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1. Motivation 2. Background on additive noise models 3. Bivariate causal inference algorithm

Bivariate causality is a branch of causality focused on inferring the causal
direction between a pair of variables based on observational data.
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Bivariate additive noise models extend structural equation models which

, . . Bivariate ANM algorithm for inferring directionality between two variables
model effects as a function of their causes and latent noise variables.
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1. Construct a regression model in Parameters

1. Regression method

2. Score function C : RY x RV — R for measuring dependence
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4. Qutput:

X=Y ifCxsy <Cysx,
Y X ifCxsy >Cysix,

Reproduced from [1]. By assuming a priori that the
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