
CmpSci 187: Programming with Data Structures

Spring 2015

Lecture #19, Heaps and Priority Queues

John Ridgway

April 9, 2015

1 Heaps

Review: The Idea of a Heap

• A heap is a data structure that keeps some comparable elements in a
semi-sorted state.

• The largest element is at the root of the tree, and larger elements will tend
to be nearer the top of the tree.

• We’ll use a heap to implement a priority queue, where the important
operations are to insert a new element and remove the largest element.

The Heap Property

• Formally, a heap (in this case a max-heap) is a complete tree of com-
parable elements that satisfies the heap property: the element in every
node is greater than (or equal to) the elements in its children.

• Hence that element must also be larger than the elements in any of its
descendants. In particular, the largest element must be at the root. (In a
min-heap, each node’s element is less than (or equal to) the elements in
its children.)

Introduction to Heaps

• Remember that a complete binary tree has its leaves on one level or on
two adjacent levels; in the latter case the leaves on the upper level all exist
and those on the lower level are left-justified.

• As we said, a heap is “somewhat sorted”. We can find the maximum
element quickly, but the farther down we go the less we know about the
relative order of elements.

1



Heaps With Implicit Pointers

• As we mentioned last lecture, we can implement a tree structure with an
array by using implicit pointers: the left child of node i is node 2i + 1,
and the right child is node 2i + 2.

• With this convention, an array of length n corresponds exactly to an n-
node complete binary tree.

public class Heap <T extends Comparable <T>>
implements PriorityQueueInterface <T>

{
private T[] elements;
private int size;

public Heap(int maxSize) {
elements = (T[])( new Comparable[maxSize ]);
size = 0;

}
public boolean isEmpty () {

return size == 0;
}
public boolean isFull () {

return (size >= elements.length );
}

Reheaping Up to Add Elements

• When we enqueue an element in the priority queue, our heap becomes
larger by one element.

• We know exactly where the new element must go, in the next available
array slot, so we can add it there, but this could destroy the heap property.

• We will fix the property by reheaping up.

• We do this by comparing the element with its parent.

• If the element is less than or equal to its parent then we’re done.

• Otherwise we swap the element and its parent and repeat the reheaping
up process with the parent.

• We continue this way we have satisfied the heap property, which might
not happen until we reach the root. This means shifting up to O(log n)
elements and takes O(log n) time in the worst case.

2



Recursive Code to Reheap Up

private void reheapUp(int i) {
if (i <= 0) return;
int p = (i -1) / 2;
if (elements[i]. compareTo(elements[p]) > 0) {

swap(i, p);
reheapUp(p);

}
}

private void swap(int i1 , int i2) {
T temp = elements[i1];
elements[i1] = elements[i2];
elements[i2] = temp;

}

Clicker Question #1

Suppose we add a new element 26 to this heap.
Not including the new node, how many nodes
will have a different value from before after this
operation?

A. 0

B. 1

C. 2

D. 3

2

17

7

1926

32619

99

25

36

1

263

Reheaping Down to Dequeue

• We know that we want to return the element in the root, but we have to
adjust the heap before we do that. We move the element from the former
last location into the root.

• This may leave the root node violating the heap property. If so we must
reheap down, swapping elements to move the element down until the heap
property is restored.

Code for dequeue

public T dequeue ()
throws PriorityQueueUnderflowException {

if (isEmpty ()) {
throw new PriorityQueueUnderflowException ();

}
T hold = elements [0];
size -= 1;
elements [0] = elements[size];

3



if (! isEmpty ()) {
reheapDown (0);

}
return hold;

}

Reheaping Down

• We want to move the element downward until it no longer has children
that are too big. The way we do this is to swap it with the element from
the larger of the element’s children; it may go there because it is greater
than (or equal to) its new children.

• The natural way to do this is recursively.

Code for reheapDown

private void reheapDown(int i) {
int l = 2 * i + 1;
int r = 2 * i + 2;
if (l >= size) { return; }
int big = l;
if (r < size &&

elements[r]. compareTo(elements[l]) > 0)
{

big = r;
}

if (elements[i]. compareTo(elements[big]) < 0) {
swap(big , i);
reheapDown(big);

}
}

Clicker Question #2

25 26 12 31

42 5231 19 48

643152 61

733164

If we dequeue the top element from this heap, what will be the values of the
first seven nodes?

A. 73, 64, 61, 42, 52, 19, 48

B. 31, 64, 61, 42, 52, 19, 48

C. 64, 52, 61, 42, 31, 19, 48

D. 64, 52, 61, 42, 31, 19, 48

E. 64, 61, 52, 48, 42, 31, 19

4



2 Priority Queues

Priority Queues and Their Uses

• A priority queue is a collection where the elements come from an ordered
type, and where the removal operation gives us not the newest element (as
in a stack) or the oldest element (as in a queue) but the largest element
according to the order.

• We might call this BIFO for “best-in-first-out”, as opposed to FIFO for a
queue and LIFO for a stack.

• There are many situations where the next item in a list to tackle is the
most important according to some measure. Operating systems have a
relative priority on processes and favor the ones with highest priority in
timesharing.

• We often make a priority queue of items that each have a number attached
for their priority. The compareTo operation on these pairs calls an item
“larger” if it has higher priority.

The PriorityQueueInterface

public interface PriorityQueueInterface <T
extends Comparable <T>> {

boolean isEmpty ();
boolean isFull ();
void enqueue(T element );
T dequeue ();

}

Implementing a Priority Queue

• If we used an unsorted list to implement a priority queue, we could enqueue
in O(1) time but we would always need O(n) time to dequeue from a queue
of size n.

• With an array-based sorted list, we could dequeue in O(1) time but would
need O(n) to enqueue, because in the worst case we must move O(n)
elements.

• With a reference-based sorted list, dequeuing is again O(1) time but now
enqueuing requires O(n) time in the worst case to find the place to insert.

• In a binary search tree, both enqueuing and dequeuing require a trip from
the root of the tree down to a leaf in the worst case. This is O(log n) time
if the tree is balanced, but could be as bad as O(n) if it is not.

• Using a heap we can guarantee O(log n) time for both insertion and re-
moval, because a heap is always balanced after each operation.

5



Clicker Question #3
Suppose we have implemented a priority queue with an array-based heap.

What is the worst-case running time of the fastest possible contains method, if
the heap has n elements?

A. O(n log n)

B. O(n)

C. O(log n)

D. O(1)

The Java PriorityQueue

• Like Stack, the PriorityQueue in the Java Collections is a class rather than
an interface. It is a specific implementation of a priority queue using a
heap.

• Elements are compared using their natural order if they are Comparable,
or using a Comparator object if they are not.

• The essential methods of the class are add, contains, offer, peek, poll,
remove, and iterator, just as for an ordinary queue. (It implements the
Queue interface.)

General Search Algorithms

• The natural setting for general search is graphs, which we’ll start looking
at next week. But we can see a lot of the general principles of searching
by looking at searches on a grid.

• Recall the rectangular grid of squares on which we counted the continents.
We used a recursive depth-first search, using the method stack to find
all the squares on the same continent as our initial square.

• We could also place the squares being considered on a queue, for a breadth-
first search. This has the advantage that when we find a path, that path
is as short as possible, counting each move north, east, south, or west as
being length 1.

• What if all moves to adjacent squares are not equally costly? For example,
we might have lowland squares that cost 1 to enter, hills that cost 2, and
mountains that cost 3.

6



Shortest Paths on a Grid

• This map has squares of those four kinds, and
three cities called X, Y, and Z, on lowland squares.

• How would we best find the shortest paths from X

to Y, X to Z, and Y to Z?

• Actually it’s easiest to find all the shortest paths
from X to every other node.

MMMMHMXLL

MMMMMHHHL

MLLLMLLHL

HLHHMHLLL

HLHHOHHLH

HLHHOHLLL

LLOOOOOOL

YLOOOOOOZ

Entry costs: L: 1, H:
2, M: 3

• X is in row 0 and column 6, and is at distance 0
from itself, so we’ll start with a data item (0, 6,
0).

• X’s three neighbors give us items (0, 5, 3), (0, 7,
1), and (1, 6, 2). Let’s throw those three items
into a min-PQ, with distance from X as the thing
we compare.

MMMMH3X1L

MMMMMH2HL

MLLLMLLHL

HLHHMHLLL

HLHHOHHLH

HLHHOHLLL

LLOOOOOOL

YLOOOOOOZ

Entry costs: L: 1, H:
2, M: 3

• The item in the PQ of minimum distance is (0, 7,
1). We dequeue it and enqueue its two neighbors,
omitting (0, 6) because it has already been on and
off the queue.

• The new items are (0, 8, 2) and (1, 7, 3). The
new distances are the 1 to get to (0, 7) plus the
distance from (0, 7) to the new node.

MMMMH3X12

MMMMMH23L

MLLLMLLHL

HLHHMHLLL

HLHHOHHLH

HLHHOHLLL

LLOOOOOOL

YLOOOOOOZ

Entry costs: L: 1, H:
2, M: 3

• Now the queue has three items on it: (0, 5, 3), (1,
6, 2), and (0, 8, 2). We have a tie for the minimum
and can dequeue either – let’s take (1, 6, 2).

• Its new neighbors are (1, 5, 4), (2, 6, 3), and (1,
7, 4).

• We then dequeue (0, 8, 2), producing (1, 8, 3).

MMMMH3X12

MMMMM4233

MLLLML3HL

HLHHMHLLL

HLHHOHHLH

HLHHOHLLL

LLOOOOOOL

YLOOOOOOZ

Entry costs: L: 1, H:
2, M: 3

7



• In this way we get an expanding area of nodes for
which we know the distance from X. When this
area includes our targets Y and Z, we will be done.

• If there are multiple paths from X to a node, the
item for the shortest path will come off the PQ
first.

MMMMHMXLL

MMMMMHHHL

MLLLMLLHL

HLHHMHLLL

HLHHOHHLH

HLHHOHLLL

LLOOOOOOL

YLOOOOOOZ

Entry costs: L: 1, H:
2, M: 3

Clicker Question #4

There are two paths of length 5 from X to (2, 7). Which
one will the priority queue find first?

A. X → (1, 6) → (2, 6) → (2, 7)

B. X → (0, 7) → (1, 7) → (2, 7)

C. some other path

D. we can’t tell from what we’ve been told

MMMMHMXLL

MMMMMHHHL

MLLLMLLHL

HLHHMHLLL

HLHHOHHLH

HLHHOHLLL

LLOOOOOOL

YLOOOOOOZ

Entry costs: L: 1, H:
2, M: 3

8


	Heaps
	Priority Queues

