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1 Implementing Binary Search Trees

Review: The BST Interface

• Binary search trees store objects in nodes, arranged according to the BST
Rule — everything in x’s left subtree is ≤ x and everything in its right
subtree is ≥ x.

• The binary search interface is very similar to the list interface.

• Remember that we have three ways to iterate through a tree, using the
different iterators.

Clicker Question #1

If I add a node with value 12 to this
BST, without changing the links of any
other nodes, where must the new node
go?

A. a right child of 7

B. a left child of 10

C. a left child of 13

D. it’s not possible to add it

4 7 13

1 6
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14

10

12

Code for BSTInterface

import java.util.Iterator;

public interface
BSTInterface <T extends Comparable <T>>

{
boolean isEmpty ();
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int size ();
boolean contains(T element );
boolean remove(T element );
T get(T element );
void add(T element );
Iterator <T> preOrderIterator ();
Iterator <T> inOrderIterator ();
Iterator <T> postOrderIterator ();

}

Review: The BSTNode Class
(Getters and setters omitted.)

public class BSTNode <T> {
private T data;
private BSTNode <T> left;
private BSTNode <T> right;

public BSTNode(T data , BSTNode <T> left ,
BSTNode <T> right)

{
this.data = data;
this.left = left;
this.right = right;

}
}

Review: The BinarySearchTree Header

public class
BinarySearchTree <T extends Comparable <T>>
implements BSTInterface <T>

{
private BSTNode <T> root;

public boolean isEmpty () {
return root == null;

}

Review: Recursive size Method
We use a helper method, which clearly is correct on empty trees, and which

uses a recursive definition to calculate the size of a nonempty tree from the size
of its subtrees.

public int size() {
return subtreeSize(root);

}
private int subtreeSize(BSTNode <T> node) {

if (node == null) {
return 0;

} else {
return 1 + subtreeSize(node.getLeft ())

+ subtreeSize(node.getRight ());
}

}
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Review: Recursive get

public T get(T t) {
return getFromTree(t, root);

}

private T getFromTree(T t,
BSTNode <T> node) {

if (node == null) return null;
if (t.compareTo(node.getData ()) < 0)

return getFromTree(t, node.getLeft ());
if (t.compareTo(node.getData ()) == 0)

return node.getData ();
return getFromTree(t, node.getRight ());

}

What’s Left to Implement?

• We’ve written two of the main observer methods of our BinarySearchTree

class, size, and get, and hinted at contains.

• We still need to write the two main transformer methods, add and remove.
Here our main problem will be to maintain the BST rule at every node as
we change the tree structure.

• We also need to write the three iterators for the three different orders on
the nodes.

The add Method

• We use yet another recursive helper method to insert elements. The addTo

method takes a subtree as a parameter, in the form of its root node. It
returns the new version of the same subtree, by returning a pointer to its
root node.

• The recursive job is “insert this element into the correct position within
the subtree given by this node and return the new version of the subtree.”

Code for the add Method
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public void add(T t) {
root = addTo(t, root);

}

private BSTNode <T> addTo(T t, BSTNode <T> node)
{

if (node == null) {
return new BSTNode <T>(t, null , null); }

if (t.compareTo(node.getData ()) <= 0) {
node.setLeft(addTo(t, node.getLeft ()));

} else {
node.setRight(addTo(t, node.getRight ()));

}
return node;

}

Clicker Question #2
Suppose that this BST was built by successively
adding each of the elements, starting from an empty
tree. Which of these might have been the order in
which they were added?

A. 8, 10, 14, 3, 6, 7, 1, 4, 13

B. 8, 3, 14, 1, 4, 13, 6, 10, 7

C. 8, 3, 6, 10, 1, 14, 13, 7, 4

D. either a or c is possible

4 7 13
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14

10

The remove Method

• Removing a node will be considerably more complicated because we have
to preserve the BST property everywhere.

• Once again we’ll use a recursive helper removeFrom.

• Before we look at the code for the removeFrom method, let’s look less
formally at the logic for removing a node.

Logic for Removing

• The easiest case is when the node to be removed is a leaf. We just delete
it.

• The next easiest case is when the node to be removed has only one child.
We replace the node with its child, whether left or right.

• Removing a node that has two children is more complicated. We will do
it by finding the in-order predecessor of the target node, moving its data
to the target node, and then removing the predecessor node. We do this
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last removal recursively, but actually the predecessor can’t have a right
child.

Clicker Question #3
Let x be any node of a BST, with two children, and let y be its in-order

predecessor. Which of these statements is not true?

A. y cannot possibly have a right child.

B. y must be the left child of x.

C. y must be a member of x’s left subtree.

D. y is either the left child of x or y is a right child.

Methods for Removing

• We will use four methods in all. The actual remove method calls a recursive
helper method removeFrom that returns the new version of the tree rooted
at its parameter.

• removeFrom uses two other methods:

– getLargest returns the data stored in the right-most node in a sub-
tree; and

– removeLargest removes the right-most node of the sub-tree and re-
turns its (possibly modified) root.

Code for the remove Method

public boolean remove(T t) {
boolean result = contains(t);
if (result) {

root = removeFrom(t, root);
}
return result;

}

Code for the removeFrom Method

5



private BSTNode <T> removeFrom(T t,
BSTNode <T> node) {

if (t.compareTo(node.getData ()) < 0) {
node.setLeft(removeFrom(t, node.getLeft ()));

} else if (t.compareTo(node.getData ()) > 0) {
node.setRight(removeFrom(t, node.getRight ()));

} else if (node.getLeft () == null) {
return node.getRight ();

} else if (node.getRight () == null) {
return node.getLeft ();

} else { // neither child is null
node.setData(getLargest(node.getLeft ()));
node.setLeft(removeLargest(node.getLeft ()));

}
return node; }

getLargest and removeLargest

private T getLargest(BSTNode <T> node) {
if (node.getRight () == null) {

return node.getData ();
} else {

return getLargest(node.getRight ());
} }

private BSTNode <T> removeLargest(BSTNode <T> node)
{

if (node.getRight () == null) {
return node.getLeft ();

} else {
node.setRight(removeLargest(node.getRight ()));
return node;

} }

Clicker Question #4
This method returns the data from what node?

private T getLargest(BSTNode <T> node) {
if (node.getRight () == null) {

return node.getData ();
} else {

return getLargest(node.getRight ());
} }

A. node

B. the leftmost node in the tree of node’s sibling

C. the parent of node

D. the rightmost node in the tree of node
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The Three Iterators
The iterators are all similar; we create a queue and enqueue all of the ele-

ments in the appropriate order, then return an iterator on the queue.

public Iterator <T> inOrderIterator () {
Queue <T> queue = new LinkedQueue <T>();
inOrderTraverse(queue , root);
return queue.iterator ();

}
private void inOrderTraverse(Queue <T> queue ,

BSTNode <T> node) {
if (node == null) return;
inOrderTraverse(queue , node.getLeft ());
queue.enqueue(node.getData ());
inOrderTraverse(queue , node.getRight ()); }

Comparing Trees and Lists

• It’s natural to compare the performance of BST’s and linear lists on the
same tasks. There’s a problem, though, with our worst-case analysis. In
the worst case, when every node has at most one child, a BST is essentially
a linear list.

• Searching into a BST takes a worst-case time equal to the height of the
tree. If the tree is balanced, this height is O(log n) for an n-node tree, but
for an unbalanced tree it could be as large as O(n).

• DJW have a chart on page 579 comparing balanced BST’s, array-based
lists, and linked lists.

• The only BST operations that take more than O(log n) are the three
iterator methods; they copy all data into a queue.

• The array-based sorted list can perform get in O(log n), but add and remove

each take O(n) because of the need to move data. The linked list takes
O(1) to process an add or remove operation, but O(n) to find where to do
it.

How to Balance a Tree?

• How can we balance a tree? In CMPSCI 311 you will learn about self-
balancing trees, in at least one of the several versions.

• These trees always have a height of O(log n) when their size is n.

• Adding and removing take O(log n) time, because there may be a restruc-
turing step of O(log n) time after each such move to restore the balance.
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Wrong Ways to Balance

• DJW consider only a simpler method of rebalancing that takes O(n) time
whenever we choose to do it.

• This is to copy the entire tree into an array of elements, then add each
element of the array in turn back into a new tree. We naturally form our
array by using one of our three traversal methods.

• If we use in-order, the array becomes a sorted list. Unfortunately, adding
the elements in sorted order produces a very unbalanced tree.

• If we form the array using pre-order, and then load the array back into
the BST, it turns out that the new tree is identical to the old one.

• What happens if we form the array from the post-order traversal, and
then load it back in?

An Example

• Consider a perfectly balanced BST of Integers with 15 nodes with values
1 through 15.

• The post-order traversal of this tree visits the nodes in order 1, 3, 2, 5, 7,
6, 4, 9, 11, 10, 13, 15, 14, 12, 8.

• If we insert the nodes into a new BST in this order, we get a tree of height
9 instead of the original height 3.

A Perfectly Balanced BST

1 3 5 7 9 11 13 15

2 6 10 14

4 12
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Its post-order traversal:
1, 3, 2, 5, 7, 6, 4, 9, 11, 10, 13, 15, 14, 12, 8

Adding them in Post-Order
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Original in post-order:
1, 3, 2, 5, 7,
6, 4, 9, 11, 10,
13, 15, 14, 12, 8

1

3

2 5

7

6

4

9

11

10 13

15

14

12
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Balancing a BST Effectively

• The right idea here is to study how we want the new tree to be arranged.
Suppose we have used in-order to form the array, so that the array is
sorted.

• If the tree is balanced, with an equal number of nodes on each side, the
root node will be the middle element of the array. Its left child should
be about 1/4 of the way along, and its right child 3/4 of the way, and so
forth. This should suggest a recursion.

Code to Balance a BST - Part I

public void balance () {
T[] values = (T[]) new Comparable[size ()];
Iterator <T> iterator = inOrderIterator ();
int index = 0;
while (iterator.hasNext ()) {

values[index] = iterator.next ();
index += 1;

}
root = null;
insertTree(values , 0, index - 1);

}

Code to Balance a BST - Part II

private void insertTree(T[] values , int low ,
int high)

{
if (low == high) {

add(values[low ]);
} else if (low + 1 == high) {

add(values[low ]);
add(values[high ]);

} else {
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int mid = (low + high )/2;
add(values[mid ]);
insertTree(values , low , mid - 1);
insertTree(values , mid + 1, high);

}
}
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