
CMPSCI 187 / Spring 2015
Implementing Sets Using Linked Lists

Due on Tuesday February 24, 2015, 8:30 a.m.

Marc Liberatore and John Ridgway

Morrill I N375
Section 01 @ 10:00
Section 02 @ 08:30

1

CMPSCI 187 / Spring 2015 Implementing Sets Using Linked Lists

Contents

Overview 3

Learning Goals . 3

General Information 3

Policies . 3

Test Files . 4

Problem 1 4

Review of the Concept of Sets . 4

Immutability . 5

Generics . 5

Iterators and the Iterable Interface . 6

Import Project into Eclipse . 7

Starter Code and Tests . 8

Testing . 9

Export and Submit . 9

Page 2 of 9

CMPSCI 187 / Spring 2015 Implementing Sets Using Linked Lists

Overview

In this assignment you will build a class to represent a set; as in the mathematical concept of a set, a collection that
has no duplicates. The class will be immutable (more later), generic, and will use Iterators. It will be implemented
with linked lists. We will give you (in the support directory) the Set interface, and the LinkedNode class, and (in
the src directory) skeletons for the LinkedSet and LinkedNodeIterator classes which you will complete. In this
assignment you will be starting from initial code provided by us, and adding to and modifying it. You should not have
to create any new classes or interfaces.

Learning Goals

• Continue to exercise your understanding of linked lists.

• Introduce the concept of immutable classes.

• Introduce the concept of generics.

• Show ability to write a class that implements a given interface.

• Read a specification in text and as a Java interface, and demonstrate understanding by implementing it.

• Use existing JUnit test cases.

General Information

Read this entire document. If, after a careful reading, something seems ambiguous or unclear to you, then email
cs187help@cs.umass.edu immediately.

Start this assignment as soon as possible. Do not wait until 5pm the night before the assignment is due to tell us you
don’t understand something, as our ability to help you will be minimal.

Reminder: Copying partial or whole solutions, obtained from other students or elsewhere, is academic dishonesty. Do
not share your code with your classmates, and do not use your classmates’ code.

You are responsible for submitting project assignments that compile and are configured correctly. If your project
submission does not follow these policies exactly you may receive a grade of zero for this assignment.

Policies

• For some assignments, it will useful for you to write additional class files. Any class file you write that is used
by your solution MUST be in the provided src directory you export.

• The TAs and instructors are here to help you figure out errors, but we won’t do so for you after you submit
your solution. When you submit your solution, be sure to remove all compilation errors from your project.
Any compilation errors in your project will cause the autograder to fail, and you will receive a zero for your
submission.

Page 3 of 9

mailto:cs187help@cs.umass.edu

CMPSCI 187 / Spring 2015 Implementing Sets Using Linked Lists

Test Files

In the test directory, we provide several JUnit test cases that will help you keep on track while completing the
assignment. We recommend you run the tests often and use them to help create a checklist of things to do next. But
you should be aware that we deliberately don’t provide you the full test suite we use when grading.

We recommend that you think about possible cases and add new @Test cases to these files as part of your programming
discipline. Simple tests to add will consider questions such as:

• Do your methods taking integers as arguments handle positives, negatives, and zeroes (when those values are
valid as input)?

• Does your code handle unusual cases, such as empty or maximally-sized data structures?

More complex tests will be assignment-specific. To build good test cases, think about ways to exercise methods. Work
out the correct result for a call of a method with a given set of parameters by hand, then add it as a test case. Note that
we will not be looking at your test cases, they are just for your use.

Before submitting, make sure that your program compiles with and passes all of the original tests. If you have errors
in these files, it means the structure of the files found in the src directory have been altered in a way that will cause
your submission to lose some (or all) points.

Problem 1

Review of the Concept of Sets

(This is just a simple review. One more thorough explanation may be found on Wikipedia, at http://en.wikipedia.
org/wiki/Set_(mathematics).)

We are referring to sets in the sense of the mathematical construct of set. A set is an unordered collection of elements
without duplicates. They are usually expressed in the following fashion:

Q = {a, b, c, d, e}

says that Q is a set with five elements, a, b, c, d, and e. Note that the collections are unordered, so:

{a, b, c, d, e} = {a, e, c, b, d} = {c, b, e, d, a} = . . .

There are various standard operation on sets, tests for membership, tests for inclusion, test for equality, and the union,

Problem 1 continued on next page. . . Page 4 of 9

http://en.wikipedia.org/wiki/Set_(mathematics)
http://en.wikipedia.org/wiki/Set_(mathematics)

CMPSCI 187 / Spring 2015 Implementing Sets Using Linked Lists Problem 1 (continued)

intersection, and set difference operations. These are illustrated below.

Given:
A = {a, b, c, d, e}
B = {c, a}
C = {3, 1, 4, 5, 9}
then
a ∈ A membership (read as a is an element of A)
B ⊂ A subset (read as B is a subset of A)
A ⊃ B A is a superset of B
B ∪ C = {3, 1, c, a, 4, 9, 5} set union, include all elements from both sets
A ∪A = A sets don’t have duplicates
A ∩B = B ∩A = B set intersection, those elements that are elements of both sets
A ∩ C = ∅ set intersection with no common elements gives the empty set
A−B = {b, d, e} set difference, those elements in A but not in B

We will be implementing all of these operations on our sets.

Immutability

Some classes represent immutable objects, i.e., objects whose state cannot be changed. You are already familiar with at
least one such class, the String class. Instances of that class cannot be changed in any way. If you look carefully you
will notice that any String method that could be construed as changing the String actually returns a new String;
the original is unchanged. Other immutable classes include Boolean, Integer, and Float.

The Set interface described in this project specifies an immutable class. Note that none of the methods allows one to
change an instance, they only return new instances.

Immutable objects have some nice properties, most of which we will not go into here, but we can say that they are
easier to reason about than mutable objects, and also that they are much safer to use in a multi-threaded environment.

Your implementation of the Set interface must maintain that immutability. Once an instance is created it never
changes.

Generics

The textbook defined the LLStringNode class (DJW page 103), and you have also seen the LLDogNode class, which
differed from the former only in that the info field was of type Dog instead of type String. In future exercises we
might need node classes to build linked lists of Locomotive, Integer, or pretty much anything else. We would copy
and paste and then modify (slightly) the basic class, but that is wasteful and prone to errors; if we discover a bug in
one version we have to go back and fix that bug in every version. A better answer is parametric polymorphism. The
idea is to replace specific types in a class definition with type variables, and declare those type variables in the class
header. Java calls this concept generics, and generic classes and interfaces were introduced in Java 5 (JDK 1.5).

Figure 1 shows three different classes, LLStringNode, LLDogNode, and LLNode, the last being a generic version of
the first two. This is designed to illustrate how to define generic classes. We have simplified these definitions slightly

Problem 1 continued on next page. . . Page 5 of 9

CMPSCI 187 / Spring 2015 Implementing Sets Using Linked Lists Problem 1 (continued)

1 class LLStringNode {
2 String info;
3 LLStringNode link;
4

5 LLStringNode(String info) {
6 this.info = info;
7 this.link = null;
8 }
9

10 String getInfo() {
11 return info;
12 }
13

14 LLStringNode getLink() {
15 return link;
16 }
17

18 void setInfo(String info) {
19 this.info = info;
20 }
21

22 void setLink(
23 LLStringNode link)
24 {
25 this.link = link;
26 }
27 }

class LLDogNode {
Dog info;
LLDogNode link;

LLDogNode(Dog info) {
this.info = info;
this.link = null;

}

Dog getInfo() {
return info;

}

LLDogNode getLink() {
return link;

}

void setInfo(Dog info) {
this.info = info;

}

void setLink(
LLDogNode link)

{
this.link = link;

}
}

class LLNode<T> {
T info;
LLNode<T> link;

LLNode(T info) {
this.info = info;
this.link = null;

}

T getInfo() {
return info;

}

LLNode<T> getLink() {
return link;

}

void setInfo(T info) {
this.info = info;

}

void setLink(
LLNode<T> link)

{
this.link = link;

}
}

Figure 1: Definitions of LLStringNode, LLDogNode, and LLNode classes.

1 LLNode<Dog> dogNode = new LLNode<Dog>(dog1);
2 dogNode.setInfo(dog2);
3 dogNode.setLink(new LLNode<Dog>(dog3));
4 Dog dog = dogNode.getInfo(); // dog == dog2
5

6 LLNode<String> sNode = new LLNode<String>("abc");
7 sNode.setInfo("xyz");
8 sNode.setLink(new LLNode<String>("xyz"));
9 String s = sNode.getInfo(); // s == "xyz"

Figure 2: Using the LLNode class.

to fit them on the page (we removed comments and the public and private modifiers). Figure 2 shows typical uses
of the LLNode class.

The major changes are the inclusion of <T> on line 1 of the LLNode definition. This declares that LLNode is generic,
and has a type variable named T. When you use the LLNode class, for instance by using LLNode<String>, you are
specifying that you want a version of LLNode created to handle Strings. It is as though you created a new specialized
class with all of the instances of the type variable T replaced by the type String. It is perfectly possible, as Figure 2
shows, to have several different instantiations of the generic class.

DJW has a discussion of generic classes and interfaces on page 166. See that for additional enlightenment.

Iterators and the Iterable Interface

Iterators and the Iterator and Iterable interfaces are given short shrift in the DJW, being mentioned briefly in a
box on pages 396 and 397, but they are actually very important, and you have probably, all unknowingly, used them

Problem 1 continued on next page. . . Page 6 of 9

CMPSCI 187 / Spring 2015 Implementing Sets Using Linked Lists Problem 1 (continued)

before. If you have ever written code like:

1 for (Type variable : array) {
2 ...
3 }

then you have used an Iterator and the Iterable interface. To be specific array must have been an instance of a
class that implemented the Iterable interface. In fact, the code that you wrote is exactly equivalent to:

1 Iterator iter = array.iterator();
2 while (iter.hasNext()) {
3 Type variable = iter.next();
4 ...
5 }

(except that the variable iter is hidden from you).

An iterator is a object that allows you to examine the elements of some collection one-by-one.

The Iterable<T> interface specifies only one method, the Iterator<T> iterator() method, which specifies
that the implementing class will happily return an iterator for the collection.

The Iterator<T> interface specifies three methods, boolean hasNext(), T next(), and void remove(). For
our purposes in this assignment we are going to ignore the remove() method; the definition you are given will simply
throw an UnsupportedOperationException to indicate that this operation is not supported, which it cannot be,
because we cannot remove elements from an immutable collection.

Note: You may not use any of the classes from the Java Platform API that implement the Collection interface
(or its sub-interfaces, etc.). The list of these classes is included in the API documentation, available at: http:

//docs.oracle.com/javase/7/docs/api/java/util/Collection.html. Doing so will be viewed
as an attempt to cheat.

Import Project into Eclipse

Begin by downloading the starter project and importing it into your workspace. It is very important that you do not
rename this project as its name is used during the autograding process. If the project is renamed, your assignment will
not be graded, and you will receive a zero.

The imported project may have some errors, but these should not prevent you from getting started. Specifically, we
may provide JUnit tests for classes that do not yet exist in your code. You can still run the other JUnit tests.

The project should normally contain the following root items:

src This is the source folder where all code you are submitting must go. You can change anything you want in this
folder (unless otherwise specified in the problem description and in the code we provide), you can add new files,
etc.

support This folder contains support code that we encourage you to use (and must be used to pass certain tests). You
must not change or add anything in this folder. To help ensure that, we suggest that you set the support folder
to be read-only. You can do this by right-clicking on it in the package explorer, choosing Properties from the

Problem 1 continued on next page. . . Page 7 of 9

http://docs.oracle.com/javase/7/docs/api/java/util/Collection.html
http://docs.oracle.com/javase/7/docs/api/java/util/Collection.html

CMPSCI 187 / Spring 2015 Implementing Sets Using Linked Lists Problem 1 (continued)

menu, choosing Resource from the list on the left of the pop-up Properties window, unchecking the Permissions
check-box for Owner-Write, and clicking the OK button. A dialog box will show with the title “Confirm recursive
changes”, and you should click on the “Yes” button.

test The test folder where all of the public unit tests are available.

JUnit 4 A library that is used to run the test programs.

JRE System Library This is what allows Java to run; it is the location of the Java System Libraries.

If you are missing any of the above or if errors are present in the project (other than as specifically described below),
seek help immediately so you can get started on the project right away.

Starter Code and Tests

In this assignment we are not giving you any “driver,” no class with a main method. All of your testing will be done
using the supplied tests (or those you write yourself).

In the support/sets directory you will find Set.java. This file defines the Set interface. Read that file closely,
as it defines exactly what your implementation must do. You will also find LinkedNode.java, which defines the
LinkedNode class, an immutable, generic, generalization of the LL...Node classes you have seen before. As with
all files in the support directory you must not modify either of these files.

In the src directory you will find two files that you must complete, LinkedSet.java and
LinkedNodeIterator.java. LinkedSet.java will have a single error on line 34; this error will be resolved by
your work on LinkedNodeIterator.java.

The version of LinkedSet<E> we have given you has one attribute, head, which is intended to be the head of a linked
list of elements in the set. It also has three constructors; two public, one which creates an empty set, and the other of
which creates a set containing a single element; and one private which creates a set from a linked list of LinkedNode
<E>s. This last constructor is the one that you will call from your methods to create the new LinkedSet object to
be returned. There are ten methods that you will need to supply implementations for. We suggest that you start by
implementing the iterator method; because many of the other methods can use it to good effect; for an example see
the hashCode() method.

To implement the iterator method you will need to finish and use the LinkedNodeIterator<T> class. This
class has two methods you will need to complete, hasNext() and next(). You will also need to choose appropriate
attributes and build an appropriate constructor. If you remember that you are iterating over a linked list of LinkedNode
s you should not have too much difficulty with this.

A few hints:

• An appropriate parameter for the constructor of the LinkedNodeIterator class is a reference to the first
LinkedNode in the list.

• isEmpty() should be really trivial.

• Use the iterator in implementing the size, contains, isSubset, union, intersect, subtract, and remove
methods.

Problem 1 continued on next page. . . Page 8 of 9

CMPSCI 187 / Spring 2015 Implementing Sets Using Linked Lists Problem 1 (continued)

• Use the contains method everywhere it would be useful.

• Under certain circumstances adjoin and remove can both just return this.

• Implement isSuperset using isSubset.

• This one won’t make any sense until you try it, but, when implementing isSubset iterate over the other set,
not this.

The starter code you receive is not a working implementation. However, you can still run the tests, most of which will
fail.

Testing

We provide one public JUnit test classes you should use to test your implementation, LinkedSetPublicTest.java.

You should run these tests to test your implementations. Your grade for this assignment will depend on the results of
these tests as well as private tests (that are not visible to you) that we have constructed to ensure that your implemen-
tation has not been tailored to the public tests.

For full credit, you must correctly implement each method in LinkedSet.java and LinkedNodeIterator.java.
Make sure that you have done everything that is specified in the TODO comments in those files.

Export and Submit

When you have completed the changes to your code, you should export an archive file containing the entire Java
project. To do this, click on the sets-student project in the package explorer. Then choose “File → Export”
from the menu. In the window that appears, under “General” choose “Archive File”. Then choose “Next” and enter a
destination for the output file. Be sure that the project is named sets-student. Save the exported file with the zip
extension (any name is fine). Log into Moodle and submit the exported zip file.

Page 9 of 9

	Overview
	Learning Goals

	General Information
	Policies
	Test Files

	Problem 1
	Review of the Concept of Sets
	Immutability
	Generics
	Iterators and the [language=Java,breaklines=true,stringstyle=]Iterable Interface
	Import Project into Eclipse
	Starter Code and Tests
	Testing
	Export and Submit

