
CMPSCI 187 / Spring 2015
Sorting Kata

Due on Thursday, April 30, 8:30 a.m

Marc Liberatore and John Ridgway

Morrill I N375
Section 01 @ 10:00
Section 02 @ 08:30

1

CMPSCI 187 / Spring 2015 Sorting Kata

Contents

Overview 3

Learning Goals . 3

General Information 3

Policies . 3

Test Files . 3

Problem 1 4

Import Project into Eclipse . 4

Examining the code . 5

What to do . 5

Export and Submit . 5

Page 2 of 5

CMPSCI 187 / Spring 2015 Sorting Kata

Overview

In this assignment, you will implement three in-place sorting algorithms: insertion sort, heap sort, and quick sort. Your
implementations will operate on a list with the minimal set of methods necessary to support a comparison-based sort
(compare, swap, and size), and will not be able to directly examine the values in the list.

Learning Goals

• Demonstrate understanding of sorting algorithms by implementing them.

• Show ability to work with a restricted list abstraction.

• Finally be done with the relentless torrent of CMPSCI 187 assignments.

General Information

Read this entire document. If, after a careful reading, something seems ambiguous or unclear to you, then email
cs187help@cs.umass.edu immediately.

Start this assignment as soon as possible. Do not wait until 5pm the night before the assignment is due to tell us you
don’t understand something, as our ability to help you will be minimal.

Reminder: Copying partial or whole solutions, obtained from other students or elsewhere, is academic dishonesty. Do
not share your code with your classmates, and do not use your classmates’ code.

You are responsible for submitting project assignments that compile and are configured correctly. If your project
submission does not follow these policies exactly you may receive a grade of zero for this assignment.

Policies

• For some assignments, it will useful for you to write additional class files. Any class file you write that is used
by your solution MUST be in the provided src directory you export.

• The TAs and instructors are here to help you figure out errors, but we won’t do so for you after you submit
your solution. When you submit your solution, be sure to remove all compilation errors from your project.
Any compilation errors in your project will cause the autograder to fail, and you will receive a zero for your
submission.

Test Files

In the test directory, we provide several JUnit test cases that will help you keep on track while completing the
assignment. We recommend you run the tests often and use them to help create a checklist of things to do next. But
you should be aware that we deliberately don’t provide you the full test suite we use when grading.

Page 3 of 5

mailto:cs187help@cs.umass.edu

CMPSCI 187 / Spring 2015 Sorting Kata

We recommend that you think about possible cases and add new @Test cases to these files as part of your program-
ming discipline. Simple tests to add will consider questions such as:

• Do your methods taking integers as arguments handle positives, negatives, and zeroes (when those values are
valid as input)?

• Does your code handle unusual cases, such as empty or maximally-sized data structures?

More complex tests will be assignment-specific. To build good test cases, think about ways to exercise methods. Work
out the correct result for a call of a method with a given set of parameters by hand, then add it as a test case. Note that
we will not be looking at your test cases, they are just for your use.

Before submitting, make sure that your program compiles with and passes all of the original tests. If you have errors
in these files, it means the structure of the files found in the src directory have been altered in a way that will cause
your submission to lose some (or all) points.

Problem 1

Import Project into Eclipse

Begin by downloading the starter project and importing it into your workspace. It is very important that you do not
rename this project as its name is used during the autograding process. If the project is renamed, your assignment will
not be graded, and you will receive a zero.

The imported project may have some errors, but these should not prevent you from getting started. Specifically, we
may provide JUnit tests for classes that do not yet exist in your code. You can still run the other JUnit tests.

The project should normally contain the following root items:

src This is the source folder where all code you are submitting must go. You can change anything you want in this
folder (unless otherwise specified in the problem description and in the code we provide), you can add new files,
etc.

support This folder contains support code that we encourage you to use (and must be used to pass certain tests). You
must not change or add anything in this folder. To help ensure that, we suggest that you set the support folder
to be read-only. You can do this by right-clicking on it in the package explorer, choosing Properties from the
menu, choosing Resource from the list on the left of the pop-up Properties window, unchecking the Permissions
check-box for Owner-Write, and clicking the OK button. A dialog box will show with the title “Confirm recursive
changes”, and you should click on the “Yes” button.

test The test folder where all of the public unit tests are available.

JUnit 4 A library that is used to run the test programs.

JRE System Library This is what allows Java to run; it is the location of the Java System Libraries.

If you are missing any of the above or if errors are present in the project (other than as specifically described below),
seek help immediately so you can get started on the project right away.

Problem 1 continued on next page. . . Page 4 of 5

CMPSCI 187 / Spring 2015 Sorting Kata Problem 1 (continued)

Examining the code

Ultimately, you will be implementing the sortmethod in each of three classes: InsertionSorter, HeapSorter,
and QuickSorter. But before you do so, spend a few minutes to look over the code we’ve provided.

In the comparators package, we provide two comparators that do what you’d expect on Integers and Strings.
These are used in the tests we provide.

In the structures package, we provide an interface (and accompanying implementation) of a SwapList. Your
sorting algorithm implementations will have to work within this interface. Notably, you cannot directly examine values
in the underlying list; you can only compare and swap them. We do provide a toString method, but do not use
its results in your sorting implementation — it is for debugging only. We will treat attempts to parse and sort the
returned String as an attempt to cheat, and at best you’ll receive a zero for this assignment.

In the sorters package, look first at the AbstractSorter class. Each of the sorters you will implement should
extend this class. They will have access to its protected elements: the list to sort and the comparator to be
used when sorting.

We’ve provided a complete example of a concrete implementation of a sorter in SelectionSorter. It is a close
adaptation of the code for selection sort that we covered in lecture (and that DJW provides). Your sorter implementa-
tions will look something like this, manipulating the list and likely using one or more private methods.

What to do

Implement the sort method in each of InsertionSorter, HeapSorter, and QuickSorter, using the cor-
responding algorithm. For the last, note that we’ve specified which index’s value you must use as the pivot.

If your implementations differ from the ones presented in lecture, you may find the provided tests that check the
number of swaps and comparisons may be off slightly. Being off slightly is OK — the graded tests will allow for some
leeway. But if they’re off significantly and you don’t know why, it may indicate you’ve implemented the algorithm
incorrectly. Don’t micro-optimize them; just implement the algorithms from lecture or the book as-is.

If we find that you’ve implemented the wrong algorithm (for example, you copy/paste the code from
SelectionSorter.sort into each of the other classes), we will assume you’re attempting to game the autograder.
We will treat this as an attempt to cheat, and at best you’ll receive a zero for this assignment.

Export and Submit

When you have completed the changes to your code, you should export an archive file containing the entire Java
project. To do this, click on the sorting-kata-student project in the package explorer. Then choose “File
→ Export” from the menu. In the window that appears, under “General” choose “Archive File”. Then choose “Next”
and enter a destination for the output file. Be sure that the project is named sorting-kata-student. Save the
exported file with the zip extension (any name is fine). Log into Moodle and submit the exported zip file.

Page 5 of 5

	Overview
	Learning Goals

	General Information
	Policies
	Test Files

	Problem 1
	Import Project into Eclipse
	Examining the code
	What to do
	Export and Submit

