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Abstract

This project is a detailed study of [1], along with an implementation of [2]
for the task of language generation using neural language models.

Diversity sampling is a general paradigm which attempts to discover dif-
ferent “modes” of a probability distribution. Diverse solutions are often very
useful in situations where a user needs to choose a solution amongst M dif-
ferent options. Since the top M MAP solutions are usually very similar to
each other and the MAP solution need not correspond to a suitable output,
discovering a diverse set of solutions (M -best modes of the distribution) is a
practical requirement. We study the paper [1], which poses this problem as
a convex optimization problem, and proposes diversity sampling algorithms
for three different problem domains - interactive segmentation, categorical
segmentation and pose estimation.

Keeping up with recent trends in Deep Learning, the original diversity sam-
pling technique proposed by [1] has been extended to neural beam search
in [2, 3]. We investigate the benefits of [2] for language generation using
neural language models.

Keywords: MRFs, Convex Optimization, Interactive Segmentation,
Diverse Beam Search, Language Generation, Language Modeling

1. Code

The complete code for this project can be found at https://github.

com/martiansideofthemoon/diversity-sampling.
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2. Interactive Segmentation

Image segmentation labels an image, with each pixel being labeled as
a foreground pixel or a background pixel. In interactive segmentation, the
user annotates this image with scribbles specifying foreground and back-
ground regions of the image. This problem is often simplified by considering
“super-pixels” (n x n grids of pixels) as the atomic unit of segmentation.

The probabilistic model is a Markov Random Field [4] (MRF) with each
super-pixel being a vertex and an edge between adjacent super pixels in the
grid. As a result, the largest cliques are edges. Each vertex xi is a Bernoulli
random variable, taking a foreground or background value. Energy functions
are defined over each vertex and each edge.

energy(x) =
∑
i

cost(xi) + λ
∑
i,j

cost(xi, xj)

Here, cost(xi) refers to the cost of assigning a foreground or background value
to pixel i, based on the scribbles provided by the user. Initially, a feature
vector is learnt for each super-pixel by training a Transductive SVM [5] on
the labeled super-pixels (scribbles). The model outputs a “score”, which
indicates the nature of the super-pixel. High positive scores indicate a ten-
dency to be a foreground super-pixel whereas low negative scores indicate a
tendency to be a background super-pixel. [6] contains the exact formulation
of this baseline.

cost(xi, xj) is a smoothness term, which uses the contrast sensitive Potts
model formulation.

cost(xi, xj) = I(xi 6= xj) · c1 · e−c2,dij

Here c1 and c2 are positive constants, and dij indicates the similarity between
the superpixel feature vectors. Similar adjacent superpixels with different la-
bels are penalized more heavily in this formulation.

The contrast-sensitive Potts model is a submodular energy function for a
binary labeling problem so we compute the MAP solution using the graph-
cut solution in [7].
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3. Diversity Sampling

The diversity sampling algorithm is applied to the MAP problem on
MRFs which attempts to find,

x∗ = min
x

∑
i

cost(xi) +
∑
i,j

cost(xi, xj)

This formulation is identical to the interactive segmentation problem, since
λ can be subsumed into the pairwise potentials. This problem is often con-
verted into a MAP integer program. Let θi denote the vector of all possible
energy values of xi, and µi be a one-hot vector. Hence, cost(xi) = θi · µi.
Similarly, we can define an integer program for edge potentials. This results
in an NP-hard integer program,

x∗ = min
µ

∑
A

θA · µA

Subject to linear constraints ensuring µA is consistent across edges and a
one-hot indicator vector taking on values 0 or 1.
Once we compute a MAP solution, a diverse 2nd mode can be computed
using a dissimilarity function ∆. Let µk denote a full configuration set of all
µA values. Let µ1 be the MAP solution. We add a constraint to the above
MAP problem, ∆(µ1,µ) ≥ k (the solution is sufficiently “far away” from
the MAP). This approach can be extended iteratively, to find a mth diverse
solution, atleast km units away from each of the previous m− 1 solutions.

3.1. Lagrangian Relaxation of MAP Integer Program

The diversity formulation is at least as hard as the original MAP program.
A continuous relaxation of the problem is studied, with a relaxed constraint
µA � 0. The diversity constraints are dualized (with multipliers λ) to form,

f(λ) = min
µ

∑
A

θA · µA −
m−1∑
1

λi(∆(µ,µi)− ki)

For all λ ≥ 0, this is a lower bound of the primal solution [8]. Hence,
the best solution would be obtained by finding maxλ�0 f(λ). Since f(λ) =
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minµ aµ ·λ+ bµ, it is a non-smooth function in general. It is also concave in
λ. We can see this as follows,

f(kλ1 + (1− k)λ2) = min
µ
{k(aµ · λ1 + bµ) + (1− k)(aµ · λ2 + bµ)}

≥ kmin
µ

(aµ · λ1 + bµ) + (1− k) min
µ

(aµ · λ2 + bµ)

= kf(λ1) + (1− k)f(λ2)

Due to the non-smooth concave nature, a supergradient ascent algorithm
is used to maximize the dual (which converges to the maxima whenever
suitable step-sizes are chosen, limt→∞ αt = 0 and

∑
t αt = ∞). Since f(λ)

is a point-wise minima of several functions, its super-gradient is aµ∗ , where
µ∗ = arg minµ aµ · λ + bµ. This can be shown as follows for any λ2.

aµ∗ · λ2 + bµ∗ ≥ min
µ
{aµ · λ2 + bµ}

aµ∗ · (λ2 − λ) ≥ min
µ
{aµ · λ2 + bµ} − aµ∗ · λ− bµ∗

= f(λ2)− f(λ)

Which is the condition for aµ∗ to be a super-gradient. Hence we obtain the
super-gradient of f(λ) as,

∇if(λ) = −(∆(µ∗,µi)− ki)

Here µ∗ is the optimal solution for a fixed value of λ. This solution is
intuitive since if ∆(µ∗,µi) ≤ ki, the gradient will be positive, thus increasing
the penalty due to violation of this constraint in the next iteration (and
encouraging the model to satisfy the constraint).

3.2. Computing the Super-gradient

We use a strategically chosen ∆ function to reuse the original MAP formu-
lation. More specifically, we use the Hamming distance (offset by a constant),
where ∆(µ1,µ2) = −

∑
i∈vertices µ

1
i · µ2

i . This formulation makes it easy to
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include this term in the unary potentials, giving us a final formulation,

f(λ) = min
µ

∑
A

θA · µA −
m−1∑
i=1

λi(−
∑
j∈V

µj · µi
j − ki)

= min
µ

∑
j∈V

(θj +
m−1∑
i=1

λiµ
i
j) · µj +

∑
j∈E

θj · µj −
m−1∑
i=1

λiki

= min
µ

∑
j∈V

θ′j · µj +
∑
j∈E

θj · µj −
m−1∑
i=1

λiki

The last term is a constant which won’t affect the argmax solution of µ for a
constant λ. Hence we can utilize the same MAP machinery to compute the
desired super-gradients, with modified energy functions.

3.3. Tightness of the Dual

The dot product formulation leaves a duality gap in the formulation [9],
but experimental evidence shows that it works well in practice. The M-best
MAP solution does not leave a duality gap. This is proved in [1].

4. Interactive Segmentation Results

We utilize a MATLAB implementation1 of [1] for interactive segmentation
and obtain results consistent with the theoretical analysis presented in the
previous sections. We try to present results not shown in [1] in Figure 1,2,3
and 4.

1https://github.com/batra-mlp-lab/divmbest
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Figure 1: The third, fourth and fifth diverse solutions fill up errors in the segmentation of
the man’s head

Figure 2: The third diverse solution is able to model the thin mast of the boat
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Figure 3: The fifth diverse solution fill up errors outside object of focus

Figure 4: The fourth and fifth diverse solutions attempt to fill up the truck area of focus

5. Diversity Sampling for NLP

Shortly after [1], there has been some work in diversity sampling for natu-
ral language processing tasks. Most notably, [10] suggests an n-gram penalty
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function used for diverse phrase-based non-neural machine translations. [2]
explores diverse neural beam search for the tasks of visual question genera-
tion and image captioning. [3] explore diverse neural beam search for dialogue
response generation, abstractive summarization, and machine translation.

In this work we experiment with the simpler, more fundamental task of
language generation using neural language models in a generative sense.

6. Neural Language Models

Language models are language-specific models used to model the proba-
bility of a sentence, p(w1, w2...wn). A specific <EOS> is introduced to mark
the end of sentences to allow the model to predict probabilities of sentences
varying in length [11]. Language models can be treated as “next-word pre-
dictors” by splitting the joint distribution into conditional probabilities,

p(w1, w2...wn) = p(w1)p(w2|w1)p(w3|w1w2)...p(wn|w1, w2...wn−1)

Neural language models are often evaluated using perplexity, which measures
the average uncertainty for a next-word prediction. A perplexity of 100
indicates that on an average the model is unsure between 100 equally likely
next-words. Perplexity is computed using,

ppl = 2−
1
N

∑N
i=1 log2 p(wi|w1,w2...wi−1)

As our baseline language model, we use a 650-unit 2-layer LSTM based
on [12]. This achieves a decent perplexity of 78 on Penn Treebank [13] (While
the current state-of-the-art hovers close to 48, we choose this model due to
its simplicity and strong performance. This was the state-of-the-art in 2014).

7. Diverse Beam Search in Language Models

We implement the beam search algorithm mentioned in [2]. We assume
a single group of size B (beam width). We adopt a beam size B of 10 and
record beams up to the first <EOS> occurrence. We perform the following
diversity sampling algorithm (see equations in [2]),
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for t = 1...T do
// Decode first beam element without diversity;
for b = 2...B do

// Augment log-probabilities with diversity penalty;
// Perform one step of decoding for bth element;

end

end
Algorithm 1: Diverse Beam Search

We present an analysis on two different sentence-level difference schemes.
Our first scheme is a simple difference between the lengths of the decoded
sentences. We want to encourage our model to produce sentences greatly
varying in length. We define our difference as,

∆(y1, y2) = |len(y1)− len(y2)|

We initialize beams with a prior (to feed the LSTM hidden states with mean-
ingful semantic information) and sample the argmax output at each time-step
of the beam search decoding. Our results are presented in Table 1. We no-
tice that our sentences are largely preserving their prefixes, but the lengths
greatly vary due to the diversity of the length.
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Table 1: Length difference function results. λ denotes the weight assigned to the diversity
score relative to the log probability of the generated sentence so far. EOS denotes the end
of the sentence. The different sentences correspond to unique sentences in the beam.

λ Beam # Prior Decoded
1 1 he is a lawyer for the company EOS

2 he is a lawyer EOS

1 1 how can i do it EOS
2 how can i do EOS

5 1 he is a lawyer for the company EOS

2 he is a lawyer lawyer EOS
3 he is a lawyer lawyer for the company ’s board of directors and a director of

the national association of securities dealers and the exchange
’s management committee and the board of trade and industry
’s board of trade EOS

4 he is a lawyer lawyer for the company ’s board of directors and a director of
the national association of securities dealers and the exchange
’s management committee EOS

5 he is a lawyer lawyer for the company ’s board of directors and a director of
the national association of securities dealers EOS

5 1 how can i do it EOS
2 how can i do EOS

3 how can i do it again says mr. verwoerd EOS

4 how can i do it again says mr. verwoerd who is a member of the journal ’s
new york bureau EOS

As a second difference function, we investigate the Hamming distance.
The Hamming distance on a word level is modeled as the number of differing
words at the same location. To avoid sentence length diversity, we define our
difference as,

∆(y1, y2) =

min{l1,l2}∑
i=1

[[y1i 6= y2i]]

Here [[a 6= b]] = 1 when the condition is true, otherwise 0. We present
our results in Table 2. As evident from the results, for λ = 1 we succeed
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in getting some diversity, but we have a lot of repetition across beams (for
λ = 0 we would get all 10 identical beams. However, for λ = 5, we get very
different sentences for all 10 beams, indicating successful Hamming distance
diversity. We observe no significant differences in length as expected.

Table 2: Hamming difference function results. λ denotes the weight assigned to the
diversity score relative to the log probability of the generated sentence so far. EOS denotes
the end of the sentence. Here the “Beams” column represent the number beams having
that particular decoded transcript.

λ # Beams Prior Decoded
1 5 why the company has been able to spend more than $ N million in

cash and $ N million in assets EOS

4 why the company has been able to sell the company ’s N N stake in
the company EOS

1 why the government is n’t likely to be able to get the money to the
public EOS

5 1 why the company has been able to spend more than $ N million in
cash and $ N million in assets EOS

1 why the government is n’t likely EOS

1 why the u.s. government is n’t allowed to take the action EOS

1 why the new york stock exchange is n’t likely to be the only way to
sell the stock EOS

1 why the two companies are in the best position of the company EOS

1 why the N N of the N N of them are in the N model year EOS
1 why the federal reserve will be able to make a new bid for the company

EOS

1 why the market was in a severe crunch EOS

1 why the bank ’s assets are n’t the only way to be a good investment
EOS

1 why the state department has been investigating whether the u.s. has
been able to spend the money in the u.s. EOS

8. Conclusion

We present a detailed analysis on diversity sampling techniques used in
machine learning and present diverse results for interactive segmentation
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and language generation using neural language models. Future work in this
space includes more innovative difference functions for NLP tasks, (such as
the n-gram difference introduced by [10], or BLEU scores) and more robust
algorithms to enforce diversity.

9. References

[1] D. Batra, P. Yadollahpour, A. Guzman-Rivera, G. Shakhnarovich, Di-
verse m-best solutions in markov random fields, in: European Confer-
ence on Computer Vision, Springer, pp. 1–16.

[2] A. K. Vijayakumar, M. Cogswell, R. R. Selvaraju, Q. Sun, S. Lee,
D. Crandall, D. Batra, Diverse beam search: Decoding diverse solu-
tions from neural sequence models, arXiv preprint arXiv:1610.02424
(2016).

[3] J. Li, W. Monroe, D. Jurafsky, A simple, fast diverse decoding algorithm
for neural generation, arXiv preprint arXiv:1611.08562 (2016).

[4] R. Kindermann, J. L. Snell, Markov random fields and their applications,
volume 1, American Mathematical Society, 1980.

[5] V. Sindhwani, S. S. Keerthi, Large scale semi-supervised linear svms, in:
Proceedings of the 29th annual international ACM SIGIR conference on
Research and development in information retrieval, ACM, pp. 477–484.

[6] P. Yadollahpour, D. Batra, G. Shakhnarovich, Diverse m-best solutions
in mrfs, in: Workshop on Discrete Optimization in Machine Learning,
NIPS.

[7] P. Kohli, P. H. Torr, Efficiently solving dynamic markov random fields
using graph cuts, in: Computer Vision, 2005. ICCV 2005. Tenth IEEE
International Conference on, volume 2, IEEE, pp. 922–929.

[8] S. Boyd, L. Vandenberghe, Convex optimization, Cambridge university
press, 2004.

[9] A. M. Geoffrion, Lagrangean relaxation for integer programming, in:
Approaches to integer programming, Springer, 1974, pp. 82–114.

12



[10] K. Gimpel, D. Batra, C. Dyer, G. Shakhnarovich, A systematic explo-
ration of diversity in machine translation, in: Proceedings of the 2013
Conference on Empirical Methods in Natural Language Processing, pp.
1100–1111.

[11] S. F. Chen, J. Goodman, An empirical study of smoothing techniques for
language modeling, Computer Speech & Language 13 (1999) 359–394.

[12] W. Zaremba, I. Sutskever, O. Vinyals, Recurrent neural network regu-
larization, arXiv preprint arXiv:1409.2329 (2014).

[13] M. P. Marcus, M. A. Marcinkiewicz, B. Santorini, Building a large anno-
tated corpus of english: The penn treebank, Computational linguistics
19 (1993) 313–330.

13


	Code
	Interactive Segmentation
	Diversity Sampling
	Lagrangian Relaxation of MAP Integer Program
	Computing the Super-gradient
	Tightness of the Dual

	Interactive Segmentation Results
	Diversity Sampling for NLP
	Neural Language Models
	Diverse Beam Search in Language Models
	Conclusion
	References

