists a Nash equilibrium inG(φ) where each
player gets utility 1 if and only ifφ is satisfiable; otherwise,
the only equilibrium is the one where both players playf and
each of them gets 0. Since any sensible definition of welfare
optimization would prefer the first kind of equilibrium, it fol-
lows that determining whether a “good” equilibrium exists is

hard for any such definition. Additionally, the first kind of
equilibrium is, in various senses, an optimal outcome for the
game, even if the players were to cooperate, so even finding
out whether such an optimal equilibrium exists is hard. The
following corollaries illustrate these points (each corollary is
immediate from Theorem 1).

Corollary 1 Even in symmetric 2-player games, it isNP-
hard to determine whether there exists a NE with expected
(standard) social welfare (E[

∑
1≤i≤|A|

ui]) at least k, even

whenk is the maximum social welfare that could be obtained
in the game.

Corollary 2 Even in symmetric 2-player games, it isNP-
hard to determine whether there exists a NE where all players
have expected utility at leastk, even whenk is the largest
number such that there exists a distribution over outcomes of
the game such that all players have expected utility at leastk.

Corollary 3 Even in symmetric 2-player games, it isNP-
hard to determine whether there exists aPareto-optimalNE.
(A distribution over outcomes is Pareto-optimal if there is no
other distribution over outcomes such that every player has
at least equal expected utility, and at least one player has
strictly greater expected utility).

Corollary 4 Even in symmetric 2-player games, it isNP-
hard to determine whether there exists a NE where player 1
has expected utility at leastk.

Some additional interesting corollaries are:

Corollary 5 Even in symmetric 2-player games, it isNP-
hard to determine whether there is more than one Nash equi-
librium.

Corollary 6 Even in symmetric 2-player games, it isNP-
hard to determine whether there is an equilibrium where
player 1 sometimes playsx ∈ Σ1.

Corollary 7 Even in symmetric 2-player games, it isNP-
hard to determine whether there is an equilibrium where
player 1 never playsx ∈ Σ1.

All of these results indicate that it is hard to obtain sum-
mary information about a game’s Nash equilibria. (Corol-
lary 5 and weaker3 versions of Corollaries 2, 6 and 7 were
first proven by Gilboa and Zemel[4].)

3 Counting the number of equilibria in
normal form games

Existence questions do not tell the whole story. In general, we
are interested in characterizing all the equilibria of a game.
One rather weak such characterization is the number of equi-
libria4. We can use Theorem 1 to show that even determining
this number in a given normal form game is hard.

Corollary 8 Even in symmetric 2-player games, counting the
number of Nash equilibria is#P-hard.

3Our results prove hardness in a slightly more restricted setting.
4The number of equilibria in normal form games has been stud-

ied both in the worst case[15] and in the average case[14].



Proof: The number of Nash equilibria in our gameG(φ) is
the number of satisfying assignments to the variables ofφ,
plus one. Counting the number of satisfying assignments to a
CNF formula is#P-hard[24].

It is easy to construct games where there is a continuum of
Nash equilibria. In such games, it is more meaningful to ask
how many distinct continuums of equilibria there are. More
formally, one can ask how many maximal connected sets of
equilibria a game has (a maximal connected set is a connected
set which is not a proper subset of a connected set).

Corollary 9 Even in symmetric 2-player games, counting the
number of maximal connected sets of Nash equilibria is#P-
hard.

Proof: Every Nash equilibrium inG(φ) constitutes a maxi-
mal connected set by itself, so the number of maximal con-
nected sets is the number of satisfying assignments to the
variables ofφ, plus one.

The most interesting#P-hardness results are the ones where
the corresponding existence and search questions are easy,
such as counting the number of perfect bipartite matchings.
In the case of Nash equilibria, the existence question is trivial:
it has been analytically shown (by Kakutani’s fixed point the-
orem) that a Nash equilibrium always exists[16]. The com-
plexity of the search question remains open.

4 Pure-strategy Bayes-Nash equilibria
Equilibria in pure strategies are particularly desirable because
they avoid the uncomfortable requirement that players ran-
domize over strategies among which they are indifferent[3].
In normal form games with small numbers of players, it is
easy to determine the existence of pure-strategy equilibria:
one can simply check, for each combination of pure strate-
gies, whether it constitutes a Nash equilibrium. However,
this is not feasible inBayesiangames, where the players have
private information about their own preferences (represented
by types). Here, players may condition their actions on their
types, so the strategy space of each player is exponential in
the number of types.

In this section, we show that the question of whether a
pure-strategy Bayes-Nash equilibrium exists is in factNP-
hard even in symmetric two-player games. First, we need the
standard definition of a Bayesian game and Bayes-Nash equi-
librium from game theory.

Definition 5 In aBayesian game, we are given a set of agents
A; for each agenti, a set of typesΘi; a commonly known
prior distribution φ over Θ1 × Θ2 × . . . × Θ|A|; for each
agenti, a set of strategiesΣi; and for each agenti, a utility
functionui : Θi × Σ1 × Σ2 × . . .× Σ|A| → <.

Definition 6 (Harsanyi [5]) Given a Bayesian game, a
Bayes-Nash equilibrium (BNE)is a vector of mixed strate-
gies, one for each pairi, θi ∈ Θi, such that no agent has an
incentive to deviate, for any of its types, given that the others
do not deviate. That is, for anyi, θi ∈ Θi, and any alternative
mixed strategyσ′i,θi , we have

Eθ−i|θi [E[ui(θi, s1,θ1 , s2,θ2 , . . . , si,θi , . . . , s|A|,θ|A|)]]

≥ Eθ−i|θi [E[ui(θi, s1,θ1 , s2,θ2 , . . . , s
′
i,θi , . . . , s|A|,θ|A|)]]

where eachsi,θi is drawn fromσi,θi , ands′i,θi fromσ′i,θi .

We can now define the computational problem.

Definition 7 (PURE-STRATEGY-BNE) We are given a
Bayesian game. We are asked whether there exists a BNE
where all the strategiesσi,θi are pure.

To show ourNP-hardness result, we will reduce from the
SET-COVER problem.

Definition 8 (SET-COVER) We are given a set
S = {s1, . . . , sn}, subsetsS1, S2, . . . , Sm of S with⋃

1≤i≤m Si = S, and an integerk. We are asked whether
there existSc1 , Sc2 , . . . , Sck such that

⋃
1≤i≤k Sci = S.

Theorem 2 PURE-STRATEGY-BNE isNP-hard, even in
symmetric 2-player games whereφ is uniform.

Proof: We reduce an arbitrary SET-COVER instance to
the following PURE-STRATEGY-BNE instance. Let there
be two players, withΘ ≡ Θ1 = Θ2 = {θ1, . . . , θk}.
φ is uniform. Furthermore,Σ ≡ Σ1 = Σ2 =
{S1, S2, . . . , Sm, s1, s2, . . . , sn}. The utility functions we
choose in fact do not depend on the types, so we omit the
type argument in their definitions. They are as follows:
• u1(Si, Sj) = u2(Sj , Si) = 1 for all Si andSj ;
• u1(Si, sj) = u2(sj , Si) = 1 for all Si andsj /∈ Si;
• u1(Si, sj) = u2(sj , Si) = 2 for all Si andsj ∈ Si;
• u1(si, sj) = u2(sj , si) = −3k for all si andsj ;
• u1(sj , Si) = u2(Si, sj) = 3 for all Si andsj /∈ Si;
• u1(sj , Si) = u2(Si, sj) = −3k for all Si andsj ∈ Si.
We now show the two instances are equivalent. First sup-

pose there existSc1 , Sc2 , . . . , Sck such that
⋃

1≤i≤k Sci = S.
Suppose both players play as follows: when their type isθi,
they playSci . We claim that this is a BNE. For suppose the
other player employs this strategy. Then, because for anysj ,
there is at least oneSci such thatsj ∈ Sci , we have that the
expected utility of playingsj is at most1k (−3k)+ k−1

k 3 < 0.
It follows that playing any of theSj (which gives utility 1) is
optimal. So there is a pure-strategy BNE.

On the other hand, suppose that there is a pure-strategy
BNE. We first observe that in no pure-strategy BNE, both
players play some element ofS for some type: for if the other
player sometimes plays somesj , the utility of playing some
si is at most1k (−3k) + k−1

k 3 < 0, whereas playing someSi
instead guarantees a utility of at least 1. So there is at least
one player who never plays any element ofS. Now suppose
the other player sometimes plays somesj . We know there is
someSi such thatsj ∈ Si. If the former player plays this
Si, this will give it a utility of at least1k2 + k−1

k 1 = 1 + 1
k .

Since it must do at least this well in the equilibrium, and it
never plays elements ofS, it must sometimes receive utility
2. It follows that there existSa andsb ∈ Sa such that the
former player sometimes playsSa and the latter sometimes
playssb. But then, playingsb gives the latter player a utility
of at most 1

k (−3k) + k−1
k 3 < 0, and it would be better off

playing someSi instead. (Contradiction.) It follows that in
no pure-strategy BNE, any element ofS is ever played.



Now, in our given pure-strategy equilibrium, consider the
set of all theSi that are played by player 1 for some type.
Clearly there can be at mostk such sets. We claim they cover
S. For if they do not cover some elementsj , the expected
utility of playing sj for player 2 is 3 (because player 1 never
plays any element ofS). But this means that player 2 (who
never plays any element ofS either) is not playing optimally.
(Contradiction.) Hence, there exists a set cover.

If one allows for general mixed strategies, a Bayes-Nash
equilibrium always exists[3]. However, the question of how
efficiently one can be constructed remains open.

5 Pure-strategy Nash equilibria in stochastic
(Markov) games

We now shift our attention from single-shot games to games
with multiple stages. In each stage, the players get to act and
obtain payoffs. There has already been some research into the
complexity of playing repeated and sequential games. For ex-
ample, determining whether a particular automaton is a best
response isNP-complete[1]; it isNP-complete to compute
a best-response automaton when the automata under consid-
eration are bounded[18]; the question of whether a given
player with imperfect recall can guarantee itself a given pay-
off using pure strategies isNP-complete[7]; and in general,
best-responding to an arbitrary strategy can even be noncom-
putable[25]. In this section, we present, to our knowledge,
the firstPSPACE-hardness result on the existence of a pure-
strategy equilibrium.

A multi-stage game is typically represented as astochastic
(Markov) game, where there is an underlying set of states, and
the game shifts between these states from stage to stage[3, 20,
21]. At every stage, each player’s payoff depends not only on
the players’ actions, but also on the state. Furthermore, the
probability of transitioning to a given state is determined by
the current state and the players’ current actions. Hardness
results for such games cannot be obtained simply by formu-
lating a known hard game such as generalized Go[10] or
QSAT [23] as a Markov game, because such a formulation
would have to specify an exponential number of states. Even
if the number of states is polynomial, one might suspect hard-
ness because the strategy spaces are extremely rich. However,
in this section we showPSPACE-hardness even in a variant
where the strategy spaces are simple (in the sense that the
players cannot condition their actions on events in the game).

Definition 9 A stochastic (Markov) gameconsists of

• A set of playersA;
• A set of statesS, among which the game transits;
• For each playeri, a set of actionsΣi that can be played

in any state;
• A transition probability functionp : S × Σ1 × . . . ×

Σ|A| × S → [0, 1], wherep(s1, a1, . . . , a|A|, s2) gives
the probability of the game being in states2 in the next
stage given that the current state of the game iss1 and
the players play actionsa1, . . . , a|A|;

• For each playeri, a payoff functionui : S × Σ1 ×
. . .Σ|A| → <, whereui(s, a1, . . . , a|A|) gives the pay-

off to playeri in states where the players play actions
a1, . . . , a|A|;
• A discount factorδ such that the total utility of agent

i is
∞∑
k=0

δkui(sk, ak1 , . . . , a
k
|A|), where sk is the state

of the game at stagek and the players play actions
ak1 , . . . , a

k
|A| in stagek.

In general, a player need not always be aware of the cur-
rent state of the game, the actions the others played in pre-
vious stages, or the payoffs that the player has accumulated.
In the extreme case, players never find out any of these and
are hence playing blindly. We call such a Markov gamein-
visible. It is relatively easy to specify a pure strategy in an
invisible Markov game, because there is nothing to condition
on. Hence, such a strategy is “simply” an infinite sequence of
actions (for playeri, a sequence{aki }, where it plays action
aki in stagek, regardless).5 In spite of this apparent simplicity
of the game, we show that determining whether pure-strategy
equilibria exist is extremely hard.

Definition 10 (PURE-STRATEGY-INVISIBLE-
MARKOV-NE) We are given an invisible Markov game. We
are asked whether there exists a Nash equilibrium where all
the strategies are pure.

We show that this problem isPSPACE-hard, by reducing
from PERIODIC-SAT, which isPSPACE-complete[17].

Definition 11 (PERIODIC-SAT) We are given a CNF for-
mulaφ(0) over the variables{x0

1 . . . x
0
n} ∪ {x1

1 . . . x
1
n}. Let

φ(k) be the same formula, except that all the superscripts
are incremented byk. We are asked whether there exists
a Boolean assignment to the variables

⋃
k=0,1,...{xk1 . . . xkn}

such thatφ(k) is satisfied for everyk = 0, 1, . . ..

Theorem 3 PURE-STRATEGY-INVISIBLE-MARKOV-NE is
PSPACE-hard, even when the game is symmetric, 2-player,
and the transition process is deterministic.

Proof: We reduce an arbitrary PERIODIC-SAT instance
to the following symmetric 2-player PURE-STRATEGY-
INVISIBLE-MARKOV-NE instance. The state space isS =
{si}1≤i≤n ∪ {t1i,c}1<i≤2n;c∈C ∪ {t2i,c}1<i≤2n;c∈C ∪ {r},
whereC is the set of clauses inφ(0). Furthermore,Σ ≡
Σ1 = Σ2 = {t, f} ∪ C. The transition probabilities are

• p(si, x1, x2, si+1(modn)) = 1 for 1 < i ≤ n and all
x1, x2 ∈ Σ;
• p(s1, b

1, b2, s2) = 1 for all b1, b2 ∈ {t, f};
• p(s1, c, b, t

1
2,c) = 1 for all b ∈ {t, f} andc ∈ C;

• p(s1, b, c, t
2
2,c) = 1 for all b ∈ {t, f} andc ∈ C;

• p(s1, c
1, c2, r) = 1 for all c1, c2 ∈ C;

• p(tji,c, x1, x2, tji+1,c) = 1 for all 1 < i < 2n, j ∈ {1, 2},
c ∈ C, andx1, x2 ∈ Σ;

• p(tj2n,c, x1, x2, r) = 1 for all j ∈ {1, 2}, c ∈ C, and
x1, x2 ∈ Σ;

5We do not need to worry about issues of credible threats and
subgame perfection in this setting, so we can simply use Nash equi-
librium as our solution concept[13].



• p(r, x1, x2, r) = 1 for all x1, x2 ∈ Σ.

Some of the utilities obtained in a given stage are as follows
(we do not specify utilities irrelevant to our analysis):

• u1(si, x1, x2) = u2(si, x2, x1) = 0 for 1 < i ≤ n and
all x1, x2 ∈ Σ;
• u1(s1, b

1, b2) = u2(s1, b
2, b1) = 0 for all b1, b2 ∈

{t, f};
• u1(s1, c, b) = u2(s1, b, c) = 1 for all b ∈ {t, f} and
c ∈ C, when setting variablex0

1 to b does not satisfyc;
• u1(s1, c, b) = u2(s1, b, c) = −1 for all b ∈ {t, f} and
c ∈ C, when setting variablex0

1 to b does satisfyc;
• u1(s1, c

1, c2) = u2(s1, c
2, c1) = −1 for all c1, c2 ∈ C;

• u1(t1kn+i,c, x, b) = u2(t2kn+i,c, b, x) = 0 for k ∈ {0, 1},
1 ≤ i ≤ n, all c ∈ C andb ∈ {t, f} such that setting
variablexki to b does not satisfyc, and allx ∈ Σ;

• u1(t1kn+i,c, x, b) = u2(t2kn+i,c, b, x) = −4 for k ∈
{0, 1}, 1 ≤ i ≤ n, all c ∈ C andb ∈ {t, f} such that
setting variablexki to b does satisfyc, and allx ∈ Σ;

• u1(t1kn+i,c, x, c
′) = u2(t2kn+i,c, c

′, x) = 0 for k ∈
{0, 1}, 1 ≤ i ≤ n, all c, c′ ∈ C, and allx ∈ Σ.

Additionally, the game played in stater is some symmet-
ric zero-sum game without a pure-strategy equilibrium (for
example, a generalization of rock-paper-scissors) with very
small payoffs. Finally, the discount factor isδ = (1

2 )
1

2n+1 (so
thatδ2n > 1

2 ).
We start our analysis with a few observations. First,

there can be no pure-strategy equilibrium in which stater is
reached at some point, because (sincer is an absorbing state)
this would require that some pure-strategy equilibrium of the
game in stater were played whenever stater occurred. (Oth-
erwise a player who is not best-responding in one of these
stages could simply switch to a best response in this stage,
and because the game is invisible, the rest of the game would
remain unaffected, so this would give higher utility.) But such
an equilibrium does not exist. Second, if we ever reach one of
the tji,c states, we will inevitably reach stater at some point
after this. It follows that all pure-strategy Nash equilibria
never leave thesi states.

Now suppose an assignment satisfying the periodic SAT
formula exists. Let both players play as follows: in stage
kn + i (with 1 ≤ i ≤ n), b ∈ {t, f} is played, whereb is
the value that the variablexki is set to. Clearly, both players
receive utility 0 with these strategies. Does either player have
an incentive to deviate? The only deviation of any signifi-
cance is to play somec ∈ C when the current state iss1. So,
without loss of generality (because of the symmetry of the
game), say player 2 deviates to playingc ∈ C in stagekn+ 1
(when the state iss1). We know that in the satisfying assign-
ment, some variablexli amongxk1 , . . . , x

k
n, x

k+1
1 , . . . , xk+1

n is
set to someb such that settingxl−ki to b satisfiesc. If it is xk1 ,
which is set tob, then in stagekn + 1 player 1 playsb, and
player 2 gets payoff−1 in this stage since we are in state
s1 and settingx0

1 to b satisfiesc. Otherwise, if it isxli with
l = k + 1 or i 6= 1, which is set tob, then player 2 will get
payoff 1 in stagekn+ 1, but in stageln+ i player 1 playsb,
and player 2 gets payoff−4 in this stage since we are in state

t2(l−k)n+i,c and settingxl−ki to b satisfiesc. The discount-
ing is insignificant enough that this more than cancels out the
1 earned in stagekn + 1. Player 2 will get (at most) 0 in
the other stages up to the first stage in stater, and given that
we made the payoffs in the game in stater sufficiently small
relative toδ, player 2 will not earn enough in the remaining
stages to cancel out its losses so far. So there is no incentive
to deviate. Thus, a pure-strategy NE exists.

On the other hand, suppose that no assignment satisfying
the periodic SAT formula exists. Let us investigate whether a
Nash equilibrium could exist. We know that in such a Nash
equilibrium we never leave thesi, so both players receive
utility 0, and noc is ever played in a stage with states1.
Since playing ac in one of the other stages can have no
deterrent value, we may suppose that only elements of{t, f}
are played. Now consider the following assignment to the
xki : if player 1 playsb in stagekn + i, xki is set tob. Since
no assignment satisfying the periodic SAT formula exists,
we know there is some clausec and somek such that no
variablexli amongxk1 , . . . , x

k
n, x

k+1
1 , . . . , xk+1

n is set to some
b such that settingxl−ki to b satisfiesc. But then, if player 2
deviates to play thisc in stagekn + 1, it will receive payoff
1 in this stage, and payoff 0 in all the remaining stages up to
the first stage in stater. Furthermore, player 2 can guarantee
itself at least payoff 0 in each stage in stater, as this state
corresponds to a zero-sum symmetric game. It follows that
this deviation gives player 2 positive utility and is hence
beneficial. Thus, no pure-strategy NE exists.

A simpler version of the same argument shows a weaker
form of hardness for the case where the game is restricted
to have only finitely many stages (we omit the proof due to
limited space):

Theorem 4 PURE-STRATEGY-INVISIBLE-MARKOV-NE is
NP-hard, even when the game is symmetric, 2-player, the
transition process is deterministic, and the number of stages
in the game is finite.

6 Conclusions and future research
Noncooperative game theory provides a normative frame-
work for analyzing strategic interactions. However, for the
toolbox to be operational, the solutions it defines will have to
be computed. In this paper, we provided a single reduction
that 1) demonstratesNP-hardness of determining whether
Nash equilibria with certain natural properties exist, and 2)
demonstrates the#P-hardness of counting Nash equilibria
(or connected sets of Nash equilibria). We also showed that 3)
determining whether a pure-strategy Bayes-Nash equilibrium
exists isNP-hard, and that 4) determining whether a pure-
strategy Nash equilibrium exists in a stochastic (Markov)
game isPSPACE-hard even in invisible games (andNP-
hard if the game is finite). All of our hardness results hold
even if there are only two players and the game is symmetric.

There are numerous open research questions in computing
solutions to noncooperative games. Some recent work has fo-
cused on novel knowledge representations which, in certain
settings, can drastically speed up equilibrium finding (e.g.[6,
8, 9]). One avenue of future work includes identifying re-



stricted classes of games for which equilibria (or equilibria
with certain properties) can be found fast. Another avenue
involves studying the complexity of characterizing (some of)
the equilibria of a gamepartially. Yet another avenue in-
cludes analyzing the computational complexity of other solu-
tion concepts from noncooperative game theory.
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