
CMPSCI 187 / Spring 2015
Linked List Recursion

Due on Thursday, April 02, 8:30 a.m.

Marc Liberatore and John Ridgway

Morrill I N375
Section 01 @ 10:00
Section 02 @ 08:30

1

CMPSCI 187 / Spring 2015 Linked List Recursion

Contents

Overview 3

Learning Goals . 3

General Information 3

Policies . 3

Test Files . 3

Problem 1 4

Import Project into Eclipse . 4

Implement the ListInterface . 5

Export and Submit . 5

Page 2 of 5

CMPSCI 187 / Spring 2015 Linked List Recursion

Overview

In this assignment, you will implement the List abstract data type, as specified in structures.ListInterface.
Your implementation will be based upon references — that is, you’ll be building a singly linked list. You’ll implement
all methods that must traverse the list using recursion rather than iteration. Finally, you’ll need to write your own tests
for the code; we will not be providing a comprehensive test suite.

Learning Goals

• Show ability to write a generic class that implements a given interface, fulfilling the contract it specifies (includ-
ing O() behavior and an Iterable implementation).

• Additional practice implementing recursive methods.

• Additional practice writing appropriate unit tests.

General Information

Read this entire document. If, after a careful reading, something seems ambiguous or unclear to you, then email
cs187help@cs.umass.edu immediately.

Start this assignment as soon as possible. Do not wait until 5pm the night before the assignment is due to tell us you
don’t understand something, as our ability to help you will be minimal.

Reminder: Copying partial or whole solutions, obtained from other students or elsewhere, is academic dishonesty. Do
not share your code with your classmates, and do not use your classmates’ code.

You are responsible for submitting project assignments that compile and are configured correctly. If your project
submission does not follow these policies exactly you may receive a grade of zero for this assignment.

Policies

• For some assignments, it will useful for you to write additional class files. Any class file you write that is used
by your solution MUST be in the provided src directory you export.

• The TAs and instructors are here to help you figure out errors, but we won’t do so for you after you submit
your solution. When you submit your solution, be sure to remove all compilation errors from your project.
Any compilation errors in your project will cause the autograder to fail, and you will receive a zero for your
submission.

Test Files

In the test directory, we provide several JUnit test cases that will help you keep on track while completing the
assignment. We recommend you run the tests often and use them to help create a checklist of things to do next. But
you should be aware that we deliberately don’t provide you the full test suite we use when grading.

Page 3 of 5

mailto:cs187help@cs.umass.edu

CMPSCI 187 / Spring 2015 Linked List Recursion

We recommend that you think about possible cases and add new @Test cases to these files as part of your program-
ming discipline. Simple tests to add will consider questions such as:

• Do your methods taking integers as arguments handle positives, negatives, and zeroes (when those values are
valid as input)?

• Does your code handle unusual cases, such as empty or maximally-sized data structures?

More complex tests will be assignment-specific. To build good test cases, think about ways to exercise methods. Work
out the correct result for a call of a method with a given set of parameters by hand, then add it as a test case. Note that
we will not be looking at your test cases, they are just for your use.

Before submitting, make sure that your program compiles with and passes all of the original tests. If you have errors
in these files, it means the structure of the files found in the src directory have been altered in a way that will cause
your submission to lose some (or all) points.

Problem 1

Import Project into Eclipse

Begin by downloading the starter project and importing it into your workspace. It is very important that you do not
rename this project as its name is used during the autograding process. If the project is renamed, your assignment will
not be graded, and you will receive a zero.

The imported project may have some errors, but these should not prevent you from getting started. Specifically, we
may provide JUnit tests for classes that do not yet exist in your code. You can still run the other JUnit tests.

The project should normally contain the following root items:

src This is the source folder where all code you are submitting must go. You can change anything you want in this
folder (unless otherwise specified in the problem description and in the code we provide), you can add new files,
etc.

support This folder contains support code that we encourage you to use (and must be used to pass certain tests). You
must not change or add anything in this folder. To help ensure that, we suggest that you set the support folder
to be read-only. You can do this by right-clicking on it in the package explorer, choosing Properties from the
menu, choosing Resource from the list on the left of the pop-up Properties window, unchecking the Permissions
check-box for Owner-Write, and clicking the OK button. A dialog box will show with the title “Confirm recursive
changes”, and you should click on the “Yes” button.

test The test folder where all of the public unit tests are available.

JUnit 4 A library that is used to run the test programs.

JRE System Library This is what allows Java to run; it is the location of the Java System Libraries.

If you are missing any of the above or if errors are present in the project (other than as specifically described below),
seek help immediately so you can get started on the project right away.

Problem 1 continued on next page. . . Page 4 of 5

CMPSCI 187 / Spring 2015 Linked List Recursion Problem 1 (continued)

Implement the ListInterface

Implement the ListInterface provided in a class called RecursiveList in the structures package. Be
sure to place it in the appropriate place under the src/ directory, and not in the support/ or test/ directories.

In your implementation, you may not use explicit iteration (i.e. for, while, or do while loops) of any kind. If
you submit an implementation using explicit iteration, you will receive a zero for the assignment.

Be sure that your implementation complies with the required big-O runtime bounds in the comments of each
method. You will not pass all of the autograder tests if your methods are not within these bounds.

Hints: Recursion is all about reducing some problem slightly to make it easier to solve. Ask yourself, “What method
would make this easier?” For example, the indexOf method signature is written in such a way that it is not going to
be possible to do recursion on a Node. However, there is nothing stopping us from writing a private helper method
that we can use internally. Perhaps something with a method signature like:

private int indexOf(T toFind, Node<T> toCheck, int currentIndex)

We can then simply ask, does toCheck hold toFind? If it does, we can return currentIndex. Otherwise, we
recurse on the next node in the list, at the next index, with the same toFind value. What should we do if toCheck
is null?

You’ll need to come up with other such “helper” methods that lend themselves to recursion. You can’t modify the
interface, but that doesn’t stop you from adding these new helper methods.

Throw an UnsupportedOperationException when implementing the remove method in the required
Iterator. You need not attempt to handle the nuances of mid-iteration element deletion.

We have provided you with an absolutely minimal set of tests. You will need to come up with some of your own. Try
to think of all of the strange cases that could occur, and write tests to check for each of them. You will not be graded
on your tests, but writing them and passing them is the only way that you can be reasonably sure that your code works.

Export and Submit

When you have completed the changes to your code, you should export an archive file containing the entire Java
project. To do this, click on the recursive-list-student project in the package explorer. Then choose “File
→ Export” from the menu. In the window that appears, under “General” choose “Archive File”. Then choose “Next” and
enter a destination for the output file. Be sure that the project is named recursive-list-student. Save the
exported file with the zip extension (any name is fine). Log into Moodle and submit the exported zip file.

Page 5 of 5

	Overview
	Learning Goals

	General Information
	Policies
	Test Files

	Problem 1
	Import Project into Eclipse
	Implement the ListInterface
	Export and Submit

