
CmpSci 187: Programming with Data Structures

Spring 2015

Lecture #18, Using Binary Search Trees

John Ridgway

April 7, 2015

1 Using Binary Search Trees

Review: Balancing a BST

• As we’ve discussed, finding an element in a binary search tree takes worst-
case time proportional to the height of the tree. The same is true of adding
or removing an element.

• Ideally a BST with n nodes will be balanced, having a height of O(log n).
But in the worst case (where every node has only one child) the height
could be as large as n.

Review: Balancing a Tree

• How can we balance a tree? In CMPSCI 311 you will learn about self-
balancing trees, in at least one of the several versions.

• These trees always have a height of O(log n) when their size is n.

• Adding and removing take O(log n) time, because there may be a restruc-
turing step of O(log n) time after each such move to restore the balance.

Review: Balancing Effectively

• The right idea here is to study how we want the new tree to be arranged.
Suppose we have used in-order to form the array, so that the array is
sorted.

• If the tree is balanced, with an equal number of nodes on each side, the
root node will be the middle element of the array. Its left child should
be about 1/4 of the way along, and its right child 3/4 of the way, and so
forth. This should suggest a recursion:

1



Code to Balance a BST

private void insertTree(T[] values , int low ,
int high)

{
if (low == high) {

add(values[low ]);
} else if (low + 1 == high) {

add(values[low ]);
add(values[high ]);

} else {
int mid = (low + high )/2;
add(values[mid ]);
insertTree(values , low , mid - 1);
insertTree(values , mid + 1, high);

}
}

Storing a Tree in an Array

• Remember that in general array-based structures may be faster to use
than linked structures because we don’t have to create new nodes all the
time. We may also save memory by not using space for pointers.

• If our tree has a particular structure, we can store it in an array so that
we don’t need any explicit pointers at all. In particular, we would like our
tree to be as balanced as possible.

• We declare that each node A[i] has a left child A[2i+1] and a right child
A[2i+2].

• So A[0] has children A[1] and A[2], A[1] has A[3] and A[4], and so forth.
Finding a particular child of a particular node thus involves only arith-
metic on the indices.

• But what happens if our tree is not very balanced?

Clicker Question #1

If we store this seven-node BST in an array us-
ing the rule just given, with the left child of A[i]
in A[2i+1] and the right child in A[2i+2], what
is the address of the node containing 6?

A. A[6]

B. A[7]

C. A[11]

D. A[12]

6

3

1

7 9

8

4

2



Full and Complete Trees

DJW call a binary tree full if all its leaves are on the
same level. A full binary tree of height h has exactly
2h+1 − 1 nodes, exactly 2h of which are leaves. The
terminology varies.

DJW call a binary tree complete if it is either full
or full through its next-to-last level, with the leaves
on the last level left-justified.

Full
Binary Tree

Complete
Binary Tree

Unbalanced Trees in Arrays

• An array of length n, with our implicit pointers, becomes a complete
binary tree with n nodes.

• If we use the implicit pointers to store a tree of height h, we will need an
array of size about 2h+1 no matter how many nodes are in the tree. The
array will use space for all the nodes that are not there, on levels above
the bottom level or left of the last node on the bottom level.

• If we wanted to store a BST in an array with implicit pointers, we might
benefit from the balancing method in this lecture, though we would have
to spend O(n) time to balance a tree of n nodes.

• When we look at heaps, starting later in this lecture, we will see that they
are always in the form of complete binary trees, and thus can be stored
efficiently in arrays.

2 An Application: Word Frequencies

Word Frequencies

• We conclude the chapter on Binary Search Trees by using them to compute
the frequencies of words in a text.

• We define a word to be a sequence of letters and digits, with a delimiter
at each end — a space, line break, or punctuation mark. Our goal is to
produce an alphabetical list of the words occurring in the text, with the
number of occurrences of each word. We ignore the cases of letters.

• We also allow the user to control two parameters of the report.

– There is a minimum word size so that we don’t count frequencies of
words below that size.

3



– And in our report, we only list those words that occur at least some
number of times, called the minimum count to report.

• Our basic object will contain a word and its count of occurrences (so far).

Choosing a Data Structure

• The basic idea is obvious; we will read through our text with a Scanner

object, identifying each word that we see.

• We need to keep track of each unique word we have seen, each with its
count.

• When we read a word, therefore, we need to determine whether we have
seen it before, and if so how many times.

• We then either create a new word-count pair for a new word, or replace
the existing word-count pair with another, incrementing the count.

• If we keep the word-count pairs in a collection, we need to test whether a
given word is represented, retrieve its word-count pair if it is, and insert
the correct new word-count pair for that word.

• We also need to output the words from the pairs in the collection in
alphabetical order.

• DJW choose to keep the collection as a binary search tree, which can
easily be output in order and can be searched quickly as long as it stays
balanced.

• Of course our pairs will have to be compared in alphabetical order for the
words, without reference to the frequency counts.

The Algorithm for Frequency

• During a run of DJW’s program, it is keeping a collection of word-count
pairs, and it is about to process the next word in the text file.

• If the word is too short, of course, we can just ignore it (except that we
will keep track of the total number of words). But if it is long enough we
must either create a new pair for it with count 1, or replace the current
pair with another, incrementing the count.

• The contains method will tell us whether the word is already there, as
long as the compareTo method looks only at the strings.

• The get method is even better, as it returns us a pointer to the pair in
question if it is there.

4



• The first thing we would think to do is to remove this pair and add a new
one with the new count. But we can save significant time by just changing
the count of the existing pair, without moving the node.

• Changing the count of a pair doesn’t affect where it belongs in the tree,
since we never have two pairs with the same word.

• Of course if we don’t find a pair for the word seen in the text, we know
that it is a new word. It’s easy to make a new pair with count 1 and insert
it into the tree.

• So let’s look at the data structure we need for the pairs.

Clicker Question #2
Suppose we feed the algorithm the text “In the beginning God created the

heaven and the earth”, with a minimum word size of two. What will be the
height of the resulting binary search tree? (Remember that the height is the
largest level number of any node.)

A. 2

B. 3

C. 4

D. 5

Tree for Clicker Question #2
〈in,1〉

〈the,3〉〈beginning,1〉

〈god,1〉

〈created,1〉 〈heaven,1〉

〈and,1〉

〈earth,1〉

The WordFreq Class

• What are the operations we need for our pair objects?

• We need to create new objects, increment the count of an object, compare
two objects alphabetically by word, and produce a formatted string to
represent the pair.

5



Code for WordFreq

public class WordFreq
implements Comparable <WordFreq >

{
private String word;
private int freq = 0;
public WordFreq(String newWord) {

word = newWord; }
public void inc() { freq +=1; }
public int compareTo(WordFreq other) {

return this.word.compareTo(other.word); }
public String getWord () { return word; }
public int getFreq () { return freq; }

}

FrequencyList Header and Setup

public class FrequencyList {
public static void main(String [] args)

throws IOException {
Scanner conIn = new Scanner(System.in);
System.out.print("Minimum word size:");
int minSize = conIn.nextInt ();
String skip = conIn.nextLine ();
System.out.print("Minimum word frequency:");
int minFreq = conIn.nextInt ();
skip = conIn.nextLine ();
FileReader fin = new FileReader("words.dat");
Scanner wordsIn = new Scanner(fin);
wordsIn.useDelimiter("[^a-zA -Z0 -9]");
BSTInterface <WordFreq > tree =

new BinarySearchTree <WordFreq >();

Processing the Text

int numWords = 0, numValidWords = 0;
while (wordsIn.hasNext ()) {

String word = wordsIn.next ();
// delimiter ensures that we get a word
numWords += 1;
if (word.length () >= minSize) {

numValidWords += 1;
word = word.toLowerCase ();
WordFreq wordToTry = new WordFreq(word);
WordFreq wordInTree = tree.get(wordToTry );
if (wordInTree == null) {

wordToTry.inc();
tree.add(wordToTry );

} else { wordInTree.inc(); }
} }

FrequencyList: The Output

6



System.out.printf(
"Words of length %d and above ,\n" +
"with frequency of %d and above:\n\n",
minSize , minFreq );

System.out.println(" Freq Word");
System.out.println("----- -----------------");
int numValidFreqs = 0;
Iterator <WordFreq > iter=tree.inOrderIterator ();
while (iter.hasNext ()) {

WordFreq wordFromTree = iter.next ();
if (wordFromTree.getFreq () >= minFreq) {

numValidFreqs += 1;
System.out.printf("%5d %s\n",

wordFromTree.getFreq(),
wordFromTree.getWord ()); } }

System.out.println ();
System.out.printf(

"%d words in the input file.\n" +
"%d of them are at least %d characters .\n" +
"%d of these occur at least %d times.\n",
numWords , numValidWords , minSize , numValidFreqs , minFreq );

System.out.println("Program completed.");
}

Analyzing FrequencyList

• What is the running time of FrequencyList? The first question should be
“in terms of what?”

• Let’s let n be the number of characters in the text file. We will spend O(n)
time reading the file, but the rest of the processing depends on various
characteristics of the file: how many words; how many distinct words; and
so on.

• Let’s say that there are O(n) words in the file (since words are usually a
constant length, this is probably true). The worst case is actually when
the words are all distinct, because then we have O(n) nodes in our BST.

• The unsuccessful searches take O(log n) time each as long as the BST
stays balanced, so we have a total time of O(n log n).

• If the order of the words is random, the tree will probably stay relatively
balanced (as you may see later in CMPSCI 311).

3 Introduction to Heaps

Introduction to Heaps

• We’ll close this lecture with a brief introduction to heaps, a data structure
we will use primarily to implement priority queues.

7



• The basic idea of a heap is to keep a collection of comparable objects in
a semi-sorted state. The largest element will be at the root of the tree,
and larger elements will tend to be nearer the top of the tree.

• Formally, a heap is a complete tree of comparable elements that satisfies
the heap property: the element in every node is larger than (or equal
to) the elements in its children (if any).

• Hence that element must also be larger than the elements in any of its
descendants. In particular, the largest element must be at the root.

Clicker Question #3

In this heap, which pair of elements could not be
switched without violating the heap property?

A. 17 and 25

B. 19 and 25

C. 3 and 7

D. 1 and 2

2 7

1725 3 2517 1

1919 36

41

• Remember that a complete binary tree has its leaves on one level or on
two adjacent levels; in the latter case the leaves on the upper level all exist
and those on the lower level are left-justified.

• As we said, a heap is “somewhat sorted”. We can find the maximum
element quickly, but the farther down we go the less we know about the
relative order of elements.

Heaps and Priority Queues

• The key virtue of the heap is that the two basic operations of a priority
queue can be performed quickly, in O(log n) rather than O(n) time where
n is the number of elements in the heap.

• We need to insert new elements in places such that the heap property still
holds.

• When we remove the root element we need to restore the heap property.

8



Clicker Question #4
Which nodes in a heap could possibly contain the fourth-highest element in

the heap, assuming that no two elements have the same value?

A. anywhere except the root

B. anywhere in level 0, 1, 2, or 3

C. in level 1 or 2, or in the left half of level 3

D. anywhere in level 1, 2, or 3

Clicker #4 Examples

4

7

8

1

10

3

0 2

Level 3

4

8

10

7

Level 2

7

8

10

4

Level 1

Any node on one of these levels could be fourth-high.

9


	Using Binary Search Trees
	An Application: Word Frequencies
	Introduction to Heaps

