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1 Review of Uniform-cost Search
Uniform-Cost Search

e This method from DJW makes a priority queue of Flight objects, which
each contain a start vertex, an end vertex, and a total distance.

e The compareTo method of the Flight class treats objects with smaller dis-
tances as “larger”, so that they will be dequeued from the priority queue
first.

e It takes a bit of reasoning to prove that this is correct, as you’ll see in
CMPSCI 250.

Code for UCSEntry

import java.lang.Comparable;

public class UCSEntry<V>

implements Comparable <UCSEntry<V>> {
private V vertex;
private Double cost;

public UCSEntry(V vertex, Double cost) {
this.vertex = vertex;
this.cost = cost;

}
public V getVertex() { return vertex; }
public Double getCost() { return cost; 1}
public int compareTo (UCSEntry<V> other) {
return Double.compare(other.cost, this.cost);
}
}



Code for Uniform-Cost Search

public double ucs(
WeightedGraphInterface<V> g, V from, V to) {
PriorityQueue <UCSEntry<V>> queue =
new PriorityQueue<UCSEntry<V>>();
GraphMarker <V> marker = g.getMarker ();
queue .add (new UCSEntry<V>(from, 0.0));
do { UCSEntry<V> e = queue.remove();
Vv = e.getVertex();
Double ¢ = e.getCost();
if (v == to) { return c; }
if (! marker.isMarked(v)) {
marker .mark (v);
for (V neighbor : g.getNeighbors(v)) {
queue.add (new UCSEntry<V>(neighbor,
c + g.getEdgeWeight (v, neighbor))); } }
} while (! queue.isEmpty ());
return Double.POSITIVE_INFINITY; }

Clicker Question #1
Suppose we perform a UCS on this directed

graph starting at vertex a, with b as the goal.
When we first put b on the priority queue, what a 31 b
is its distance?

A 4 5
B. 15 C d
6
C. 16
D. 31
2 Sorting

The Sorting Problem

e We've seen that searching, for example, can be performed much more
quickly on a sorted list than on an unsorted one.

When we have data in a spreadsheet, sorted using one definition of “smaller”,
we often want to see what it looks like sorted by some other definition.

It’s thus interesting to look at algorithms for sorting a list of objects.

e We'll present a number of sorting algorithms in this lecture and the next.

All will be comparison-based, meaning that the only operation they
perform on the items is the compareTo method that all Comparable objects
must have.



There are also non-comparison-based sorting algorithms, that use partic-
ular properties of the objects they sort.

We'll look at the asymptotic running time of each sort, and also at other
considerations that might lead us to prefer one algorithm over another.

These include memory usage, requirements on access to the data, and
behavior in the average case, best case, or typical case.

You'll see more about these algorithms, with more mathematical proofs,
in CMPSCI 311.

A Sorting Test Harness

DJW present a driver program called a test harness that can be used to
demonstrate each sorting method and evaluate the number of comparisons
and swaps that it uses on a randomly chosen input.

Swaps are our basic means of moving items around within the space they
originally occupy. An in-place sort has the property that the objects
never move outside of this space.

The harness will sort sequences of 50 integers, each randomly chosen to
be any number in the range from 0 to 99 with equal probability.

We will thus usually have sets of equal elements in the sequence.

Since the sorting algorithms are comparison-based, they would take the
same number of comparisons and swaps on any set of data of the same
order type.

What’s an Order Type?

Consider the two input lists {3,7,1,4,6,4} and {12,15,2,13,14,13}. If
we take any comparison in the first list, such as item 2 versus item 5, the
corresponding comparison in the second list has the same result.

This correspondence will stay true as the same comparison-based sorting
algorithm works on both lists.

The two lists have the same order type in this case.

A Sorting Test Harness

The harness has a method initValues to populate the array, a method
isSorted to test whether the array is already sorted, a method swap that
switches the values at two given indices, and a method printValues that
gives the 50 values in a table of 5 rows with 10 values each.

In the book, DJW show sample outputs from the harness for each of their
sorting methods.



Selection Sort

e A natural way to sort is to find the element that should come first, put
it in the first position, and continue by finding the element that should
come next.

e We find the next element by simple linear search, then swap it into its
correct position. This gives us an in-place sort, that avoids using memory
for both the old and new list.

e This would also be easy to code recursively.

Code for Selection Sort

static int minIndex(int startIndex,

int endIndex) A{
int index0fMin = startIndex;

for (int index = startIndex + 1;
index <= endIndex; index += 1) {
if (values[index] < values[index0fMin]) {
index0fMin = index; } }
return index0fMin; }

static void selectionSort () {
int endIndex = SIZE - 1;

for (int current = 0;
current <= endIndex; current += 1)
swap (current , minIndex (current, endIndex));

Analyzing Selection Sort

e The minIndex method with parameters z and y always takes O(y — z)
time, since the comparision is done with each item to find the one that
belongs at the front. In this case it compares item x against y — x — 1
other elements.

e The total time can’t be more than O(n?), since we have a main loop that
we go through n — 1 times, and O(y — z) is at worst O(n). But we can
figure out the exact number of comparisons.

Clicker Question #2
What is the worst case for selection sort? That is, what input order on n
inputs causes selection sort to take the greatest number of comparisons?

A. the input is already sorted

B. the input is exactly backward
C. the order {n,1,2,3,....,n—1}
D

. selection sort always takes the same number of comparisons on
n inputs



Analyzing Selection Sort

e The total number of comparisons is actually S(n) = (n — 1) + (n — 2) +
... + 2+ 1 which evaluates to n(n — 1)/2, the n’th “triangle number”.
(Perhaps the easiest way to see this is to add S(n) to 14+2+ ...+ (n—1)
term by term, to get the fact that 25(n) is n — 1 terms, each of which is

e If swaps are much more expensive than comparisons, selection sort is ac-
tually rather good, because it uses only n — 1 swaps in the worst case.

Bubble Sort

e Bubble sort is a variant of selection sort where we find the next element
in sorted order by first comparing the last two elements, then comparing
the lesser of those two with the next to next to last, then comparing the
smallest so far with the one before that, and so on.

e The minimum element in the range that we check “bubbles” to the top,
and some other elements also move.

Code for Bubble Sort
This time we use n(n — 1)/2 swaps in the worst case. But they are adjacent
swaps; we could implement bubble sort on a linked list as well as on an array.

static void bubbleUp(int startIndex,
int endIndex) {

for (int index = endIndex;
index > startIndex; index -= 1) {
if (values[index] < values[index - 1]) {

swap (index, index - 1); } } }
static void bubbleSort () {
for (int current = 0;
current < (SIZE - 1); current += 1) {
bubbleUp (current, SIZE - 1); } }

Insertion Sort

e Another natural way to sort is to gradually build up a sorted list by
successively inserting new elements.

e After k rounds of this process, the first k+ 1 elements of the list are sorted
with respect to one another, though not with the others.

e This is a bit like our reheaping up — we have a hole at the end of the list,
and we move it up by swapping until the new element can go into it.



Code for Insertion Sort

static void insertElement (int startIndex,
int endIndex) {

for (int current = endIndex;
current > startIndex; current -= 1) {
if (values[current] < values[current - 1]) {
swap (current, current - 1); }

else { return; } } }

static void insertionSort( ) {
for (int count = 1; count < SIZE;
count += 1) {
insertElement (0, count); } }

Analyzing Insertion Sort

e The insertion step with parameters x and y also takes y—x—1 comparisons
in the worst case, and it takes that many swaps as well. Again the worst
case is a backwards list. The total number of comparisons is again n(n —
1)/2, and the total running time is O(n?).

e Insertion sort has a good best-case behavior; if the list is already sorted
it still does n insertion steps, but each one then takes no swaps and only
one comparison, so the total time is O(n).

e One measure of how far from being sorted a list might be is the number of
reversals, the number of pairs of elements that are in the wrong relative
order.

e Both bubble sort and insertion sort perform a number of swaps that is
equal to the number of reversals, since each adjacent swap fixes exactly
one reversal.

e But if the number of reversals is r, insertion sort takes only O(n+r) total
time, which is very good if the list is relatively sorted.

Clicker Question #3
How many reversals are there in the list (A, M, H, E, R, S, T)? (We use
ordinary alphabetical order on the letters.)

A 2
B. 3
C. 4

D. more than 4



3 Efficient Sorting Algorithms
Links: Sorting Videos

e One of the first and most famous animated videos in computer science
education is Sorting Out Sorting from the University of Toronto, at http:
//www . youtube. com/watch?v=SJwEwA5g0kM

e Another comprehensive set of sorting animations is at http://www.sorting-algorithms.
com

e Several sorting algorithms can be seen at http://youtube.com/user/
AlgoRythmics| performed by folk dancers.

O(nlogn)-Comparison Sorts

e In tomorrow’s discussion, we will present an argument that any comparison-
based sorting algorithm must use at least log(n!) comparisons.

e This is because any such algorithm can be represented as a decision tree,
and such a tree must have at least n! leaves in order to be able to give any
of the n! possible correct answers. If it cannot give one of the answers, it
will be wrong if that answer is correct.

e How do we compute log(n!), in big-O terms?

e The log of n!, as a real number, is equal to log(n) + log(n — 1) + log(n —
2) + ... + log(2) + log(1).

e These are n terms, each at most logn, so the sum is at most nlogn. But
the first half of those terms are also at least log(n/2) = log(n) — 1, so
the sum is at least (n/2)(log(n) — 1) which is about (1/2)(nlogn). Thus
log(n!) = O(nlogn).

e Can we achieve a sort with only O(nlogn) comparisons?

e We've actually seen one way to do this — enqueue each of the n elements
into a heap-based priority queue, then dequeue them one by one. Each
enqueue and dequeue operation takes only O(logn) comparisons.

e In this lecture we’ll see three other ways to sort in O(nlogn) comparisons,
which are a bit better than this.

Merge Sort

e The first two of our three O(nlogn) sorts use a divide and conquer strat-
egy. We divide our list into two pieces, recursively sort each piece, then
combine the two pieces.


http://www.youtube.com/watch?v=SJwEwA5gOkM
http://www.youtube.com/watch?v=SJwEwA5gOkM
http://www.sorting-algorithms.com
http://www.sorting-algorithms.com
http://youtube.com/user/AlgoRythmics
http://youtube.com/user/AlgoRythmics

e In Merge Sort, we divide the list arbitrarily and work to combine the two
sorted lists.

e In Quick Sort, we work to divide the list into one sublist of larger elements
and one of smaller elements, a large and a small sublist, which we can
combine by just concatenating.

e DJW’s method takes a range of the array, which may be entirely unsorted,
and leaves it sorted.

e [t does nothing if the range has size 1, of course.

e The method it calls to do all the work takes two ranges, each assumed to
be sorted, and merges them into a single sorted range.

Code for Merge Sort
Note that we have a base case of a one-element list with first == last. Our
method is correct as long as the merge method is.
static void mergeSort (int first, int last) {
if (first < last) {

int middle = (first + last)/2;

mergeSort (first, middle);

mergeSort (middle + 1, last);

merge (first, middle,
middle + 1, last); 1} }

Analyzing Merge Sort

e Suppose for convenience that our array size n is a power of 2, so that
whenever a range is split, it is split exactly in half. How many comparisons
does Merge Sort use to sort this array?

e To merge an array of size x with an array of size y, it should be clear that
the merge method uses O(x + y) comparisons. The exact number is very
close to x +y, as for the most part each comparison leads to an item being
copied into the temporary array.

e To count the total comparisons, we can divide the entire set of merge
operations into phases, where the operations in each phase take a total
of O(n) time. The first phase is the merging of each single element into
a pair. The second is the merging of pairs into sets of size 4, the third
merges those into size 8, and so on until phase number logn creates the
final sorted list.

e There are thus logn phases of O(n) comparisons each for O(nlogn) in all.



Space Usage of Merge Sort

o If we use Merge Sort on an array, we cannot sort in place as we did with
the three O(n?) sorts.

e The last merge operation, for example, takes two array segments of length
n/2 each and merges them into an array of length n. Since all three arrays
exist at the same time, we use 2n locations.

e The up-side is that Merge Sort does not require random access to the data,
and so can be used with linked lists or files.

e Actually, when using linked lists, we only need O(logn) extra space rather

than O(n).

Clicker Question #4

Suppose we alter Merge Sort so that if the list size is 20 or less, we use
Insertion Sort rather than recursing. How will this affect the big-O running
time of the Merge Sort?

A. Tt will improve to O(n)
B. It will take exactly as many steps as before.
C. It will remain O(nlogn) though the constant factor may change.

D. It will become O(n?) because Insertion Sort is O(n?).

Quick Sort

e Quick Sort also divides the list in two, sorts each piece recursively, and
combines the pieces; but here we make sure that every item in the first
piece is less than or equal to every item in the second piece.

e We do this by taking a pivot element and comparing each other element
to the pivot. Items smaller than the pivot go in the first piece, and items
larger than it go in the second. We could put elements equal to the pivot
in either; we’ll put them in the first.

e We could use a temp array as in Merge Sort, but Quick Sort is able to
sort pretty much in place.

e We'll create a method split that will choose a pivot, do the comparisons,
and leave the pivot in its new correct place.

e Every element before the pivot will be less than or equal to it, and every-
thing after the pivot will be greater than it.



Code for Quick Sort
Again our base case will be a list of size 1, which needs no sorting. (We will
also call quickSort (first, last) in cases where last < first)

static void quickSort(int first, int last) {
if (first < last) {
int splitPoint = split(first, last);
quickSort (first, splitPoint - 1);
quickSort (splitPoint + 1, last); } }

The Splitting Method

static int split(int first, int last) {
int splitV = values[first];
int saveF = first;
first += 1;
do {
while (first<=last && values[first]<=splitV){
first += 1; }
while (first<=last && values[last]>=splitV) {
last -= 1; }
if (first < last) {
swap(first, last);
first += 1;
last -= 1; }
} while (first <= last);
swap (saveF, last);
return last; }
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