
Use the UMassCS Swarm2 cluster
efficiently for your research!

Keen Sung

February 5, 2019

1

Objectives

• Learn the basic architecture of swarm

• Walk through how to parallelize and run a job

• Tips for optimizing

• Checkpointing

• Troubleshooting

2

Swarm v Gypsum

Swarm

• 50 nodes
• 56 cores

• 128 GB RAM

• Total
• 2800 cores

• 6.4TB RAM

Gypsum

• 100 nodes
• 4 GPU (25: M40, 75: TITAN X)
• 24 cores
• 256 GB RAM

• 53 nodes
• 8 GPU (1080Ti)
• 48 cores
• 384 GB RAM

• Total
• 4944 cores
• 30.72TB RAM
• 824 GPU

3

Clarifying ambiguous terminology

4

https://slurm.schedmd.com/mc_support.html128MB RAM

swarm

node

CPU/Socket

core

CPU/Thread

500GB SSD

Clarifying ambiguous terminology

5

https://slurm.schedmd.com/mc_support.html

CPU

swarm

128MB RAM

CPU/Socket

core

CPU/Thread

500GB SSD

node
#!/bin/bash
#SBATCH -N 1
#SBATCH -c 2
#SBATCH -n 1
#SBATCH --mem=1G

cpus per task

num tasks

SLURM

• Queuing and scheduling
system

• Tries to account for fairness
• Priority queue based on a

fairness score calculated by
current and historical usage of
CPU or RAM by you and your
group, and the age of
submission

6

Leonenkov and Zhumatiy (2015)

Introducing New Backfill-based Scheduler for SLURM Resource Manager

Resource Accounting and Limits

Swarm

Disk space:

• /home (10GB)

• /work1 (2TB)

User limits:

• 2240/2800 CPU limit

• 5.01.0/6.4 TB RAM limit

• 10GB/allocated core (10GB/2 CPU)

Remember these rules

• DO NOT run anything on the head node --- always use srun or
sbatch for anything computationally intensive

• DO NOT overallocate time, memory, or CPU

• CHECK your own jobs

BE RESPECTFUL!

8

First, you need an account

• Step 1. Get an account by having your advisor email CSCF

• Step 2. Log in with your CICS account

9

$ ssh ksung@swarm2.cs.umass.edu
ksung@swarm2.cs.umass.edu's password: hunter2

Last login: Sat Feb 2 23:11:24 2019 from c-66-31-41-74.hsd1.ma.comcast.net
Welcome to Bright release 7.3

Based on CentOS Linux 7
ID: #000002

Use the following commands to adjust your environment:

'module avail' - show available modules
'module add <module>' - adds a module to your environment for this session
'module initadd <module>' - configure module to be loaded at every login

[ksung@swarm2 ~]$

SLURM commands

sbatch --- run an sbatch formatted file (normal way to run something)

srun --- run a command with specified resources. If within an sbatch file,
it must be less than or equal to sbatch allocation. By default, the sbatch
allocation will be used

squeue --- look at all submitted jobs by all users

10

Let’s get something running!

• Example can be found in my home directory:

/home/ksung/resources

/process_example

Note: copy the whole directory to your own home directory before
testing

11

Let’s get something
running!

12
process_serial.py

Goal: parallelize the file on the right

Method 1: Make it runnable with command

line arguments

Method 2: Parallelize it with a python

library

import data

computation

function

run 100 times

gather and write

result

Let’s get something running!

13

generate.py (generate example data to work with
--- shown here for replicability)

Let’s get something running --- profiling

14

process_serial.py Use srun and time to test and
profile the script

0.04 sec runtime at

90% CPU

8M memory

Let’s get something running!

15

process_serial.py

1.75 sec runtime at

97% CPU

803M memory

16
process_serial.py

10.28 sec runtime at

98% CPU

1.2G memory

17

process_cmd.py
process_serial.py

Anatomy of an sbatch file

18

#!/bin/bash
#SBATCH -j process_test # name
#SBATCH -N 1 # number of nodes
#SBATCH -n 1 # number of tasks
#SBATCH -c 2 # number of cpus per task
#SBATCH --mem=1G # memory per node
#SBATCH --mem-per-cpu=1G # memory per cpu
#SBATCH -a 0-99 # array
#SBATCH -t 00:01 # time allocated
#SBATCH -e process_test.err # error output file
#SBATCH -o process_out.out # stdout file

srun process.py ${SLURM_ARRAY_TASK_ID}

More info: https://slurm.schedmd.com/sbatch.html

19

#!/bin/bash
#SBATCH -j process_test
#SBATCH -N 1
#SBATCH -n 1
#SBATCH -c 2
#SBATCH --mem=1G
#SBATCH -a 0-99
#SBATCH -e process_test.err
#SBATCH -o process_out.out

srun process.py ${SLURM_ARRAY_TASK_ID}

run.sb process_cmd.py

20

#!/bin/bash
#SBATCH -j process_test
#SBATCH -N 1
#SBATCH -n 1
#SBATCH -c 2
#SBATCH --mem=1G
#SBATCH -a 0-99
#SBATCH -e process_test.err
#SBATCH -o process_out.out

srun process.py ${SLURM_ARRAY_TASK_ID}

run.sb process_cmd.py

T

21

#!/bin/bash
#SBATCH -j process_test
#SBATCH -N 1
#SBATCH -n 1
#SBATCH -c 2
#SBATCH --mem=1G
#SBATCH -a 0-99
#SBATCH -e process_test.err
#SBATCH -o process_out.out

srun process.py ${SLURM_ARRAY_TASK_ID}

run.sb process_cmd.py

Post-hoc profiling

22

#!/bin/bash
#SBATCH -j process_test
#SBATCH -N 1
#SBATCH -n 1
#SBATCH -c 2
#SBATCH --mem=1G
#SBATCH -a 0-99
#SBATCH -e process_test.err
#SBATCH -o process_out.out

srun process.py ${SLURM_ARRAY_TASK_ID}

run.sb process_cmd.py

Post-hoc profiling (throttled result)

Hyperthreading

• Non-MKL benchmark • MKL benchmark

23

[ksung@swarm2 benches]$ sacct -j 9825685 -o
MaxRSS,CPUTime,TotalCPU,Elapsed

MaxRSS CPUTime TotalCPU Elapsed
---------- ---------- ---------- ----------

00:03:06 03:00.324 00:01:33
5502K 00:03:06 00:00.014 00:01:33

105819K 00:01:32 03:00.310 00:01:32

[ksung@swarm2 benches]$ sacct -j 9825304 -o
MaxRSS,CPUTime,TotalCPU,Elapsed

MaxRSS CPUTime TotalCPU Elapsed
---------- ---------- ---------- ----------

00:07:46 07:42.980 00:03:53
4725K 00:07:46 00:00.014 00:03:53

119065K 00:07:44 07:42.965 00:03:52

[ksung@swarm2 ~]$ sacct -j 9826135 -o
MaxRSS,TotalCPU,CPUTime,Elapsed

MaxRSS TotalCPU CPUTime Elapsed
---------- ---------- ---------- ----------

00:09.680 00:00:26 00:00:13
729K 00:09.680 00:00:26 00:00:13

[ksung@swarm2 ~]$ sacct -j 9826136 -o
MaxRSS,TotalCPU,CPUTime,Elapsed

MaxRSS TotalCPU CPUTime Elapsed
---------- ---------- ---------- ----------

00:35.875 00:00:38 00:00:19
729K 00:35.875 00:00:38 00:00:19

-n 1

-n 2

-n 1

-n 2

Hyperthreading

• Users can only book one whole core at a time (two threads with
hyperthreading)

• Forcing your program to use both threads will probably not
significantly increase your efficiency. It will however look like you’re
using only 50% of CPU

• Take advantage of libraries (like numpy) that optimize for
hyperthreads! Python on swarm is compiled with Intel MKL support
for hyperthreading. Anaconda’s release should come with it, too.

24

Using a library is usually better

Pros

• Don’t reinvent the wheel

• Can save memory and time

• Can consolidate (reduce) results
more easily

Cons

• Libraries are language dependent

• It is sometimes harder to
implement

25

26

process_multi.py

27

#!/bin/bash
#SBATCH -J process_test
#SBATCH -N 1
#SBATCH -n 1
#SBATCH -c 8
#SBATCH --mem=2G
#SBATCH -a 0
#SBATCH -e process_test.err
#SBATCH -o process_out.out

srun -c 8 python process_multi.py

run.sb

Save memory with

multiprocessing!

process_multi.py

(throttled result)

28

#!/bin/bash
#SBATCH -J process_test
#SBATCH -N 1
#SBATCH -n 1
#SBATCH -c 8
#SBATCH --mem=2G
#SBATCH -a 0
#SBATCH -e process_test.err
#SBATCH -o process_out.out

srun -c 8 python process_multi.py

run.sb

Copy-on-write causes 8x memory usage

process_multi.py

(throttled result)

Don’t commit these sins

• DO NOT run anything on the head node --- always use srun or
sbatch for anything computationally intensive

• DO NOT overallocate time, memory, or CPU

• CHECK your own jobs

BE RESPECTFUL!

29

Other tips

• Minimize reads and writes to disk

• Write fault-tolerant code
• Save “state” often so that code can restart if it fails for any reason

• Make your program as fragmentable as possible. It is easier to
schedule a high number of low resource jobs than a lower number of
resource intensive jobs

30

Checkpointing with DMTCP

• Example can be found in my home directory:

/home/ksung/resources

/dmtcp_example

Note: copy the whole directory to your own home directory before
testing

31

Checkpointing with DMTCP (experimental)

• Any job with more than one
node will be buggy

• Saves memory state to
filesystem

• /home/ksung/dmtcp_example

32

Start a job: sbatch slurm_launch.job

Continue a job: sbatch slurm_rstr.job

DMTCP

33

slurm_launch.out

slurm_rstr.out

DMTCP

34

Excerpt from slurm_launch.job Excerpt from slurm_rstr.job

Troubleshooting

• Memory error

35

slurmstepd: error: Step 9829757.0 exceeded memory limit
(126337 > 102400), being killed
slurmstepd: error: *** STEP 9829757.0 ON swarm001
CANCELLED AT 2019-02-02T23:35:55 ***
slurmstepd: error: Exceeded job memory limit
srun: Job step aborted: Waiting up to 32 seconds for job
step to finish.
srun: error: swarm002: task 7: Killed
srun: error: swarm001: tasks 0-1,3: Killed

Troubleshooting

• Time expiry error
• SIGTERM 32 sec before SIGKILL

36

[ksung@swarm2 dmtcp2]$ srun -t 00:00:01
python term_test.py
srun: Force Terminated job 9844110
srun: Job step aborted: Waiting up to
32 seconds for job step to finish.
slurmstepd: error: *** STEP 9844110.0
ON swarm002 CANCELLED AT 2019-02-
05T14:07:34 DUE TO TIME LIMIT ***
sorry
0
.
.
.
28
29
srun: error: swarm002: task 0: Killed

Troubleshooting

• Allocation error --- your allocation doesn’t make sense

• Assoc Limit --- you or your group is currently already maxing out
your resource limit

• Resource --- you are first in line but there are not enough resources
for your job

• Priority --- you are waiting for the first in line (Resource) to be
scheduled

37

Troubleshooting

38

39

/home/ksung/blame.py

/home/ksung/sueff.py

Usage history

CPU (29%/50%) Memory (11%/41%)

Policy changes to expect in the near future

Motivation: increase swarm efficiency, use, fairness, and turnover

• Shorter defq time and more defq-only nodes

• Changes in fairness calculation

41

Commands you should use often

squeue -u <user>

sbatch <sbatch file>

srun time <executable>

sacct -j <JobID> -o Job,MaxRSS,TotalCPU,CPUTime,Elapsed

blame (/home/ksung/resources/bin/blame)

sueff (/home/ksung/resources/bin/sueff)

42

List of resources

• /home/ksung/resources/install --- install dmtcp, sueff, and blame

Examples:

• /home/ksung/resources/dmtcp_example

• /home/ksung/resources/process_example

https://slurm.schedmd.com/sbatch.html

https://people.cs.umass.edu/~swarm/index.php?n=Main.NewSwarmDoc

43

https://slurm.schedmd.com/sbatch.html
https://people.cs.umass.edu/~swarm/index.php?n=Main.NewSwarmDoc

Summary

• DO NOT run anything on the head node --- always use srun or sbatch for
anything computationally intensive

• Profile your program!
• DO NOT overallocate time, memory, or CPU

• CHECK your own jobs when

you run them

BE RESPECTFUL!

44

Install the tools:
$ /home/ksung/resources/install

Monitor the mailing list:

swarm-users@cs.umass.edu

Issues?

Email the mailing list or Keen: ksung@cs.umass.edu

mailto:swarm-users@cs.umass.edu
mailto:ksung@cs.umass.edu

