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Abstract
Repeating the same action across multiple contiguous
time-steps (“macro-actions”) in a reinforcement learn-
ing setting speeds up the computation and performs bet-
ter (on certain tasks) than the case when action is chosen
at every time step. In this work, we compare multiple al-
gorithms that exercise the macro-actions heuristic on a
task to learn a defense agent in Half Field Offense prob-
lem (HFO). A version of agent which repeats an action
for a static number of time steps (DI-SARSA) is found
to perform much worse than an algorithm that predicts
how many time steps to repeat a certain action (FiGAR)
on HFO. Further, we propose and compare a few other
simple techniques that align with the heuristic and im-
prove over DI-SARSA.1

Introduction
In reinforcement learning, an agent interacts with the envi-
ronment, obtaining observations and rewards. Through this,
it attempts to learn the optimal actions it needs to take at
each step. The environment is assumed to be a Markov De-
cision Process (MDP) with state space S, action space A,
reward function R : S × A × S → R, transition function
T : S ×A × S → R and discount factor γ. The agent is in
state st at time t, takes an action at, gets reward rt and goes
to state st+1. Its objective is to maximise the expected long
term reward

E
[
r0 + γr1 + γ2r2 + ...

]
Reinforcement learning algorithms like SARSA and Q-

learning maintain a table containing the values of Q(s, a)
defined as the maximum expected long term reward obtained
by starting in state s, taking action a and following the op-
timal policy after that. A greedy in limit with infinite explo-
ration (GLIE) policy based on the Q values is used by the
agent. The table ofQ values is updated based on the rewards
obtained from the environment.

When the state space is very large or even continuous, it is
not possible to maintain a table of Q values. In these cases,
function approximation is used to approximate Q(s, a) =∑
i wiφi(s) where φi(s) are the features corresponding to

state s and wi are the weights given to feature φi(s).
1We have open sourced our implementation of these techniques

at https://github.com/martiansideofthemoon/macro-action-rl.

In both tabular and function approximation case, choos-
ing the action to take and updating the parameters happen
at every time step. This may be unnecessary in cases where
neighboring states are very similar and hence, theirQ values
are close to each other. Instead, taking a single action for an
interval of time would lead to less number of updates while
not reducing the performance. In fact, in certain domains
it even improves the performance since the resulting action
space is smooth. Another advantage of repeating actions is
that it can introduce temporal abstraction in the policy, eas-
ing the transition to temporally distant advantageous states.

Our contribution is a study of five algorithms learning to
play as defensive agents on the HFO problem (Hausknecht
et al. 2016), a two-dimensional soccer game. Our five algo-
rithms are,

• Fixed Decision Interval - Sarsa(λ) updates are separated
by a fixed decision interval as done in (Siddharth 2017).

• FiGAR (Fine Grained Action Repitition) - An indepen-
dent agent learns to predict a decision interval alongside
the defense agent, similar to idea given in (Sharma et al.
2017)

• Reward Regularization - Penalizing the defense agent
when it changes the action.

• Augmented Action Spaces - By expanding the action
space to include both action to take and interval to repeat
it as mentioned in (Lakshminarayanan et al. 2016).

• Conditional FiGAR - Similar to FiGAR, an independent
agent learns to predict decision intervals. However, unlike
FiGAR, the prediction takes into account the action taken
by the defense agent.

Related Work
(Siddharth 2017) explores the effect of repeating actions
in a fixed interval by using an algorithm called DI (deci-
sion interval)-SARSA. This algorithm is a modification of
SARSA algorithm where action is repeated for d steps and
the reward obtained during this period (rt−d+1+γrt−d+2+
...γd−1rt) is used in the SARSA update at time t and a new
action is chosen. DI-SARSA is applied on Acrobot and HFO
defense domains and in both cases d > 1 gave better results
compared to d = 1.

https://github.com/martiansideofthemoon/macro-action-rl


In (Lakshminarayanan et al. 2016), the ac-
tion space is expanded from {a0, a2, ..., an−1} to
{a0, a2, ..., an−1, an, ..., a2n−1}. The action taken is
ai%n if ith action is chosen and it is repeated for d1 times if
i < n and d2 times otherwise. This action space expansion
is used on ATARI games and the agent is trained with DQN
algorithm. Improvements are seen over DQN when action
space expansion is applied.

(Sharma et al. 2017) propose a method called FiGAR to
improve existing reinforcement learning algorithms to learn
temporal abstractions in the policy space. There are 2 net-
works, one which gives the policy using the existing al-
gorithm and other which will give the number of repeti-
tions. The loss function for the networks is a combination
of losses of both the policies. This framework is applied to
A3C, TRPO and DDPG algorithms and the agent is shown
to learn better policies.

Problem & MDP Description
We use the Half-Field Offense framework (Hausknecht et
al. 2016) to implement all our algorithms and run experi-
ments. The HFO problem is a two-dimensional soccer game
restricted to one half field of a soccer pitch. The task is
episodic, and continues until the offensive side scores a goal,
the defensive team captures the ball or the ball is kicked out
of play. We focus on 2v2 game, where offensive agents and
a goalkeeper are controlled by a fixed strategy, and our agent
is a single defensive player.
The state space of this MDP is continuous. At any state,
the agent is permitted to take one of the following high
level actions - MARK PLAYER i (i is one of the oppo-
nents), REDUCE ANGLE TO GOAL, GO TO BALL and
DEFEND GOAL, MOVE and NO OP. An episode ends with
a reward -1 whenever the offensive team scores a goal. In all
other cases, the reward is +1. While an episode is proceed-
ing, a reward of 0 is given at every step. A discount factor
γ = 1 is used for this MDP(S, A, R, T, γ).

Methods
Since we are dealing with a continuous state-space, a total
of 15 features are extracted as the observation and function
approximation is used via tile coding. An ε-greedy policy is
followed while selecting the next action.

SARSA(λ) update is given by:

δ ← r + γQ(s′, a′)−Q(s, a)

e(s, a)← e(s, a) + 1

where s is the current state, a is the action taken, s′ is the
next state and a′ is the next action that will be taken, e is
eligibility trace that is set to zero at the start of episode. Ad-
ditionally, ∀s, a

Q(s, a)← Q(s, a) + αδe(s, a)

e(s, a)← γλe(s, a)

where α is the learning rate.
Since Q(s, a) in our experiments is a function of weights

of features, the update for Q is equivalent to

θt+1 ← θt + αδe(s, a)∇θQ(s, a)

Fixed Decision Interval
We outline the fixed decision interval algorithm used in (Sid-
dharth 2017) in Algorithm 1. Updates and action changes
are only performed after a fixed decision interval d. In
our experiments we tuned over intervals 1, 2, 4, 8, 16, 32, 64.
Note that d = 1 corresponds to a vanilla SARSA(λ) update.

FiGAR
Our implementation of FiGAR uses the framework men-
tioned in Algorithm 1 of (Sharma et al. 2017). We now con-
struct an independent agent (denoted by Qi(s, a

′)) which
predicts a decision interval for every state s. This agent
has its own set of function approximation weights. Here,
a′ ∈ {1, 2, 4, 8, 16, 32, 64}. We outline our implementation
in Algorithm 2. Notice that both Qi(s, a′) and Qa(s, a) are
updated together with the same reward. We decided to use
the same λ for SARSA updates for both agents in our imple-
mentation, but we could use different λ1 and λ2 in the most
general case.

Reward Regularization
This is a simple tweak to the vanilla algorithm. After ev-
ery step, a constant (penalty p) is subtracted from the
reward received whenever there is a change in action.
This changes the underlying MDP M = (S,A,R, T, γ)
to Mreg = (S,A,Rreg, T, γ). We model our re-
ward Rreg(s, a, s

′, a′) = R(s, a, s′) if a = a′ else
Rreg(s, a, s

′, a′) = R(s, a, s′)−p. Here, a′ is the previously
taken action. The policy learnt for Mreg will have lesser ac-
tion changes compared to that of M due to regularization.
We outline our implementation in Algorithm 3.

Augmented Action Space
Our augmented action space implementation is based on
(Lakshminarayanan et al. 2016). Let’s say we wish to model
I decision intervals (in our implementation, I = 6, i ∈
{1, 2, 4, 8, 16, 32, 64}). For every action a1, we add I ac-
tions to the new action space, denoted by a′1,i. This new
action space has a total of I ∗ |A| actions. We outline our
implementation in Algorithm 4. Note that in our imple-
mentation, an action space of {a0, a2, ..., an−1} is expanded
as {a0,0, a0,1, ..., a0,I , a1,0, ..., a1,I , ..., an−1,0, ..., an−1,I}
as opposed to {a0,0, ..., an−1,0, a0,1, ..., an−1,1, ..., a0,I , ...,
an−1,I} which is suggested by the paper.

Conditional FiGAR
This is a direct extension of the FiGAR algorithm described
earlier. We augment the state space of Qi(s, a′) to include
the action chosen for the current time-step. Note that in Fi-
GAR, the decision interval was predicted based on the cur-
rent state, independent of the agent’s predicted action. We
augment the feature vector φ(S) to include the predicted ac-
tion. We outline our implementation in Algorithm 5.

Experiment Details
Tile Coding (CMAC) with per dimension resolution of 0.1
is used to approximate action-value function. Our vanilla



input: λ, decision interval d
Q(s, a)← 0;
for episodes 1...E do

step← 0;
s← initial state;
action← ε-greedy(Q);
while episode not over do

r, s′ ← simulateHFO(action);
step← step + 1;
if step % d == 0 then

action← ε-greedy(Q);
SARSA(λ) update of Q(s, a);
step← 0;

end
s← s′;

end
SARSA(λ) update of Q(s, a);

end
Algorithm 1: Fixed Decision Interval

input: λ
Qa(s, a)← 0;
Qi(s, a

′)← 0;
for episodes 1...E do

s← initial state;
action← ε-greedy(Qa);
d← ε-greedy(Qi);
step← 0;
while episode not over do

r, s′ ← simulateHFO(action);
step← step + 1;
if step % d == 0 then

action← ε-greedy(Qa);
d← ε-greedy(Qi);
SARSA(λ) update of Qa(s, a);
SARSA(λ) update of Qi(s, a′);
step← 0;

end
s← s′;

end
SARSA(λ) update of Qa(s, a);
SARSA(λ) update of Qi(s, a′);

end
Algorithm 2: FiGAR - SARSA(λ)

input: λ, penalty p
Q(s, a)← 0;
for episodes 1...E do

s← initial state;
previous = NULL;
action← ε-greedy(Q);
while episode not over do

r, s′ ← simulateHFO(action);
if action != previous then

r ← r − p;
end
previous← action;
action← ε-greedy(Q);
SARSA(λ) update of Q(s, a);
s← s′;

end
SARSA(λ) update of Q(s, a);

end
Algorithm 3: Regularized Reward

input: λ, intervals
A′ ← augment action space |intervals| times;
Q(s, a′)← 0;
for episodes 1...E do

s← initial state;
step← 0;
augmented← ε-greedy(Q);
action← augmented / |intervals|;
d← intervals[augmented % intervals];
while episode not over do

r, s′ ← simulateHFO(action);
step← step + 1;
if step % d == 0 then

augmented← ε-greedy(Q);
action← augmented / |intervals|;
d← intervals[augmented % intervals];
SARSA(λ) update of Q(s, a′);
step← 0;

end
s← s′;

end
SARSA(λ) update of Q(s, a′);

end
Algorithm 4: Augmented Action Space



input: λ
Qa(s, a)← 0;
Qi([s, a], a

′)← 0;
for episodes 1...E do

s← initial state;
action← ε-greedy(Qa);
d← ε-greedy(Qi);
step← 0;
while episode not over do

r, s′ ← simulateHFO(action);
step← step + 1;
if step % d == 0 then

action← ε-greedy(Qa);
Augment ‘action’ with s’;
d← ε-greedy(Qi);
SARSA(λ) update of Qa(s, a);
SARSA(λ) update of Qi([s, a], a′);
step← 0;

end
s← s′;

end
SARSA(λ) update of Qa(s, a);
SARSA(λ) update of Qi([s, a], a′);

end
Algorithm 5: Conditional FiGAR - SARSA(λ)

agent uses a SARSA(λ) update (λ tuned in our experi-
ments over set 0, 0.5, 0.8, 0.9, 0.95) with a learning rate of
0.1. An ε-greedy policy is followed while selecting the next
action, with ε = 0.1. To make a fair comparison among
all macro-action variants, we constrain the interval set to
1, 2, 4, 8, 16, 32, 64 for FiGAR, Augmented Action Space
and Conditional FiGAR. DI-SARSA is tuned on each of
these intervals.

All the runs are repeated thrice for 50,000 episodes with
different random seeds; The average cumulative reward, cu-
mulative regret and percent of goals and successful blocks
for different algorithms are shown in Table 2 for Reward
Regularization, Table 3 for FiGAR, Table 4 for Augmented
Action Space, Table 5 for DI-SARSA and Table 6 for Con-
ditional FiGAR. Also shown in the table are the standard
deviation across runs and number of runs averaged on2.
Additionally, we report averaged percentage goals vs
episodes in Figure 1, 2 for DI SARSA; Figure 3 for Fi-
GAR; Figure 4, 5 for Reward Regularization; Figure 6 for
Augmented Action Space and Figure 7 for Conditional Fi-
GAR.

Table 1 contrasts the performance of fine-tuned algo-
rithms with one another. The corresponding plot is shown
in Figure 8.

Results and Discussions
We confirm the hypothesis presented in (Siddharth 2017)
in our DI-SARSA experiments. Quite clearly from Figure

2A few experiments were run on lesser number of random seeds
due to less computation time.

1, a fixed decision interval d > 1 outperforms a vanilla
SARSA(λ) (d = 1). We also note the best step size to be
32. ( (Siddharth 2017) reported 31).

Agent trained with FiGAR was most successful in defend-
ing. Regularized SARSA and Augmented SARSA beat DI-
SARSA with at least ten point improvement in number of
successful defends. DI-SARSA beats baseline SARSA be-
cause of temporal coarse coding, this also means the agent
is updated only once in several time steps. Hence, the rate at
which the agent learns is reduced. This could be the reason
why DI-SARSA was easy to beat.

The FiGAR variants: Augmented Action Space and Con-
ditional FiGAR are expected to be at least as good as FiGAR.
However in both the cases, the complexity of action-value
function increases, which in turn will require more updates
for a good function approximation. This might have caused
the low performance values for these two variants.

Regularized SARSA is a simple modification on SARSA
that we have proposed. The algorithm imposes penalty
on choosing different actions for states that are close. By
doing so, we introduce a margin between Q(s, a∗) and
maxa 6=a∗Q(s, a), where a∗ is optimal action at state s. This
method did better than SARSA(λ) on this task. However, af-
ter the empirical analysis, we noticed a few shortcomings in
our choice of penalty per action switch, p. Let b denote the
number of action switches on a path. We expect that the ef-
fective reward to be greater than the penalty accrued when
the goal is not achieved. That is

Rmax − b ∗ p > Rmin ⇒ b < Rmax+Rmin

p

In the case of HFO, Rmax and Rmin are 1 and -1 re-
spectively. For any value of p > 1, the optimal path can-
not have any action switches. This is reflected by almost
same performance for p values of 4, 6, 8 in Figure 4. While
DI-SARSA specifies the number of time steps for which
the action should be repeated, the regularized version (soft-
)specifies the maximum number of action switches allowed.

In Figure 4, for the case with p = 2, the fraction of goals
increased after decreasing initially. If the agent has learned
for more than 20,000 episodes, it already has a good approx-
imation of Q(s, a), further constraining the decision with
penalty will force the agent to take the sub-optimal actions.
Hence, annealing the penalty with episodes will potentially
improve performance. We leave finding a suitable annealing
strategy for future work.

Conclusion
We present a study of five different algorithms which force
or encourage an agent to take “macro-actions”, or in other
words repeat actions for a number of steps. We note that
all our algorithms beat the vanilla SARSA(λ), with FiGAR
SARSA performing the best. Future work would include a
theoretical analysis of the benefits of action repetition, more
exhaustive tuning on HFO and empirical analysis of these
five algorithms on more complex frameworks.
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Algorithm Cumm. Regret ±σ Cumm. Reward ±σ %captured %goal
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Figure 1: Tuning of DI-SARSA with step size, λ = 0.8
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Figure 2: Tuning of DI-SARSA with λ, step = 32
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Figure 3: Tuning of FiGAR with λ
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lambda regReward Num Episodes Cumm. Regret ±σ Cumm. Reward ±σ %captured %goal
0.50 0.0001 43594 33528.000 + 18.000 (2) 10066.000 + 68.370 (2) 0.231 0.769
0.50 0.001 43594 33038.333 + 276.116 (3) 10555.667 + 2000.392 (3) 0.242 0.758
0.50 0.01 43594 32923.333 + 281.750 (3) 10670.667 + 210.299 (3) 0.245 0.755
0.50 0.1 43594 33411.000 + 515.831 (3) 10183.000 + 403.952 (3) 0.234 0.766
0.50 0.5 43594 30359.000 + 2589.336 (3) 13235.000 + 2016.549 (3) 0.304 0.696
0.00 1.0 43594 28972.333 + 4580.272 (3) 14621.667 + 3328.254 (3) 0.335 0.665
0.50 1.0 43594 34404.000 + 315.000 (2) 9190.000 + 223.063 (2) 0.211 0.789
0.80 1.0 43594 31793.000 + 3994.260 (3) 11801.000 + 3011.231 (3) 0.271 0.729
0.90 1.0 43594 32598.667 + 1046.993 (3) 10995.333 + 2336.683 (3) 0.252 0.748
0.95 1.0 43594 27343.000 + 7769.632 (3) 16251.000 + 6953.874 (3) 0.373 0.627
0.00 2.0 43594 33454.500 + 440.500 (2) 10139.500 + 398.052 (2) 0.233 0.767
0.50 2.0 43594 31779.667 + 1683.164 (3) 11814.333 + 1236.690 (3) 0.271 0.729
0.80 2.0 43594 33414.667 + 1745.014 (3) 10179.333 + 1788.758 (3) 0.234 0.766
0.90 2.0 43594 24077.500 + 2223.500 (2) 19516.500 + 1792.520 (2) 0.448 0.552
0.95 2.0 43594 23986.000 + 4900.388 (3) 19608.000 + 4634.171 (3) 0.450 0.550
0.00 4.0 43594 32027.333 + 1624.043 (3) 11566.667 + 1201.101 (3) 0.265 0.735
0.50 4.0 43594 33710.333 + 1360.434 (3) 9883.667 + 963.355 (3) 0.227 0.773
0.80 4.0 43594 33193.000 + 1623.466 (3) 10401.000 + 1975.593 (3) 0.239 0.761
0.90 4.0 43594 33292.000 + 26.470 (3) 10302.000 + 73.115 (3) 0.236 0.764
0.95 4.0 43594 33281.000 + 1987.814 (3) 10313.000 + 1436.971 (3) 0.237 0.763
0.00 6.0 43594 34635.333 + 335.919 (3) 8958.667 + 244.755 (3) 0.206 0.794
0.50 6.0 43594 32864.667 + 2049.912 (3) 10729.333 + 1571.581 (3) 0.246 0.754
0.80 6.0 43594 29472.333 + 5675.704 (3) 14121.667 + 4767.923 (3) 0.324 0.676
0.90 6.0 43594 32927.333 + 2061.711 (3) 10666.667 + 1536.957 (3) 0.245 0.755
0.95 6.0 43594 33168.667 + 1948.053 (3) 10425.333 + 1442.663 (3) 0.239 0.761
0.00 8.0 43594 34397.000 + 340.213 (3) 9197.000 + 277.635 (3) 0.211 0.789
0.50 8.0 43594 32895.000 + 2117.346 (3) 10699.000 + 1556.574 (3) 0.245 0.755
0.80 8.0 43594 33543.333 + 947.879 (3) 10050.667 + 2028.201 (3) 0.231 0.769
0.90 8.0 43594 32608.667 + 1914.662 (3) 10985.333 + 1478.948 (3) 0.252 0.748
0.95 8.0 43594 34073.667 + 580.959 (3) 9520.333 + 537.674 (3) 0.218 0.782

Table 2: Regularized version of SARSA tuned on different values of regPenalty and λ

Figure 4: Tuning of Reward Penalty with penalty, λ = 0.95
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Figure 5: Tuning of Reward Penalty with λ, penalty = 2
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lambda Num Episodes Cumm. Regret ±σ Cumm. Reward ±σ %captured %goal
0.00 43594 19536.667 + 6150.605 (3) 24057.333 + 6654.715 (3) 0.552 0.448
0.50 43594 31761.000 + 77.240 (3) 11833.000 + 61.319 (3) 0.271 0.729
0.80 43594 26282.333 + 3396.982 (3) 17311.667 + 2423.101 (3) 0.397 0.603
0.90 43594 20903.000 + 10734.462 (3) 22691.000 + 7659.015 (3) 0.521 0.479
0.95 43594 19937.333 + 10876.495 (3) 23656.667 + 7714.036 (3) 0.543 0.457

Table 3: FiGAR on SARSA

lambda Num Episodes Cumm. Regret ±σ Cumm. Reward ±σ %captured %goal
0.00 43594 32006.500 + 295.500 (2) 11587.500 + 211.306 (2) 0.266 0.734
0.50 43594 33919.667 + 388.304 (3) 9674.333 + 305.458 (3) 0.222 0.778
0.80 43594 32924.000 + 332.455 (3) 10670.000 + 270.202 (3) 0.245 0.755
0.90 43594 32117.000 + 1207.273 (3) 11477.000 + 887.541 (3) 0.263 0.737
0.95 43594 22797.000 + 9850.000 (2) 20797.000 + 7150.275 (2) 0.477 0.523

Table 4: Augmented Action Space

Figure 6: Tuning of Augmented Action SARSA with λ
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Figure 7: Tuning of Conditional FiGAR with λ
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Figure 8: Fine-tuned comparison of all algorithms.
Here di is DI-SARSA, reg is Regularized Reward,
action space is Augmented Action SARSA.
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lambda step Num Episodes Cumm. Regret ±σ Cumm. Reward ±σ %captured %goal
0.00 1 43594 33128.333 + 386.559 (3) 10465.667 + 279.795 (3) 0.240 0.760
0.50 1 43594 32534.000 + 287.800 (3) 11060.000 + 208.251 (3) 0.254 0.746
0.80 1 43594 33102.000 + 371.280 (3) 10492.000 + 298.777 (3) 0.241 0.759
0.90 1 43594 33454.667 + 74.968 (3) 10139.333 + 76.956 (3) 0.233 0.767
0.95 1 43594 32916.333 + 227.639 (3) 10677.667 + 189.044 (3) 0.245 0.755
0.00 2 43594 32126.000 + 80.254 (3) 11468.000 + 85.259 (3) 0.263 0.737
0.50 2 43594 31326.667 + 111.828 (3) 12267.333 + 157.210 (3) 0.281 0.719
0.80 2 43594 32578.333 + 535.687 (3) 11015.667 + 465.552 (3) 0.253 0.747
0.90 2 43594 32294.000 + 439.560 (3) 11300.000 + 327.317 (3) 0.259 0.741
0.95 2 43594 32391.333 + 865.311 (3) 11202.667 + 628.730 (3) 0.257 0.743
0.00 4 43594 31619.333 + 757.157 (3) 11974.667 + 539.838 (3) 0.275 0.725
0.50 4 43594 31797.667 + 287.542 (3) 11796.333 + 226.129 (3) 0.271 0.729
0.80 4 43594 31789.667 + 434.316 (3) 11804.333 + 312.550 (3) 0.271 0.729
0.90 4 43594 31755.000 + 715.402 (3) 11839.000 + 517.151 (3) 0.272 0.728
0.95 4 43594 32067.000 + 711.743 (3) 11527.000 + 527.040 (3) 0.264 0.736
0.00 8 43594 31131.333 + 228.504 (3) 12462.667 + 179.353 (3) 0.286 0.714
0.50 8 43594 30819.333 + 472.752 (3) 12774.667 + 501.339 (3) 0.293 0.707
0.80 8 43594 30506.500 + 1347.500 (2) 13087.500 + 1320.286 (2) 0.300 0.700
0.90 8 43594 32093.000 + 89.993 (3) 11501.000 + 168.005 (3) 0.264 0.736
0.95 8 43594 31409.000 + 947.040 (3) 12185.000 + 819.300 (3) 0.280 0.720
0.00 16 43594 30635.000 + 466.275 (3) 12959.000 + 545.543 (3) 0.297 0.703
0.50 16 43594 31087.333 + 117.219 (3) 12506.667 + 174.485 (3) 0.287 0.713
0.80 16 43594 31098.000 + 228.370 (3) 12496.000 + 408.302 (3) 0.287 0.713
0.90 16 43594 30807.333 + 442.968 (3) 12786.667 + 407.942 (3) 0.293 0.707
0.95 16 43594 30754.333 + 291.320 (3) 12839.667 + 364.696 (3) 0.295 0.705
0.00 32 43594 28408.667 + 930.377 (3) 15185.333 + 1011.843 (3) 0.348 0.652
0.50 32 43594 28405.333 + 146.780 (3) 15188.667 + 128.175 (3) 0.348 0.652
0.80 32 43594 28975.000 + 529.777 (3) 14619.000 + 390.948 (3) 0.335 0.665
0.90 32 43594 29338.333 + 659.077 (3) 14255.667 + 492.916 (3) 0.327 0.673
0.95 32 43594 28983.667 + 451.658 (3) 14610.333 + 324.401 (3) 0.335 0.665
0.00 64 43594 29685.667 + 47.338 (3) 13908.333 + 97.589 (3) 0.319 0.681
0.50 64 43594 29726.667 + 142.783 (3) 13867.333 + 130.322 (3) 0.318 0.682
0.80 64 43594 30000.333 + 197.444 (3) 13593.667 + 203.316 (3) 0.312 0.688
0.90 64 43594 29945.667 + 314.194 (3) 13648.333 + 237.254 (3) 0.313 0.687
0.95 64 43594 29699.000 + 199.059 (3) 13895.000 + 212.555 (3) 0.319 0.681

Table 5: Decision Interval SARSA for different decision intervals. step = 1 corresponds to a vanilla SARSA(λ
).

lambda Num Episodes Cumm. Regret ±σ Cumm. Reward ±σ %captured %goal
0.00 43594 30933.667 + 213.920 (3) 12660.333 + 207.020 (3) 0.290 0.710
0.50 43594 28785.000 + 3898.890 (3) 14809.000 + 2765.450 (3) 0.340 0.660
0.80 43594 30517.333 + 458.005 (3) 13076.667 + 325.632 (3) 0.300 0.700
0.90 43594 31048.333 + 759.978 (3) 12545.667 + 602.929 (3) 0.288 0.712
0.95 43594 31200.333 + 124.596 (3) 12393.667 + 315.075 (3) 0.284 0.716

Table 6: Repetition prediction conditional on the action
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